Discrete Fourier Transform (DFT)

DFT transforms the time domain signal samples to the frequency domain components.

DFT is often used to do frequency analysis of a time domain signal.

Four Types of Fourier Transform

DFT: Graphical Example

DFT Coefficients of Periodic Signals

Equation of DFT coefficients: $c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi kn}{N}}, \quad -\infty < k < \infty$

DFT Coefficients of Periodic Signals

Fourier series coefficient c_k is periodic of N

$$c_{k+N} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi(k+N)n}{N}} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi kn}{N}} e^{-j2\pi n}.$$

Since
$$e^{-j2\pi n} = \cos(2\pi n) - j\sin(2\pi n) = 1$$
, $c_{k+N} = c_k$.

Example 1

The periodic signal: $x(t) = \sin(2\pi t)$ is sampled at $f_s = 4$ Hz

- a. Compute the spectrum c_k using the samples in one period.
- b. Plot the two-sided amplitude spectrum $|c_k|$ over the range from -2 to 2 Hz.

Example 1 - contd. (1)

$$c_{0} = \frac{1}{4} \sum_{n=0}^{3} x(n) = \frac{1}{4} (x(0) + x(1) + x(2) + x(3)) = \frac{1}{4} (0 + 1 + 0 - 1) = 0$$

$$c_{1} = \frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j2\pi \times 1n/4} = \frac{1}{4} \left(x(0) + x(1) e^{-j\pi/2} + x(2) e^{-j\pi} + x(3) e^{-j3\pi/2} \right)$$

$$= \frac{1}{4} (x(0) - jx(1) - x(2) + jx(3) = 0 - j(1) - 0 + j(-1)) = -j0.5.$$

Example 1 - contd. (2)

$$c_2 = \frac{1}{4} \sum_{k=0}^{3} x(n) e^{-j2\pi \times 2n/4} = 0$$
, and $c_3 = \frac{1}{4} \sum_{n=0}^{3} x(k) e^{-j2\pi \times 3n/4} = j0.5$.

Using periodicity, it follows that

$$c_{-1} = c_3 = j0.5$$
, and $c_{-2} = c_2 = 0.5$

CEN543, Dr. Ghulam Muhammad, King Saud University

On the Way to DFT Formulas

DFT Formulas

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N}$$

$$= \sum_{n=0}^{N-1} x(n) W_N^{kn}, \text{ for } k = 0, 1, \dots, N-1.$$

$$X(k) = x(0) W_N^{k0} + x(1) W_N^{k1} + x(2) W_N^{k2} + \ldots + x(N-1) W_N^{k(N-1)}$$

Where,
$$W_N = e^{-j2\pi/N} = \cos\left(\frac{2\pi}{N}\right) - j\sin\left(\frac{2\pi}{N}\right)$$
.

Inverse DFT:

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi kn/N} = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}, \text{ for } n = 0, 1, \dots, N-1.$$

MATLAB Functions

FFT: Fast Fourier Transform

MATLAB FFT functions.				
X = fft(x)	% Calculate DFT coefficients			
$\mathbf{x} = \mathrm{ifft}(\mathbf{X})$	% Inverse DFT			
x = input vector X = DFT coefficient vector				

Example 2

Given a sequence x(n) for $0 \le n \le 3$, where x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4,

a. Evaluate its DFT X(k).

Example 2 - contd.

$$X(2) = \sum_{n=0}^{3} x(n)e^{-j\pi n} = x(0)e^{-j0} + x(1)e^{-j\pi} + x(2)e^{-j2\pi} + x(3)e^{-j3\pi}$$
$$= x(0) - x(1) + x(2) - x(3)$$
$$= 1 - 2 + 3 - 4 = -2$$

$$X(3) = \sum_{n=0}^{3} x(n)e^{-j\frac{3\pi n}{2}} = x(0)e^{-j0} + x(1)e^{-j\frac{3\pi}{2}} + x(2)e^{-j3\pi} + x(3)e^{-j\frac{9\pi}{2}}$$
$$= x(0) + jx(1) - x(2) - jx(3)$$
$$= 1 + j2 - 3 - j4 = -2 - j2$$

