Common Digital Sequences

Shifted Sequences

Example 1

Given the following,

$$x(n) = \delta(n+1) + 0.5\delta(n-1) + 2\delta(n-2),$$

a. Sketch this sequence.

Generation of Digital Signals

Let, sampling interval, $\Delta t = T$

x(n): digital signal x(t): analog signal

$$x(n) = x(t)|_{t=nT} = x(nT)$$

Also
$$u(t)|_{t=nT} = u(nT) = u(n)$$

Example 2

Convert analog signal x(t) into digital signal x(n), when sampling period is 125 microsecond, also plot sample values.

$$x(t) = 10e^{-5000t}u(t)$$

Solution:

$$t = nT = n \times 0.000125 = 0.000125n$$

$$x(n) = x(nT) = 10e^{-5000 \times 0.000125n}u(nT) = 10e^{-0.625n}u(n)$$

Example 2 (contd.)

The first five sample values:

$$x(0) = 10e^{-0.625 \times 0}u(0) = 10.0$$

$$x(1) = 10e^{-0.625 \times 1}u(1) = 5.3526$$

$$x(2) = 10e^{-0.625 \times 2}u(2) = 2.8650$$

$$x(3) = 10e^{-0.625 \times 3}u(3) = 1.5335$$

$$x(4) = 10e^{-0.625 \times 4}u(4) = 0.8208$$

0 (05 0

Linear System

System: A system that produces an output signal in response to an input signal.

Continuous system & discrete system.

Linear Systems: Property 1

y[n]

k y[n]

3. Shift invariance → Must for DSP linear systems

CEN543, Dr. Ghulam Muhammad King Saud University

p in R

Non Linear

System

v across R

Linear Systems: Property 2

Linear Systems: Property 3

Shift (time) Invariance

Example 3

Let a digital amplifier, y(n) = 10x(n)

If the inputs are: $x_1(n) = u(n)$ and $x_2(n) = \delta(n)$

Outputs will be: $y_1(n) = 10u(n)$ and $y_2(n) = 10\delta(n)$, respectively.

If we apply combined input to the system: $x(n) = 2x_1(n) + 4x_2(n) = 2u(n) + 4\delta(n)$

$$x_1(n) = u(n)$$
System
$$y_1(n) = u^2(n) = u(n)$$

$$x_2(n) = \delta(n)$$
System
$$y_2(n) = \delta^2(n) = \delta(n)$$
System
$$y_2(n) = \delta^2(n) = \delta(n)$$

If the input is: $4x_1(n) + 2x_2(n)$

Then the output is:
$$y(n) = x^2(n) = (4x_1(n) + 2x_2(n))^2$$

= $(4u(n) + 2\delta(n))^2 = 16u^2(n) + 16u(n)\delta(n) + 4\delta^2(n)$
= $16u(n) + 20\delta(n)$.
Individual outputs: $4y_1(n) = 4 \times x_1^2(n) = 4u(n)$
 $2y_2(n) = 2 \times x_2^2(n) = 2\delta(n)$ + Non Linear
System

Example 5 (a)

Given the linear system y(n) = 2x(n-5), find whether the system is time invariant or not.

Solution:

Let the shifted input be: $x_2(n) = x_1(n - n_0)$

Therefore system output: $y_2(n) = 2x_2(n-5) = 2x_1(n-n_0-5)$ Equal Shifting $y_1(n) = 2x_1(n-5)$ by n_0 samples leads to $y_1(n-n_0) = 2x_1(n-5-n_0)$.

Example 5 (b)

Given the linear system y(n) = 2x(3n), find whether the system is time invariant or not.

Solution:

Let the shifted input be: $x_2(n) = x_1(n - n_0)$

Therefore system output: $y_2(n) = 2x_2(3n) = 2x_1(3n - n_0)$ NOT Equal Shifting $y_1(n) = 2x_1(3n)$ by n_0 samples leads to $y_1(n - n_0) = 2x_1(3(n - n_0)) = 2x_1(3n - 3n_0)$

NOT Time Invariant

Difference Equation

A causal, linear, and time invariant system can be represented by a difference equation as follows:

$$y(n) + a_1y(n-1) + ... + a_Ny(n-N) = b_0x(n) + b_1x(n-1) + ... + b_Mx(n-M)$$

Outputs Inputs

After rearranging:

$$y(n) = -a_1y(n-1) - \ldots - a_Ny(n-N) + b_0x(n) + b_1x(n-1) + \ldots + b_Mx(n-M)$$

Finally:

$$y(n) = -\sum_{i=1}^{N} a_i y(n-i) + \sum_{j=0}^{M} b_j x(n-j)$$

Identify non zero system coefficients of the following difference equations.

