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This paper presents a proposed approach for modeling the life data for system components
that have failure modes by different Weibull models. This approach is applied for censored,
grouped and ungrouped samples. To support the main idea, numerical applications with
exact failure times and censored data are implemented. The parameters are obtained by
different computational statistical methods such as graphic method based on Weibull
probability plot (WPP), maximum likelihood estimates (MLE), Bayes estimators, non-linear
Benard’s median rank regression. This paper also presents a parametric estimation method
depends on expectation–maximization (EM) algorithm for estimation the parameters of
finite Weibull mixture distributions. GOF is used to determine the best distribution for
modeling life data. The performance of the proposed approach to model lifetime data is
assessed. It’s an efficient approach for moderate and large samples especially with a heav-
ily censored data and few exact failure times.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In survival/reliability analysis Weibull models arise in several medical and industrial applications. In medical science,
Weibull models can be used to determine the progress of patients from some point in time, such as the time a surgical pro-
cedure is performed or a treatment regimen is initiated, until the occurrence of some well-defined event such as death or
cessation of symptoms. In industrial applications, Weibull models have been used in life testing to determine the probability
that a component manufactured will fail under a given environment. If this probability is high, changing the material, the
process of manufacturing, or redesigning might be the alternatives that manufacturer might need to explore.

In the analysis of life data, life data or times-to-failure data of sample units of our product can be classified into two types:
complete data (all information is available) or censored data (some of the information is missing). Complete data means that
the value of each sample unit is observed or known. The most common case of censoring is what is referred to as right cen-
sored data, or suspended data. In the case of life data, these data sets are composed of units that did not fail. Grouped data
analysis is used for tests in which groups of units possess the same time-to-failure or in which groups of units were sus-
pended at the same time [1,2].

In Reliability modeling theory, the hazard function is a fundamental quantity in reliability/survival analysis. It’s also
called failure rate. Most population mortality data and failures of several electrical components follow a bathtub hazard
model [3]. A bathtub hazard model consists of three distinct periods, the burn-in failure period or the period of infant
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mortality, the chance (random) failures period that have approximately a constant failure rate and the wear-out failure per-
iod or the old age period. Decreasing hazard model characteristic of certain types of electronic devices which has an elevated
likelihood of early failures. A constant hazard model describes the devices which have no extra-ordinary of failures are
expected, in survival analysis it describes individuals from population whose only risks of death are accidents or rare illness.

Finite mixture Weibull distributions arise in reliability/survival analysis which have many industrial and medical appli-
cations, notably in the analysis of failure time data (survival data), and have important mathematical properties [4,5].

Most of the distributions in the Weibull family have a characteristic shape on the Weibull probability plot (WPP). A stan-
dard Weibull distribution (2-parameter) has a straight line shape, 3-parameter Weibull is a concave curve with left vertical
asymptote, twofold Weibull mixture has a single inflection point (S-shaped) with parallel asymptotes, twofold Weibull com-
peting risk has a convex curve with a left asymptote and a right asymptote or may be considered as a straight line, curving
into a second line with a steeper slope, which is called in this case Classic Bi-Weibull, and More over if the curve has multiple
inflection modes, then once can suggest more than one Weibull mixture models such as competing risk with a batch problem
model which is known as competing risk mixture model, a compound competing risk mixture model or may be simply two-
fold Weibull mixture [6,7].

The design of the manufacturing process has a significant impact on xi , the probability that an item is conforming when
the process is in control. Ideally, one would like to have this probability equal to one so that no item produced is noncon-
forming. Due to quality variations, the failure distribution of an item produced is given by a mixture distribution which is
defined as follows:
FðxÞ ¼ xFcðxÞ þ ð1�xÞFnðxÞ ð1Þ
where x is the probability that the item is conforming and FcðxÞ and FnðxÞ are the failure distributions of conforming and
nonconforming items, respectively, with FcðxÞ < FnðxÞ implying that the reliability of a nonconforming item is smaller than
that for a conforming item [6]. Burn-in is used to improve the reliability of the item released for sale.

There are several methods can be applied for obtaining parameter estimates of the mixed Weibull distribution and
3-parameter Weibull distribution. These include graphic, moments, maximum likelihood estimation, Bayes estimators, non-
linear median rank regression and Monte Carlo simulation methods, and many others [6–10].

Kao [4] used a two-component Weibull mixture to fit the life distribution of electron valves. He bases his analysis on the
observation that there are two types of failure modes, sudden catastrophic failure mode and wear-out failure mode. He ana-
lyzes this mixture using graphical approach. Fall [4] estimated the parameters of a mixture of two Weibull distributions for
complete data sample by using the method of moments which was not an efficient procedure. The mixed Weibull distribu-
tion (also known as a multimodal Weibull) is used to model data that do not fall on a straight line on a Weibull probability
plot (WPP). Data of this type, particularly if the data points follow an S-shape on the probability plot, may be indicative of
more than one failure mode at work in the population of failure times [11].