Using MATLAB,

 $\gg X = \text{fft}([1 \ 2 \ 3 \ 4])$ X = 10.0000 - 2.0000 + 2.0000i - 2.0000 - 2.0000 - 2.0000i

Example 3

Inverse DFT of the previous example.

$$N = 4 \text{ and } W_4^{-1} = e^{j\frac{\pi}{2}} \qquad \longrightarrow \qquad x(n) = \frac{1}{4} \sum_{k=0}^3 X(k) W_4^{-nk} = \frac{1}{4} \sum_{k=0}^3 X(k) e^{j\frac{\pi kn}{2}}.$$

$$\begin{aligned} x(0) &= \frac{1}{4} \sum_{k=0}^{3} X(k) e^{j0} = \frac{1}{4} \left(X(0) e^{j0} + X(1) e^{j0} + X(2) e^{j0} + X(3) e^{j0} \right) \\ &= \frac{1}{4} (10 + (-2 + j2) - 2 + (-2 - j2)) = 1 \end{aligned}$$

$$\begin{aligned} x(1) &= \frac{1}{4} \sum_{k=0}^{3} X(k) e^{j\frac{k\pi}{2}} = \frac{1}{4} \left(X(0) e^{j0} + X(1) e^{j\frac{\pi}{2}} + X(2) e^{j\pi} + X(3) e^{j\frac{3\pi}{2}} \right) \\ &= \frac{1}{4} \left(X(0) + jX(1) - X(2) - jX(3) \right) \\ &= \frac{1}{4} \left(10 + j(-2 + j2) - (-2) - j(-2 - j2) \right) = 2 \end{aligned}$$

Example 3 - contd.

$$\begin{aligned} x(2) &= \frac{1}{4} \sum_{k=0}^{3} X(k) e^{jk\pi} = \frac{1}{4} \left(X(0) e^{j0} + X(1) e^{j\pi} + X(2) e^{j2\pi} + X(3) e^{j3\pi} \right) \\ &= \frac{1}{4} \left(X(0) - X(1) + X(2) - X(3) \right) \\ &= \frac{1}{4} \left(10 - \left(-2 + j2 \right) + \left(-2 \right) - \left(-2 - j2 \right) \right) = 3 \end{aligned}$$

$$\begin{aligned} x(3) &= \frac{1}{4} \sum_{k=0}^{3} X(k) e^{j\frac{k\pi^{3}}{2}} = \frac{1}{4} \left(X(0) e^{j0} + X(1) e^{j\frac{3\pi}{2}} + X(2) e^{j3\pi} + X(3) e^{j\frac{9\pi}{2}} \right) \\ &= \frac{1}{4} \left(X(0) - jX(1) - X(2) + jX(3) \right) \\ &= \frac{1}{4} \left(10 - j(-2 + j2) - (-2) + j(-2 - j2) \right) = 4 \end{aligned}$$

Using MATLAB,

$$\gg x = ifft([10 - 2 + 2j - 2 - 2 - 2j])$$

x = 1 2 3 4.

Relationship Between Frequency Bin k and Its Associated Frequency in Hz

$$f = \frac{kf_s}{N}$$
 (Hz)

Frequency step or frequency resolution: $\Delta f = \frac{f_s}{N}$ (Hz)

Example 4

In the previous example, if the sampling rate is 10 Hz,

- a. Determine the sampling period, time index, and sampling time instant for a digital sample x(3) in time domain.
- b. Determine the frequency resolution, frequency bin number, and mapped frequency for each of the DFT coefficients X(1) and X(3) in frequency domain.

Example 4 - contd.

а.

Sampling period: $T = 1/f_s = 1/10 = 0.1$ second

For x(3), time index is n = 3, and sampling time instant is $t = nT = 3 \cdot 0.1 = 0.3$ second.

b.

