King Saud University Department of Mathematics

2nd Semester 1432-1433 H

MATH 244 (Linear Algebra)
1st Midterm Exam
Duration: 90 Minutes

Student's Name	Student's ID	Group No.	Lecturer's Name

Question No.	I	II	III	IV	Total
Mark					

[I] Determine whether the following is True or False.
(1) A homogeneous system of linear equations must have a unique solution.
(2) For an $n \times n$ matrix A, if the system $A \mathbf{x}=4 \mathbf{x}$ has a unique solution then the matrix $A-4 I_{n}$ is invertible.(
\qquad
(3) The matrix $\left[\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right]$ is invertible.
\qquad
(4) The matrix $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 0 & 5 \\ 3 & -5 & -1\end{array}\right]$ is symmetric.
\qquad
(5) If A and B are $n \times n$ matrices for which $A B=I_{n}$ then $B A=I_{n}$.
[II] Choose the correct answer.
(1) $\left|\begin{array}{ccc}5 & 2 & 2 \\ -1 & 1 & 2 \\ 3 & 0 & 0\end{array}\right|$ equals
(a) -18
(b) 6
(c) -6
(d) None of the previous
(2) For $a=4$, the system

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =1 \\
\left(a^{2}-4\right) x_{3} & =a
\end{aligned}
$$

has
(a) No solution
(b) Exactly one solution
(c) Infinitely many solutions
(3) The values of k for which $\operatorname{det}(A)=0$, where $A=\left[\begin{array}{ccc}k & -k & 3 \\ 0 & k+1 & 1 \\ k & -8 & k-1\end{array}\right]$ are
(a) $k=0,1$
(b) $k=1,2$
(c) $k=0,2$
(d) None of the previous
(4) If $B^{3}=\left[\begin{array}{ccc}-8 & 0 & 0 \\ 0 & -64 & 0 \\ 0 & 0 & 1\end{array}\right]$, then
(a) $B^{2}=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) $B^{2}=\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 1\end{array}\right]$
(c) $B^{2}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$
(d) None of the previous
(5) For $C=\left[\begin{array}{ccc}3 & -2 & 7 \\ 6 & 5 & 4 \\ 0 & 4 & -9\end{array}\right], \operatorname{tr}\left(4 C^{T}\right)$ equals
(a) -4
(b) -1
(c) 4
(d) None of the previous
(a) Solve the following matrix equation for X, where $A=\left[\begin{array}{c}-1 \\ 2\end{array}\right], B=\left[\begin{array}{ll}4 & 2\end{array}\right], C=\left[\begin{array}{cc}3 & 0 \\ 1 & -2\end{array}\right]$.

$$
X-\left(2 A B+C^{T}\right)^{-1}=0_{2 \times 2}
$$

(b) Find a matrix Y for which $D Y=\left[\begin{array}{ll}1 & 2 \\ 0 & 3 \\ 0 & 0\end{array}\right]$, where $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]$.
[IV] Solve the following system if possible

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}-4 x_{4} & =1 \\
2 x_{1}+6 x_{2}+14 x_{3}+4 x_{4} & =4 \\
x_{1}-12 x_{2}-11 x_{3}-16 x_{4} & =-3
\end{aligned}
$$

