EE 320 Communications Principles

Midterm\# \# 2 ($2^{\text {nd }}$ Semester 1432/33)

Saturday, April 28, 2012
Total Marks=60 Total Time $=90$ Minutes

Name: \qquad

Student-ID: \qquad

Question\#1(15 marks):

An angle-modulated signal has the following form: $s(t)=100 \cos \left(2 \pi f_{c} t+4 \sin 2000 \pi t\right)$
(a) [2] Determine the transmitted power.
(b) [4] Determine the Frequency deviation Δf, and modulation index β.
(c) [4] Determine the signal BW using Carson's Rule.
(d) [5] Assume $s(t)$ is a FM signal . Then determine the message signal $m(t)$ (assume message signal amplitude =1).

Question\#2(10 marks):

Consider the block diagram for Indirect FM generation shown below. The output of NBFM is at the carrier frequency of 0.1 MHz and frequency deviation of 20 Hz . The mixer oscillator frequency f_{1} is 9.5 MHz . The final FM signal carrier frequency is 100 MHz with a frequency deviation of 75 KHz .
(a) [5] What is the product of the two integer frequency multiplication ratios: n_{1} and n_{2}
(b) [5] Find the values of n_{1} and n_{2}
$m(t)$

Question\#3(15 marks):
(a) Consider a message signal $m(t)=A_{m} \sin \left(2 \pi f_{m} t\right)$ and the carrier signal $c(t)=A_{c} \sin \left(2 \pi f_{c} t\right)$. Suppose we want to transmit this message signal using VSB modulation. The VSB shaping filter has the frequency response as given by: $H\left(f_{c}-f_{m}\right)=1-a$ and $H\left(f_{c}+f_{m}\right)=a$ where $0 \leq a \leq 1$ is a constant.
a. [5] Write down the time-domain equation for final VSB signal.
b. [5] Write down the frequency-domain equation for final VSB signal.
(b) [5] Draw the block diagram of Phase-Lock Loop (PLL) circuit that can be used in FM demodulation.

EE 320 Communications Principles

Midterm\# \# 2 (2 $2^{\text {nd }}$ Semester 1432/33)

Saturday, April 28, 2012
Total Marks=60 Total Time $=90$ Minutes

Question\#4 (20 marks):

This question deals with SSB signal. Consider the message signal $m(t)$ whose Fourier transform $M(f)$ is sketched below.
(a) [2] Determine and sketch the signal $Y(f)$, where $y(t)=m(t) \cos \left(2 \pi f_{c} t\right)$
(b) [4] Determine and sketch the signal $Z(f)$, where $z(t)=\widehat{m}(t) \sin \left(2 \pi f_{c} t\right)$, where $\widehat{m}(t)$ is the Hilbert transform of the message signal $m(t)$. Make sure to convert the $\widehat{M}(f)$ to $M(f)$.
(c) [8] Suppose $s(t)=y(t)+z(t)$. Write down the equation for $S(f)$. Make sure to convert the $\widehat{M}(f)$ to $M(f)$. Then write down the simplified equations of $S(f)$ for following four frequency ranges:

$$
S(f)=\left\{\begin{array}{c}
f \geq f_{c} \\
0 \leq f \leq f_{c} \\
f \leq-f_{c} \\
-f_{c} \leq f \leq 0
\end{array}\right.
$$

(d) [3] Using (c) , Sketch the signal S(f)
(e) [3] Using (a) and (b) , Sketch the signal $R(f)$, where $r(t)=y(t)-z(t)$.

$$
E E: 320 \text {, Mid\#2, Solution, Sprung 2012 }
$$

Q \#

$$
s(t)=100 \operatorname{Cos}\left(2 \pi f_{c} t+4 \operatorname{Sin} 2000 \pi t\right)
$$

(a) $\quad P_{T}=\frac{1}{2} A_{C}^{2}=\frac{1}{2} \times(100)^{2}=5000$ Wite
(b)

$$
\begin{aligned}
\Delta S & =\max \left|\frac{1}{2 \pi} \times \frac{d}{d t}(4 \sin 2000 \pi t)\right| \\
& =\max \left|\frac{1}{2 \pi} \times 4 \times 2000 \times \pi \times \operatorname{Cos} 2000 \pi t\right| \\
\Delta F & =4000 \mathrm{~Hz}_{z} \quad f_{m}=1000 \mathrm{~Hz} \\
\beta & =\frac{\Delta f}{f_{m}}=\frac{4000}{1000}=4 \quad
\end{aligned}
$$

(c)

$$
B W=2\left(\Delta F+F_{m}\right)=2(4000+1000)
$$

$$
B W=10,000 \mathrm{~Hz}
$$

(d) $\quad A_{m}=1$

$$
\begin{array}{rr}
A_{m}=1 \\
\text { if } \quad \angle M & \Delta F=A_{5} \times A_{m}= \\
A_{5}=4000
\end{array}
$$

then $2 \pi \pi t \int_{0}^{t} m(t) d t=4 \operatorname{Sin} 2000 \pi t$
ste solve for $F . m(t)$ by taking $\frac{d}{d t}$ of bott sidon

$$
\begin{aligned}
& \text { solve for } F m(t) \\
& m(t)=\frac{1}{2 \pi \times k f} \times 4 \times \cos (2000 \pi t) \times 2000 \pi \\
& m(t)=\frac{4000}{k f} \cos (2000 \pi t) \quad k t=4000 \\
& m(t)=\cos (2000 \pi t) \quad \text { we get given }
\end{aligned}
$$

With this $m(t)$ and $h f=4000$ we get given $s(t)$

Q\#2

$$
\begin{aligned}
& f_{c_{1}}=0.1 \mathrm{MHz} \\
& \Delta f_{i}=20 \mathrm{~Hz}
\end{aligned}
$$