Statisticians prefer maximum likelihood estimation (MLE) over other estimates because MLE have excellent statistical
characteristics in general, particularly for large data sets. However, MLE can handle suspensions and interval data better than
rank regression, particularly when dealing with a heavily censored data set with few exact failure times or when the cen-
soring times are unevenly distributed. It can also provide estimates with one or no observed failures, which rank regression
cannot do. As a rule of thumb, our recommendation is to use rank regression techniques when the sample sizes are small and
without heavy censoring. When heavy or uneven censoring is present, when a high proportion of interval data is present
and/or when the sample size is sufficient, MLE should be preferred. The likelihood function is a function of the data. It con-
sists of the product of the probability density functions for each failure data point times the product of reliability function for
each suspension (right censored) with the distribution parameters unknown.

EM algorithm for estimating the parameters which is called the expectation–maximization is a general method for opti-
mizing likelihood functions and is useful in situations where data might be missing or simpler optimization methods fail. The
seminal paper on this topic is by Dempster, Laird and Rubin [12], where they formulate the EM algorithm and establish its
properties. It’s an algorithm for computing maximum likelihood estimates of parameters when some of data are missing. It’s
an iterative algorithm that alternates two steps until the convergence is attained to sufficient accuracy. Given some values
assumed for the unknown parameters, the E step evaluates the joint likelihood of the complete data set, suitably averaged
over all values of the missing data. This is therefore an expectation of the likelihood that is conditional on the observed data.
The M step maximizes this expectation over the unknown parameter values, the values providing this maximization are used
for the next E step.

Elmahdy and Aboutahoun [13] suggested a procedure for parameter estimation of finite Weibull mixture distributions for
modeling complete lifetime data sample by using the graphical method, Bayesian estimates and the concept of EM algorithm
which was an efficient approach especially when the mixture is well mixed for moderate complete sample size.

Life data analysis can be used to save human lives, modeling life data of crowd disasters, crime, terrorism, war and disease
spreading provides a good picture of the actual system behavior [14]. life data analysis can also be used for interpretation the
patterns of evolutionary dynamics of group interactions on structured populations, understanding the dynamics of scientific
progress and the evolution of language as studied in languages cool as they expand [15–18].

The objective of this paper is to develop an empirical approach for modeling censored lifetime data for system compo-
nents that have failure modes by different Weibull models. This paper is organized as follows. In Section 2, we survey the
different weibull models such as 3-parameter Weibull, Weibull competing risk and Weibull mixture models. In Section 3,
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we formulate an algorithm for estimating the parameters of mixed-Weibull distribution (Weibull Mixture Model). In
Section 4, we focus on Goodness of fit tests (GOF), to determine the best distribution among the suggested distributions
for modeling lifetime data. In Section 5, we formulate the proposed modeling approach for life data by Weibull models.
Section 6 deals with some applications to illustrate the proposed approach for modeling actual life data set and statistical
inference for the selected Weibull models. Section 7 is the summary of the conclusions of this paper and some future
extensions of this research.

Notation & Acronyms
Fe number of groups of times-to-failure data points
nj number of units that failed in the jth time-to-failure data group
S number of groups of suspension data points
nk number of suspension or censored units that have not failed in the kth group of suspension data point
r number of units which have exact failures, r ¼

PFe
j¼1nj

n0 number of suspended units or surviving units, n0 ¼
PS

k¼1nk
n test sample size, n ¼ r þ n0

tj ordered times-to-failure of failed units, j ¼ 1;2; . . . ; Fe

tk ordered operating times of suspension units, k ¼ 1;2; . . . ; S
b;a; c shape, scale and location parameters of 3-parameter Weibull distribution, b > 0;a > 0 and �1 < c <1
m number of subpopulations
i index for subpopulations, i ¼ 1;2; . . . ;m
xi mixing weight of ith subpopulation,

Pm
i¼1xi ¼ 1

h parameter vector for Weibull model of an m-mixed Weibull distribution
ai, bi scale and shape parameters of subpopulation i;ai > 0, bi > 0
f i probability density function of subpopulation i
Ri reliability function of subpopulation i
RðtÞ reliability function of a model
FðtÞ cumulative distribution function (cdf) of a model
f ðtÞ probability density function (pdf) of a model
hðtÞ hazard function (failure rate) of a model
l log-likelihood function
Nj the adjusted rank for the failures
WPP Weibull probability paper
MLE maximum likelihood estimation
EM expectation–maximization Algorithm
GOF goodness of fit tests

2. Weibull models

A large number of models have been derived from the two-parameter Weibull distribution and are referred to as Weibull
models [6]. The various members of the Weibull family exhibit a wide variety of shapes and therefore represent different
characteristics for the reliability functions. Model selection, parameter estimation and model validation are important tasks
in reliability analysis. In this study we develop a simple and applicable approach to select the most appropriate Weibull
model for modeling failure data.