Solution:

$$y(n) = 0.25y(n-1) + x(n)$$
 \longrightarrow
 $b_0 = 1, \quad a_1 = -0.25$
 $y(n) = x(n) + 0.5x(n-1)$
 Solution:
 $b_0 = 1, \quad b_1 = 0.5$

System Representation Using Impulse Response

Example 7 (a)

Given the linear time-invariant system:

y(n) = 0.5x(n) + 0.25x(n-1) with an initial condition x(-1) = 0,

- a. Determine the unit-impulse response h(n).
- b. Draw the system block diagram.
- c. Write the output using the obtained impulse response.

a. let
$$x(n) = \delta(n)$$

 $h(n) = y(n) = 0.5x(n) + 0.25x(n-1) = 0.5\delta(n) + 0.25\delta(n-1)$
Therefore,
 $h(n) = \begin{cases} 0.5 & n = 0 \\ 0.25 & n = 1 \\ 0 & elsewhere \end{cases}$
b. $x(n) = h(n) = 0.5\delta(n) + 0.25\delta(n-1)$
 $h(n) = 0.5\delta(n) + 0.25\delta(n-1)$
 $h(n) = 0.5\delta(n) + 0.25\delta(n-1)$
 $y(n) = 0.5\delta(n) + 0.25\delta(n-1)$

Example 7 (b)

Given the difference equation

y(n) = 0.25y(n-1) + x(n) for $n \ge 0$ and y(-1) = 0,

- a. Determine the unit-impulse response h(n).
- b. Draw the system block diagram.
- c. Write the output using the obtained impulse response.

Solution:

a. let
$$x(n) = \delta(n)$$
 Then $h(n) = 0.25h(n-1) + \delta(n)$.

$$h(0) = 0.25h(-1) + \delta(0) = 0.25 \times 0 + 1 = 1$$

$$h(1) = 0.25h(0) + \delta(1) = 0.25 \times 1 + 0 = 0.25$$

$$h(2) = 0.25h(1) + \delta(2) = 0.25 \times 0.5 + 0 = 0.0625$$

With the calculated results, we can predict the impulse response as

$$h(n) = (0.25)^n u(n) = \delta(n) + 0.25\delta(n-1) + 0.0625\delta(n-2) + \dots$$

EN543, Dr. Ghulam Muhamma King Saud University

. . .

Example 7 (b) - contd.

b.
$$x(n) \xrightarrow{y(n)} h(n) = \delta(n) + 0.25\delta(n-1) + \cdots$$

c.
$$y(n) = h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + \dots$$

= $x(n) + 0.25x(n-1) + 0.0625x(n-2) + \dots$

Finite Impulse Response (FIR) system:

When the difference equation contains no previous outputs, i.e. 'a' coefficients are zero. < See example 7 (a) >

Infinite Impulse Response (IIR) system:

When the difference equation contains previous outputs, i.e. 'a' coefficients are not all zero. < See example 7 (b) >

BIBO Stability

BIBO: Bounded In and Bounded Out

A stable system is one for which every bounded input produces a bounded output.

$$y(n) = \dots + h(-1)x(n+1) + h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + \dots$$

Let, in the worst case, every input value reaches to maximum value M.

$$y(n) = M(\ldots + h(-1) + h(0) + h(1) + h(2) + \ldots).$$

Using absolute values of the impulse responses,

$$y(n) < M((...+|h(-1)|+|h(0)|+|h(1)|+|h(2)|+)..).$$

If the impulse responses are finite number, then output is also finite.

Stable system.

BIBO Stability - contd.

To determine whether a system is stable, we apply the following equation:

$$S = \sum_{k=-\infty}^{\infty} |h(k)| = \ldots + |h(-1)| + |h(0)| + |h(1)| + \ldots < \infty.$$

Impulse response is decreasing to zero.

Example 8

Given a linear system given by: y(n) = 0.25y(n-1) + x(n) for $n \ge 0$ and y(-1) = 0

Which is described by the unit-impulse response: $h(n) = (0.25)^n u(n)$

Determine whether the system is stable or not.

Solution:

$$S = \sum_{k=-\infty}^{\infty} |h(k)| = \sum_{k=-\infty}^{\infty} |(0.25)^{k}u(k)|$$
Using definition of step function:

$$u(k) = 1 \text{ for } k \ge 0,$$

$$S = \sum_{k=0}^{\infty} (0.25)^{k} = 1 + 0.25 + 0.25^{2} + \dots$$
For $a < 1$, we know
$$\sum_{k=0}^{\infty} d^{k} = \frac{1}{1-a} \text{ where } a = 0.25 < 1$$
Therefore
$$S = 1 + 0.25 + 0.25^{2} + \dots = \frac{1}{1-0.25} = \frac{4}{3} < \infty$$
The summation is finite, so the system is stable.
22
$$CEN543, Dr. Ghulam Muhammad King Saud University$$

Digital Convolution

Convolution sum requires h(n) to be reversed and shifted.