Frequency resolution:

$$\Delta f = \frac{f_s}{N} = \frac{10}{4} = 2.5 \,\mathrm{Hz}.$$

Frequency bin number for X(1) is k = 1, and its corresponding frequency is

$$f = \frac{kf_s}{N} = \frac{1 \times 10}{4} = 2.5$$
 Hz.

Similarly, for X(3) is k = 3, and its corresponding frequency is

$$f = \frac{kf_s}{N} = \frac{3 \times 10}{4} = 7.5$$
 Hz.

Amplitude and Power Spectrum

Since each calculated DFT coefficient is a complex number, it is not convenient to plot it versus its frequency index

Amplitude Spectrum:

$$A_k = \frac{1}{N} |X(k)| = \frac{1}{N} \sqrt{(\text{Real}[X(k)])^2 + (\text{Imag}[X(k)])^2},$$

 $k = 0, 1, 2, \dots, N - 1.$

To find one-sided amplitude spectrum, we double the amplitude.

$$\bar{A_k} = \begin{cases} \frac{1}{N} |X(0)|, & k = 0\\ \frac{2}{N} |X(k)|, & k = 1, \dots, N/2 \end{cases}$$

Amplitude and Power Spectrum -contd.

Power Spectrum:

$$P_k = \frac{1}{N^2} |X(k)|^2 = \frac{1}{N^2} \Big\{ (\operatorname{Real}[X(k)])^2 + (\operatorname{Imag}[X(k)])^2 \Big\},\$$

$$k = 0, 1, 2, \dots, N - 1.$$

For, one-sided power spectrum:

$$\bar{P}_k = \begin{cases} \frac{1}{N^2} |X(0)|^2 & k = 0\\ \frac{2}{N^2} |X(k)|^2 & k = 0, 1, \dots, N/2 \end{cases}$$

Phase Spectrum:

$$\varphi_k = \tan^{-1}\left(\frac{\operatorname{Imag}[X(k)]}{\operatorname{Real}[X(k)]}\right), \ k = 0, \ 1, \ 2, \dots, \ N-1.$$

Example 5

Assuming that $f_s = 100 \,\text{Hz}$,

a. Compute the amplitude spectrum, phase spectrum, and power spectrum.

For
$$k = 0, f = k \cdot f_s / N = 0 \times 100 / 4 = 0$$
 Hz,
 $A_0 = \frac{1}{4} |X(0)| = 2.5, \ \varphi_0 = \tan^{-1} \left(\frac{\text{Imag}[X(0)]}{\text{Real}([X(0)])} \right) = 0^0,$
 $P_0 = \frac{1}{4^2} |X(0)|^2 = 6.25.$

Example 5 - contd. (1)

For
$$k = 1, f = 1 \times 100/4 = 25 \text{ Hz},$$

 $A_1 = \frac{1}{4}|X(1)| = 0.7071, \varphi_1 = \tan^{-1}\left(\frac{\text{Imag}[X(1)]}{\text{Real}[X(1)]}\right) = 135^0,$
 $P_1 = \frac{1}{4^2}|X(1)|^2 = 0.5000.$

For
$$k = 2$$
, $f = 2 \times 100/4 = 50$ Hz,
 $A_2 = \frac{1}{4} |X(2)| = 0.5$, $\varphi_2 = \tan^{-1} \left(\frac{\text{Imag}[X(2)]}{\text{Real}[X(2)]} \right) = 180^{\circ}$,
 $P_2 = \frac{1}{4^2} |X(2)|^2 = 0.2500$.

Similarly, for
$$k = 3$$
, $f = 3 \times 100/4 = 75$ Hz,
 $A_3 = \frac{1}{4}|X(3)| = 0.7071$, $\varphi_3 = \tan^{-1}\left(\frac{\text{Imag}[X(3)]}{\text{Real}[X(3)]}\right) = -135^0$,
 $P_3 = \frac{1}{4^2}|X(3)|^2 = 0.5000$.