2.1. Three-parameter Weibull model

The probability density function of 3-parameter Weibull distribution is defined mathematically as
f tjb;a; cð Þ ¼ b
a

t � c
a

� �b�1

e�
t�c
að Þb ; t > 0 ð2Þ
where b > 0;a > 0 and �1 < c <1 are the shape, scale and location parameters of the distribution. The shape parameter is
responsible for the skew of the distribution, the scale parameter is sometimes referred to as the characteristic life and the
location parameter is used to shift the distribution in one direction or another to define the location of its origin and can
be either positive or negative, it is sometimes called minimum life. The corresponding Reliability and hazard functions
are defined respectively as
R tjb;a; cð Þ ¼ e�
t�c
að Þb ð3Þ

h tjb;a; cð Þ ¼ b
a

t � c
a

� �b�1

ð4Þ
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If the location parameter c is equal to zero, the three parameter model becomes two parameter model (standard Weibull
model), then we have
f ðtjb;aÞ ¼ b
a

t
a

� �b�1

exp � t
a

� �b
" #

; t > 0 ð5Þ
This distribution is applied to a wide range of problems. The Weibull distribution is by far the world’s most popular statis-
tical model for life data. It is also used in many other applications, such as weather forecasting and fitting data of all kinds. It
may be employed for engineering analysis with smaller sample sizes than any other statistical distribution [7].

We can estimate the parameters b;a and c by using MLE method through a specified statistical software package.

2.2. Weibull competing risk model

Competing risk occurs when a population has two or more failure modes and the entire population is at risk from either
failure mode. Even though a Weibull plot of this data will show a cusp or corner or appear curved, it is a homogenous pop-
ulation subject to a mixture of competing failure modes. If the first slope is shallow and the second slope steeper, this is
called Classic Bi-Weibull. An example of competing risk is an automobile tire. It can fail due to puncture, or it can fail
due to wear out [7].

The distribution function of a general m-fold Weibull competing risk model [6] involving m subpopulations, where m sub-
populations are the standard two-parameter Weibull distributions is defined as:
FðtjhÞ ¼ 1�
Ym
i¼1

½1� Fiðtjbi;aiÞ� ð6Þ
where ai > 0, bi > 0 scale and shape parameters of subpopulation i respectively and h ¼ ða1;a2; . . . ;am; b1; b2; . . . ; bmÞ is the
parameter vector of an m-fold Weibull competing risk model. The corresponding Reliability(survivor) function is defined as:
RðtjhÞ ¼
Ym
i¼1

Riðtjbi;aiÞ ð7Þ
which can be written as:
RðtjhÞ ¼
Ym
i¼1

exp � t
ai

� �bi
" #

ð8Þ
The density function is given by
f ðtjhÞ ¼
Xm

i¼1

Ym
j¼1
j–i

Rjðtjbj;ajÞ

8><>:
9>=>;f iðtjbi;aiÞ ð9Þ
for m ¼ 2 , the density function f is given by
f ðtÞ ¼ R1f 2 þ R2f 1 ð10Þ
The hazard functions is given by
hðtjhÞ ¼
Xm

i¼1

hiðtjbi;aiÞ ð11Þ
which can be written as:
hðtjhÞ ¼
Xm

i¼1

bi

ai

� �
t
ai

� �bi�1

ð12Þ
2.3. Weibull mixture model

When we have m-fold mixture model that involves m sub-populations, then the probability density function f ðtjhÞ of the
mixture distribution is given as follows:
f ðtjhÞ ¼
Xm

i¼1

xif iðtjbi;aiÞ ð13Þ
where xi > 0;ai > 0, bi > 0 are mixing weight, scale and shape parameters of subpopulation i respectively,
Pm

i¼1xi ¼ 1 and
h ¼ ðx1;x2; . . . ;xm;a1;a2; . . . ;am; b1; b2; . . . ; bmÞ is called the parameter vector of an m-mixed Weibull distribution.
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f ðtjhÞ ¼
Xm

i¼1

xi
bi

ai

� �
t
ai

� �bi�1

exp �ð t
ai
Þ
bi

� �
ð14Þ
The reliability(survivor) function RðtjhÞ of the mixture distribution is given as follows:
RðtjhÞ ¼
Xm

i¼1

xi exp � t
ai

� �bi
" #

ð15Þ
Another function to describe the Reliability of system components is the hazard (failure rate) function hðtjhÞ of the
mixture Weibull distribution is given as follows:
hðtjhÞ ¼
Xm

i¼1

xi
bi

ai

� �
t
ai

� �bi�1

ð16Þ
The mixed Weibull distribution is the appropriate model when a product has two or more failure modes or causes. This
occurs in many situations, such as both early failures (infant mortality) and chance failures might be involved in a burn-in
test and also in the case of quality control mode with an infant mortality followed by a wear out mode.

2.3.1. The graphic method for Weibull mixture model
In graphic method we separate the observed times in such a way to failure data into two sub-populations or more, then

