اللسؤ ال الأول: في المثال التاللي تم سؤ ال عشرة موظفين من النساء والرجال في شركة مـا عن المؤ هل العلمي و عدد سنو ات الخبرة والراتب الحالي، نصنف البيانات باستخدام المتغيرات التالية ثم نقوم بإدخالهها

Male: $1 \quad$ female: 2
المؤ هل الار اسي:

Bachelor's degree: $1 \quad$ master's degree: 2
الخبرة:

Less than 5: 1
between 5 and 10:2
greater than 5:3
الرانب:

\dagger					
File Edit	View Data	Transform	Analyze D	Direct Marketing	Graphs
11 : salary					
	gender	edulevel	experince	salary	var
1	1.00	1.00	1.00	- 500.00	
2	2.00	1.00	2.00	- 450.00	
3	1.00	1.00	1.00	- 440.00	
4	2.00	1.00	3.00	- 500.00	
5	1.00	2.00	2.00	- 570.00	
6	2.00	2.00	3.00	- 550.00	
7	2.00	2.00	2.00	- 490.00	
8	2.00	2.00	3.00	- 540.00	
9	1.00	2.00	2.00	- 600.00	
10	1.00	2.00	3.00	0650.00	
11					
12					

Fle Eodit View Data Iranstorm Analze Dired Marketing Graphs Uuilites Add-gns Window Help											
	Name	Type	With	Decimals	Label	Values	Missing	Column	Align	Measure	Role
1	gender	Numeric	8	2		[1.00, male]... N	None	8	ב B Right	Unknown	\rangle Input
2	edulverel	Numeric	8	2		[1.00, bach... N	None	8	\# Right	Unknown	\rangle Input
3	experince	Numeric	8	2		[1.00, less t... N	None	8	B Right	Unknown	\backslash Input
4	salary	Numeric	8	2		None N	None	8	三 P Right	Unknown	\backslash Input
5											

استخدام الخيارFrequencies لحساب المقاييس الإحصائية والجداول النكرارية

Data View Variable View

Frequencies

Statistics
salary

N	Valid
	Missing

	10	
Mean	0	
Median		529.0000
Mode	520.0000	
Std. Deviation	500.00	
Variance	66.07235	
Skewness	4365.556	
Std. Error of Skewness	.435	
Kurtosis	.687	
Std. Error of Kurtosis	$-.351-$	
Range	1.334	
Minimum		210.00
Maximum		440.00
Sum	650.00	
Percentiles	25	5290.00
	50	520.0000
	75	577.5000

Histogram

salary

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	440.00	1	10.0	10.0	10.0
	450.00	1	10.0	10.0	20.0
	490.00	1	10.0	10.0	30.0
	500.00	2	20.0	20.0	50.0
	540.00	1	10.0	10.0	60.0
	550.00	1	10.0	10.0	70.0
	570.00	1	10.0	10.0	80.0
	600.00	1	10.0	10.0	90.0
	650.00	1	10.0	10.0	100.0
	Total	10	100.0	100.0	

استخدام الخيارdescriptive لحساب المقاييس الإحصائية

تظهر لنا النتائج التالية

Descriptives

	Minimum Statistic	Maximum Statistic	MeanStatistic	Std. Deviation Statistic	Variance Statistic	Skewness		Kurtosis	
						Statistic	Std. Error	Statistic	Std. Error
salary	440.00	650.00	529.0000	66.07235	4365.556	. 435	. 687	-.351-	1.334
Valid N (listwise)									

Q2)
For a sample of 10 fruits from thirteen-year-old acidless orange trees, the fruit shape (determined as adiameter divided by height) wae measured [Shaheen and Hamouda (1984b)]: $\begin{array}{llllllllll}1.066 & 1.084 & 1.076 & 1.051 & 1.059 & 1.020 & 1.035 & 1.052 & 1.046 & 0.976\end{array}$
Assuming that fruit shapes are approximately normally distributed, find and interpret a 90% confidence interval for the average fruit shape.
to use the T - test, we need to make sure that the population follows a normal distribution
H_{0} : the population follows a normal distribution

Vs

H_{1} : the population does not follow a normal distribution

However, we find the question he said that the population follows a normal distribution, so is not necessary to make this test.