Example 5 - contd. (2)

Example 6

Consider a digital sequence sampled at the rate of 10 kHz. If we use a size of 1,024 data points and apply the 1,024-point DFT to compute the spectrum,

- a. Determine the frequency resolution.
- b. Determine the highest frequency in the spectrum.

Solution:

a.
$$\Delta f = \frac{f_s}{N} = \frac{10000}{1024} = 9.776$$
 Hz.

b. The highest frequency is the folding frequency, given by

$$f_{\max} = \frac{N}{2}\Delta f = \frac{f_s}{2}$$

$$= 512 \cdot 9.776 = 5000 \, \text{Hz}$$

Zero Padding for FFT

FFT: Fast Fourier Transform.

 \rightarrow A fast version of DFT; It requires signal length to be power of 2.

Therefore, we need to pad zero at the end of the signal.

However, it does not add any new information.

Example 7

Consider a digital signal has sampling rate = 10 kHz. For amplitude spectrum we need frequency resolution of less than 0.5 Hz. For FFT how many data points are needed?

Solution:

$$\Delta f = 0.5 \,\mathrm{Hz}$$

 $N = \frac{f_s}{\Delta f} = \frac{10000}{0.5} = 20000$

For FFT, we need N to be power of 2.

2¹⁴ = 16384 < 20000 And

Recalculated frequency resolution,

$$\Delta f = \frac{f_s}{N} = \frac{10000}{32768} = 0.31 \,\mathrm{Hz}.$$

MATLAB Example - 1

$$x(n) = 2 \cdot \sin\left(2000\pi \frac{n}{8000}\right) \qquad f_{\rm s}$$

Use the MATLAB DFT to compute the signal spectrum with the frequency resolution to be equal to or less than 8 Hz.

$$N = \frac{f_s}{\Delta f} = \frac{8000}{8} = 1000$$

% Generate the sine wave sequence fs = 8000; %Sampling rate N = 1000; % Number of data points x = 2* sin (2000* pi*[0:1:N - 1]/fs);

xf = abs(fft(x))/N; %Compute the amplitude spectrum

P = xf.*xf; %Compute the power spectrum
f = [0:1:N-1]*fs/N; %Map the frequency bin to the frequency (Hz)

MATLAB Example - contd. (1)

subplot(2,1,1); plot(f,xf); grid

xlabel('Frequency (Hz)'); ylabel('Amplitude spectrum (DFT)');

```
subplot(2,1,2);plot(f,P);grid
```

xlabel('Frequency (Hz)'); ylabel('Power spectrum (DFT)');

MATLAB Example - contd. (2)

% Convert it to one-sided spectrum					
xf(2:N) = 2*xf(2:N);	% Get the single-sided spectrum				
P = xf.*xf; % Calculate the power spectrum					
f = [0:1:N/2]*fs/N % Frequencies up to the folding frequency					
<pre>subplot(2,1,1); plot(f,xf(1:N/2+1));grid</pre>					
<pre>xlabel('Frequency (Hz)'); ylabel('Amplitude spectrum (DFT)');</pre>					
subplot(2,1,2);plot(f,P(l:N/2+1));grid					
<pre>xlabel('Frequency (Hz)'); ylabel('Power spectrum (DFT)');</pre>					

Effect of Window Size

When applying DFT, we assume the following:

1. Sampled data are periodic to themselves (repeat).

2. Sampled data are continuous to themselves and band limited to the folding frequency.

Effect of Window Size -contd. (1)

If the window size is not multiple of waveform cycles:

Reducing Leakage Using Window

To reduce the effect of spectral leakage, a window function can be used whose amplitude tapers smoothly and gradually toward zero at both ends.

 $x_w(n) = x(n)w(n)$, for n = 0, 1, ..., N - 1.