we model each subpopulation to a single Weibull distribution. Really precise estimation of parameters in a mixture model is
not possible with only moderate amounts of data, but a main concern is to determine whether some model in the given class
produces a reasonable fit to the data [2]. Relatively informal methods are often helpful in examining this possibility,
particularly if the data appear separable into two or more fairly distinct parts. One can estimate by plotting the sample
cdf (cumulative distribution function) on Weibull plotting paper (WPP) and fit it by inspection a smooth curve which
may be convex, concave or likely S-shaped and approaches to a straight line when data points become smaller. A steep slope
followed by a shallow slope usually indicates a batch problem. There will usually be a knee in the curve where the slope
decreases sharply [6,19]. The cumulative failure at this point (e.g., 20%) should be used for an estimate of x. If there is
no Knee, use the plotting position for the first data point [20]. Graphical approach which starts with WPP for modeling a
given data set which may contains censored data is introduced in details in [21]. Probability plots of the two sets (Classic
Bi-Weibull) of observations are especially useful, providing both parameter estimates and a check on the assumed form
of two sub-populations distribution (simple mixture distributions), also we use these graphic parameter estimates as initial
estimates in the proposed method. We can also use the facilities of Super SMITH software package to find the graphic param-
eter estimates of mixture Weibull distribution, a statistical separation based on rank regression, p-value or likelihood ratio
tests were employed to estimate the parameters of the two Weibulls in case of Classic Bi-Weibull Model. More complex solu-
tions for mixtures of two and three failure modes including batch effects are provided by ‘‘YBATH’’ software created by Carl
Tarum and included with Super SMITH software package.

3. The proposed algorithm for estimating the parameters of Weibull mixture model

In this section, we introduce a proposed Algorithm for Estimating the parameters of mixed-Weibull distribution (Weibull
mixture model) which is based on EM algorithm [12]. The general form of the likelihood function for a given observation of
failures and right censored (suspensions) is defined as follows:
L t; hð Þ ¼
Yr

j¼1

f ðtjjhÞ
Yn0
k¼1

RðtkjhÞ ð17Þ
The log-likelihood function l can be expressed as:
l t; hð Þ ¼
Xr

j¼1

ln f tjjh
� �� 	

þ
Xn0

k¼1

ln R tkjhð Þ½ � ð18Þ
where the first sum refers to failures and the second sum refers to suspensions.
Consider a reliability life testing is applied on n units of a product which has two failure modes, a grouped ordered time-

to-failure and censored data sample is obtained.
For grouped data including exact times-to-failure and censoring, the log-likelihood function l can be written as:
l t; hð Þ ¼
XFe

j¼1

nj ln f tjjh
� �� 	

þ
XS

k¼1

nk ln R tkjhð Þ½ � ð19Þ
For the Proposed algorithm, we augment the observed (measured) data with some unobserved (missing data). This means
that we embed the observed data in a larger complete data space. Note that, missing data are not necessarily missing in the
classical way. This process is called data augmentation. By Bayes formula the concept of belonging probability, Piðtj; h

ðhÞÞ,
which is the posterior probability that the unit belongs to the i th subpopulation ði ¼ 1;2; . . . ;mÞ, knowing that it failed at
time tj is introduced as [13]:
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Piðtj; h
ðhÞÞ ¼

xðhÞi f i tjjbðhÞi ;aðhÞi


 �
f tjjhðhÞ

 � ð20Þ

Pi tj; h
ðhÞ


 �
¼

xðhÞi f i tjjbðhÞi ;aðhÞi


 �
Pm

i¼1x
ðhÞ
i f i tjjbðhÞi ;aðhÞi


 � ð21Þ
Similarly for n0 surviving units, the conditional probability of a unit is belonging to subpopulation i, given that it survived
until tk is
Piðtk; h
ðhÞÞ ¼

xðhÞi Ri tkjbðhÞi ;aðhÞi


 �
R tkjhðhÞ

 � ð22Þ

Piðtk; h
ðhÞÞ ¼

xðhÞi Ri tkjbðhÞi ;aðhÞi


 �
Pm

i¼1x
ðhÞ
i exp � tk

ai


 �bi
� � ð23Þ
Given a current estimate hðhÞ define the expectation of the log-likelihood function as;
Qðh; hðhÞÞ ¼
XFe

j¼1

njPiðtj; h
ðhÞÞ ln f ðtjjhÞ

� 	
þ
XS

k¼1

nkPiðtk; h
ðhÞÞ ln½RðtkjhÞ� ð24Þ
which can also be written as:
Qðh; hðhÞÞ ¼
XFe

j¼1

Xm

i¼1

njPiðtj; h
ðhÞÞ ln xif iðtjjbi;aiÞ

� 	
þ
XS

k¼1

Xm

i¼1

nkPiðtk; h
ðhÞÞ ln xiRiðtkjbi;aiÞ½ � ð25Þ

Qðh; hðhÞÞ ¼
XFe

j¼1

Xm

i¼1

njPiðtj; h
ðhÞÞ lnðxiÞ þ

XFe

j¼1

Xm

i¼1

njPiðtj; h
ðhÞÞ ln f iðtjjbi;aiÞ þ

XS

k¼1

Xm

i¼1

nkPiðtk; h
ðhÞÞ lnðxiÞ

þ
XS

k¼1

Xm

i¼1

nkPi tk; h
ðhÞ


 �
ln Ri tkjbi;aið Þ þ k

Xm

i¼1

xi � 1

 !
ð26Þ
where k is the lagrange multiplier with the constraint that
Pm

i¼1xi ¼ 1. The evaluation of this expectation is called the E step
of the algorithm. In the second step, the M-step (the maximization step), we find that value hðhþ1Þ of h which maximizes
Qðh; hðhÞÞ.

