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Preface

Audience

This is an introductory textbook dealing with the design and analysis of experiments. It is based
on college-level courses in design of experiments that I have taught over nearly 40 years at
Arizona State University, the University of Washington, and the Georgia Institute of Technology.
It also reflects the methods that I have found useful in my own professional practice as an engi-
neering and statistical consultant in many areas of science and engineering, including the research
and development activities required for successful technology commercialization and product
realization.

The book is intended for students who have completed a first course in statistical meth-
ods. This background course should include at least some techniques of descriptive statistics,
the standard sampling distributions, and an introduction to basic concepts of confidence
intervals and hypothesis testing for means and variances. Chapters 10, 11, and 12 require
some familiarity with matrix algebra.

Because the prerequisites are relatively modest, this book can be used in a second course
on statistics focusing on statistical design of experiments for undergraduate students in engi-
neering, the physical and chemical sciences, statistics, mathematics, and other fields of science.
For many years I have taught a course from the book at the first-year graduate level in engi-
neering. Students in this course come from all of the fields of engineering, materials science,
physics, chemistry, mathematics, operations research life sciences, and statistics. I have also
used this book as the basis of an industrial short course on design of experiments for practic-
ing technical professionals with a wide variety of backgrounds. There are numerous examples
illustrating all of the design and analysis techniques. These examples are based on real-world
applications of experimental design and are drawn from many different fields of engineering and
the sciences. This adds a strong applications flavor to an academic course for engineers
and scientists and makes the book useful as a reference tool for experimenters in a variety
of disciplines.
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About the Book

The eighth edition is a major revision of the book. I have tried to maintain the balance
between design and analysis topics of previous editions; however, there are many new topics
and examples, and I have reorganized much of the material. There is much more emphasis on
the computer in this edition.

Design-Expert, JMP, and Minitab Software

During the last few years a number of excellent software products to assist experimenters in
both the design and analysis phases of this subject have appeared. I have included output from
three of these products, Design-Expert, JMP, and Minitab at many points in the text. Minitab
and JMP are widely available general-purpose statistical software packages that have good
data analysis capabilities and that handles the analysis of experiments with both fixed and ran-
dom factors (including the mixed model). Design-Expert is a package focused exclusively on
experimental design. All three of these packages have many capabilities for construction and
evaluation of designs and extensive analysis features. Student versions of Design-Expert and
JMP are available as a packaging option with this book, and their use is highly recommend-
ed. I urge all instructors who use this book to incorporate computer software into your
course. (In my course, I bring a laptop computer and use a computer projector in every
lecture, and every design or analysis topic discussed in class is illustrated with the computer.)
To request this book with the student version of JMP or Design-Expert included, contact
your local Wiley representative. You can find your local Wiley representative by going to
www.wiley.com/college and clicking on the tab for “Who’s My Rep?”

Empirical Model

I have continued to focus on the connection between the experiment and the model that
the experimenter can develop from the results of the experiment. Engineers (and physical,
chemical and life scientists to a large extent) learn about physical mechanisms and their
underlying mechanistic models early in their academic training, and throughout much of
their professional careers they are involved with manipulation of these models.
Statistically designed experiments offer the engineer a valid basis for developing an
empirical model of the system being investigated. This empirical model can then be
manipulated (perhaps through a response surface or contour plot, or perhaps mathemati-
cally) just as any other engineering model. I have discovered through many years of teaching
that this viewpoint is very effective in creating enthusiasm in the engineering community
for statistically designed experiments. Therefore, the notion of an underlying empirical
model for the experiment and response surfaces appears early in the book and receives
much more emphasis.

Factorial Designs

I have expanded the material on factorial and fractional factorial designs (Chapters 5-9) in
an effort to make the material flow more effectively from both the reader’s and the instruc-
tor’s viewpoint and to place more emphasis on the empirical model. There is new material
on a number of important topics, including follow-up experimentation following a fractional
factorial, nonregular and nonorthogonal designs, and small, efficient resolution IV and V
designs. Nonregular fractions as alternatives to traditional minimum aberration fractions in
16 runs and analysis methods for these design are discussed and illustrated.
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Additional Important Changes

I'have added a lot of material on optimal designs and their application. The chapter on response
surfaces (Chapter 11) has several new topics and problems. I have expanded Chapter 12 on
robust parameter design and process robustness experiments. Chapters 13 and 14 discuss
experiments involving random effects and some applications of these concepts to nested and
split-plot designs. The residual maximum likelihood method is now widely available in soft-
ware and I have emphasized this technique throughout the book. Because there is expanding
industrial interest in nested and split-plot designs, Chapters 13 and 14 have several new topics.
Chapter 15 is an overview of important design and analysis topics: nonnormality of the
response, the Box—Cox method for selecting the form of a transformation, and other alterna-
tives; unbalanced factorial experiments; the analysis of covariance, including covariates in a
factorial design, and repeated measures. I have also added new examples and problems from
various fields, including biochemistry and biotechnology.

Experimental Design

Throughout the book I have stressed the importance of experimental design as a tool for engi-
neers and scientists to use for product design and development as well as process develop-
ment and improvement. The use of experimental design in developing products that are robust
to environmental factors and other sources of variability is illustrated. I believe that the use of
experimental design early in the product cycle can substantially reduce development lead time
and cost, leading to processes and products that perform better in the field and have higher
reliability than those developed using other approaches.

The book contains more material than can be covered comfortably in one course, and |
hope that instructors will be able to either vary the content of each course offering or discuss
some topics in greater depth, depending on class interest. There are problem sets at the end
of each chapter. These problems vary in scope from computational exercises, designed to
reinforce the fundamentals, to extensions or elaboration of basic principles.

Course Suggestions

My own course focuses extensively on factorial and fractional factorial designs. Consequently,
I usually cover Chapter 1, Chapter 2 (very quickly), most of Chapter 3, Chapter 4 (excluding
the material on incomplete blocks and only mentioning Latin squares briefly), and I discuss
Chapters 5 through 8 on factorials and two-level factorial and fractional factorial designs in
detail. To conclude the course, I introduce response surface methodology (Chapter 11) and give
an overview of random effects models (Chapter 13) and nested and split-plot designs (Chapter
14). T always require the students to complete a term project that involves designing, conduct-
ing, and presenting the results of a statistically designed experiment. I require them to do this
in teams because this is the way that much industrial experimentation is conducted. They must
present the results of this project, both orally and in written form.

The Supplemental Text Material

For the eighth edition I have prepared supplemental text material for each chapter of the book.
Often, this supplemental material elaborates on topics that could not be discussed in greater detail
in the book. I have also presented some subjects that do not appear directly in the book, but an
introduction to them could prove useful to some students and professional practitioners. Some of
this material is at a higher mathematical level than the text. I realize that instructors use this book
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Website

with a wide array of audiences, and some more advanced design courses could possibly benefit
from including several of the supplemental text material topics. This material is in electronic form
on the World Wide Website for this book, located at www.wiley.com/college/montgomery.

Current supporting material for instructors and students is available at the website
www.wiley.com/college/montgomery. This site will be used to communicate information
about innovations and recommendations for effectively using this text. The supplemental text
material described above is available at the site, along with electronic versions of data sets
used for examples and homework problems, a course syllabus, and some representative stu-
dent term projects from the course at Arizona State University.

Student Companion Site
The student’s section of the textbook website contains the following:

1. The supplemental text material described above
2. Data sets from the book examples and homework problems, in electronic form
3. Sample Student Projects

Instructor Companion Site
The instructor’s section of the textbook website contains the following:

4. Solutions to the text problems

. The supplemental text material described above

. PowerPoint lecture slides

. Figures from the text in electronic format, for easy inclusion in lecture slides

. Data sets from the book examples and homework problems, in electronic form

N=2E R B WY |

. Sample Syllabus
10. Sample Student Projects

The instructor’s section is for instructor use only, and is password-protected. Visit the
Instructor Companion Site portion of the website, located at www.wiley.com/college/
montgomery, to register for a password.

Student Solutions Manual

The purpose of the Student Solutions Manual is to provide the student with an in-depth under-
standing of how to apply the concepts presented in the textbook. Along with detailed instruc-
tions on how to solve the selected chapter exercises, insights from practical applications are
also shared.

Solutions have been provided for problems selected by the author of the text.
Occasionally a group of “continued exercises” is presented and provides the student with a
full solution for a specific data set. Problems that are included in the Student Solutions
Manual are indicated by an icon appearing in the text margin next to the problem statement.

This is an excellent study aid that many text users will find extremely helpful. The
Student Solutions Manual may be ordered in a set with the text, or purchased separately.
Contact your local Wiley representative to request the set for your bookstore, or purchase the
Student Solutions Manual from the Wiley website.
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CHAPTER 1

Introduction

CHAPTER OUTLINE
1.1 STRATEGY OF EXPERIMENTATION SUPPLEMENTAL MATERIAL FOR CHAPTER 1
1.2 SOME TYPICAL APPLICATIONS S1.1 More about Planning Experiments
OF EXPERIMENTAL DESIGN S1.2 Blank Guide Sheets to Assist in Pre-Experimental
1.3 BASIC PRINCIPLES Planning , ‘
|4 GUIDELINES FOR DESIGNING EXPERIMENTS S1.3 Montgomery’s Theorems on Designed Experiments
1.5 A BRIEF HISTORY OF STATISTICAL DESIGN
1.6 SUMMARY: USING STATISTICAL TECHNIQUES
IN EXPERIMENTATION

The supplemental material is on the textbook website www.wiley.com/college/montgomery.

1.1

Strategy

of Experimentation

Observing a system or process while it is in operation is an important part of the learning
process, and is an integral part of understanding and learning about how systems and
processes work. The great New York Yankees catcher Yogi Berra said that “. . . you can
observe a lot just by watching.” However, to understand what happens to a process when
you change certain input factors, you have to do more than just watch—you actually have
to change the factors. This means that to really understand cause-and-effect relationships in
a system you must deliberately change the input variables to the system and observe the
changes in the system output that these changes to the inputs produce. In other words, you
need to conduct experiments on the system. Observations on a system or process can lead
to theories or hypotheses about what makes the system work, but experiments of the type
described above are required to demonstrate that these theories are correct.

Investigators perform experiments in virtually all fields of inquiry, usually to discover
something about a particular process or system. Each experimental run is a test. More formally,
we can define an experiment as a test or series of runs in which purposeful changes are made
to the input variables of a process or system so that we may observe and identify the reasons
for changes that may be observed in the output response. We may want to determine which
input variables are responsible for the observed changes in the response, develop a model
relating the response to the important input variables and to use this model for process or system
improvement or other decision-making.

This book is about planning and conducting experiments and about analyzing the
resulting data so that valid and objective conclusions are obtained. Our focus is on experi-
ments in engineering and science. Experimentation plays an important role in technology

1
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commercialization and product realization activities, which consist of new product design
and formulation, manufacturing process development, and process improvement. The objec-
tive in many cases may be to develop a robust process, that is, a process affected minimally
by external sources of variability. There are also many applications of designed experiments
in a nonmanufacturing or non-product-development setting, such as marketing, service oper-
ations, and general business operations.

As an example of an experiment, suppose that a metallurgical engineer is interested in
studying the effect of two different hardening processes, oil quenching and saltwater
quenching, on an aluminum alloy. Here the objective of the experimenter (the engineer) is
to determine which quenching solution produces the maximum hardness for this particular
alloy. The engineer decides to subject a number of alloy specimens or test coupons to each
quenching medium and measure the hardness of the specimens after quenching. The aver-
age hardness of the specimens treated in each quenching solution will be used to determine
which solution is best.