Window function, w(n)Data sequence, x(n)Obtained windowed sequence, $x_w(n)$

Example 8

Given,

CEN543, Dr. Ghulam Muhammad, King Saud University

Different Types of Windows

Rectangular Window (no window): $w_R(n) = 1$ $0 \le n \le N - 1$

Triangular Window:

$$w_{tri}(n) = 1 - \frac{|2n - N + 1|}{N - 1}, \ 0 \le n \le N - 1$$

Hamming Window:

$$w_{hm}(n) = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right), \ 0 \le n \le N-1$$

Hanning Window:

$$w_{hn}(n) = 0.5 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right), \ 0 \le n \le N-1$$

Different Types of Windows -contd.

Window size of 20 samples

Example 9

Problem:

Considering the sequence x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4, and given $f_s = 100$ Hz, T = 0.01 seconds, compute the amplitude spectrum, phase spectrum, and power spectrum

Using the Hamming window function.

Solution:

Since N = 4, Hamming window function can be found as:

$$w_{hm}(0) = 0.54 - 0.46 \cos\left(\frac{2\pi \times 0}{4-1}\right) = 0.08$$

 $w_{hm}(1) = 0.54 - 0.46 \cos\left(\frac{2\pi \times 1}{4-1}\right) = 0.77.$

Similarly,
$$w_{hm}(2) = 0.77$$
, $w_{hm}(3) = 0.08$.

Example 9 - contd. (1)

Windowed sequence:

$$x_w(0) = x(0) \times w_{hm}(0) = 1 \times 0.08 = 0.08$$

$$x_w(1) = x(1) \times w_{hm}(1) = 2 \times 0.77 = 1.54$$

$$x_w(2) = x(2) \times w_{hm}(2) = 3 \times 0.77 = 2.31$$

$$x_w(0) = x(3) \times w_{hm}(3) = 4 \times 0.08 = 0.32.$$

DFT Sequence:

$$X(k) = x(0) W_N^{k0} + x(1) W_N^{k1} + x(2) W_N^{k2} + \dots + x(N-1) W_N^{k(N-1)}$$

$$X(k) = x_w(0) W_4^{k \times 0} + x(1) W_4^{k \times 1} + x(2) W_4^{k \times 2} + x(3) W_4^{k \times 3}.$$

$$X(0) = 4.25$$

$$X(1) = -2.23 - j1.22$$

$$\Delta f = \frac{1}{NT} = \frac{1}{4 \cdot 0.01} = 25 \text{ Hz}$$

$$X(2) = 0.53$$

$$X(3) = -2.23 + j1.22$$

Example 9 - contd. (2)

$$A_{0} = \frac{1}{4} |X(0)| = 1.0625, \varphi_{0} = \tan^{-1} \left(\frac{0}{4.25}\right) = 0^{0},$$

$$P_{0} = \frac{1}{4^{2}} |X(0)|^{2} = 1.1289$$

$$A_{1} = \frac{1}{4} |X(1)| = 0.6355, \varphi_{1} = \tan^{-1} \left(\frac{-1.22}{-2.23}\right) = -151.32^{0},$$

$$P_{1} = \frac{1}{4^{2}} |X(1)|^{2} = 0.4308$$

$$A_{2} = \frac{1}{4} |X(2)| = 0.1325, \varphi_{2} = \tan^{-1} \left(\frac{0}{0.53}\right) = 0^{0},$$

$$P_{2} = \frac{1}{4^{2}} |X(2)|^{2} = 0.0176.$$

$$A_{3} = \frac{1}{4} |X(3)| = 0.6355, \varphi_{3} = \tan^{-1} \left(\frac{1.22}{-2.23}\right) = 151.32^{0},$$

$$P_{3} = \frac{1}{4^{2}} |X(3)|^{2} = 0.4308.$$

MATLAB Example - 2

$$x(n) = 2 \cdot \sin\left(2000\pi \frac{n}{8000}\right)$$

Compute the spectrum of a Hamming window function with a window size = 100.

```
% Generate the sine wave sequence
fs = 8000; T = 1/fs; % Sampling rate and sampling period
% Generate the sine wave sequence
x = 2* sin (2000*pi*[0:1:100]*T);
% Apply the FFT algorithm
N=length(x);
index_t = [0:1:N-1];
f = [0:1:N-1]*fs/N;
xf = abs(fft(x))/N; % Using the Hamming(N)';
xf = abs(fft(x))/N; % Apply the Hamming window function
% Calculate the amplitude spectrum
```