To find xðhþ1Þ
i of xi which maximize Qðh; hðhÞÞ, taking the derivative of Eq. (26) with respect to xi equal to zero, we ge t:
XFe

j¼1

njPiðtj; h
ðhÞÞ

xi
þ
XS

k¼1

nkPiðtk; h
ðhÞÞ

xi
þ k ¼ 0 ð27Þ

XFe

j¼1

njPiðtj; h
ðhÞÞ þ

XS

k¼1

nkPiðtk; h
ðhÞÞ þ kxi ¼ 0 ð28Þ
Summing both sides over i and using the fact that
Pm

i¼1Piðtj; h
ðhÞÞ ¼ 1,

Pm
i¼1Piðtk; h

ðhÞÞ ¼ 1 we get k ¼ �n , consequently
xðhþ1Þ
i ¼ 1

n

XFe

j¼1

njPiðtj; h
ðhÞÞ þ

XS

k¼1

nkPiðtk; h
ðhÞÞ

" #
ð29Þ
To find the value aðhþ1Þ
i of ai which maximize Qðh; hðhÞÞ, taking the derivative of Eq. (26) with respect to ai equal to zero, we

get:
 XFe

j¼1

njPiðtj; h
ðhÞÞ @ lnðf iðtjjbi;aiÞ

@ai
þ
XS

k¼1

nkPiðtk; h
ðhÞÞ @ lnðRiðtkjbi;aiÞ

@ai
¼ 0 ð30Þ

XFe

j¼1

njPiðtj; h
ðhÞÞ ¼ 1

ðaðhþ1Þ
i Þ

bðhþ1Þ
i

XFe

j¼1

njPiðtj; h
ðhÞÞðtjÞb

ðhþ1Þ
i þ

XS

k¼1

nkPiðtk; h
ðhÞÞðtkÞb

ðhþ1Þ
i

" #
ð31Þ
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aðhþ1Þ
i ¼

PFe
j¼1njPiðtj; h

ðhÞÞðtjÞb
ðhþ1Þ
i þ

PS
k¼1nkPiðtk; h

ðhÞÞðtkÞb
ðhþ1Þ
iPFe

j¼1njPiðtj; h
ðhÞÞ

24 351lbðhþ1Þ
i

ð32Þ
Similarly, we can find the value bðhþ1Þ
i of bi which maximize Qðh; hðhÞÞ, taking the derivative of Eq. (26) with respect to bi

equal to zero and by using Eq. (32), we can get:
1

bðhþ1Þ
i

XFe

j¼1

njPiðtj; h
ðhÞÞ þ

XFe

j¼1

njPiðtj; h
ðhÞÞ lnðtjÞ

�
PFe

j¼1njPiðtj; h
ðhÞÞðtjÞb

ðhþ1Þ
i lnðtjÞ þ

PS
k¼1nkPiðtk; h

ðhÞÞðtkÞb
ðhþ1Þ
i lnðtkÞ

h iPFe
j¼1njPiðtj; h

ðhÞÞPFe
j¼1njPiðtj; h

ðhÞÞðtjÞb
ðhþ1Þ
i þ

PS
k¼1nkPiðtk; h

ðhÞÞðtkÞb
ðhþ1Þ
i

¼ 0 ð33Þ

gðbðhþ1
i Þ ¼ 1

bðhþ1Þ
i

þ
PFe

j¼1njPiðtj; h
ðhÞÞ lnðtjÞPFe

j¼1njPiðtj; h
ðhÞÞ

�
PFe

j¼1njPiðtj; h
ðhÞÞðtjÞb

ðhþ1Þ
i lnðtjÞ þ

PS
k¼1nkPiðtk; h

ðhÞÞðtkÞb
ðhþ1Þ
i lnðtkÞPFe

j¼1njPiðtj; h
ðhÞÞðtjÞb

ðhþ1Þ
i þ

PS
k¼1nkPiðtk; h

ðhÞÞðtkÞb
ðhþ1Þ
i

¼ 0 ð34Þ
Taking a good initial guess of hðhÞ, consequently knowing Piðtj; h
ðhÞÞ; Piðtk; h

ðhÞÞ and by solving Eq. (34) using a numerical
method such as Newton–Raphson, updating Eqs. (29), (32) and (34) we can find MLE estimates of xðhþ1Þ

i ,
bðhþ1Þ

i and aðhþ1Þ
i of subpopulation i.

Algorithm 1. The Proposed Algorithm for Estimating the Parameters for Weibull Mixture Model
The proposed algorithm for estimating the parameters for Weibull mixture model can be summarized as follows:

step 1: input given data tj; tk;nj;nk.
step 2: initialize parameters h

ð0Þ
i ¼ ðx

ð0Þ
i ;að0Þi ; bð0Þi Þ, define a convergence tolerance � > 0.

step 3: let h = 0.
step 4: compute piðtj; h

ðhÞÞ and piðtk; h
ðhÞÞ.

step 5: let h = h + 1.
step 6: compute h

ðhþ1Þ
i ¼ ðxðhþ1Þ

i ;aðhþ1Þ
i ; bðhþ1Þ

i Þ.

step 7: if
h
ðhþ1Þ
i

�h
ðhÞ
i

h
ðhþ1Þ
i

���� ���� < �, stop, ĥi ¼ h
ðhþ1Þ
i where ĥi ¼ ðx̂i; âi; b̂iÞ.

step 8: if
h
ðhþ1Þ
i

�h
ðhÞ
i

h
ðhþ1Þ
i

���� ���� > �, goto step 4.

step 9: compute the log-likelihood function l.
step10: display the estimated parameters ĥi ¼ ðx̂i; âi; b̂iÞ and l.