As we consider this simple experiment, a number of important questions come to mind:

1. Are these two solutions the only quenching media of potential interest?

2. Are there any other factors that might affect hardness that should be investigated or
controlled in this experiment (such as, the temperature of the quenching media)?

3. How many coupons of alloy should be tested in each quenching solution?

4. How should the test coupons be assigned to the quenching solutions, and in what
order should the data be collected?

5. What method of data analysis should be used?

6. What difference in average observed hardness between the two quenching media
will be considered important?

All of these questions, and perhaps many others, will have to be answered satisfactorily
before the experiment is performed.

Experimentation is a vital part of the scientific (or engineering) method. Now there are
certainly situations where the scientific phenomena are so well understood that useful results
including mathematical models can be developed directly by applying these well-understood
principles. The models of such phenomena that follow directly from the physical mechanism
are usually called mechanistic models. A simple example is the familiar equation for current
flow in an electrical circuit, Ohm’s law, E = IR. However, most problems in science and engi-
neering require observation of the system at work and experimentation to elucidate infor-
mation about why and how it works. Well-designed experiments can often lead to a model of
system performance; such experimentally determined models are called empirical models.
Throughout this book, we will present techniques for turning the results of a designed exper-
iment into an empirical model of the system under study. These empirical models can be
manipulated by a scientist or an engineer just as a mechanistic model can.

A well-designed experiment is important because the results and conclusions that can
be drawn from the experiment depend to a large extent on the manner in which the data were
collected. To illustrate this point, suppose that the metallurgical engineer in the above exper-
iment used specimens from one heat in the oil quench and specimens from a second heat in
the saltwater quench. Now, when the mean hardness is compared, the engineer is unable to
say how much of the observed difference is the result of the quenching media and how much
is the result of inherent differences between the heats.! Thus, the method of data collection
has adversely affected the conclusions that can be drawn from the experiment.

"' A specialist in experimental design would say that the effect of quenching media and heat were confounded, that is, the effects of
these two factors cannot be separated.
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In general, experiments are used to study the performance of processes and systems.
The process or system can be represented by the model shown in Figure 1.1. We can usually
visualize the process as a combination of operations, machines, methods, people, and other
resources that transforms some input (often a material) into an output that has one or more
observable response variables. Some of the process variables and material properties x,
Xy, . . ., x, are controllable, whereas other variables z;, z,, . . ., z, are uncontrollable
(although they may be controllable for purposes of a test). The objectives of the experiment
may include the following:

1. Determining which variables are most influential on the response y

2. Determining where to set the influential x’s so that y is almost always near the
desired nominal value

3. Determining where to set the influential x’s so that variability in y is small

4. Determining where to set the influential x’s so that the effects of the uncontrollable
variables z;, 25, . . . » 7, are minimized.

As you can see from the foregoing discussion, experiments often involve several factors.
Usually, an objective of the experimenter is to determine the influence that these factors have
on the output response of the system. The general approach to planning and conducting the
experiment is called the strategy of experimentation. An experimenter can use several strate-
gies. We will illustrate some of these with a very simple example.

I really like to play golf. Unfortunately, I do not enjoy practicing, so I am always look-
ing for a simpler solution to lowering my score. Some of the factors that I think may be impor-
tant, or that may influence my golf score, are as follows:

The type of driver used (oversized or regular sized)

The type of ball used (balata or three piece)

Walking and carrying the golf clubs or riding in a golf cart
Drinking water or drinking “something else” while playing
Playing in the morning or playing in the afternoon

Playing when it is cool or playing when it is hot

The type of golf shoe spike worn (metal or soft)

o NANE RN

Playing on a windy day or playing on a calm day.

Obviously, many other factors could be considered, but let’s assume that these are the ones of pri-
mary interest. Furthermore, based on long experience with the game, I decide that factors 5
through 8 can be ignored; that is, these factors are not important because their effects are so small
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that they have no practical value. Engineers, scientists, and business analysts, often must make
these types of decisions about some of the factors they are considering in real experiments.

Now, let’s consider how factors 1 through 4 could be experimentally tested to determine
their effect on my golf score. Suppose that a maximum of eight rounds of golf can be played
over the course of the experiment. One approach would be to select an arbitrary combination
of these factors, test them, and see what happens. For example, suppose the oversized driver,
balata ball, golf cart, and water combination is selected, and the resulting score is 87. During
the round, however, I noticed several wayward shots with the big driver (long is not always
good in golf), and, as a result, I decide to play another round with the regular-sized driver,
holding the other factors at the same levels used previously. This approach could be contin-
ued almost indefinitely, switching the levels of one or two (or perhaps several) factors for the
next test, based on the outcome of the current test. This strategy of experimentation, which
we call the best-guess approach, is frequently used in practice by engineers and scientists. It
often works reasonably well, too, because the experimenters often have a great deal of tech-
nical or theoretical knowledge of the system they are studying, as well as considerable prac-
tical experience. The best-guess approach has at least two disadvantages. First, suppose the
initial best-guess does not produce the desired results. Now the experimenter has to take
another guess at the correct combination of factor levels. This could continue for a long time,
without any guarantee of success. Second, suppose the initial best-guess produces an accept-
able result. Now the experimenter is tempted to stop testing, although there is no guarantee
that the best solution has been found.

Another strategy of experimentation that is used extensively in practice is the one-
factor-at-a-time (OFAT) approach. The OFAT method consists of selecting a starting point,
or baseline set of levels, for each factor, and then successively varying each factor over its
range with the other factors held constant at the baseline level. After all tests are performed,
a series of graphs are usually constructed showing how the response variable is affected by
varying each factor with all other factors held constant. Figure 1.2 shows a set of these graphs
for the golf experiment, using the oversized driver, balata ball, walking, and drinking water
levels of the four factors as the baseline. The interpretation of this graph is straightforward;
for example, because the slope of the mode of travel curve is negative, we would conclude
that riding improves the score. Using these one-factor-at-a-time graphs, we would select the
optimal combination to be the regular-sized driver, riding, and drinking water. The type of
golf ball seems unimportant.

The major disadvantage of the OFAT strategy is that it fails to consider any possible
interaction between the factors. An interaction is the failure of one factor to produce the same
effect on the response at different levels of another factor. Figure 1.3 shows an interaction
between the type of driver and the beverage factors for the golf experiment. Notice that if I use
the regular-sized driver, the type of beverage consumed has virtually no effect on the score, but
if T use the oversized driver, much better results are obtained by drinking water instead of beer.
Interactions between factors are very common, and if they occur, the one-factor-at-a-time strat-
egy will usually produce poor results. Many people do not recognize this, and, consequently,

() Q () ()
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Driver Ball Mode of travel Beverage

m FIGURE 1.2 Results of the one-factor-at-a-time strategy for the golf experiment
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OFAT experiments are run frequently in practice. (Some individuals actually think that this
strategy is related to the scientific method or that it is a “sound” engineering principle.) One-
factor-at-a-time experiments are always less efficient than other methods based on a statistical
approach to design. We will discuss this in more detail in Chapter 5.

The correct approach to dealing with several factors is to conduct a factorial experi-
ment. This is an experimental strategy in which factors are varied rogether, instead of one
at a time. The factorial experimental design concept is extremely important, and several
chapters in this book are devoted to presenting basic factorial experiments and a number of
useful variations and special cases.

To illustrate how a factorial experiment is conducted, consider the golf experiment and
suppose that only two factors, type of driver and type of ball, are of interest. Figure 1.4 shows
a two-factor factorial experiment for studying the joint effects of these two factors on my golf
score. Notice that this factorial experiment has both factors at two levels and that all possible
combinations of the two factors across their levels are used in the design. Geometrically, the
four runs form the corners of a square. This particular type of factorial experiment is called a
22 factorial design (two factors, each at two levels). Because I can reasonably expect to play
eight rounds of golf to investigate these factors, a reasonable plan would be to play two
rounds of golf at each combination of factor levels shown in Figure 1.4. An experimental
designer would say that we have replicated the design twice. This experimental design would
enable the experimenter to investigate the individual effects of each factor (or the main
effects) and to determine whether the factors interact.

Figure 1.5a shows the results of performing the factorial experiment in Figure 1.4. The
scores from each round of golf played at the four test combinations are shown at the corners
of the square. Notice that there are four rounds of golf that provide information about using
the regular-sized driver and four rounds that provide information about using the oversized
driver. By finding the average difference in the scores on the right- and left-hand sides of the
square (as in Figure 1.5b), we have a measure of the effect of switching from the oversized
driver to the regular-sized driver, or

92 + 94 + 93 + 91 88 + 91 + 88 + 90
4 4

Driver effect =

= 3.25

That is, on average, switching from the oversized to the regular-sized driver increases the
score by 3.25 strokes per round. Similarly, the average difference in the four scores at the top
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m FIGURE 1.5 Scores from the golf experiment in Figure 1.4 and calculation of the
factor effects

of the square and the four scores at the bottom measures the effect of the type of ball used
(see Figure 1.5¢):

Ball effect :88+91192+94_88+90:93+91

=0.75

Finally, a measure of the interaction effect between the type of ball and the type of driver can
be obtained by subtracting the average scores on the left-to-right diagonal in the square from
the average scores on the right-to-left diagonal (see Figure 1.5d), resulting in

Ball-driver interaction effect = 92 + 94 I 88 + 90 _ 88 + 91 Z 93 + 91

=0.25

The results of this factorial experiment indicate that driver effect is larger than either the
ball effect or the interaction. Statistical testing could be used to determine whether any of
these effects differ from zero. In fact, it turns out that there is reasonably strong statistical evi-
dence that the driver effect differs from zero and the other two effects do not. Therefore, this
experiment indicates that I should always play with the oversized driver.

One very important feature of the factorial experiment is evident from this simple
example; namely, factorials make the most efficient use of the experimental data. Notice that
this experiment included eight observations, and all eight observations are used to calculate
the driver, ball, and interaction effects. No other strategy of experimentation makes such an
efficient use of the data. This is an important and useful feature of factorials.

We can extend the factorial experiment concept to three factors. Suppose that I wish
to study the effects of type of driver, type of ball, and the type of beverage consumed on my
golf score. Assuming that all three factors have two levels, a factorial design can be set up
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m FIGURE 1.6 A three-factor
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as shown in Figure 1.6. Notice that there are eight test combinations of these three factors
across the two levels of each and that these eight trials can be represented geometrically as
the corners of a cube. This is an example of a 2* factorial design. Because I only want to
play eight rounds of golf, this experiment would require that one round be played at each
combination of factors represented by the eight corners of the cube in Figure 1.6. However,
if we compare this to the two-factor factorial in Figure 1.4, the 2° factorial design would pro-
vide the same information about the factor effects. For example, there are four tests in both
designs that provide information about the regular-sized driver and four tests that provide
information about the oversized driver, assuming that each run in the two-factor design in
Figure 1.4 is replicated twice.

Figure 1.7 illustrates how all four factors—driver, ball, beverage, and mode of travel
(walking or riding)—could be investigated in a 2* factorial design. As in any factorial design,
all possible combinations of the levels of the factors are used. Because all four factors are at
two levels, this experimental design can still be represented geometrically as a cube (actually
a hypercube).

Generally, if there are k factors, each at two levels, the factorial design would require ok
runs. For example, the experiment in Figure 1.7 requires 16 runs. Clearly, as the number of
factors of interest increases, the number of runs required increases rapidly; for instance, a
10-factor experiment with all factors at two levels would require 1024 runs. This quickly
becomes infeasible from a time and resource viewpoint. In the golf experiment, I can only
play eight rounds of golf, so even the experiment in Figure 1.7 is too large.