MATLAB Example - 2 contd.

subplot(2,2,1);plot(index_t,x);grid xlabel('Time index n'); ylabel('x(n)'); subplot(2,2,3); plot(index_t,x_hm);grid xlabel('Time index n'); ylabel('Hamming windowed x(n)'); subplot(2,2,2);plot(f,xf);grid;axis([0 fs 0 1]); xlabel('Frequency (Hz)'); ylabel('Ak (no window)'); subplot(2,2,4); plot(f,xf_hm);grid;axis([0 fs 0 1]); xlabel('Frequency (Hz)'); ylabel('Hamming windowed Ak');

DFT Matrix

DFT Matrix

Let,
$$w_N = e^{-j2\pi/N}$$

Then

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ \vdots \\ X(N-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & w & w^2 & \cdots & w^{(N-1)} \\ 1 & w^2 & w^4 & \cdots & w^{2(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & w^{(N-1)} & w^{2(N-1)} & \cdots & w^{(N-1)^2} \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(N-1) \end{bmatrix}$$

DFT equation: $X(k) = \sum_{m=0}^{N-1} x(m) w_N^{mk}$ k = 0, ..., N-1

DFT requires N² complex multiplications.

FFT

FFT: Fast Fourier Transform

A very efficient algorithm to compute DFT; it requires less multiplication.

The length of input signal, x(n) must be 2^m samples, where *m* is an integer.

Samples *N* = 2, 4, 8, 16 or so.

If the input length is not 2^m , append (pad) zeros to make it 2^m .

$$\begin{aligned} \textbf{DFT:} \quad X(k) &= \sum_{n=0}^{N-1} x(n) W_N^{kn} \text{ for } k = 0, 1, \dots, N-1, \\ X(k) &= x(0) + x(1) W_N^k + \dots + x(N-1) W_N^{k(N-1)} \\ X(k) &= x(0) + x(1) W_N^k + \dots + x\left(\frac{N}{2} - 1\right) W_N^{k(N/2-1)} + x\left(\frac{N}{2}\right) W^{kN/2} + \dots + x(N-1) W_N^{k(N-1)} \\ X(k) &= \sum_{n=0}^{(N/2)-1} x(n) W_N^{kn} + \sum_{n=N/2}^{N-1} x(n) W_N^{kn} \\ X(k) &= \sum_{n=0}^{(N/2)-1} x(n) W_N^{kn} + W_N^{(N/2)k} \sum_{n=0}^{(N/2)-1} x\left(n + \frac{N}{2}\right) W_N^{kn} \\ X(k) &= \sum_{n=0}^{(N/2)-1} \left(x(n) + (-1)^k x\left(n + \frac{N}{2}\right)\right) W_N^{kn} \end{aligned}$$

Now decompose into even (k = 2m) and odd (k = 2m+1) sequences.

$$X(2m) = \sum_{n=0}^{(N/2)-1} \left(x(n) + x\left(n + \frac{N}{2}\right) \right) W_N^{2mn} \qquad X(2m+1) = \sum_{n=0}^{(N/2)-1} \left(x(n) - x\left(n + \frac{N}{2}\right) \right) W_N^n W_N^{2mn}$$
$$W_N^2 = e^{-j\frac{2\pi}{N}} = e^{-j\frac{2\pi}{(N/2)}} = W_{N/2}$$
$$X(2m) = \sum_{n=0}^{(N/2)-1} a(n) W_{N/2}^{nm} = DFT\{a(n) \text{ with } (N/2) \text{ points}\}$$
$$(N/2)-1$$

$$X(2m+1) = \sum_{n=0}^{(N/2)-1} b(n) W_N^n W_{N/2}^{mn} = DFT\{b(n) W_N^n \text{ with } (N/2) \text{ points}\}$$

$$a(n) = x(n) + x\left(n + \frac{N}{2}\right)$$
, for $n = 0, 1, \dots, \frac{N}{2} - 1$
 $b(n) = x(n) - x\left(n + \frac{N}{2}\right)$, for $n = 0, 1, \dots, \frac{N}{2} - 1$.