Now, $\mathbf{9 0 \%}$ Confidence interval of the mean can be found in two ways:

1) The first method:

\Rightarrow T.Test
[DataSet0]

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
FruitShape	10	1.0465	.03103	.00981

C.I for the mean
2) The second method:

It helps in the calculation of the confidence interval and find the statistical measures

Helps in the normality test

Explore

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
FruitShape	10	50.0%	10	50.0%	20	100.0%

Descriptives

Tests of Normality						
	Kolmogorov-Smirnov ${ }^{\text {a }}$			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
FruitShape	. 194	10	. $200{ }^{\circ}$	907	10	- 260
*. This is a lower bound of the true sigplificance. a. Lilliefors Significance Correction						
As P - value > . 1 So, we except H_{0} : the population follows a normal distribution						

Q3)
The phosphorus content was measured for independent samples of skim and whole

Assuming normal populations with equal variances
a) Test whether the average phosphorus content of skim milk is less than the average phosphorus content of whole milk. Use $\alpha=0.01$
b) Find and interpret a 99% confidence interval for the difference in average phosphorus contents of whole and skim milk
to use the T- test for two sample, we need to make sure that

1) The independence of the two samples: It is very clear that there is no correlation between the values of the two samples.
2) The populations follow a normal distribution i.e.
H_{0} : the two populations follow a normal distribution

$$
V s
$$

H_{1} : the two populations do not follow a normal distribution
However, we find the question he said that the populations follows a normal distribution, so is not necessary to make this test.
*To make sure no more. \qquad

	Variable	grouping	var
-	94.95	Whole	
\cdot	95.15	Whole	
-	94.85	Whole	
\cdot	94.55	Whole	
-	94.55	Whole	
-	93.40	Whole	
-	95.05	Whole	
-	94.35	Whole	
-	94.70	Whole	
-	94.90	Whole	
-	91.25	Skim	
-	91.80	Skim	
-	91.50	Skim	
-	91.65	Skim	
-	91.15	Skim	
-	90.25	Skim	
-	91.90	Skim	
-	91.25	Skim	
-	91.65	Skim	
-	91.00	Skim	

Helps in the normality test

Explore

grouping

Case Processing Summary							
	grouping	Cases					
		Valid		Missing		Total	
		N	Percent	N	Percent	N	Percent
Variable	Skim	10	100.0\%	0	0.0\%	10	100.0\%
	Whole	10	100.0\%	0	0.0\%	10	100.0\%

As P - value $>.01$ for both populations.
So, we except H_{0} : the two populations follow a normal distribution

Now, the goal of the question:
a) $H_{0}: \mu_{\text {whole }}-\mu_{\text {skim }}=0$ Vs $H_{1}: \mu_{\text {whole }}-\mu_{\text {skim }}>0$ at $\alpha=.01$
and
b) 90% Confidence interval of $\mu_{\text {whole }}-\mu_{\text {skim }}$

This for test

$$
H_{0}: \sigma_{\text {whole }}^{2}=\sigma_{\text {skim }}^{2} \quad \text { Vs } \quad H_{1}: \sigma_{\text {whole }}^{2} \neq \sigma_{\text {skim }}^{2}
$$

As $\mathrm{P}-$ value $>.01$. So, we except H_{0}. However, it is given in question.

Q4) What is the relationship between the gender of the students and the assignment of a Pass or No Pass test grade? (Pass = score 70 or above).

	Pass	No Pass	Row Totals
Males	12	3	15
Females	13	2	15
Column Totals	25	5	30

H_{0} : the gender of the students is indep. of a Pass or No Pass test grade
Vs
H_{1} : the gender of the students is not indep. of a Pass or No Pass test grade

Count	PassOrNot	Gender	var
1.00	1.00	1.00	
2.00	1.00	1.00	
3.00	1.00	1.00	
4.00	1.00	1.00	
5.00	1.00	1.00	
6.00	1.00	1.00	
7.00	1.00	1.00	
8.00	1.00	1.00	
9.00	1.00	1.00	
10.00	1.00	1.00	
11.00	1.00	1.00	
12.00	1.00	1.00	
13.00	2.00	1.00	
14.00	2.00	1.00	
15.00	2.00	1.00	
16.00	1.00	2.00	
17.00	1.00	2.00	
18.00	1.00	2.00	
19.00	1.00	2.00	
20.00	1.00	2.00	
21.00	1.00	2.00	
22.00	1.00	2.00	
23.00	1.00	2.00	
24.00	1.00	2.00	
25.00	1.00	2.00	
26.00	1.00	2.00	
27.00	1.00	2.00	
28.00	1.00	2.00	
29.00	2.00	2.00	
30.00	2.00	2.00	