Fortunately, if there are four to five or more factors, it is usually unnecessary to run all
possible combinations of factor levels. A fractional factorial experiment is a variation of the
basic factorial design in which only a subset of the runs is used. Figure 1.8 shows a fractional
factorial design for the four-factor version of the golf experiment. This design requires only
8 runs instead of the original 16 and would be called a one-half fraction. If I can play only
eight rounds of golf, this is an excellent design in which to study all four factors. It will provide
good information about the main effects of the four factors as well as some information about
how these factors interact.
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m FIGURE 1.7 A four-factor factorial experiment involving type
of driver, type of ball, type of beverage, and mode of travel



1.2

Chapter 1 B Introduction

Mode of travel
A
/ \
Walk Ride

| |
Y 4 I
I I
I I
Ball
[ -
// Yo

//
C; Driver

Beverage

m FIGURE 1.8 A four-factor fractional factorial experiment involving
type of driver, type of ball, type of beverage, and mode of travel

Fractional factorial designs are used extensively in industrial research and development,
and for process improvement. These designs will be discussed in Chapters 8 and 9.

Some Typical Applications of Experimental Design

Experimental design methods have found broad application in many disciplines. As noted
previously, we may view experimentation as part of the scientific process and as one of the
ways by which we learn about how systems or processes work. Generally, we learn through
a series of activities in which we make conjectures about a process, perform experiments to
generate data from the process, and then use the information from the experiment to establish
new conjectures, which lead to new experiments, and so on.

Experimental design is a critically important tool in the scientific and engineering
world for improving the product realization process. Critical components of these activities
are in new manufacturing process design and development, and process management. The
application of experimental design techniques early in process development can result in

1. Improved process yields

2. Reduced variability and closer conformance to nominal or target requirements
3. Reduced development time

4. Reduced overall costs.

Experimental design methods are also of fundamental importance in engineering
design activities, where new products are developed and existing ones improved. Some appli-
cations of experimental design in engineering design include

1. Evaluation and comparison of basic design configurations

2. Evaluation of material alternatives

3. Selection of design parameters so that the product will work well under a wide vari-
ety of field conditions, that is, so that the product is robust

4. Determination of key product design parameters that impact product performance

5. Formulation of new products.

The use of experimental design in product realization can result in products that are easier
to manufacture and that have enhanced field performance and reliability, lower product
cost, and shorter product design and development time. Designed experiments also have
extensive applications in marketing, market research, transactional and service operations,
and general business operations. We now present several examples that illustrate some of
these ideas.
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EXAMPLE 1.1

A flow solder machine is used in the manufacturing process
for printed circuit boards. The machine cleans the boards in
a flux, preheats the boards, and then moves them along a
conveyor through a wave of molten solder. This solder
process makes the electrical and mechanical connections
for the leaded components on the board.

The process currently operates around the 1 percent defec-
tive level. That is, about 1 percent of the solder joints on a
board are defective and require manual retouching. However,
because the average printed circuit board contains over 2000
solder joints, even a 1 percent defective level results in far too
many solder joints requiring rework. The process engineer
responsible for this area would like to use a designed experi-
ment to determine which machine parameters are influential
in the occurrence of solder defects and which adjustments
should be made to those variables to reduce solder defects.

The flow solder machine has several variables that can
be controlled. They include

1. Solder temperature
. Preheat temperature
3. Conveyor speed

4. Flux type
5
6

[

. Flux specific gravity
. Solder wave depth
7. Conveyor angle.

In addition to these controllable factors, several other factors
cannot be easily controlled during routine manufacturing,
although they could be controlled for the purposes of a test.
They are

1. Thickness of the printed circuit board
2. Types of components used on the board

EXAMPLE 1.2

In a characterization experiment, we are usually interested
in determining which process variables affect the response.
A logical next step is to optimize, that is, to determine the
region in the important factors that leads to the best possi-
ble response. For example, if the response is yield, we
would look for a region of maximum yield, whereas if the
response is variability in a critical product dimension, we
would seek a region of minimum variability.

Suppose that we are interested in improving the yield
of a chemical process. We know from the results of a char-
acterization experiment that the two most important
process variables that influence the yield are operating
temperature and reaction time. The process currently runs

3. Layout of the components on the board
4. Operator
5. Production rate.

In this situation, engineers are interested in character-
izing the flow solder machine; that is, they want to deter-
mine which factors (both controllable and uncontrollable)
affect the occurrence of defects on the printed circuit
boards. To accomplish this, they can design an experiment
that will enable them to estimate the magnitude and direc-
tion of the factor effects; that is, how much does the
response variable (defects per unit) change when each fac-
tor is changed, and does changing the factors together
produce different results than are obtained from individual
factor adjustments—that is, do the factors interact?
Sometimes we call an experiment such as this a screening
experiment. Typically, screening or characterization exper-
iments involve using fractional factorial designs, such as in
the golf example in Figure 1.8.

The information from this screening or characterization
experiment will be used to identify the critical process fac-
tors and to determine the direction of adjustment for these
factors to reduce further the number of defects per unit. The
experiment may also provide information about which fac-
tors should be more carefully controlled during routine man-
ufacturing to prevent high defect levels and erratic process
performance. Thus, one result of the experiment could be the
application of techniques such as control charts to one or
more process variables (such as solder temperature), in
addition to control charts on process output. Over time, if the
process is improved enough, it may be possible to base most
of the process control plan on controlling process input vari-
ables instead of control charting the output.

Optimizing a Process

at 145°F and 2.1 hours of reaction time, producing yields
of around 80 percent. Figure 1.9 shows a view of the
time—temperature region from above. In this graph, the
lines of constant yield are connected to form response
contours, and we have shown the contour lines for yields
of 60, 70, 80, 90, and 95 percent. These contours are pro-
jections on the time—temperature region of cross sections
of the yield surface corresponding to the aforementioned
percent yields. This surface is sometimes called a
response surface. The true response surface in Figure 1.9
is unknown to the process personnel, so experimental
methods will be required to optimize the yield with
respect to time and temperature.
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EXAMPLE 1.3

A biomedical engineer is designing a new pump for the
intravenous delivery of a drug. The pump should deliver a
constant quantity or dose of the drug over a specified peri-
od of time. She must specify a number of variables or
design parameters. Among these are the diameter and
length of the cylinder, the fit between the cylinder and the
plunger, the plunger length, the diameter and wall thickness
of the tube connecting the pump and the needle inserted
into the patient’s vein, the material to use for fabricating

EXAMPLE 1.4

An engineer is designing an aircraft engine. The engine is a
commercial turbofan, intended to operate in the cruise con-
figuration at 40,000 ft and 0.8 Mach. The design parameters
include inlet flow, fan pressure ratio, overall pressure, sta-
tor outlet temperature, and many other factors. The output
response variables in this system are specific fuel consump-
tion and engine thrust. In designing this system, it would be
prohibitive to build prototypes or actual test articles early in

m FIGURE 1.9 Contour plot of yield as a
function of reaction time and reaction temperature,
illustrating experimentation to optimize a process

To locate the optimum, it iS necessary to perform an
experiment that varies both time and temperature together,
that is, a factorial experiment. The results of an initial facto-
rial experiment with both time and temperature run at two
levels is shown in Figure 1.9. The responses observed at the
four corners of the square indicate that we should move in
the general direction of increased temperature and decreased
reaction time to increase yield. A few additional runs would
be performed in this direction, and this additional experimen-
tation would lead us to the region of maximum yield.

Once we have found the region of the optimum, a second
experiment would typically be performed. The objective of
this second experiment is to develop an empirical model of
the process and to obtain a more precise estimate of the opti-
mum operating conditions for time and temperature. This
approach to process optimization is called response surface
methodology, and it is explored in detail in Chapter 11. The
second design illustrated in Figure 1.9 is a central compos-
ite design, one of the most important experimental designs
used in process optimization studies.

Designing a Product—I

both the cylinder and the tube, and the nominal pressure at
which the system must operate. The impact of some of
these parameters on the design can be evaluated by build-
ing prototypes in which these factors can be varied over
appropriate ranges. Experiments can then be designed and
the prototypes tested to investigate which design parame-
ters are most influential on pump performance. Analysis of
this information will assist the engineer in arriving at a
design that provides reliable and consistent drug delivery.

Designing a Product—lI

the design process, so the engineers use a computer model
of the system that allows them to focus on the key design
parameters of the engine and to vary them in an effort to
optimize the performance of the engine. Designed experi-
ments can be employed with the computer model of the
engine to determine the most important design parameters
and their optimal settings.
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Designers frequently use computer models to assist them in carrying out their activities.
Examples include finite element models for many aspects of structural and mechanical
design, electrical circuit simulators for integrated circuit design, factory or enterprise-level
models for scheduling and capacity planning or supply chain management, and computer
models of complex chemical processes. Statistically designed experiments can be applied to
these models just as easily and successfully as they can to actual physical systems and will

result in reduced development lead time and better designs.

EXAMPLE 1.5

A biochemist is formulating a diagnostic product to detect
the presence of a certain disease. The product is a mixture
of biological materials, chemical reagents, and other mate-
rials that when combined with human blood react to pro-
vide a diagnostic indication. The type of experiment used
here is a mixture experiment, because various ingredients
that are combined to form the diagnostic make up 100 per-
cent of the mixture composition (on a volume, weight, or

EXAMPLE 1.6

A lot of business today is conducted via the World Wide
Web. Consequently, the design of a business’ web page has
potentially important economic impact. Suppose that the
Web site has the following components: (1) a photoflash
image, (2) a main headline, (3) a subheadline, (4) a main
text copy, (5) a main image on the right side, (6) a back-
ground design, and (7) a footer. We are interested in finding
the factors that influence the click-through rate; that is, the
number of visitors who click through into the site divided by
the total number of visitors to the site. Proper selection of
the important factors can lead to an optimal web page
design. Suppose that there are four choices for the photo-
flash image, eight choices for the main headline, six choic-
es for the subheadline, five choices for the main text copy,

Formulating a Product

mole ratio basis), and the response is a function of the mix-
ture proportions that are present in the product. Mixture
experiments are a special type of response surface experi-
ment that we will study in Chapter 11. They are very useful
in designing biotechnology products, pharmaceuticals,
foods and beverages, paints and coatings, consumer prod-
ucts such as detergents, soaps, and other personal care
products, and a wide variety of other products.

Designing a Web Page

four choices for the main image, three choices for the back-
ground design, and seven choices for the footer. If we use a
factorial design, web pages for all possible combinations of
these factor levels must be constructed and tested. This is a
total of 4 X 8 X 6 X 5 X 4 X 3 X7 = 80,640 web
pages. Obviously, it is not feasible to design and test this
many combinations of web pages, so a complete factorial
experiment cannot be considered. However, a fractional fac-
torial experiment that uses a small number of the possible
web page designs would likely be successful. This experi-
ment would require a fractional factorial where the factors
have different numbers of levels. We will discuss how to
construct these designs in Chapter 9.

1.3 Basic Principles

If an experiment such as the ones described in Examples 1.1 through 1.6 is to be performed
most efficiently, a scientific approach to planning the experiment must be employed.
Statistical design of experiments refers to the process of planning the experiment so that
appropriate data will be collected and analyzed by statistical methods, resulting in valid
and objective conclusions. The statistical approach to experimental design is necessary if we
wish to draw meaningful conclusions from the data. When the problem involves data that are
subject to experimental errors, statistical methods are the only objective approach to analysis.
Thus, there are two aspects to any experimental problem: the design of the experiment and
the statistical analysis of the data. These two subjects are closely related because the method
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of analysis depends directly on the design employed. Both topics will be addressed in this
book.