4. Goodness of fit tests (GOF)

GOF is used to determine the best distribution among the suggested distributions for modeling lifetime data. After using
graphical method, we should examine the goodness-of-fit statistics for parametric models. The goodness-of-fit statistics pre-

sented in this paper are r-squared value denoted by r2 and �2 ln L bh
 �
 �
value, where ln L bh
 �
 �

is the natural logarithm of

the maximum likelihood for the proposed model which are discussed in details in the following section, also confidence and
prediction bounds are estimated to assess goodness-of-fit statistics.

5. The proposed Weibull modeling approach for life data

The proposed approach for modeling life data by Weibull models depends on five main steps:

Step 1: Collecting a sample of life data.
Step 2: Plotting the data and interpreting the plot.
Step 3: Preliminary model selection.
Step 4: Parameter estimation.
Step 5: Goodness of fit tests and final model selection.

In step 1. Standard lifetime data consists of the exact ’’ age’’ of the units that have failed (failure data) and those that have
not failed (suspended data). The failure data may be found in the laboratory or in the field. Laboratory data is
often obtained under controlled conditions which can differ substantially from the operational environment of
the components and based on a properly planned experiment. Field data may be collected from different oper-
ating conditions-different temperatures or different humidity. The times-to-failure (or cycles-to-failure or mile-
age-to-failure) are needed plus the current age of units that have not failed (censored).
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In step 2. The WPP is based on the Weibull transformation which is defined as:
y ¼ ln ln½1=ð1� FðtÞÞ� and x ¼ lnðtÞ ð35Þ
where t represents lifetime of the unit and FðtÞ is the cdf (cumulative distribution function). A plot of y versus x is called the
Weibull probability plot (WPP). The data are ranked (i.e., rearranged so the earliest failure or suspension is listed first and the
oldest failure or suspension is last), plotted on Weibull probability paper (WPP). One of the main tasks when plotting WPP is
calculating the y-values that correspond FðtÞ values. There are a number of methods such as Kaplan–Meier, Median Rank and
Benard’s Median Rank can be used to estimate FðtÞ. We can define Benard’s Median Rank, bFðtjÞ for each failure data (uncen-
sored observation) tj as follows [7,16]:
bF ðtjÞ ¼ ðNj � 0:3Þ=ðnþ 0:4Þ ð36Þ
where n is the sample size (the sum of failures and suspensions) and Nj is the adjusted rank for the failures only which is
defined as:
Nj ¼
ðReverse RankÞ � ðPrevious Adjusted RankÞ þ ðnþ 1Þ

ðReverse RankÞ þ 1
ð37Þ
we consider, previous adjusted rank equals 0 for the first uncensored data (observed failure).
The plot is interpreted as follows: Most of the distributions in the Weibull family have a characteristic shape on the Weibull
probability plot (WPP). A standard Weibull distribution (2-parameter) has a straight line shape, 3-parameter Weibull is a
concave curve with left vertical asymptote, twofold Weibull mixture has a single inflection point (S-shaped) with parallel
asymptotes, twofold Weibull competing risk has a convex curve with a left asymptote and a right asymptote or may be con-
sidered as a straight line, curving into a second line with a steeper slope, which is called in this case Classic Bi-Weibull, and
More over if the curve has multiple inflection points which probably caused by a mixture of failure modes, then one can sug-
gest more than one Weibull mixture models such as competing risk with a batch problem model which is known as com-
peting risk mixture model, a compound competing risk mixture model or may be simply twofold Weibull mixture.
In step 3. For preliminary model selection, one can use the least squares fit criterion as follows:

1. let xi and yi ;1 6 i 6 n, denote the Weibull transformed values in the WPP plotting of the data set. let yðxi; hÞ, 1 6 i 6 n
denote the Weibull transformed values for the model with parameter vector h which can be determined at first
graphically.

2. define the objective function JðhÞ as:
JðhÞ ¼
Xn

i¼1

½yðxi; hÞ � yi�
2 ð38Þ
which is the sum of squares of the residuals.
3. We can use the JðhÞ value to compare the quality of the curve fit for two or more Weibull models used to describe the

same data. The Weibull model that gives the smallest JðhÞ value gives the best fit. We denote the sum of the squares
of the deviation of the y values from their mean �y by S, which can be computed from
S ¼
Xn

i¼1

½yi � �y�2 ð39Þ
This formula can be used to compute another measure of the quality and the goodness of the curve fit, the coefficient of
determination, also known as the r-squared value. It’s defined as:
r2 ¼ 1� J
S

ð40Þ
For perfect fit, J ¼ 0 and thus r2 ¼ 1. Thus the closer r2 is to 1, the better the fit. The largest r2 can be is 1 where r is known as
the correlation coefficient.
In step 4 There are several methods can be applied for obtaining efficient parameter estimates of Weibull models. Here, we

use maximum likelihood estimation method (MLE) or non-linear median rank regression method for different
Weibull models and the proposed algorithm for estimating the parameters of Weibull mixture model for cen-
sored lifetime data which is discussed in Section 3. These methods depend on the initial graphical parameter
estimates.