If h(n) is the given sequence, h(-n) is the reversed sequence.

Reversed Sequence

Given a sequence,

$$h(k) = \begin{cases} 3, & k = 0, 1\\ 1, & k = 2, 3\\ 0 & elsewhere \end{cases}$$

where k is the time index or sample number,

a. Sketch the sequence h(k) and reversed sequence h(-k).

Convolution Using Table Method Example 9

Solution:

Convolution sum using the table method.

<i>k</i> :	-2	$^{-1}$	0	1	2	3	4	5	
x(k):			3	1	2				
h(-k):	1	2	3						$y(0) = 3 \times 3 = 9$
h(1-k)		1	2	3					$y(1) = 3 \times 2 + 1 \times 3 = 9$
h(2-k)			1	2	3				$y(2) = 3 \times 1 + 1 \times 2 + 2 \times 3 = 11$
h(3-k)				1	2	3			$y(3) = 1 \times 1 + 2 \times 2 = 5$
h(4 - k)					1	2	3		$y(4) = 2 \times 1 = 2$
h(5-k)						1	2	3	y(5) = 0 (no overlap)

Convolution length = 3 + 3 - 1 = 5

Convolution Using Table Method Example 10

Convolution length = 3 + 2 - 1 = 4

Convolution Properties

CEN543, Dr. Ghulam Muhammad King Saud University

Examples of Convolution

Kernel

a. Low-pass Filter

Low Pass Filters

Kernel: formed by a group of positive adjacent points that provide smoothing.

Sum of the points must be one. Gain of one in DC.

High Pass Filters

Kernel: delta function – corresponding low-pass filter.

Sum of the points must be zero. Zero gain at DC (zero frequency).

Signal-to-Noise Ratio (SNR)

Bel or decibel (dB):

A bel: The power is changed by a factor of ten. $dB = 10 \log_{10} \frac{P_2}{P_1}$ 3 bels \rightarrow Power of $10 \times 10 \times 10 = 1000$ times. $dB = 20 \log_{10} \frac{A_2}{A_1}$ Decibel (dB): One-tenth of a bel. $0 \text{ dB} \rightarrow 10^0$ times = 1 time = equal power.

Clean signal, s(n), with variance = 0.5 Noise signal, v(n), with variance = 1

 $\sigma_x^2 = \sigma_s^2 + K^2 \sigma_v^2$

Noisy signal, x(n) = s(n) + Kv(n)Find K so that SNR = 20 dB.

$$SNR = 20dB = 10\log_{10}\left(\frac{\operatorname{var}(s(n))}{\operatorname{var}(v(n))}\right) = 10\log_{10}\left(\frac{0.5}{K^2}\right)$$

$$\log_{10} \frac{0.5}{K^2} = 2 \Longrightarrow \frac{0.5}{K^2} = 10^2 \Longrightarrow K = 0.07071$$

Periodicity

Example 11

Consider the following continuous signal for the current $i(t) = \cos(20\pi t)$ which is sampled at 12.5 ms. Will the resulting discrete signal be periodic?

The continuous radian frequency is $\omega = 20\pi$ radians. Since the sampling rate interval T_s = 12.5 msec = 0.0125 sec, then

 $\frac{2\pi}{\theta_0} = \frac{N}{k}$

$$x(n) = \cos(2\pi(10)(0.0175)n) = \cos(\frac{2\pi}{8}n) = \cos(\frac{\pi}{4}n)$$

Since for periodicity we must have:

We get, $\frac{2\pi}{2\pi/8} = \frac{N}{k} = \frac{16\pi}{2\pi} = \frac{8}{1}$

For k = 1 we have N = 8, which is the fundamental period.

If N/k is a rational number (ratio of two integers) then x(n) is periodic and the period is $N = k \left(\frac{2\pi}{\theta_0} \right)$

The smallest value of *N* that satisfies the above equation is called the fundamental period. If $2\pi/\theta_0$ is not a rational number, then x(n) is not periodic.

Figure Acknowledgement

Most of the figures are taken from the following books:

Li Tan, Digital Signal Processing, Fundamentals and Applications, Elsevier, 2008.

Steven W. Smith, *Digital Signal Processing: A Practical Guide for Engineers and Scientists,* Newnes, Elsevier, 2003.