The three basic principles of experimental design are randomization, replication, and
blocking. Sometimes we add the factorial principle to these three. Randomization is the cor-
nerstone underlying the use of statistical methods in experimental design. By randomization
we mean that both the allocation of the experimental material and the order in which the indi-
vidual runs of the experiment are to be performed are randomly determined. Statistical meth-
ods require that the observations (or errors) be independently distributed random variables.
Randomization usually makes this assumption valid. By properly randomizing the experi-
ment, we also assist in “averaging out” the effects of extraneous factors that may be present.
For example, suppose that the specimens in the hardness experiment are of slightly different
thicknesses and that the effectiveness of the quenching medium may be affected by specimen
thickness. If all the specimens subjected to the oil quench are thicker than those subjected to
the saltwater quench, we may be introducing systematic bias into the experimental results.
This bias handicaps one of the quenching media and consequently invalidates our results.
Randomly assigning the specimens to the quenching media alleviates this problem.

Computer software programs are widely used to assist experimenters in selecting and
constructing experimental designs. These programs often present the runs in the experimental
design in random order. This random order is created by using a random number generator.
Even with such a computer program, it is still often necessary to assign units of experimental
material (such as the specimens in the hardness example mentioned above), operators, gauges
or measurement devices, and so forth for use in the experiment.

Sometimes experimenters encounter situations where randomization of some aspect of
the experiment is difficult. For example, in a chemical process, temperature may be a very
hard-to-change variable as we may want to change it less often than we change the levels of
other factors. In an experiment of this type, complete randomization would be difficult
because it would add time and cost. There are statistical design methods for dealing with
restrictions on randomization. Some of these approaches will be discussed in subsequent
chapters (see in particular Chapter 14).

By replication we mean an independent repeat run of each factor combination. In the
metallurgical experiment discussed in Section 1.1, replication would consist of treating a
specimen by oil quenching and treating a specimen by saltwater quenching. Thus, if five
specimens are treated in each quenching medium, we say that five replicates have been
obtained. Each of the 10 observations should be run in random order. Replication has two
important properties. First, it allows the experimenter to obtain an estimate of the experi-
mental error. This estimate of error becomes a basic unit of measurement for determining
whether observed differences in the data are really szatistically different. Second, if the sam-
ple mean (y) is used to estimate the true mean response for one of the factor levels in the
experiment, replication permits the experimenter to obtain a more precise estimate of this
parameter. For example; if o is the variance of an individual observation and there are
n replicates, the variance of the sample mean is

a’
n

IS

S

The practical implication of this is that if we had n = 1 replicates and observed
y; = 145 (oil quench) and y, = 147 (saltwater quench), we would probably be unable to
make satisfactory inferences about the effect of the quenching medium—that is, the
observed difference could be the result of experimental error. The point is that without
replication we have no way of knowing why the two observations are different. On the
other hand, if n was reasonably large and the experimental error was sufficiently small and
if we observed sample averages y, <y,, we would be reasonably safe in concluding that
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saltwater quenching produces a higher hardness in this particular aluminum alloy than
does oil quenching.

Often when the runs in an experiment are randomized, two (or more) consecutive runs
will have exactly the same levels for some of the factors. For example, suppose we have three
factors in an experiment: pressure, temperature, and time. When the experimental runs are
randomized, we find the following:

Run number Pressure (psi) Temperature (°C) Time (min)
i 30 100 30
i+1 30 125 45
i+2 40 125 45

Notice that between runs i and i + 1, the levels of pressure are identical and between runs
i+ 1and i+ 2, the levels of both temperature and time are identical. To obtain a true repli-
cate, the experimenter needs to “twist the pressure knob” to an intermediate setting between
runs i and i + 1, and reset pressure to 30 psi for run i + 1. Similarly, temperature and time
should be reset to intermediate levels between runs i + 1 and i + 2 before being set to their
design levels for run i + 2. Part of the experimental error is the variability associated with hit-
ting and holding factor levels.

There is an important distinction between replication and repeated measurements.
For example, suppose that a silicon wafer is etched in a single-wafer plasma etching process,
and a critical dimension (CD) on this wafer is measured three times. These measurements are
not replicates; they are a form of repeated measurements, and in this case the observed vari-
ability in the three repeated measurements is a direct reflection of the inherent variability in
the measurement system or gauge and possibly the variability in this CD at different locations
on the wafer where the measurement were taken. As another illustration, suppose that as part
of an experiment in semiconductor manufacturing four wafers are processed simultaneously
in an oxidation furnace at a particular gas flow rate and time and then a measurement is taken
on the oxide thickness of each wafer. Once again, the measurements on the four wafers are
not replicates but repeated measurements. In this case, they reflect differences among the
wafers and other sources of variability within that particular furnace run. Replication reflects
sources of variability both between runs and (potentially) within runs.

Blocking is a design technique used to improve the precision with which comparisons
among the factors of interest are made. Often blocking is used to reduce or eliminate the vari-
ability transmitted from nuisance factors—that is, factors that may influence the experimen-
tal response but in which we are not directly interested. For example, an experiment in a
chemical process may require two batches of raw material to make all the required runs.
However, there could be differences between the batches due to supplier-to-supplier variabil-
ity, and if we are not specifically interested in this effect, we would think of the batches of
raw material as a nuisance factor. Generally, a block is a set of relatively homogeneous exper-
imental conditions. In the chemical process example, each batch of raw material would form
a block, because the variability within a batch would be expected to be smaller than the vari-
ability between batches. Typically, as in this example, each level of the nuisance factor
becomes a block. Then the experimenter divides the observations from the statistical design
into groups that are run in each block. We study blocking in detail in several places in the text,
including Chapters 4, 5, 7, 8, 9, 11, and 13. A simple example illustrating the blocking prin-
cipal is given in Section 2.5.1.

The three basic principles of experimental design, randomization, replication, and
blocking are part of every experiment. We will illustrate and emphasize them repeatedly
throughout this book.
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Guidelines for Designing Experiments

To use the statistical approach in designing and analyzing an experiment, it is necessary for
everyone involved in the experiment to have a clear idea in advance of exactly what is to be stud-
ied, how the data are to be collected, and at least a qualitative understanding of how these data
are to be analyzed. An outline of the recommended procedure is shown in Table 1.1. We now
give a brief discussion of this outline and elaborate on some of the key points. For more details,
see Coleman and Montgomery (1993), and the references therein. The supplemental text
material for this chapter is also useful.

1. Recognition of and statement of the problem. This may seem to be a rather obvi-

ous point, but in practice often neither it is simple to realize that a problem requiring
experimentation exists, nor is it simple to develop a clear and generally accepted state-
ment of this problem. It is necessary to develop all ideas about the objectives of the
experiment. Usually, it is important to solicit input from all concerned parties: engi-
neering, quality assurance, manufacturing, marketing, management, customer, and
operating personnel (who usually have much insight and who are too often ignored).
For this reason, a team approach to designing experiments is recommended.

It is usually helpful to prepare a list of specific problems or questions that are
to be addressed by the experiment. A clear statement of the problem often contributes
substantially to better understanding of the phenomenon being studied and the final
solution of the problem.

It is also important to keep the overall objectives of the experiment in mind.
There are several broad reasons for running experiments and each type of experiment
will generate its own list of specific questions that need to be addressed. Some (but
by no means all) of the reasons for running experiments include:

a. Factor screening or characterization. When a system or process is new,
it is usually important to learn which factors have the most influence on
the response(s) of interest. Often there are a lot of factors. This usually
indicates that the experimenters do not know much about the system so
screening is essential if we are to efficiently get the desired performance
from the system. Screening experiments are extremely important when
working with new systems or technologies so that valuable resources will
not be wasted using best guess and OFAT approaches.

b. Optimization. After the system has been characterized and we are rea-
sonably certain that the important factors have been identified, the next
objective is usually optimization, that is, find the settings or levels of

s TABLE 1.1
Guidelines for Designing an Experiment

1. Recognition of and statement of the problem
2. Selection of the response variable*

3. Choice of factors, levels, and ranges”

4.
5
6
7

Pre-experimental
planning

Choice of experimental design
. Performing the experiment
. Statistical analysis of the data

. Conclusions and recommendations

“In practice, steps 2 and 3 are often done simultaneously or in reverse order.
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the important factors that result in desirable values of the response. For
example, if a screening experiment on a chemical process results in the
identification of time and temperature as the two most important fac-
tors, the optimization experiment may have as its objective finding the
levels of time and temperature that maximize yield, or perhaps maxi-
mize yield while keeping some product property that is critical to the
customer within specifications. An optimization experiment is usually
a follow-up to a screening experiment. It would be very unusual for a
screening experiment to produce the optimal settings of the important
factors.

c. Confirmation. In a confirmation experiment, the experimenter is usually
trying to verify that the system operates or behaves in a manner that is
consistent with some theory or past experience. For example, if theory
or experience indicates that a particular new material is equivalent to the
one currently in use and the new material is desirable (perhaps less
expensive, or easier to work with in some way), then a confirmation
experiment would be conducted to verify that substituting the new mate-
rial results in no change in product characteristics that impact its use.
Moving a new manufacturing process to full-scale production based on
results found during experimentation at a pilot plant or development site
is another situation that often results in confirmation experiments—that
is, are the same factors and settings that were determined during devel-
opment work appropriate for the full-scale process?

d. Discovery. In discovery experiments, the experimenters are usually trying
to determine what happens when we explore new materials, or new fac-
tors, or new ranges for factors. In the pharmaceutical industry, scientists
are constantly conducting discovery experiments to find new materials or
combinations of materials that will be effective in treating disease.

e. Robustness. These experiments often address questions such as under
what conditions do the response variables of interest seriously degrade?
Or what conditions would lead to unacceptable variability in the response
variables? A variation of this is determining how we can set the factors in
the system that we can control to minimize the variability transmitted into
the response from factors that we cannot control very well. We will dis-
cuss some experiments of this type in Chapter 12.

Obviously, the specific questions to be addressed in the experiment relate
directly to the overall objectives. An important aspect of problem formulation is the
recognition that one large comprehensive experiment is unlikely to answer the key
questions satisfactorily. A single comprehensive experiment requires the experi-
menters to know the answers to a lot of questions, and if they are wrong, the results
will be disappointing. This leads to wasting time, materials, and other resources and
may result in never answering the original research questions satisfactorily. A
sequential approach employing a series of smaller experiments, each with a specific
objective, such as factor screening, is a better strategy.

. Selection of the response variable. In selecting the response variable, the exper-
imenter should be certain that this variable really provides useful information about
the process under study. Most often, the average or standard deviation (or both) of
the measured characteristic will be the response variable. Multiple responses are
not unusual. The experimenters must decide how each response will be measured,
and address issues such as how will any measurement system be calibrated and



16 Chapter 1 B Introduction

how this calibration will be maintained during the experiment. The gauge or meas-
urement system capability (or measurement error) is also an important factor. If
gauge capability is inadequate, only relatively large factor effects will be detected
by the experiment or perhaps additional replication will be required. In some situ-
ations where gauge capability is poor, the experimenter may decide to measure
each experimental unit several times and use the average of the repeated measure-
ments as the observed response. It is usually critically important to identify issues
related to defining the responses of interest and how they are to be measured before
conducting the experiment. Sometimes designed experiments are employed to
study and improve the performance of measurement systems. For an example, see
Chapter 13.

