Common Digital Sequences

Unit-impulse sequence:

$$
\delta(n)= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

Unit-step sequence:

$$
u(n)= \begin{cases}1 & n \geq 0 \\ 0 & n<0\end{cases}
$$

Shifted Sequences

Shifted unit-impulse

Shifted unit-step

Left shift by two samples

Copyright © 2007 by Academic Press. All rights reserved.

Example 1

Given the following,

$$
x(n)=\delta(n+1)+0.5 \delta(n-1)+2 \delta(n-2)
$$

a. Sketch this sequence.

Solution:

Generation of Digital Signals

Let, sampling interval, $\Delta t=T$

$$
\begin{array}{r}
\quad x(n)=\left.x(t)\right|_{t=n T}=x(n T) \\
\text { Also }\left.\quad u(t)\right|_{t=n T}=u(n T)=u(n)
\end{array}
$$

$x(n)$: digital signal
$x(\mathrm{t})$: analog signal

Example 2
Convert analog signal $\mathrm{x}(\mathrm{t})$ into digital signal $\mathrm{x}(\mathrm{n})$, when sampling period is 125 microsecond, also plot sample values.

$$
x(t)=10 e^{-5000 t} u(t)
$$

Solution:

$$
\begin{aligned}
& t=n T=n \times 0.000125=0.000125 n \\
& x(n)=x(n T)=10 e^{-5000 \times 0.000125 n} u(n T)=10 e^{-0.625 n} u(n)
\end{aligned}
$$

Example 2 (contd.)

$$
\text { The first five } \quad \square \begin{aligned}
& x(0)=10 e^{-0.625 \times 0} u(0)=10.0 \\
& \text { sample values: } \\
& x(1)=10 e^{-0.625 \times 1} u(1)=5.3526 \\
& x(2)=10 e^{-0.625 \times 2} u(2)=2.8650 \\
& x(3)=10 e^{-0.625 \times 3} u(3)=1.5335 \\
& x(4)=10 e^{-0.625 \times 4} u(4)=0.8208
\end{aligned}
$$

Plot of the digital sequence:

Linear System

System: A system that produces an output signal in response to an input signal.

Continuous system \& discrete system.

Time, t

Sample number, n

Linear Systems: Property 1

1. Homogeneity
2. Additivity

3. Shift invariance \longrightarrow Must for DSP linear systems

Homogeneity: (deals with amplitude)

THEN

Linear Systems: Property 2

Additivity

Homogeneity \& Additivity

Linear Systems: Property 3

Shift (time) Invariance

Copyright © 2007 by Academic Press. All rights reserved.

Example 3

Let a digital amplifier, $\quad y(n)=10 x(n)$

If the inputs are: $x_{1}(n)=u(n)$ and $x_{2}(n)=\delta(n)$
Outputs will be: $\quad y_{1}(n)=10 u(n)$ and $y_{2}(n)=10 \delta(n)$, respectively.

If we apply combined input to the system: $x(n)=2 x_{1}(n)+4 x_{2}(n)=2 u(n)+4 \delta(n)$
The output will be: $\quad y(n)=10 x(n)=10(2 u(n)+4 \delta(n))=20 u(n)+40 \delta(n)$

$$
\begin{array}{|ll}
\hline & 2 y_{1}(n)=2 \times 10 x_{1}(n)=20 u(n) \\
\text { Individual outputs: } & 4 y_{2}(n)=4 \times 10 x_{2}(n)=40 \delta(n)
\end{array}
$$

Linear System

$\xrightarrow{4 y_{2}(n)=40 \delta(n)}$

Example 4

If the input is: $4 x_{1}(n)+2 x_{2}(n)$
Then the output is: $y(n)=x^{2}(n)=\left(4 x_{1}(n)+2 x_{2}(n)\right)^{2}$

$$
\begin{aligned}
& =(4 u(n)+2 \delta(n))^{2}=16 u^{2}(n)+16 u(n) \delta(n)+4 \delta^{2}(n) \\
& =16 u(n)+20 \delta(n) .
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Individual outputs: } & 4 y_{1}(n)=4 \times x_{1}^{2}(n)=4 u(n) \\
& 2 y_{2}(n)=2 \times x_{2}^{2}(n)=2 \delta(n)
\end{array}
$$

Example 5 (a)

Given the linear system $y(n)=2 x(n-5)$, find whether the system is time invariant or not.