(a) Find $\Delta F=75 \mathrm{kHz}$

$$
\begin{aligned}
& \Delta f_{1} \times n_{1} \times n_{2}=75 \times 10^{3} \\
& n_{1} \times n_{2}=3750 \rightarrow e q \# 1
\end{aligned}
$$

(b) Find $f_{c}=100 \mathrm{MH}_{3}$
use $\left(n_{1} f_{c_{1}}-f_{1}\right) \times n_{2}=100 \times 10^{6}$

$$
n_{2} n_{1} f_{c_{1}}-f_{1} n_{2}=100 \times 10^{6}
$$

use $n_{1} n_{2}=3750$.

$$
\begin{gathered}
n_{1} n_{2}=3750 \\
3750 \times 0.1 \times 10^{6}-9.5 \times 10^{6} n_{2}=100 \times 10^{6} \\
375-9.5 \times n_{2}=100 \\
n_{2}=28.9474 \\
n_{1}=129.5453
\end{gathered}
$$

Q\#3: @
$D_{S B}-S_{c} \quad m(t) \infty(t)=A_{m} A_{c} \sin \left(2 \pi f_{c} t\right) \sin \left(2 \pi f_{n} t\right)$

$$
\begin{aligned}
& m(t)+c(t)=A_{m} A_{c} \sin \left(2 \| c_{c}\right) \\
&= A_{m} A_{c}\left[\operatorname{Cos}\left(2 \pi\left(f_{c}-f_{m}\right) t\right)-\operatorname{Cos}\left(2 \pi\left(f_{c}+f_{m}\right)(t)\right]\right. \\
&
\end{aligned}
$$

aftei going through USB shaping Filter.
(a) $S(t)=\left[\frac{1-a}{2}\right] \operatorname{Cos}(2 \pi()$
(b)

$$
\begin{aligned}
S(f) & =\left[\frac{1-a}{4}\right]\left[\delta \left(f-\left(f_{c}-f_{m}\right)+\delta\left(f+\left(f_{c}-f_{m}\right)\right]\right.\right. \\
& -\left[\frac{a}{4}\right]\left[\delta\left(f-\left(f_{c}+f_{m}\right)\right)+\delta\left(f+\left(f_{c}+f_{m}\right)\right)\right]
\end{aligned}
$$

(1) PLL
$s(t)$

$Q+4$
(a)

$$
\begin{aligned}
y(t) & =m(t) \cos \left(2 \pi F_{c} t\right) \\
Y(f) & =\frac{1}{2}\left[M\left(f-F_{c}\right)+M\left(f+f_{c}\right)\right]
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { (b) } \quad z(t)=\hat{m}(f) \sin \left(2 \pi f_{c} t\right) \\
& z(f)=\frac{1}{2 j}\left[\hat{M}\left(f-f_{c}\right)-\hat{M}\left(f+f_{c}\right)\right] \\
& Z(f)=\frac{1}{2 j}\left[-j \operatorname{sgn}\left(f-f_{c}\right) M\left(f-f_{c}\right)+j \operatorname{sgn}\left(f_{+}+f_{c}\right) M\left(f_{+}+f_{c}\right)\right] \\
& Z(f)=\frac{1}{2}\left[\operatorname{sgn}\left(f+f_{c}\right) M\left(f+f_{c}\right)-\hat{g}\left(f-f_{c}\right) M\left(f-f_{c}\right)\right]
\end{aligned}
$$

-1

(c)

$$
\begin{aligned}
& S(f)=Y(f)+Z(f) \\
& =\frac{1}{2}\left[M\left(f-f_{c}\right)+M\left(f+f_{c}\right)\right]+\frac{1}{2}\left[\begin{array}{rl}
& \operatorname{sgn}\left(f+f_{c}\right) M\left(f+f_{c}\right) \\
& -\operatorname{sgn}\left(f-f_{c}\right) M\left(f-f_{c}\right)
\end{array}\right.
\end{aligned}
$$

for $\quad f>0$

$$
\begin{gathered}
=\frac{1}{2}\left[M\left(f-f_{c}\right)\right]+\frac{1}{2}\left[-\operatorname{sgn}\left(f-f_{c}\right) M\left(f-f_{c}\right)\right] \\
\operatorname{sgn}\left(f-f_{c}\right) \sqrt{1} \sqrt{f_{c}}
\end{gathered}
$$

fur $\quad f>f_{c}=\frac{1}{2}\left[M\left(f-f_{c}\right)-M\left(f-f_{c}\right)\right]=0$

$$
\begin{aligned}
0 \leq f \leq f_{c} & =\frac{1}{2}\left[M\left(f-f_{c}\right)+M\left(f-f_{c}\right)\right] \\
& =M\left(f-f_{c}\right)
\end{aligned}
$$

for $\quad f<0$

$$
\begin{aligned}
& S(f)=\frac{1}{2}\left[M\left(f+f_{c}\right)\right]+\frac{1}{2}\left[\begin{array}{c}
\left.\operatorname{sgn}\left(f^{\prime}+f_{c}\right) M\left(f+f_{c}\right)\right] \\
f \leq-f_{c}
\end{array}\right. \\
&=\frac{1}{2}\left[M\left(f+f_{c}\right)-M\left(f+f_{c}\right)\right]=0 \\
&-f_{c} \leq f \leq 0=\frac{1}{2}\left[M\left(f+f_{c}\right)+M\left(f+f_{c}\right)\right] \\
&=M\left(f+f_{c}\right)
\end{aligned}
$$

(d) Sketch: $S(5)$

(e) $\quad R(f)=Y(f)-Z(f)$