. Choice of factors, levels, and range. (As noted in Table 1.1, steps 2 and 3 are often

done simultaneously or in the reverse order.) When considering the factors that may
influence the performance of a process or system, the experimenter usually discov-
ers that these factors can be classified as either potential design factors or nuisance
factors. The potential design factors are those factors that the experimenter may wish
to vary in the experiment. Often we find that there are a lot of potential design fac-
tors, and some further classification of them is helpful. Some useful classifications
are design factors, held-constant factors, and allowed-to-vary factors. The design
factors are the factors actually selected for study in the experiment. Held-constant
factors are variables that may exert some effect on the response, but for purposes of
the present experiment these factors are not of interest, so they will be held at a spe-
cific level. For example, in an etching experiment in the semiconductor industry,
there may be an effect that is unique to the specific plasma etch tool used in the
experiment. However, this factor would be very difficult to vary in an experiment, so
the experimenter may decide to perform all experimental runs on one particular (ide-
ally “typical”) etcher. Thus, this factor has been held constant. As an example of
allowed-to-vary factors, the experimental units or the “materials” to which the design
factors are applied are usually nonhomogeneous, yet we often ignore this unit-to-unit
variability and rely on randomization to balance out any material or experimental
unit effect. We often assume that the effects of held-constant factors and allowed-to-
vary factors are relatively small.

Nuisance factors, on the other hand, may have large effects that must be
accounted for, yet we may not be interested in them in the context of the present experi-
ment. Nuisance factors are often classified as controllable, uncontrollable, or noise
factors. A controllable nuisance factor is one whose levels may be set by the exper-
imenter. For example, the experimenter can select different batches of raw material
or different days of the week when conducting the experiment. The blocking princi-
ple, discussed in the previous section, is often useful in dealing with controllable nui-
sance factors. If a nuisance factor is uncontrollable in the experiment, but it can be
measured, an analysis procedure called the analysis of covariance can often be used
to compensate for its effect. For example, the relative humidity in the process envi-
ronment may affect process performance, and if the humidity cannot be controlled,
it probably can be measured and treated as a covariate. When a factor that varies nat-
urally and uncontrollably in the process can be controlled for purposes of an experi-
ment, we often call it a noise factor. In such situations, our objective is usually to find
the settings of the controllable design factors that minimize the variability transmit-
ted from the noise factors. This is sometimes called a process robustness study or a
robust design problem. Blocking, analysis of covariance, and process robustness
studies are discussed later in the text.
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Once the experimenter has selected the design factors, he or she must choose
the ranges over which these factors will be varied and the specific levels at which runs
will be made. Thought must also be given to how these factors are to be controlled at
the desired values and how they are to be measured. For instance, in the flow solder
experiment, the engineer has defined 12 variables that may affect the occurrence of
solder defects. The experimenter will also have to decide on a region of interest for
each variable (that is, the range over which each factor will be varied) and on how
many levels of each variable to use. Process knowledge is required to do this. This
process knowledge is usually a combination of practical experience and theoretical
understanding. It is important to investigate all factors that may be of importance and
to be not overly influenced by past experience, particularly when we are in the early
stages of experimentation or when the process is not very mature.

When the objective of the experiment is factor screening or process charac-
terization, it is usually best to keep the number of factor levels low. Generally, two
levels work very well in factor screening studies. Choosing the region of interest is
also important. In factor screening, the region of interest should be relatively large—
that is, the range over which the factors are varied should be broad. As we learn more
about which variables are important and which levels produce the best results, the
region of interest in subsequent experiments will usually become narrower.

The cause-and-effect diagram can be a useful technique for organizing
some of the information generated in pre-experimental planning. Figure 1.10 is the
cause-and-effect diagram constructed while planning an experiment to resolve
problems with wafer charging (a charge accumulation on the wafers) encountered
in an etching tool used in semiconductor manufacturing. The cause-and-effect dia-
gram is also known as a fishbone diagram because the “effect” of interest or the
response variable is drawn along the spine of the diagram and the potential causes
or design factors are organized in a series of ribs. The cause-and-effect diagram
uses the traditional causes of measurement, materials, people, environment, meth-
ods, and machines to organize the information and potential design factors. Notice
that some of the individual causes will probably lead directly to a design factor that

Measurement Materials People

Charge monitor

calibration
Incorrect part Unfamiliarity with normal

i materials wear conditions
Charge monitor

wafer probe failure

Faulty hardware

readings Parts condition Improper procedures

Wafer charging

Flood gun Water flow to flood gun

i installation
Time parts exposed

Wheel speed
to atmosphere Parts cleaning
procedure Gas flow
. Flood gun rebuild
Humid/Temp procedure Vacuum
Environment Methods Machines

m FIGURE 1.10 A cause-and-effect diagram for the etching process
experiment
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m FIGURE 1.11 A cause-and-effect diagram for the CNC
machine experiment

will be included in the experiment (such as wheel speed, gas flow, and vacuum),
while others represent potential areas that will need further study to turn them into
design factors (such as operators following improper procedures), and still others
will probably lead to either factors that will be held constant during the experiment
or blocked (such as temperature and relative humidity). Figure 1.11 is a cause-and-
effect diagram for an experiment to study the effect of several factors on the tur-
bine blades produced on a computer-numerical-controlled (CNC) machine. This
experiment has three response variables: blade profile, blade surface finish, and
surface finish defects in the finished blade. The causes are organized into groups
of controllable factors from which the design factors for the experiment may be
selected, uncontrollable factors whose effects will probably be balanced out by
randomization, nuisance factors that may be blocked, and factors that may be held
constant when the experiment is conducted. It is not unusual for experimenters to
construct several different cause-and-effect diagrams to assist and guide them dur-
ing preexperimental planning. For more information on the CNC machine experi-
ment and further discussion of graphical methods that are useful in preexperimental
planning, see the supplemental text material for this chapter.

We reiterate how crucial it is to bring out all points of view and process infor-
mation in steps 1 through 3. We refer to this as pre-experimental planning. Coleman
and Montgomery (1993) provide worksheets that can be useful in pre-experimental
planning. Also see the supplemental text material for more details and an example
of using these worksheets. It is unlikely that one person has all the knowledge required
to do this adequately in many situations. Therefore, we strongly argue for a team effort
in planning the experiment. Most of your success will hinge on how well the pre-
experimental planning is done.

4. Choice of experimental design. If the above pre-experimental planning activities are

done correctly, this step is relatively easy. Choice of design involves consideration of
sample size (number of replicates), selection of a suitable run order for the experi-
mental trials, and determination of whether or not blocking or other randomization
restrictions are involved. This book discusses some of the more important types of
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experimental designs, and it can ultimately be used as a guide for selecting an appro-
priate experimental design for a wide variety of problems.

There are also several interactive statistical software packages that support this
phase of experimental design. The experimenter can enter information about the num-
ber of factors, levels, and ranges, and these programs will either present a selection of
designs for consideration or recommend a particular design. (We usually prefer to see
several alternatives instead of relying entirely on a computer recommendation in most
cases.) Most software packages also provide some diagnostic information about how
each design will perform. This is useful in evaluation of different design alternatives for
the experiment. These programs will usually also provide a worksheet (with the order
of the runs randomized) for use in conducting the experiment.

Design selection also involves thinking about and selecting a tentative empirical
model to describe the results. The model is just a quantitative relationship (equation)
between the response and the important design factors. In many cases, a low-order
polynomial model will be appropriate. A first-order model in two variables is

Y=o+ Bixi T Bx, t &

where y is the response, the x’s are the design factors, the ’s are unknown parame-
ters that will be estimated from the data in the experiment, and ¢ is a random error
term that accounts for the experimental error in the system that is being studied. The
first-order model is also sometimes called a main effects model. First-order models
are used extensively in screening or characterization experiments. A common exten-
sion of the first-order model is to add an interaction term, say

Y= Bo T Bix; + Boxy + Boxyx, +

where the cross-product term x,x, represents the two-factor interaction between the
design factors. Because interactions between factors is relatively common, the first-
order model with interaction is widely used. Higher-order interactions can also be
included in experiments with more than two factors if necessary. Another widely used
model is the second-order model

y = Bo Tt Bix; + Boxy + Bioxx, + .311)6%1 + Bzzx% t+e

Second-order models are often used in optimization experiments.

In selecting the design, it is important to keep the experimental objectives in
mind. In many engineering experiments, we already know at the outset that some of
the factor levels will result in different values for the response. Consequently, we are
interested in identifying which factors cause this difference and in estimating the mag-
nitude of the response change. In other situations, we may be more interested in ver-
ifying uniformity. For example, two production conditions A and B may be compared,
A being the standard and B being a more cost-effective alternative. The experimenter
will then be interested in demonstrating that, say, there is no difference in yield
between the two conditions.

. Performing the experiment. When running the experiment, it is vital to monitor
the process carefully to ensure that everything is being done according to plan.
Errors in experimental procedure at this stage will usually destroy experimental
validity. One of the most common mistakes that I have encountered is that the peo-
ple conducting the experiment failed to set the variables to the proper levels on
some runs. Someone should be assigned to check factor settings before each run.
Up-front planning to prevent mistakes like this is crucial to success. It is easy to
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underestimate the logistical and planning aspects of running a designed experiment
in a complex manufacturing or research and development environment.

Coleman and Montgomery (1993) suggest that prior to conducting the experi-
ment a few trial runs or pilot runs are often helpful. These runs provide information
about consistency of experimental material, a check on the measurement system, a
rough idea of experimental error, and a chance to practice the overall experimental
technique. This also provides an opportunity to revisit the decisions made in steps
1-4, if necessary.

. Statistical analysis of the data. Statistical methods should be used to analyze the data

so that results and conclusions are objective rather than judgmental in nature. If the
experiment has been designed correctly and performed according to the design, the
statistical methods required are not elaborate. There are many excellent software
packages designed to assist in data analysis, and many of the programs used in step 4
to select the design provide a seamless, direct interface to the statistical analysis. Often
we find that simple graphical methods play an important role in data analysis and
interpretation. Because many of the questions that the experimenter wants to answer
can be cast into an hypothesis-testing framework, hypothesis testing and confidence
interval estimation procedures are very useful in analyzing data from a designed
experiment. It is also usually very helpful to present the results of many experiments
in terms of an empirical model, that is, an equation derived from the data that express
the relationship between the response and the important design factors. Residual
analysis and model adequacy checking are also important analysis techniques. We will
discuss these issues in detail later.

Remember that statistical methods cannot prove that a factor (or factors) has a
particular effect. They only provide guidelines as to the reliability and validity of
results. When properly applied, statistical methods do not allow anything to be proved
experimentally, but they do allow us to measure the likely error in a conclusion or to
attach a level of confidence to a statement. The primary advantage of statistical meth-
ods is that they add objectivity to the decision-making process. Statistical techniques
coupled with good engineering or process knowledge and common sense will usually
lead to sound conclusions.

. Conclusions and recommendations. Once the data have been analyzed, the experi-

menter must draw practical conclusions about the results and recommend a course of
action. Graphical methods are often useful in this stage, particularly in presenting the
results to others. Follow-up runs and confirmation testing should also be performed
to validate the conclusions from the experiment.

Throughout this entire process, it is important to keep in mind that experimen-
tation is an important part of the learning process, where we tentatively formulate
hypotheses about a system, perform experiments to investigate these hypotheses,
and on the basis of the results formulate new hypotheses, and so on. This suggests
that experimentation is iterative. It is usually a major mistake to design a single,
large, comprehensive experiment at the start of a study. A successful experiment
requires knowledge of the important factors, the ranges over which these factors
should be varied, the appropriate number of levels to use, and the proper units of
measurement for these variables. Generally, we do not perfectly know the answers
to these questions, but we learn about them as we go along. As an experimental pro-
gram progresses, we often drop some input variables, add others, change the region
of exploration for some factors, or add new response variables. Consequently, we
usually experiment sequentially, and as a general rule, no more than about 25 percent
of the available resources should be invested in the first experiment. This will ensure
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that sufficient resources are available to perform confirmation runs and ultimately
accomplish the final objective of the experiment.