Solution:

Let the shifted input be: $x_{2}(n)=x_{1}\left(n-n_{0}\right)$

Shifting $y_{1}(n)=2 x_{1}(n-5)$ by n_{0} samples leads to $\quad y_{1}\left(n-n_{0}\right)=2 x_{1}\left(n-5-n_{0}\right)$.

> Time Invariant

Example 5 (b)

Given the linear system $y(n)=2 x(3 n)$, find whether the system is time invariant or not.

Solution:

Let the shifted input be: $x_{2}(n)=x_{1}\left(n-n_{0}\right)$

$$
y_{1}\left(n-n_{0}\right)=2 x_{1}\left(3\left(n-n_{0}\right)\right)=2 x_{1}\left(3 n-3 n_{0}\right)
$$

Difference Equation

A causal, linear, and time invariant system can be represented by a difference equation as follows:

After rearranging:

$$
y(n)=-a_{1} y(n-1)-\ldots-a_{N} y(n-N)+b_{0} x(n)+b_{1} x(n-1)+\ldots+b_{M} x(n-M)
$$

Finally:

$$
y(n)=-\sum_{i=1}^{N} a_{i} y(n-i)+\sum_{j=0}^{M} b_{j} x(n-j)
$$

Example 6

Identify non zero system coefficients of the following difference equations.

Solution:

$$
y(n)=0.25 y(n-1)+x(n) \longrightarrow b_{0}=1, \quad a_{1}=-0.25
$$

Solution:

$$
y(n)=x(n)+0.5 x(n-1) \quad \longrightarrow \quad b_{0}=1, \quad b_{1}=0.5
$$

System Representation Using Impulse Response

Convolution

$$
y(n)=\ldots+h(-1) x(n+1)+h(0) x(n)+h(1) x(n-1)+h(2) x(n-2)+\ldots .
$$

Example 7 (a)

Given the linear time-invariant system:

$$
y(n)=0.5 x(n)+0.25 x(n-1) \text { with an initial condition } x(-1)=0,
$$

a. Determine the unit-impulse response $h(n)$.
b. Draw the system block diagram.
c. Write the output using the obtained impulse response.
a. let $x(n)=\delta(n)$

Solution:

$$
h(n)=y(n)=0.5 x(n)+0.25 x(n-1)=0.5 \delta(n)+0.25 \delta(n-1)
$$

Therefore,

$$
h(n)= \begin{cases}0.5 & n=0 \\ 0.25 & n=1 \\ 0 & \text { elsewhere }\end{cases}
$$

b. $\quad \xrightarrow{x(n)} h(n)=0.5 \delta(n)+0.25 \delta(n-1) \xrightarrow{y(n)}$
c. $y(n)=h(0) x(n)+h(1) x(n-1)$

Example 7 (b)

Given the difference equation

$$
y(n)=0.25 y(n-1)+x(n) \text { for } n \geq 0 \text { and } y(-1)=0,
$$

a. Determine the unit-impulse response $h(n)$.
b. Draw the system block diagram.
c. Write the output using the obtained impulse response.

Solution:

a. let $x(n)=\delta(n) \quad$ Then $\quad h(n)=0.25 h(n-1)+\delta(n)$

$$
\begin{aligned}
& h(0)=0.25 h(-1)+\delta(0)=0.25 \times 0+1=1 \\
& h(1)=0.25 h(0)+\delta(1)=0.25 \times 1+0=0.25 \\
& h(2)=0.25 h(1)+\delta(2)=0.25 \times 0.5+0=0.0625
\end{aligned}
$$

With the calculated results, we can predict the impulse response as

$$
h(n)=(0.25)^{n} u(n)=\delta(n)+0.25 \delta(n-1)+0.0625 \delta(n-2)+\ldots
$$

Example 7 (b) - contd.

b. $\xrightarrow{x(n)} h(n)=\delta(n)+0.25 \delta(n-1)+\cdots \xrightarrow{y(n)}$
c. $\quad y(n)=h(0) x(n)+h(1) x(n-1)+h(2) x(n-2)+\ldots$

$$
=x(n)+0.25 x(n-1)+0.0625 x(n-2)+\ldots
$$

Finite Impulse Response (FIR) system:
When the difference equation contains no previous outputs, i.e. ' a ' coefficients are zero. < See example 7 (a) >

