

King Saud University Department of Mathematics

MATH 244 (Linear Algebra) 2nd Midterm Exam Duration: 105 Minutes

1st Semester 1435-1436 H

Student's Name	Student's ID	Group No.

Question No.	Ι	II	III	IV	Total
Mark					

[I]	Determine wh	hether the	following is	True or	False.	[3	Points
-----	--------------	------------	--------------	---------	--------	----	--------

1.	(4) TO A 1	,
((1) If A is an invertible matrix, then $adj(A)$ is also invertible.	(
1,	(1) If It is all invertible matrix, their adj(11) is also invertible.	(

(2) The distance
$$\mathbf{d}(\mathbf{u}, \mathbf{v})$$
 between $\mathbf{u} = (2, -1, 3)$ and $\mathbf{v} = (1, 3, 4)$ equals $\sqrt{6}$.

(3) The set
$$\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$$
, where $\mathbf{u} = (1, 1, -1)$, $\mathbf{v} = (-1, 2, 1)$ and $\mathbf{w} = (2, 0, 1)$, is an orthogonal set.

(4)
$$(-1,3,2)$$
 can be written as a linear combination of $(2,0,1)$ and $(0,2,4)$.

(5)
$$W = \{(x, y) : xy = 0\}$$
 is a subspace of \mathbb{R}^2 .

(6)
$$S = \{(1,1,0), (1,-1,1), (0,1,-1)\}$$
 spans \mathbb{R}^3 .

- [II] Choose the correct answer. [5 Points]
 - (1) If A, B and C are 2×2 matrices with det(A) = 3, det(B) = 4 and det(C) = 5 then $det(3A^{-1}B^TC^2)$ equals
 - (a) 75

(b) 100

(c) 300

(d) None of the previous

- (2) If $\|\mathbf{u} + \mathbf{v}\| = 5$ and $\|\mathbf{u} \mathbf{v}\| = 1$, then the dot product $\mathbf{u} \cdot \mathbf{v}$ equals
 - (a) 6

(b) 4

(c) 1

- (d) None of the previous
- (3) For $\mathbf{u} = (-3, 1, 1, 0)$ and $\mathbf{v} = (4, 7, -3, 5)$, the vector \mathbf{x} that satisfies the equation $5\mathbf{x} 2\mathbf{v} = \mathbf{u}$ is

- (a) $\mathbf{x} = (5, 15, -5, 10)$ (b) $\mathbf{x} = (1, 3, -1, 2)$ (c) $\mathbf{x} = (-2, 9, -1, 5)$ (d) None of the previous
- (4) The angle θ between $\mathbf{u} = (1, 1, 1)$ and $\mathbf{v} = (2, 0, 1)$ is
 - (a) $\frac{\pi}{4}$

(b) $\frac{\pi}{2}$

- (c) $\cos^{-1}\sqrt{\frac{3}{5}}$
- (d) None of the previous
- (5) The solution space of the system $A\mathbf{x} = \mathbf{0}$, where $A = \begin{bmatrix} 1 & -1 & 3 \\ -3 & 6 & 9 \\ -2 & 2 & -6 \end{bmatrix}$, is
 - (a) a line through the origin
- (b) a plane through the origin
- (c) the origin
- (d) None of the previous

[III] [6 Points]

(a) Let
$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 1 & 0 & -1 & 3 \\ 0 & 2 & 1 & 4 \\ -1 & 2 & 0 & 1 \end{bmatrix}$$
. Compute $\det(A)$ using **row reduction**

(b) Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & -2 \\ 3 & 1 & 0 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Solve the system $A\mathbf{x} = \mathbf{b}$ just for x_3 using **Cramer's Rule**.

[IV] [6Points]

Let $V = \{(x,y) \in \mathbb{R}^2 : x \neq 0\}$ with the following addition and scalar multiplication on $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2) : \mathbf{v} = \{(x,y) \in \mathbb{R}^2 : x \neq 0\}$

$$\mathbf{u} + \mathbf{v} = (u_1 v_1, u_2 + v_2 - 1)$$

$$k\mathbf{u} = (ku_1, ku_2)$$

- (a) Find the object $\mathbf{0} \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$.
- (b) If $\mathbf{u} \in V$. Find the object $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- (c) Show that V is not a vector space.