King Saud University Department of Electrical Engineering Power Systems Operation and Control (EE 585)

First Semester 1435/1436	Final Exam	Time Limit: 2.0 hours
الرقم:		الاسم <u>:</u>

Question 1:

A) Four generating units having characteristics as follows:-

Unit	Rated Power (MW)	Output Power (MW)	Speed Regulation (%)
1	500	450	4
2	400	350	5
3	300	250	6
4	200	150	8

The four units are operating in parallel at 60 Hz to supply the loads as shown in Fig 1. If the breaker B suddenly opens, determine the new frequency and the new power output of each unit.

B) Four thermal units with incremental fuel cost (IFC) as follows:-

IFC₁= $0.009 \text{ Pg}_1 + 7.0$ IFC₂= $0.008 \text{ Pg}_2 + 8.0$

-

 $IFC_3 = 0.007 \text{ pg}_3 + 9.0$

 $IFC_4 = 0.006 \text{ pg}_4 + 11.0$

Determine Pg_1 , Pg_2 , Pg_3 , and Pg_4 for economic operation to supply a total demand of 1200 MW. <u>Neglect system losses</u>.

Question 2:

Fig. 2

A power system consists of 3 plants with output power P_1 , P_2 , and P_3 as shown in Fig. 2, and incremental fuel cost (IFC) as follows:-

IFC of $Plant_1 = 11 + 0.08 P_I$	\$/MW-h
IFC of $Plant_2 = 13 + 0.12 P_2$	\$/MW-h.
IFC of Plant ₃ = $15 + 0.04 P_3$	\$/MW-h.

Losses in any transmission line is given by $\beta \times P^2$, where $\beta = 10^{-4}$, and *P* is the sendingend power of that transmission line (MW).

For a total system demand of 1200 MW, determine the power output from each plant for economic operation.

Question 3:

Fig 3.

- a) For the system shown in Fig 3, determine Ybus.
- b) Perform DC load flow for this system.
- c) Using the equation [Y][V] = [I], use Mathcad to calculate V_2 , V_3 , and V_4 . Given $P_2 = 2.2$, $P_3 = 2.5$, $P_4 = 1.8$, $Q_2 = 1.3$, $Q_3 = 1.6$, and $Q_4 = 1.4$, all in pu,

Question 4:

Fig 3.

In the 4-bus power system given in Fig. 4, buses 2, and 3 are load buses with loads as given in Q₃, whereas bus 4 is a voltage-control bus (generator bus) bus with $P_4 = 1.5$ pu. Perform fast load flow for this system. Do one iteration only starting with initial guess values.

Question 5:

The 4-bus system in Fig. 5 was operating at steady-state when at t=0, a 3-phase short circuit occurred at the location shown and it was cleared at t=0.04 seconds. Study stability of this system. Assume damping coefficient D = 2 for all machines.