Infinite Impulse Response (IIR) system:
When the difference equation contains previous outputs, i.e. ' a ' coefficients are not all zero. < See example 7 (b) >

BIBO Stability

BIBO: Bounded In and Bounded Out

A stable system is one for which every bounded input produces a bounded output.

$$
y(n)=\ldots+h(-1) x(n+1)+h(0) x(n)+h(1) x(n-1)+h(2) x(n-2)+\ldots .
$$

Let, in the worst case, every input value reaches to maximum value M.

$$
y(n)=M(\ldots+h(-1)+h(0)+h(1)+h(2)+\ldots) .
$$

Using absolute values of the impulse responses,

$$
\begin{aligned}
& \qquad y(n)<M(.+|h(-1)|+|h(0)|+|h(1)|+|h(2)|+. .) \\
& \text { If the impulse responses are finite number, then output is also finite. } \\
& \substack{\text { CEN543, Dr. Ghulam Muhammad } \\
\text { King Saud University }}
\end{aligned}
$$

BIBO Stability - contd.

To determine whether a system is stable, we apply the following equation:

$$
S=\sum_{k=-\infty}^{\infty}|h(k)|=\ldots+|h(-1)|+|h(0)|+|h(1)|+\ldots<\infty .
$$

Impulse response is decreasing to zero.

Example 8

Given a linear system given by: $y(n)=0.25 y(n-1)+x(n)$ for $n \geq 0$ and $y(-1)=0$ Which is described by the unit-impulse response: $\quad h(n)=(0.25)^{n} u(n)$

Determine whether the system is stable or not.

Solution:

$$
S=\sum_{k=-\infty}^{\infty}|h(k)|=\sum_{k=-\infty}^{\infty}\left|(0.25)^{k} u(k)\right|
$$

Using definition of step function:

$$
u(k)=1 \text { for } k \geq 0
$$

 $S=\sum_{k=0}^{\infty}(0.25)^{k}=1+0.25+0.25^{2}+\ldots$.

For $a<1$, we know $\quad \sum_{k=0}^{\infty} a^{k}=\frac{1}{1-a} \quad$ where $a=0.25<1$
Therefore $\quad S=1+0.25+0.25^{2}+\ldots=\frac{1}{1-0.25}=\frac{4}{3}<\infty$
The summation is finite, so the system is stable.

Digital Convolution

$$
\begin{aligned}
y(n) & =\sum_{k=-\infty}^{\infty} h(k) x(n-k) \\
& =\ldots+h(-1) x(n+1)+h(0) x(n)+h(1) x(n-1)+h(2) x(n-2)+\ldots
\end{aligned}
$$

The sequences are interchangeable.

Convolution sum requires $h(n)$ to be reversed and shifted.
If $h(n)$ is the given sequence, $h(-n)$ is the reversed sequence.

Reversed Sequence

Given a sequence,

$$
h(k)= \begin{cases}3, & k=0,1 \\ 1, & k=2,3 \\ 0 & \text { elsewhere }\end{cases}
$$

where k is the time index or sample number,
a. Sketch the sequence $h(k)$ and reversed sequence $h(-k)$.

Solution:
a.

Convolution Using Table Method Example 9

Solution:

Convolution sum using the table method.

Convolution length $=3+3-1=5$

Convolution Using Table Method Example 10

$$
\begin{array}{r}
x(n)=\left\{\begin{array}{ll}
1 & n=0,1,2 \\
0 & \text { otherwise }
\end{array} \text { and } h(n)= \begin{cases}0 & n=0 \\
1 & n=1,2 \\
0 & \text { otherwise }\end{cases} \right. \\
\text { Length }=3
\end{array}
$$

Solution:

k :	-2	-1	0	1	2	3	4	5	
$x(k)$:			1	1	1				
$h(-k):$	1	1	0						$y(0)=0$ (no overlap)
$h(1-k)$		1	1	0					$y(1)=1 \times 1=1$
$h(2-k)$			1	1	0				$y(2)=1 \times 1+1 \times 1=2$
$h(3-k)$				1	1	0			$y(3)=1 \times 1+1 \times 1=2$
$h(4-k)$					1	1	0		$y(4)=1 \times 1=1$
$h(n-k)$						1	1	0	$y(n)=0, n \geq 5$ (no overlap) Stop