Finally, it is important to recognize that all experiments are designed exper-
iments. The important issue is whether they are well designed or not. Good pre-
experimental planning will usually lead to a good, successful experiment. Failure
to do such planning usually leads to wasted time, money, and other resources and
often poor or disappointing results.

1.5 A Brief History of Statistical Design

There have been four eras in the modern development of statistical experimental design. The
agricultural era was led by the pioneering work of Sir Ronald A. Fisher in the 1920s and early
1930s. During that time, Fisher was responsible for statistics and data analysis at the
Rothamsted Agricultural Experimental Station near London, England. Fisher recognized that
flaws in the way the experiment that generated the data had been performed often hampered
the analysis of data from systems (in this case, agricultural systems). By interacting with sci-
entists and researchers in many fields, he developed the insights that led to the three basic
principles of experimental design that we discussed in Section 1.3: randomization, replica-
tion, and blocking. Fisher systematically introduced statistical thinking and principles into
designing experimental investigations, including the factorial design concept and the analysis
of variance. His two books [the most recent editions are Fisher (1958, 1966)] had profound
influence on the use of statistics, particularly in agricultural and related life sciences. For an
excellent biography of Fisher, see Box (1978).

Although applications of statistical design in industrial settings certainly began in the
1930s, the second, or industrial, era was catalyzed by the development of response surface
methodology (RSM) by Box and Wilson (1951). They recognized and exploited the fact that
many industrial experiments are fundamentally different from their agricultural counterparts
in two ways: (1) the response variable can usually be observed (nearly) immediately, and
(2) the experimenter can quickly learn crucial information from a small group of runs that can
be used to plan the next experiment. Box (1999) calls these two features of industrial exper-
iments immediacy and sequentiality. Over the next 30 years, RSM and other design
techniques spread throughout the chemical and the process industries, mostly in research and
development work. George Box was the intellectual leader of this movement. However, the
application of statistical design at the plant or manufacturing process level was still not
extremely widespread. Some of the reasons for this include an inadequate training in basic
statistical concepts and methods for engineers and other process specialists and the lack of
computing resources and user-friendly statistical software to support the application of statis-
tically designed experiments.

It was during this second or industrial era that work on optimal design of experi-
ments began. Kiefer (1959, 1961) and Kiefer and Wolfowitz (1959) proposed a formal
approach to selecting a design based on specific objective optimality criteria. Their initial
approach was to select a design that would result in the model parameters being estimat-
ed with the best possible precision. This approach did not find much application because
of the lack of computer tools for its implementation. However, there have been great
advances in both algorithms for generating optimal designs and computing capability over
the last 25 years. Optimal designs have great application and are discussed at several
places in the book.

The increasing interest of Western industry in quality improvement that began in the
late 1970s ushered in the third era of statistical design. The work of Genichi Taguchi [Taguchi
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and Wu (1980), Kackar (1985), and Taguchi (1987, 1991)] had a significant impact on
expanding the interest in and use of designed experiments. Taguchi advocated using designed
experiments for what he termed robust parameter design, or

1. Making processes insensitive to environmental factors or other factors that are dif-
ficult to control

2. Making products insensitive to variation transmitted from components

3. Finding levels of the process variables that force the mean to a desired value while
simultaneously reducing variability around this value.

Taguchi suggested highly fractionated factorial designs and other orthogonal arrays along
with some novel statistical methods to solve these problems. The resulting methodology
generated much discussion and controversy. Part of the controversy arose because Taguchi’s
methodology was advocated in the West initially (and primarily) by entrepreneurs, and the
underlying statistical science had not been adequately peer reviewed. By the late 1980s, the
results of peer review indicated that although Taguchi’s engineering concepts and objectives
were well founded, there were substantial problems with his experimental strategy and
methods of data analysis. For specific details of these issues, see Box (1988), Box, Bisgaard,
and Fung (1988), Hunter (1985, 1989), Myers, Montgomery and Anderson-Cook (2009), and
Pignatiello and Ramberg (1992). Many of these concerns are also summarized in the exten-
sive panel discussion in the May 1992 issue of Technometrics [see Nair et al. (1992)].

There were several positive outcomes of the Taguchi controversy. First, designed exper-
iments became more widely used in the discrete parts industries, including automotive and
aerospace manufacturing, electronics and semiconductors, and many other industries that had
previously made little use of the technique. Second, the fourth era of statistical design began.
This era has included a renewed general interest in statistical design by both researchers and
practitioners and the development of many new and useful approaches to experimental prob-
lems in the industrial world, including alternatives to Taguchi’s technical methods that allow
his engineering concepts to be carried into practice efficiently and effectively. Some of these
alternatives will be discussed and illustrated in subsequent chapters, particularly in Chapter 12.
Third, computer software for construction and evaluation of designs has improved greatly
with many new features and capability. Forth, formal education in statistical experimental
design is becoming part of many engineering programs in universities, at both undergraduate
and graduate levels. The successful integration of good experimental design practice into
engineering and science is a key factor in future industrial competitiveness.

Applications of designed experiments have grown far beyond the agricultural origins.
There is not a single area of science and engineering that has not successfully employed sta-
tistically designed experiments. In recent years, there has been a considerable utilization of
designed experiments in many other areas, including the service sector of business, financial
services, government operations, and many nonprofit business sectors. An article appeared in
Forbes magazine on March 11, 1996, entitled “The New Mantra: MVT,” where MVT stands
for “multivariable testing,” a term authors use to describe factorial designs. The article notes
the many successes that a diverse group of companies have had through their use of statisti-
cally designed experiments.

1.6 Summary: Using Statistical Techniques in Experimentation

Much of the research in engineering, science, and industry is empirical and makes exten-
sive use of experimentation. Statistical methods can greatly increase the efficiency of
these experiments and often strengthen the conclusions so obtained. The proper use of
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statistical techniques in experimentation requires that the experimenter keep the following
points in mind:

1. Use your nonstatistical knowledge of the problem. Experimenters are usually
highly knowledgeable in their fields. For example, a civil engineer working on a
problem in hydrology typically has considerable practical experience and formal
academic training in this area. In some fields, there is a large body of physical the-
ory on which to draw in explaining relationships between factors and responses.
This type of nonstatistical knowledge is invaluable in choosing factors, determining
factor levels, deciding how many replicates to run, interpreting the results of the
analysis, and so forth. Using a designed experiment is no substitute for thinking
about the problem.

2. Keep the design and analysis as simple as possible. Don’t be overzealous in the use
of complex, sophisticated statistical techniques. Relatively simple design and analysis
methods are almost always best. This is a good place to reemphasize steps 1-3 of the
procedure recommended in Section 1.4. If you do the pre-experiment planning care-
fully and select a reasonable design, the analysis will almost always be relatively
straightforward. In fact, a well-designed experiment will sometimes almost analyze
itself! However, if you botch the pre-experimental planning and execute the experi-
mental design badly, it is unlikely that even the most complex and elegant statistics
can save the situation.

3. Recognize the difference between practical and statistical significance. Just because
two experimental conditions produce mean responses that are statistically different,
there is no assurance that this difference is large enough to have any practical value.
For example, an engineer may determine that a modification to an automobile fuel
injection system may produce a true mean improvement in gasoline mileage of
0.1 mi/gal and be able to determine that this is a statistically significant result.
However, if the cost of the modification is $1000, the 0.1 mi/gal difference is proba-
bly too small to be of any practical value.

4. Experiments are usually iterative. Remember that in most situations it is unwise to
design too comprehensive an experiment at the start of a study. Successful design
requires the knowledge of important factors, the ranges over which these factors are
varied, the appropriate number of levels for each factor, and the proper methods and
units of measurement for each factor and response. Generally, we are not well
equipped to answer these questions at the beginning of the experiment, but we learn
the answers as we go along. This argues in favor of the iterative, or sequential,
approach discussed previously. Of course, there are situations where comprehensive
experiments are entirely appropriate, but as a general rule most experiments should be
iterative. Consequently, we usually should not invest more than about 25 percent of
the resources of experimentation (runs, budget, time, etc.) in the initial experiment.
Often these first efforts are just learning experiences, and some resources must be
available to accomplish the final objectives of the experiment.

1.7 Problems

1.1.  Suppose that you want to design an experiment to 1.2.  Suppose that you want to investigate the factors that
study the proportion of unpopped kernels of popcorn. potentially affect cooking rice.

Complete steps 1-3 of the guidelines for designing experi- (a) What would you use as a response variable in this
ments in Section 1.4. Are there any major sources of variation experiment? How would you measure the response?

that would be difficult to control?
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(b) List all of the potential sources of variability that could
impact the response.

(¢) Complete the first three steps of the guidelines for
designing experiments in Section 1.4.

1.3.  Suppose that you want to compare the growth of gar-
den flowers with different conditions of sunlight, water, fertil-
izer, and soil conditions. Complete steps 1-3 of the guidelines
for designing experiments in Section 1.4.
1.4. Select an experiment of interest to you. Complete
steps 1-3 of the guidelines for designing experiments in
Section 1.4.
1.5.  Search the World Wide Web for information about
Sir Ronald A. Fisher and his work on experimental design
in agricultural science at the Rothamsted Experimental
Station.

1.6.  Find a Web Site for a business that you are interested
in. Develop a list of factors that you would use in an experi-
ment to improve the effectiveness of this Web Site.

1.7. Almost everyone is concerned about the rising price
of gasoline. Construct a cause and effect diagram identifying
the factors that potentially influence the gasoline mileage that
you get in your car. How would you go about conducting an
experiment to determine any of these factors actually affect
your gasoline mileage?

1.8.  Whatis replication? Why do we need replication in an
experiment? Present an example that illustrates the difference
between replication and repeated measurements.

1.9.  Why is randomization important in an experiment?

1.10. What are the potential risks of a single large, compre-
hensive experiment in contrast to a sequential approach?
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n this chapter, we consider experiments to compare two conditions (sometimes called

treatments). These are often called simple comparative experiments. We begin with an
example of an experiment performed to determine whether two different formulations of a
product give equivalent results. The discussion leads to a review of several basic statistical
concepts, such as random variables, probability distributions, random samples, sampling dis-
tributions, and tests of hypotheses.

2.1 Introduction

An engineer is studying the formulation of a Portland cement mortar. He has added a poly-
mer latex emulsion during mixing to determine if this impacts the curing time and tension
bond strength of the mortar. The experimenter prepared 10 samples of the original formula-
tion and 10 samples of the modified formulation. We will refer to the two different formula-
tions as two treatments or as two levels of the factor formulations. When the cure process

25
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m TABLE 2.1
Tension Bond Strength Data for the Portland
Cement Formulation Experiment

Modified Unmodified
Mortar Mortar
J Yij Y2
1 16.85 16.62
2 16.40 16.75
3 17.21 17.37
4 16.35 17.12
5 16.52 16.98
6 17.04 16.87
7 16.96 17.34
8 17.15 17.02
9 16.59 17.08
10 16.57 17.27

was completed, the experimenter did find a very large reduction in the cure time for the
modified mortar formulation. Then he began to address the tension bond strength of
the mortar. If the new mortar formulation has an adverse effect on bond strength, this could
impact its usefulness.