In step 5 Here, GOF tests and some statistical inferences are investigated, GOF is used to determine the best distribution for
modeling lifetime data. After estimation of parameters of candidates Weibull models, we can repeat both step 3
and step 4 until we reach, the largest r2 to select the best model for modeling the data set. Besides estimation of

the coefficient of determination r2;�2 ln L bh
 �
 �
value, where ln L bh
 �
 �

is the natural logarithm of the maximum

likelihood for the proposed model is used to determine the best distribution for modeling lifetime data and the
confidence intervals of parameter estimates are calculated by using Fisher’s matrix which measure their statis-

tical precision. �2 ln L bh
 �
 �
value is asymptotically effective and unbiased since it depends on the maximum
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likelihood function, The best model for the data, is the model with the lowest �2 ln L bh
 �
 �
value. The priority is

for the Weibull model which has largest r2 and the lowest �2 ln L bh
 �
 �
value and consequently fit the data per-

fectly. The proposed modeling approach is executed using Matlab Program. We also calculate the confidence
intervals of estimated parameters for mixed Weibull distribution using Weibull++ software package which per-
forms statistical analysis depends on Fisher’s matrix, with this specified confidence intervals we are interested in
obtaining an interval of real numbers that we expect contains the true value of the estimated parameter.

6. Applications

In this section, we introduce two applications to illustrate the proposed approach for modeling actual data set. In
Application 1, we have a moderate sample size of 50 data points (Failures 25 and suspensions 25), In Application 2, we have
a large sample size with a heavily censored data set with few exact failure times (Failures 66 and suspensions 238) for 304
units. By applying The proposed approach for modeling life data by Weibull models. The obtained Models and the estimated
parameters will be reasonable and accurate. This means that the performance of the proposed approach is efficient.

6.1. Application 1

The data in Table 1 represent distance traveled in thousands of kilometers before throttle (a component of a vehicle) fail-
ure, or being suspended before failure [6]. The sample size is 50, Failures (25) and suspensions (25). Note that – in Table 4
means suspension (negative age indicates suspension).

6.2. Statistical inference for different Weibull models of application 1

Applying the proposed modeling approach for data sample of application 1. First, We notice that the shape of the data
points on Weibull probability plot (WPP) in Fig. 1 is a concave upward curve has a cusp or may be considered as a steep slope
followed by a shallow slope which indicates a mixture of failure modes (a batch problem), so we can suggest the Weibull

mixture model as a reasonable fit of the failure data. Based on the estimated parameter vector bh, coefficient of determination,

r2 and �2 ln L bh
 �
 �
value in Table 2 for 3-parameter Weibull model, Weibull mixture model and Weibull competing risk
Table 1
Data Set.

0:478 0:834 2:4 3:393 6:122 �0:484 �1:472 �1:847 �5:9 �7:878
0:583 0:944 2:639 3:904 6:331 �0:626 �1:579 �2:55 �6:226 �7:884
0:753 0:959 2:944 4:829 6:531 �0:85 �1:61 �2:568 �6:711 �10:263
0:753 1:377 2:981 5:328 11:019 �1:071 �1:729 �3:791 �6:835 �13:103
0:801 1:534 3:392 5:562 12:986 �1:318 �1:792 �4:443 �6:947 �23:245

Fig. 1. Cumulative distribution function of mixed-Weibull distribution for data given in Table 1.



Table 2
Estimated parameter vector bh , coefficient of determination, r2 and �2 ln L bh
 �
 �

value obtained for different Weibull models of application 1.

Model bh r2 �2 ln L bh
 �
 �
3-parameter Weibull model 8:1338;0:7911;0:4479ð Þ 0:9585 148:9508
Weibull mixture model ð0:1287;7:3257;0:8433;1:2448;10:0705Þ 0:9730 147:823
Weibull competing risk model ð0:5561;94:9132;1:435;10:5855Þ 0:8837 163:1774

Table 3
Confidence intervals of estimated parameters of Weibull mixture and 3-parameter Weibull models of application 1.

Weibull model Estimated parameter Approximated 95% confidence intervals

Lower Upper

Weibull mixture model bx1 ¼ 0:1287 0:0498 0:2938bb1 ¼ 7:3257 2:9724 18:0549ba1 ¼ 0:8433 0:7286 0:976bx2 ¼ 0:8713 0:0877 0:9979bb2 ¼ 1:2448 0:8506 1:8217ba2 ¼ 10:0705 6:8792 14:7422

3-parameter Weibull model ba ¼ 8:1338 4:8709 13:5825bb ¼ 0:7911 0:5769 1:0848bc ¼ 0:4479
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Fig. 2. A comparison of fitted reliability functions of failure times obtained by different models – application 1.

Table 4
Data Set.

