

(

(

)

)

)

Student's Name	Student's ID	Group No.	Lecturer's Name

Question No.	Ι	II	III	IV	Total
Mark					

[I] Determine whether the following is True or False. [3 Points]

(1) (2, 1, -1) is a solution of the following linear system

 $\begin{array}{rcl} x+2y+5z &=& -1\\ 3x-y+z &=& 3 \end{array}$

(2) If A is an $n \times n$ matrix, then $tr(A) = tr(A^T)$. (

	(3) For $D =$	$\left[\begin{array}{rrr}1&0\\0&2\\0&0\end{array}\right]$	$\begin{array}{c} 0\\ 0\\ -1 \end{array}$, D^3 is invertible.	()
--	---------------	---	---	------------------------	---	---

(4) If B and C are invertible $n \times n$ matrices, then B + C is invertible.

(5) If A and B are $n \times n$ matrices that commute, then $A^2B = BA^2$.	()
---	-----

(6) If A is a square matrix with two identical columns, then det(A) = 0. ()

[II] Choose the correct answer. [5 Points]

(1) If
$$(I + A)^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 0 & 3 \end{bmatrix}$$
, then det(A) equals
(a) 7 (b) 8 (c) 20 (d) None of the previous
(2) If $B^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$ and $p(x) = x^{2} + 1$, then $p(B)$ equals
(a) $\begin{bmatrix} 32 & -12 \\ -18 & 8 \end{bmatrix}$ (b) $\begin{bmatrix} 32 & -11 \\ -17 & 8 \end{bmatrix}$ (c) $\begin{bmatrix} 26 & 4 \\ 9 & 2 \end{bmatrix}$ (d) None of the previous
(3) The values of k for which the matrix $\begin{bmatrix} 2 & k+2 \\ k^{2} & -1 \end{bmatrix}$ is symmetric are
(a) $k = 2, -1$ (b) $k = 1, -2$ (c) $k = 0, 1$ (d) None of the previous
(4) For $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 5 \\ 3 & 0 & -1 \end{bmatrix}$, the cofactor C_{23} equals
(a) -6 (b) 6 (c) 30 (d) None of the previous
(5) For any $\mathbf{b} = \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix}$, the system
 $3x - 2y = b_{1} \\ 4x + y = b_{2}$
has
(a) Nosolution (b) a unique solution (c) Infinitely many solutions (d) None of the previous

$$[\mathbf{III}] \text{ Let } A = \begin{bmatrix} -1 & 1 & 0 & -1 \\ 2 & -2 & 2 & 0 \\ 1 & 0 & 3 & 0 \\ -2 & 1 & 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

. Find the following [7 Points]

- (a) det(A) using **Row Reduction**
- (b) $(2B)^{-1}$

(c) The matrix X for which
$$XB = \begin{bmatrix} 4 & 2 & -2 \\ -2 & -4 & 0 \end{bmatrix}$$

[IV] [5 Points]

(a) **Solve** the following system

 $\begin{array}{rcl} x+y+2z&=&0\\ 2x+y+z&=&1\\ 3x+2y+5z&=&2 \end{array}$

(b) **Can** the coefficient matrix of the previous system be written as a product of elementary matrices? **Justify** your answer.