The tension bond strength data from this experiment are shown in Table 2.1 and plot-
ted in Figure 2.1. The graph is called a dot diagram. Visual examination of these data gives
the impression that the strength of the unmodified mortar may be greater than the strength of
the modified mortar. This impression is supported by comparing the average tension bond
strengths, y, = 16.76 kgf/cm® for the modified mortar and y, = 17.04 kgf/cm® for the
unmodified mortar. The average tension bond strengths in these two samples differ by what
seems to be a modest amount. However, it is not obvious that this difference is large enough
to imply that the two formulations really are different. Perhaps this observed difference in
average strengths is the result of sampling fluctuation and the two formulations are really
identical. Possibly another two samples would give opposite results, with the strength of the
modified mortar exceeding that of the unmodified formulation.

A technique of statistical inference called hypothesis testing can be used to assist
the experimenter in comparing these two formulations. Hypothesis testing allows the com-
parison of the two formulations to be made on objective terms, with knowledge of the
risks associated with reaching the wrong conclusion. Before presenting procedures for
hypothesis testing in simple comparative experiments, we will briefly summarize some
elementary statistical concepts.

Modified

| ® © ( ] [ ] [ ] [ ] ( ] o o
Unmodified | | o | o | e | o e 6 o e _eole
16.38 16.52 16.66 16.80 16.94 17.08 17.22 17.36
,T\Strength (kgf/cm?)
y,=1676 ¥, =17.04

m FIGURE 2.1 Dot diagram for the tension bond strength data in Table 2.1
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2.2 Basic Statistical Concepts

Each of the observations in the Portland cement experiment described above would be called
a run. Notice that the individual runs differ, so there is fluctuation, or noise, in the observed
bond strengths. This noise is usually called experimental error or simply error. It is a sta-
tistical error, meaning that it arises from variation that is uncontrolled and generally
unavoidable. The presence of error or noise implies that the response variable, tension bond
strength, is a random variable. A random variable may be either discrete or continuous. If
the set of all possible values of the random variable is either finite or countably infinite, then
the random variable is discrete, whereas if the set of all possible values of the random variable
is an interval, then the random variable is continuous.

Graphical Description of Variability. We often use simple graphical methods to
assist in analyzing the data from an experiment. The dot diagram, illustrated in Figure 2.1, is
a very useful device for displaying a small body of data (say up to about 20 observations). The
dot diagram enables the experimenter to see quickly the general location or central tendency
of the observations and their spread or variability. For example, in the Portland cement tension
bond experiment, the dot diagram reveals that the two formulations may differ in mean strength
but that both formulations produce about the same variability in strength.

If the data are fairly numerous, the dots in a dot diagram become difficult to distinguish
and a histogram may be preferable. Figure 2.2 presents a histogram for 200 observations on the
metal recovery, or yield, from a smelting process. The histogram shows the central tendency,
spread, and general shape of the distribution of the data. Recall that a histogram is constructed
by dividing the horizontal axis into bins (usually of equal length) and drawing a rectangle over
the jth bin with the area of the rectangle proportional to 7;, the number of observations that fall
in that bin. The histogram is a large-sample tool. When the sample size is small the shape of the
histogram can be very sensitive to the number of bins, the width of the bins, and the starting
value for the first bin. Histograms should not be used with fewer than 75-100 observations.

The box plot (or box-and-whisker plot) is a very useful way to display data. A box
plot displays the minimum, the maximum, the lower and upper quartiles (the 25th percentile
and the 75th percentile, respectively), and the median (the 50th percentile) on a rectangular
box aligned either horizontally or vertically. The box extends from the lower quartile to the

0.15 |- 30 |-
3 0.10 |- 20 — —
5
>
= o
g : - B
C= 3 |
B g
= w
©
g 0.05 10 [~
0.00 '
60 65 70 75 80 85

Metal recovery (yield)

m FIGURE 2.2 Histogram for 200 observations on metal recovery (yield) from
a smelting process
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17.50

17.25—

17.00—

16.75—
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16.50 —

|
Modified Unmodified

Mortar formulation

m FIGURE 2.3 Box plots for the Portland cement
tension bond strength experiment

upper quartile, and a line is drawn through the box at the median. Lines (or whiskers) extend
from the ends of the box to (typically) the minimum and maximum values. [There are several
variations of box plots that have different rules for denoting the extreme sample points. See
Montgomery and Runger (2011) for more details.]

Figure 2.3 presents the box plots for the two samples of tension bond strength in the
Portland cement mortar experiment. This display indicates some difference in mean strength
between the two formulations. It also indicates that both formulations produce reasonably
symmetric distributions of strength with similar variability or spread.

Dot diagrams, histograms, and box plots are useful for summarizing the information in
a sample of data. To describe the observations that might occur in a sample more completely,
we use the concept of the probability distribution.

Probability Distributions. The probability structure of a random variable, say v, is
described by its probability distribution. If y is discrete, we often call the probability distri-
bution of y, say p(y), the probability mass function of y. If y is continuous, the probability dis-
tribution of y, say f(y), is often called the probability density function for y.

Figure 2.4 illustrates hypothetical discrete and continuous probability distributions.
Notice that in the discrete probability distribution Fig. 2.4a, it is the height of the function
p(y;) that represents probability, whereas in the continuous case Fig. 2.4b, it is the area under

P(y =y;) =p(¥))
3
‘ S~ P(a < y<b)
Y1 Y3 Ys Y7 Y9 Y Y3 / a b
Y2 Ya Y6 Y8 Y10 Y12 Yia

(@) A discrete distribution (b) A continuous distribution

m FIGURE 2.4 Discrete and continuous probability distributions



2.2 Basic Statistical Concepts 29

the curve f(y) associated with a given interval that represents probability. The properties of
probability distributions may be summarized quantitatively as follows:

y discrete: 0=py)=1 all values of y;
P(y =y)=p(y)  all values of y,

2 py)=1
all values
of y;

y continuous: 0=f(

b
P(aSySb)=f f(y) dy
Lnf(y)dyII

Mean, Variance, and Expected Values. The mean, u, of a probability distribution
is a measure of its central tendency or location. Mathematically, we define the mean as

f () dy y continuous

po= @1
E yp(y) y discrete
all y

We may also express the mean in terms of the expected value or the long-run average value
of the random variable y as

=)

v (y) dy y continuous

w=Ey=3_" (2:2)
> () y discrete
all y

where E denotes the expected value operator.
The variability or dispersion of a probability distribution can be measured by the vari-
ance, defined as

f (y — wf(y) dy y continuous
2 — 00

0' =
g (v — w’p(y) y discrete
",

(2.3)

Note that the variance can be expressed entirely in terms of expectation because
o> =E[(y — u] 24

Finally, the variance is used so extensively that it is convenient to define a variance opera-
tor V such that

V() = El(y — p’] = o? 2.5)
The concepts of expected value and variance are used extensively throughout this book,
and it may be helpful to review several elementary results concerning these operators. If y is
a random variable with mean w and variance o” and c is a constant, then
1. E(c)=c
2.Ey)=p
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2.3

3. B(ey) = cE(y) = cp
4. V(c) =0

5. V(y) = o*

6. V(cy) = V(y) = *o?

If there are two random variables, say, y, with E(y,) = u, and V(y,) = o7 and y, with
E(y,) = m, and V(y,) = 03, we have

7. E(yy + ) = E(y) + EQp) = g + sy
It is possible to show that

8. V(y, + y,) = V(y)) + V(y,) + 2 Cov(yy, y,)

where

Cov(yp, ) = E[(y; — m)(y2 — mo)] (2.6)

is the covariance of the random variables y, and y,. The covariance is a measure of the lin-
ear association between y; and y,. More specifically, we may show that if y, and y, are inde-
pendent,' then Cov(y,, y,) = 0. We may also show that

9. V(y; — y) = V(y) + V(y») — 2 Cov(y,, y2)
If y, and y, are independent, we have
10. V(y, = y,) = V(y) + V(y) = o} + 03
and
11. E(y, ") = EQ)) - EQ) = 1y - 4o
However, note that, in general

i E(y,)
1 E(h) 7 E(y)

regardless of whether or not y, and y, are independent.

Sampling and Sampling Distributions

Random Samples, Sample Mean, and Sample Variance. The objective of statistical
inference is to draw conclusions about a population using a sample from that population.
Most of the methods that we will study assume that random samples are used. A random
sample is a sample that has been selected from the population in such a way that every pos-
sible sample has an equal probability of being selected. In practice, it is sometimes difficult
to obtain random samples, and random numbers generated by a computer program may be
helpful.

Statistical inference makes considerable use of quantities computed from the observa-
tions in the sample. We define a statistic as any function of the observations in a sample that

! Note that the converse of this is not necessarily so; that is, we may have Cov(y,, y,) = 0 and yet this does not imply independence.
For an example, see Hines et al. (2003).
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does not contain unknown parameters. For example, suppose that y;, y,, . . . , y, represents a
sample. Then the sample mean

n
2 i

y =" @7

and the sample variance

e

(yi — 5)2
== (2.8)

n—1

are both statistics. These quantities are measures of the central tendency and dispersion of the
sample, respectively. Sometimes S = \/E, called the sample standard deviation, is used as
a measure of dispersion. Experimenters often prefer to use the standard deviation to measure
dispersion because its units are the same as those for the variable of interest y.

Properties of the Sample Mean and Variance. The sample mean y is a point
estimator of the population mean w, and the sample variance S* is a point estimator of the
population variance o”. In general, an estimator of an unknown parameter is a statistic that
corresponds to that parameter. Note that a point estimator is a random variable. A particular
numerical value of an estimator, computed from sample data, is called an estimate. For example,
suppose we wish to estimate the mean and variance of the suspended solid material in the
water of a lake. A random sample of n = 25 observation is tested, and the mg/l of suspended
solid material is recorded for each. The sample mean and variance are computed according to
Equations 2.7 and 2.8, respectively, and are y = 18.6 and S$? = 1.20. Therefore, the estimate
of wisy = 18.6, and the estimate of o” is S = 1.20.

Several properties are required of good point estimators. Two of the most important are
the following:

1. The point estimator should be unbiased. That is, the long-run average or expected
value of the point estimator should be equal to the parameter that is being estimated.
Although unbiasedness is desirable, this property alone does not always make an
estimator a good one.

2. An unbiased estimator should have minimum variance. This property states that
the minimum variance point estimator has a variance that is smaller than the vari-
ance of any other estimator of that parameter.

We may easily show that y and S are unbiased estimators of u and o7, respectively.
First consider y. Using the properties of expectation, we have

E(y)

E ;yi

n

1
n

E E(y)
2 p

RS

because the expected value of each observation y; is w. Thus, y is an unbiased estimator of w.



32 Chapter 2 B Simple Comparative Experiments

Now consider the sample variance S°. We have

E(Sz) = FE ; (yi _5)2
n—1
_ 1 N -2
_n—lE[,:El (v; )’)]

=1 Ess)
n—1

where SS = =7_,(y,— y)’ is the corrected sum of squares of the observations y,. Now

E(SS) = E[El (i — y)z] 2.9)

E[ y?—nyz]
i=1

=Y W+ 0% — n(u? + a¥n)
=1

n — Do? (2.10)

M=

Therefore,
ESY) = L EESS) = o2
n—1
and we see that S? is an unbiased estimator of o>.

Degrees of Freedom. The quantity n — 1 in Equation 2.10 is called the number of
degrees of freedom of the sum of squares SS. This is a very general result; that is, if y is a
random variable with variance o* and SS = 2(y; — y)* has v degrees of freedom, then

E(SUS> = o2 @2.11)

The number of degrees of freedom of a sum of squares is equal to the number of independ-
ent elements in that sum of squares. For example, S§ = 2 (y; — y)* in Equation 2.9 consists
of the sum of squares of the n elements y, —y, y, — ¥, ..., ¥, — y. These elements are not
all independent because X7_,(y; —y) = 0; in fact, only n — 1 of them are independent,
implying that SS has n — 1 degrees of freedom.

