

الاختبار الفصلى الأول لمقرر 101 فيز - الفصل الدراسي الأول 6 7/143 هـ

نموذج C الرقم: الاسم:

المدة الزمنية للاختبار ساعة ونصف

القسم الأول: اختر الإجابة الصحيحة مما يلي (11 درجة)

الشكل المجاور، A و B شحنتان نقطيتان المسافة بينهما 3r وتحمل كل منهم q. استخدم هذا الشكل للإجابة على الأسئلة من 1 إلى 4:

1- ما نوع الشحنتان على A و B: أ) <mark>كلاهما سالِب الشحنة</mark> ب) كلاهما موجب الشحنة

ج) A موجبة و B سالبة د) A سالبة و B موجبة

2- القوة الكهربية المتبادلة بين الشحنتين تساوى:

 $k_e \frac{q^2}{Qr^2}$ (ε د) صفر

 $k_e \frac{q^2}{r^2}$ (

 $\psi k_e \frac{q}{0r^2}$

3- المجال الكهربي في نقطة الأصل (منتصف المسافة) والناتج من الشحنتين يساوي:

د) <mark>صفر</mark>

 $k_e \frac{8q}{0r^2}$ (E

 $k_{e}\frac{2q}{r^{2}}$ (

 $\mathbf{k}_{e} \frac{4q}{\Omega r^{2}}$

4- الجهد الكهربي في نقطة الأصل (منتصف المسافة) والناتج من الشحنتين يساوي:

د) صفر

 ∞ (ε

 $-k_e \frac{4q}{3r}$ ($\Rightarrow -k_e \frac{2q}{r}$ ()

5- نسبة الشحنة q إلى مساحة لوح المكثف g تسمى: أ) سعة المكثف ϕ

كثافة الشحنة السطحية

ج) فرق الجهد د)

وجود مادة عازلة سماحيتها $^{-6}$ $^{-6}$ $^{-10}$ وجود مادة عازلة سماحيتها $^{-10}$ الفراغ) فإن سعته تصبح:

0.1 µF (2

ع) In 400 با 100

10 µF

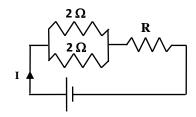
7- إذا أزيلت المادة العازلة بين لوحى المكثف فإن المجال الكهربي بينهما:

د) لا يتغير

ج) يتضاعف

ب) ينقص

أ) <mark>يزيد</mark>

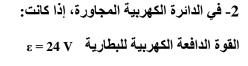

نموذج C

		رمساحة كلا منهما S هي:	8- سعة مكثف متوازي اللوحين، المسافة بين لوحيه d، ومسا			
	$\frac{\varepsilon_0 S}{d}$ (2	ε _o Sd (τ	$\frac{\varepsilon_{o}d}{S}$ (+	$\frac{S}{\varepsilon_{o}d}$ (i		
	د) التيار	ج) ا لقد رة	التوالي فإنه يتساوى فيها: ب) <mark>الشحنات</mark>	9- عند توصيل مكثفات على أ) فرق الجهد		
			نوعية الكهربية ρ هي:	10- وحدة قياس المقاومة ال		
	$(\Omega.m)^{-1}$ (2	<u>Ω.m</u> (₹	V/A.Ω (끚	V/A ([†]		
هذا الموصل لمدة نصف	لكهربي المار خلال	ساوي 2 3600 فإن التيار ا	الكهربائية الكلية في موصل ت	11- إذا كان مقدار الشحنة اساعة يساوي (بوحدة A):		
	1.6	(2 <mark>2</mark>	(E 3.5	اً) 5.4 (أ		
				ثوابت:		
$K_e = 9x10^9 \text{ N.m}^2/c^2$	$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2$	/N.m ²	$e = 1.6 \times 10^{-19}$			

ضع اختيارك للإجابة الصحيحة في الجدول التالي

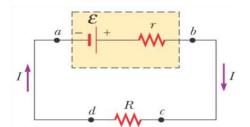
٦	٥	٤	٣	۲	1	السؤال
						الإجابة
	11	١.	q	٨	٧	السؤال
						الإجابة

القسم الثاني: اجب على ما يلي بالتفصيل (أربع درجات)


1- احسب قيمة المقاومة المجهولة R في الدائرة المجاورة، حيث أن المقاومة المكافئة (الكلية) للمقاومات الثلاث في الدائرة تساوي Ω 3.

$$1/R_1 = 1/2 + 1/2 = 1$$

$$R_1 = 1 \Omega$$


$$R_{\rm eq}=1+R=3\;\Omega$$

$$R = 2 \Omega$$

و المقاومة الداخلية للبطارية $\Omega=1$ و المقاومة الخارجية $\Omega=3$ ،

احسب فرق الجهد $m V_R$ بين طرفي المقاومة الخارجية m R .

$$I = \varepsilon / (R + r) = 6 A$$

$$V_R = I R = 18 V$$