1� 1 3� 2 4� 1 9� 2 11� 1 17� 2
22� 1 23� 3 31� 1 35� 1 36� 1 37� 4
39� 3 40� 2 44� 2 45� 1 46� 3 47� 8
48� 2 49� 3 50� 6 51� 2 52� 14 �9:5� 15
�12:5� 16 �52:5� 76 �53:5� 131
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model respectively, we consider both Weibull mixture model and 3-parameter Weibull model potential candidates to fit the

data while competing risk model is rejected. We found that Weibull mixture model has the smallest �2 ln L bh
 �
 �
value and

the largest r2, so we can analyze these data as a Weibull mixture model. The confidence intervals of parameter estimates for
potential candidates which fit life data are calculated by using Fisher’s matrix, see Table 3.

Based on the estimated parameters in Table 2 and using Eq. (3), Eq. (8) and Eq. (15), we obtain reliability (survivor)
functions of the three different models as illustrated in Fig. 2. Furthermore, we obtain 95% confidence intervals for the
estimated parameters obtained by using the proposed approach, see Table 3. We can deduce that the suggested model is
the best fit.



Table 5
Estimated parameter vector bh , coefficient of determination, r2 and �2 ln L bh
 �
 �

value obtained for different Weibull models of application 2.

Model bh r2 �2 ln L bh
 �
 �
3-parameter Weibull model 91:9004;2:6003;�2:135ð Þ 0:1777 796:0627
Weibull mixture model ð0:3955;0:8379;406:9116;8:7576;60:1097Þ 0:9739 759:2794
Competing Risk model ð0:8602;928:8263;10:0298;61:7253Þ 0:9826 754:7394

Fig. 3. Cumulative distribution function of Weibull competing risk model for data given in Table 4.

Table 6
Confidence intervals of estimated parameters of Weibull competing risk and Weibull mixture models of application 2.

Weibull model Estimated parameter Approximated 95% confidence intervals

Lower Upper

Weibull competing risk model bb1 ¼ 0:8602 0:6539 1:1316ba1 ¼ 928:8263 412:3583 2092:1571bb2 ¼ 10:0298 7:8762 12:7722ba2 ¼ 61:7253 59:0631 64:5075

Weibull mixture model

bx1 ¼ 0:3955 0:0096 0:9778bb1 ¼ 0:8379 0:462 1:5198ba1 ¼ 406:9116 36:0037 4598:8888bx2 ¼ 0:6045 0:0043 0:9982bb2 ¼ 8:7576 3:7538 20:4314ba2 ¼ 60:1097 42:1046 85:8144
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6.3. Application 2

The data in Table 4 [7] show the Locomotive Power units Overhaul Life, Southern Pacific’s high horsepower diesel electric
locomotives had 16 power assemblies (units) each. Here we consider the case of failure of a power unit results in a power
loss and unscheduled replacement. Failures (66) and suspensions (238) for 304 units are listed by age in months and units
failed. Negative age indicates suspension, note that – in Table 4 means suspension.

6.4. Statistical inference for different Weibull models of application 2

Applying the proposed approach for modeling data sample of application 2. Based on the estimated parameter vector bh,

coefficient of determination, r2 and �2 ln L bh
 �
 �
value in Table 5 which are requirements of proposed approach for
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Fig. 4. A comparison of fitted reliability functions of failure times obtained by different models – application 2.
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3-parameter Weibull model, Weibull mixture model and competing risk model respectively, we consider Weibull competing
risk model and Weibull mixture model potential candidates to fit the data while 3-parameter Weibull model is rejected. We
can analyze these data as a Weibull competing risk for two reasons, the first reason is due to the Weibull probability plot
(WPP) for the data which is a convex curve with a left asymptote and a right asymptote or may be considered as a straight
line, curving into a second line with a steeper slope, which is called in this case Classic Bi-Weibull as shown in Fig. 3. and the

second reason, we found that Weibull competing risk model has the smallest �2 ln L bh
 �
 �
value and the largest r2. The con-

fidence intervals of parameter estimates for potential candidates which fit lifetime data are calculated by using Fisher’s
matrix, see Table 6.

Based on the estimated parameters in Table 5 and using Eq. (3), Eq. (8) and Eq. (15), we obtain reliability (survivor) func-
tions of the three different models as illustrated in Fig. 4. Furthermore, we obtain 95% confidence intervals for the estimated
parameters obtained by using the proposed approach, see Table 6. We can deduce that the suggested model is the best fit.

7. Conclusion

In concluding this paper, the proposed approach characterizes the distribution of life data or lifetimes to failure/suspen-
sion for the system components by different Weibull models. It’s an efficient approach especially when the mixture is well
mixed for moderate and large samples with a heavily censored data set and few exact failure times. It can be applied to the
complete, censored, grouped and ungrouped samples. This paper also presents a comparison of the fitted reliability functions
of the 3-parameter Weibull, competing risk and Weibull mixture models. Numerical application with censored, grouped and

ungrouped life data used through the proposed approach. GOF based on r2 and �2 ln L bh
 �
 �
value is used to determine the

best distribution for modeling life data, the priority is for the Weibull model which has the smallest �2 ln L bh
 �
 �
value and

the largest r2. We can use the proposed method for other finite Weibull models, it can be applied on a simple Weibull
mixture and Weibull competing risk mixture due to infant mortality and chance failure modes or Weibull competing risk
mixture due to chance and wear-out failure modes.
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