King Saud University
a ع الملكسعود King Saud University

MATH 244 (Linear Algebra)
First Midterm Exam
Duration: 105 Minutes

Student's Name	Student's ID	Group No.	Lecturer's Name

Question No.	I	II	III	IV	Total
Mark					

[I] Determine whether the following is True or False. [3 Points]
(1) $(2,1,-1)$ is a solution of the following linear system

$$
\begin{aligned}
x+2 y+5 z & =-1 \\
3 x-y+z & =3
\end{aligned}
$$

(2) If A is an $n \times n$ matrix, then $\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$.
\qquad
(3) For $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1\end{array}\right], D^{3}$ is invertible.
\qquad
(4) If B and C are invertible $n \times n$ matrices, then $B+C$ is invertible.
\qquad
(5) If A and B are $n \times n$ matrices that commute, then $A^{2} B=B A^{2}$.
(6) If A is a square matrix with two identical columns, then $\operatorname{det}(A)=0$.
[II] Choose the correct answer. [5 Points]
(1) If $(I+A)^{T}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 5 & 0 & 3\end{array}\right]$, then $\operatorname{det}(A)$ equals
(a) 7
(b) 8
(c) 20
(d) None of the previous
(2) If $B^{-1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$ and $p(x)=x^{2}+1$, then $p(B)$ equals
(a) $\left[\begin{array}{cc}32 & -12 \\ -18 & 8\end{array}\right]$
(b) $\left[\begin{array}{cc}32 & -11 \\ -17 & 8\end{array}\right]$
(c) $\left[\begin{array}{cc}26 & 4 \\ 9 & 2\end{array}\right]$
(d) None of the previous
(3) The values of k for which the matrix $\left[\begin{array}{cc}2 & k+2 \\ k^{2} & -1\end{array}\right]$ is symmetric are
(a) $k=2,-1$
(b) $k=1,-2$
(c) $k=0,1$
(d) None of the previous
(4) For $\left[\begin{array}{ccc}1 & 2 & 4 \\ 2 & 1 & 5 \\ 3 & 0 & -1\end{array}\right]$, the cofactor C_{23} equals
(a) -6
(b) 6
(c) 30
(d) None of the previous
(5) For any $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$, the system

$$
\begin{aligned}
3 x-2 y & =b_{1} \\
4 x+y & =b_{2}
\end{aligned}
$$

has
(a) No solution
(b) a unique solution
(c) Infinitely many solutions
(d) None of the previous
[III] Let $A=\left[\begin{array}{cccc}-1 & 1 & 0 & -1 \\ 2 & -2 & 2 & 0 \\ 1 & 0 & 3 & 0 \\ -2 & 1 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1\end{array}\right]$. Find the following [7 Points]
(a) $\operatorname{det}(A)$ using Row Reduction
(b) $(2 B)^{-1}$
(c) The matrix X for which $X B=\left[\begin{array}{ccc}4 & 2 & -2 \\ -2 & -4 & 0\end{array}\right]$
(a) Solve the following system

$$
\begin{aligned}
x+y+2 z & =0 \\
2 x+y+z & =1 \\
3 x+2 y+5 z & =2
\end{aligned}
$$

(b) Can the coefficient matrix of the previous system be written as a product of elementary matrices? Justify your answer.