$$DFT\{x(n) \text{ with } N \text{ points}\} = \begin{cases} DFT\{a(n) \text{ with } (N/2) \text{ points}\}\\ DFT\{b(n)W_N^n \text{ with } (N/2) \text{ points}\} \end{cases}$$

Binary	index	1st split	2nd split	3rd split	Bit reversal
000	0	0	0	0	000
001	1	2	4	4	100
010	2	4	2	2	010
011	3	6	6	6	011
100	4	1	1	1	001
101	5	3	5	5	101
110	6	5	3	3	011
111	7	7	7	7	111
Convrint @ 2007 by Apadamic Proce All rights recovered					

Complex multiplications of DFT = N^2 , and Complex multiplications of FFT = $\frac{N}{2} \log_2(N)$ For 1024 samples data sequence, DFT requires 1024×1024 = 1048576 complex multiplications. FFT requires (1024/2)log(1024) = 5120 complex multiplications.

IFFT: Inverse FFT

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn} = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \tilde{W}_N^{kn}, \text{ for } k = 0, 1, \dots, N-1.$$

Copyright @ 2007 by Academic Press. All rights reserved.

FFT and IFFT Examples

Copyright @ 2007 by Academic Press. All rights reserved.

Number of complex multiplication = $\frac{N}{2}\log_2(N) = \frac{4}{2}\log_2(4) = 4.$

Split the input sequence x(n) into the even indexed x(2m) and x(2m + 1), each with N/2 data points.

$$X(k) = \sum_{m=0}^{(N/2)-1} x(2m) W_N^{2mk} + \sum_{m=0}^{(N/2)-1} x(2m+1) W_N^k W_N^{2mk},$$

for $k = 0, 1, ..., N-1.$

$$w_N^2 = (e^{-j2\pi/N})^2 = e^{-j2\pi/(N/2)} = w_{N/2}$$

$$X(k) = \sum_{m=0}^{(N/2)-1} x(2m) W_{N/2}^{mk} + W_N^k \sum_{m=0}^{(N/2)-1} x(2m+1) W_{N/2}^{mk},$$

for $k = 0, 1, ..., N-1.$

Define new functions as

$$G(k) = \sum_{m=0}^{(N/2)-1} x(2m) W_{N/2}^{mk} = DFT\{x(2m) \text{ with } (N/2) \text{ points}\}$$
$$H(k) = \sum_{m=0}^{(N/2)-1} x(2m+1) W_{N/2}^{mk} = DFT\{x(2m+1) \text{ with } (N/2) \text{ points}\}.$$

As,

$$G(k) = G\left(k + \frac{N}{2}\right), \text{ for } k = 0, 1, \dots, \frac{N}{2} - 1$$

$$H(k) = H\left(k + \frac{N}{2}\right), \text{ for } k = 0, 1, \dots, \frac{N}{2} - 1.$$

$$X(k) = G(k) + W_N^k H(k), \text{ for } k = 0, 1, \dots, \frac{N}{2} - 1.$$

$$X\left(\frac{N}{2} + k\right) = G(k) - W_N^k H(k), \text{ for } k = 0, 1, \dots, \frac{N}{2} - 1.$$
(EN543 Dr Ghulam Muhammad

King Saud University

First iteration:

Second iteration:

Third iteration:

CEN543, Dr. Ghulam Muhammad, King Saud University

IFFT

FFT and IFFT Examples

Fourier Transform Properties (1)

Fourier Transform Pairs