Iransform	Analyze	Direct Marketing	Graphs	$\underline{\text { Utilities }}$	Add－ons	W
0	Reports		－	\％in	\％ay	韦
	Descriptive Statistics		1	次 Frequ	ncies．．．	\＃
	Tables		－	团 Des	ptives．．．	
VAR00001	Compare Means		＋	\＆Explo		Pi
	General Linear Model		＋	垌 Cros	abs．．．	
	Generalized Linear Mode		＋			
	Mixed Models		－		Analysis	
	Correlate		＋	匀 Ratio		
	Regression		－	QP－PP		
	Loglinear		－	1－2－Q		
			－	．	1.00	
			－	．	8.00	
	Classify				9.00	
	Dimension Reduction				10.00	
	Scal				11.00	
		Nonparametric Tests	＋		12.00	
	Forecasting		，		13.00	
	Survival				14.00	
	Multiple Response		＋		15.00	
	（ 0^{2} Missing Value Analysis．．．				16.00	
	Multiple Imputation		，		17.00	
	Complex Samples		＋		18.00	
	睴 Simulation．．．				19.00	
	Qua$\square \mathrm{ROC}$	Control	－		20.00	
		ZROC Curve．．．			21.00	
	－				22.00	
					23 n	

\Rightarrow Crosstabs

Case Processing Summary						
	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Gender * PassOrNot	30	100.0\%	0	0.0\%	30	100.0\%

As we can see that 2 cells have expected count less than 5 because these 2 cells contain less than 5 observations. So the solution is will be Merge cells until we get the expectation greater than 5 but here it is not possible, so take a larger sample.

Q5)
Ten Corvettes between 1 and 6 years old were randomly selected from last year's sales records in Virginia Beach, Virginia. The following data were obtained, where x denotes age, in years, and y denotes sales price, in hundreds of dollars.

x	6	6	6	4	2	5	4	5	1	2
y	125	115	130	160	219	150	190	163	260	260

a) Compute and interpret the linear correlation coefficient, r.
b) Determine the regression equation for the data.
c) Compute and interpret the coefficient of determination, r^{2}.
d) Obtain a point estimate for the mean sales price of all 4-year-old Corvettes.

Enter the age values into one variable and the corresponding sales price values into another variable (see figure, below).

\times	Y	var
6.00	125.00	
6.00	115.00	
6.00	130.00	
4.00	160.00	
2.00	219.00	
5.00	150.00	
4.00	190.00	
5.00	163.00	
1.00	260.00	
2.00	260.00	
-	\checkmark	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	
-	-	

a) Select Analyze \diamond Correlate \diamond Bivariate... (see figure, below).

Select "x" and " y " as the variables, select "Pearson" as the correlation coefficient, and click " "OK" (see the left figure, below).

Correlations

Correlations

		X	Y
X	Pearson Correlation	1	$-.968^{\mathrm{No}}$
	Sig. (2-tailed)		.000
	N	10	10
Y	Pearson Correlation	$-.968^{\mathrm{No}}$	1
	Sig. (2-tailed)	.000	
	N	10	10

**. Correlation is significant at the 0.01 level (2-tailed).

The correlation coefficient is -0.9679 which we can see that the relationship between x and y are -ve and strong.
b, c and d)
Since we eventually want to predict the price of 4 -year-old Corvettes, enter the number " 4 " in the "x" variable column of the data window after the last row. Enter a "." for the corresponding " y " variable value (this lets SPSS know that we want a prediction for this value and not to include the value in any other computations) (see figure, below).

Select Analyze \diamond Regression \diamond Linear... (see figure).
Select " y " as the dependent variable and " x " as the independent variable. Click "Statistics", select "Estimates" and "Confidence Intervals" for the regression coefficients, select "Model fit" to obtain r^{2}, and click "Continue". Click "Save...", select "Unstandardized" predicted values and click "Continue". Click "OK".

\Rightarrow Regression

Model Summary $^{\mathbf{b}}$				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.968^{\text {a }}$.937	.929	14.24653

a. Predictors: (Constant), X
b. Dependent Variable: Y

ANOVA ${ }^{\text {a }}$					
Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	24057.891	1	24057.891	118.533	. $000{ }^{\text {b }}$
Residual	1623.709	8	202.964		
Total	25681.600	9			

a. Dependent Variable: Y
b. Predictors: (Constant), X

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		StandardizedCoefficientsBeta	t	Sig.	95.0\% Confidence Interval for B	
		B	Std. Error				Lower Bound	Upper Bound
1	(Constant)	291.602	11.433		25.506	. 000	265.238	317.966
	X	-27.903	2.563	-. 968	-10.887	. 000	-33.813	-21.993

a. Dependent Variable: Y

From above, the regression equation is: $\mathrm{y}=29160.1942-(2790.2913)(\mathrm{x})$.The coefficient of determination is 0.9368 ; therefore, about 93.68% of the variation in y data is explained by x .

