Estimation of reducing sugars In milk

by dinitrosalicylic acid method

Objective

 Estimation of reducing sugars by dinitrosalicylic acid method in milk sample

Carbohydrate in milk

• The major constituents of milk are lactose, fats and proteins.

- Other free carbohydrates found in milk but at low concentrations, including glucose, galactose and others
- As lactose is the main carbohydrate in commercial milk, its determination is a basic indicator of quality control and detection of abnormal milk

Lactose in milk

- Lactose is a disaccharide sugar derived from galactose and glucose
- It is a reducing sugar
- Some of methods for lactose detection in milk are based on the assumption that lactose is the only reducing sugars in milk.
- In this experiment, DNS method will be used, which based on the detection of reducing sugar (which will give a general estimation for lactose not an accurate one, because in milk there are also other reducing sugars)

DNS method

- The DNS method for estimating the concentration of reducing sugars in a sample
- Reducing sugars contain free carbonyl group, have the property to reduce many of the reagents.
- All monosaccaride and some disaccaride are reducing sugars

Principle

 When alkaline solution of 3,5-dinitrosalicylic acid reacts with reducing sugars(eg. Glucose, lactose..) it is converted into 3-amino-5-nitrosalicylic acid with orange color.

Intensity of the colour is an index of reducing sugar.

Method

	Glucose solution	sample	water	DNS reagent		Soduim potasuim tartarate
В			1	3	Cover the	1
1	0.1		0.9	3	tubes (with aluminuim foil)	1
2	0.2		0.8	3		1
3	0.3		0.7	3	And heat	1
4	0.4		0.6	3	for 5 min. in a boiling water bath	1
5	0.5		0.5	3		1
6	0.6		0.4	3		1
7	0.7		0.3	3		1
8	0.8		0.2	3		1
9	0.9		0.1	3		1
10	1			3		1
S1		1		3		1
S2		0.6	0.4	3		1

Method

- Mix the contents.
- Cool by immersing in cold water and read <u>at 510</u> <u>nm</u>.
- Plot the standard curve and calculate the amount in the sample from standard curve and calculate the contents.

Result:

Tube	Absorbance	CHO content (mg/dl)
В		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
S1		
S2		

- Calculation:

-Dilution factor= <u>final volume</u> aliquot volume

- The amount of carbohydrate in the sample= -----mg/dl x dilution factor