Convolution length $=3+2-1=4$

Convolution Properties

Commutative: $\quad a[n] * b[n]=b[n]^{*} a[n]$
Associative: $\quad(a[n] * b[n]) * c[n]=a[n] *(b[n] * c[n])$
Distributive: $\quad a[n] * b[n]+a[n] * c[n]=a[n] *(b[n]+c[n])$

Associative

Examples of Convolution

Kernel

a. Low-pass Filter

b. High-pass Filter

High freq. Sine wave

Low Pass Filters

Kernel: formed by a group of positive adjacent points that provide smoothing.

Sum of the points must be one. Gain of one in DC.

High Pass Filters

Kernel: delta function - corresponding low-pass filter.

Peak is surrounded by many adjacent negative points.

Sum of the points must be zero. Zero gain at DC (zero frequency).
CEN543, Dr. Ghulam Muhammad
King Saud University

Signal-to-Noise Ratio (SNR)

Bel or decibel (dB):

A bel: The power is changed by a factor of ten.

$$
3 \text { bels } \rightarrow \text { Power of } 10 \times 10 \times 10=1000 \text { times. }
$$

$$
\begin{aligned}
& d B=10 \log _{10} \frac{P_{2}}{P_{1}} \\
& d B=20 \log _{10} \frac{A_{2}}{A_{1}}
\end{aligned}
$$

Decibel (dB): One-tenth of a bel.

$$
30 \mathrm{~dB} \rightarrow \text { Power of } 10 \times 10 \times 10=1000 \text { times. } \quad 0 \mathrm{~dB} \rightarrow 10^{0} \text { times }=1 \text { time }=\text { equal power. }
$$

Clean signal, $s(n)$, with variance $=0.5 \quad$ Noisy signal, $x(n)=s(n)+K v(n)$

$$
\text { Noise signal, v(n), with variance }=1
$$

$$
\text { Find } K \text { so that } S N R=20 \mathrm{~dB} .
$$

$$
\begin{aligned}
& \sigma_{x}^{2}=\sigma_{s}^{2}+K^{2} \sigma_{v}^{2} \\
& \qquad \begin{array}{l}
S N R=20 d B=10 \log _{10}\left(\frac{\operatorname{var}(s(n))}{\operatorname{var}(v(n))}\right)=10 \log _{10}\left(\frac{0.5}{K^{2}}\right) \\
\log _{10} \frac{0.5}{K^{2}}=2 \Rightarrow \frac{0.5}{K^{2}}=10^{2} \Rightarrow K=0.07071
\end{array}
\end{aligned}
$$

Periodicity

Example 11

Consider the following continuous signal for the current $\quad i(t)=\cos (20 \pi t)$
which is sampled at 12.5 ms . Will the resulting discrete signal be periodic?

The continuous radian frequency is $\omega=20 \pi$ radians. Since the sampling rate interval $\mathrm{T}_{\mathrm{s}}=12.5 \mathrm{msec}=0.0125 \mathrm{sec}$, then

$$
x(n)=\cos (2 \pi(10)(0.0175) n)=\cos \left(\frac{2 \pi}{8} n\right)=\cos \left(\frac{\pi}{4} n\right)
$$

Since for periodicity we must have: $\frac{2 \pi}{\theta_{0}}=\frac{N}{k}$
We get, $\frac{2 \pi}{2 \pi / 8}=\frac{N}{k}=\frac{16 \pi}{2 \pi}=\frac{8}{1}$
For $k=1$ we have $N=8$, which is the

If N / k is a rational number (ratio of two integers) then $x(n)$ is periodic and the period is

$$
N=k\left(\frac{2 \pi}{\theta_{0}}\right)
$$ fundamental period.

The smallest value of N that satisfies the above equation is called the fundamental period. If $2 \pi / \theta_{0}$ is not a rational number, then $x(n)$ is not periodic.

Figure Acknowledgement

Most of the figures are taken from the following books:

Li Tan, Digital Signal Processing, Fundamentals and Applications, Elsevier, 2008.

Steven W. Smith, Digital Signal Processing: A Practical Guide for Engineers and Scientists, Newnes, Elsevier, 2003.

