

Student's Name	Student's ID	Group No.	Lecturer's Name

Question No.	Ι	II	III	IV	Total
Mark					

- [I] Determine whether the following is **True** or **False**.
 - (1) A homogeneous system of linear equations must have a unique solution. (

(2)	For an $n \times n$ matrix A	, if the system Az	$\mathbf{x} = 4\mathbf{x}$ has a unique solution	then the matrix $A - 4I_n$ is invertible.	
)	1		

(3)	The matrix	$\left[\begin{array}{c}1\\2\end{array}\right]$	$\begin{bmatrix} 3\\0 \end{bmatrix}$ is invertible.	()
(4)	The matrix	$\left[\begin{array}{c}1\\2\\3\end{array}\right]$	$\begin{bmatrix} 2 & 3 \\ 2 & 0 & 5 \\ 3 & -5 & -1 \end{bmatrix}$ is symmetric.	()

(5) If A and B are $n \times n$ matrices for which $AB = I_n$ then $BA = I_n$. ()

)

)

[II] Choose the correct answer.

(1)
$$\begin{vmatrix} 5 & 2 & 2 \\ -1 & 1 & 2 \\ 3 & 0 & 0 \end{vmatrix}$$
 equals
(a) -18 (b) 6 (c)-6 (d) None of the previous

(2) For a = 4, the system

$$\begin{array}{rcl} x_1 + x_2 + x_3 &=& 1 \\ (a^2 - 4)x_3 &=& a \end{array}$$

1

has

(a) No solution (b) Exactly one solution (c) Infinitely many solutions

(3) The values of k for which
$$det(A) = 0$$
, where $A = \begin{bmatrix} k & -k & 3\\ 0 & k+1 & 1\\ k & -8 & k-1 \end{bmatrix}$ are

(a) k = 0, 1(b) k = 1, 2(c) k = 0, 2(d) None of the previous

(4) If
$$B^3 = \begin{bmatrix} -8 & 0 & 0 \\ 0 & -64 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then
(a) $B^2 = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (b) $B^2 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $B^2 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (d) None of the previous

(5) For
$$C = \begin{bmatrix} 3 & -2 & 7 \\ 6 & 5 & 4 \\ 0 & 4 & -9 \end{bmatrix}$$
, $tr(4C^T)$ equals
(a) -4 (b) -1 (c) 4 (d) None of the previous

$[\mathbf{III}]$

(a) Solve the following matrix equation for X, where $A = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 0 \\ 1 & -2 \end{bmatrix}$. $X - (2AB + C^T)^{-1} = 0_{2 \times 2}$

(b) Find a matrix Y for which $DY = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$, where $D = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$.

 $[\mathbf{IV}]$ Solve the following system if possible