

King Saud University Department of Mathematics 1st Semester 1435-1436 H

		Student's Name		Student's ID			Group No.		
		Question No. Mark	I	II	III	IV	Total		
[I] Dete	rmine whethe	er the following is 7	Frue or F a	alse. [3 Poin	nts]				
(1) T	ne following s	ystem of equations	is linear	$\begin{array}{c} x-y\\ x+\end{array}$	z + z = 5 2yz = 0	5		()
(2) T	(2) The reduced row echelon form of the matrix $\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$ is I_2 .)
(3) T	the matrix $\begin{bmatrix} 0\\ 1\\ 0\end{bmatrix}$	$\left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -3 \end{array}\right] $ is elem	nentary.					()
(4) T	ne matrix $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & -1 \end{bmatrix}$ is invert	ertible.					()
(5) If	A and B are	$n \times n$ matrices, th	en $(A+B)$	$)^2 = A^2 + 2$	$AB + B^2$.			()

(6) If A is an invertible symmetric matrix, then A^{-1} is symmetric.

)

(

[II] Choose the correct answer. [6 Points]

(1) If A, B and C are $n \times n$ matrices, then $AC - (C^T B)^T$ equals

(a)
$$(A-B)C^T$$
 (b) $(A-B^T)C$ (c) $(AC-BC)^T$ (d) None of the previous

(2) The values of *a*, *b* and *c* for which $\begin{bmatrix} 3 & a \\ 1 & a+b \end{bmatrix} = \begin{bmatrix} b & c-2 \\ c+2 & 0 \end{bmatrix}$ are (a) a = 1, b = 3, c = 3 (b) a = -3, b = 3, c = -1 (c) a = 0, b = 3, c = 2 (d) None of the previous

(3) For $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$, A^{-2} equals (a) $\begin{bmatrix} 11 & -8 \\ -4 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 8 \\ 4 & 11 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 4 \\ 1 & 9 \end{bmatrix}$ (d) None of the previous (4) If $B^3 = \begin{bmatrix} -8 & 0 & 0 \\ 0 & 27 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then tr(B) equals (a) $\begin{bmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (b) 20 (c) 2 (d) None of the previous (5) For $\begin{bmatrix} 1 & 3 & 4 \\ 2 & 1 & 0 \\ 5 & 0 & -1 \end{bmatrix}$, the minor M_{12} equals (a) 2 **(b)** -2 (c) −3 (d) None of the previous (a) 5 **(b)** -10 (c) 10 (d) None of the previous

[III] Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 2 & 4 \\ 5 & 0 & 1 \end{bmatrix}$. Find the following [6 *Points*]

- (a) A + B
- (b) $(3A)^{-1}$
- (c) The matrix X for which AX = B

[IV] [5 Points]

(a) **Solve** the following system

x + y + 3z = 0 2x + y + 4z = 13x + y + 5z = 2

(b) \mathbf{Is} the coefficient matrix of the previous system invertible? **Justify** your answer.