The Normal and Other Sampling Distributions. Often we are able to determine
the probability distribution of a particular statistic if we know the probability distribution of
the population from which the sample was drawn. The probability distribution of a statistic
is called a sampling distribution. We will now briefly discuss several useful sampling
distributions.

One of the most important sampling distributions is the normal distribution. If y is a
normal random variable, the probability distribution of y is

-1 ~(12)[(y— T
fo) = e RloTn —o <y< (2.12)
oV2r
where —o0 < u < o is the mean of the distribution and o> > 0 is the variance. The normal
distribution is shown in Figure 2.5.
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u

m FIGURE 2.5 The normal distribution

Because sample runs that differ as a result of experimental error often are well
described by the normal distribution, the normal plays a central role in the analysis of data
from designed experiments. Many important sampling distributions may also be defined in
terms of normal random variables. We often use the notation y ~ N(u, o) to denote that y is
distributed normally with mean w and variance o”.

An important special case of the normal distribution is the standard normal distribu-
tion; that is, u = 0 and o> = 1. We see that if y ~ N(u, o), the random variable

LYk
ag

(2.13)

follows the standard normal distribution, denoted z ~ N(0, 1). The operation demonstrated in
Equation 2.13 is often called standardizing the normal random variable y. The cumulative
standard normal distribution is given in Table I of the Appendix.

Many statistical techniques assume that the random variable is normally distributed.
The central limit theorem is often a justification of approximate normality.

THEOREM 2-1
The Central Limit Theorem

Ify,, y5 ..., ¥,1s a sequence of n independent and identically distributed random vari-
ables with E(y) = u and V(y,) = o” (both finite) and x = y, + y, + - -- + y,, then the
limiting form of the distribution of
X — nu
Ty = E
no

as n — o, is the standard normal distribution.

This result states essentially that the sum of n independent and identically distributed
random variables is approximately normally distributed. In many cases, this approximation is
good for very small n, say n < 10, whereas in other cases large n is required, say n > 100.
Frequently, we think of the error in an experiment as arising in an additive manner from sev-
eral independent sources; consequently, the normal distribution becomes a plausible model
for the combined experimental error.

An important sampling distribution that can be defined in terms of normal random vari-
ables is the chi-square or x* distribution. If 7, z,, . . . , z; are normally and independently
distributed random variables with mean O and variance 1, abbreviated NID(0, 1), then the ran-
dom variable

X:Z%+Z%+"'+Z,%
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follows the chi-square distribution with k degrees of freedom. The density function of chi-
square is

flo) = —L x> (2.14)

k
k2| K
2 F( )

Several chi-square distributions are shown in Figure 2.6. The distribution is asymmetric,
or skewed, with mean and variance

m=k
o’ = 2k
respectively. Percentage points of the chi-square distribution are given in Table III of the
Appendix.
As an example of a random variable that follows the chi-square distribution, suppose
that y,, y,, . . ., y, is a random sample from an N(u, o°) distribution. Then
2 0=y
B~ 2.15)
o o

That is, SS/o” is distributed as chi-square with n — 1 degrees of freedom.

Many of the techniques used in this book involve the computation and manipulation of
sums of squares. The result given in Equation 2.15 is extremely important and occurs repeat-
edly; a sum of squares in normal random variables when divided by o” follows the chi-square
distribution.

Examining Equation 2.8, we see that the sample variance can be written as

SS

2:7
5 n—1

(2.16)
If the observations in the sample are NID(u, 0?), then the distribution of S? is [o*/(n — 1)]x2_,.
Thus, the sampling distribution of the sample variance is a constant times the chi-square dis-
tribution if the population is normally distributed.

If z and 7 are independent standard normal and chi-square random variables, respec-
tively, the random variable

(2.17)

m FIGURE 2.6 Several Chi-square distributions
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k = o (normal)

0

m FIGURE 2.7 Several ¢ distributions

follows the ¢ distribution with k degrees of freedom, denoted #,. The density function of # is
~ Ttk + 1)/2] 1
VkaT(k/2) [(t%k) + 11%F172

and the mean and variance of ¢ are u = 0 and o* = k/(k — 2) for k > 2, respectively. Several
t distributions are shown in Figure 2.7. Note that if k = oo, the ¢ distribution becomes the stan-
dard normal distribution. The percentage points of the 7 distribution are given in Table II of

f@® —0 < (2.18)

the Appendix. If y;, y,, . . . .y, is a random sample from the N(u, o) distribution, then the
quantity
YK
t="——= 2.19)
SIN/n

is distributed as ¢ with n — 1 degrees of freedom.

The final sampling distribution that we will consider is the F distribution. If y 2 and x?
are two independent chi-square random variables with «# and v degrees of freedom, respec-
tively, then the ratio

2
/
Foo= Xt

u,

(2.20)
Xilv

follows the F distribution with u numerator degrees of freedom and v denominator

degrees of freedom. If x is an F random variable with u# numerator and v denominator
degrees of freedom, then the probability distribution of x is

F(u -5 v)(%)"/z OB

h(x) = — 0<x<oo (2.21)
r{)e(s)[ ()1

Several F distributions are shown in Figure 2.8. This distribution is very important in the sta-
tistical analysis of designed experiments. Percentage points of the F distribution are given in

Table IV of the Appendix.

As an example of a statistic that is distributed as F, suppose we have two independent
normal populations with common variance o If y;;, y1a, - . . , Vi, 18 @ random sample of 7,
observations from the first population, and if y,,, 55, . . . , ¥, is a random sample of 7, obser-

vations from the second, then
2
S1

53

Fn]—l, n,—1 (2.22)
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where S7 and S5 are the two sample variances. This result follows directly from Equations 2.15
and 2.20.

24 Inferences About the Differences in
Means, Randomized Designs

We are now ready to return to the Portland cement mortar problem posed in Section 2.1. Recall
that two different formulations of mortar were being investigated to determine if they differ in
tension bond strength. In this section we discuss how the data from this simple comparative
experiment can be analyzed using hypothesis testing and confidence interval procedures for
comparing two treatment means.

Throughout this section we assume that a completely randomized experimental
design is used. In such a design, the data are usually viewed as if they were a random sample
from a normal distribution.

24.1 Hypothesis Testing

We now reconsider the Portland cement experiment introduced in Section 2.1. Recall that we
are interested in comparing the strength of two different formulations: an unmodified mortar
and a modified mortar. In general, we can think of these two formulations as two levels of the
factor “formulations.” Let y;y, ¥, . . . , ¥y, represent the n; observations from the first factor
level and y,;, ¥», . . . , Vo, represent the n, observations from the second factor level. We
assume that the samples are drawn at random from two independent normal populations.
Figure 2.9 illustrates the situation.

A Model for the Data. We often describe the results of an experiment with a model.

A simple statistical model that describes the data from an experiment such as we have just
described is

i=1,2
L= . + €. ’ .

Yij = M E,,{j: L2 .. .n (2.23)

where y;; is the jth observation from factor level 7, w, is the mean of the response at the ith fac-

tor level, and €; is a normal random variable associated with the ijth observation. We assume
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m FIGURE 2.9 The sampling situation for the two-sample #-test

that €; are NID(0, cr?), i =1, 2. It is customary to refer to €; as the random error compo-
nent of the model. Because the means w, and u, are constants, we see directly from the model
that y; are NID(u;, o?),i=1,2,just as we previously assumed. For more information about
models for the data, refer to the supplemental text material.

Statistical Hypotheses. A statistical hypothesis is a statement either about the
parameters of a probability distribution or the parameters of a model. The hypothesis
reflects some conjecture about the problem situation. For example, in the Portland cement
experiment, we may think that the mean tension bond strengths of the two mortar formula-
tions are equal. This may be stated formally as

Hy:py = po
Hiipy # oy

where w, is the mean tension bond strength of the modified mortar and w, is the mean ten-
sion bond strength of the unmodified mortar. The statement H,: u; = u, is called the null
hypothesis and H,: , # w, is called the alternative hypothesis. The alternative hypothe-
sis specified here is called a two-sided alternative hypothesis because it would be true if
My < pporif py > po.

To test a hypothesis, we devise a procedure for taking a random sample, computing an
appropriate test statistic, and then rejecting or failing to reject the null hypothesis H,, based
on the computed value of the test statistic. Part of this procedure is specifying the set of val-
ues for the test statistic that leads to rejection of H,,. This set of values is called the critical
region or rejection region for the test.

Two kinds of errors may be committed when testing hypotheses. If the null hypothesis
is rejected when it is true, a type I error has occurred. If the null hypothesis is not rejected
when it is false, a type II error has been made. The probabilities of these two errors are given
special symbols

a = P(type I error) = P(reject Hy|H, is true)
B = P(type Il error) = P(fail to reject H,|H, is false)

Sometimes it is more convenient to work with the power of the test, where
Power = 1 — B = P(reject Hy|H, is false)

The general procedure in hypothesis testing is to specify a value of the probability of type I
error «, often called the significance level of the test, and then design the test procedure so
that the probability of type II error B8 has a suitably small value.
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The Two-Sample t-Test. Suppose that we could assume that the variances of tension
bond strengths were identical for both mortar formulations. Then the appropriate test statistic
to use for comparing two treatment means in the completely randomized design is

tO — Yi = M2 (2.24)

1 1
VTR

S
where y, and y, are the sample means, n; and n, are the sample sizes, Slz, is an estimate of the
common variance o = o3 = o> computed from

(n, — DST + (n, — DS3
2 =
S? ——— (2.25)

and S} and S5 are the two individual sample variances. The quality S, nll + nlz in the denom-

inator of Equation 2.24 is often called the standard error of the difference in means in the
numerator, abbreviated se (y; — y,). To determine whether to reject Hy:; = pu,, we would
compare f, to the ¢ distribution with n; + n, — 2 degrees of freedom. If |£,| > Lapon, +n,—2> Where
tap.n +n,—2 18 the upper a/2 percentage point of the ¢ distribution with n; + n, — 2 degrees of
freedom, we would reject H, and conclude that the mean strengths of the two formulations of
Portland cement mortar differ. This test procedure is usually called the two-sample ¢-test.

This procedure may be justified as follows. If we are sampling from independent nor-
mal distributions, then the distribution of y, — y, is N[u; — w,, 0°(1/n; + 1/n,)]. Thus, if o*
were known, and if H, : u; = w, were true, the distribution of

Z, = Yi—™ ) (2.26)

would be N(0, 1). However, in replacing o in Equation 2.26 by S,, the distribution of Z,
changes from standard normal to ¢t with n; + n, — 2 degrees of freedom. Now if H,, is true, ,
in Equation 2.24 is distributed as ¢, ., _, and, consequently, we would expect 100(1 — a) per-
cent of the values of #, to fall between —Z,/ , +,,—2 and ty5 ,, 1,,—>. A sample producing a value
of 1, outside these limits would be unusual if the null hypothesis were true and is evidence
that H, should be rejected. Thus the ¢ distribution with n;, + n, — 2 degrees of freedom is the
appropriate reference distribution for the test statistic #,. That is, it describes the behavior of
t, when the null hypothesis is true. Note that « is the probability of type I error for the test.
Sometimes « is called the significance level of the test.

In some problems, one may wish to reject H, only if one mean is larger than the other.
Thus, one would specify a one-sided alternative hypothesis H, : n; > w, and would reject
H, only if ) > t,,, 1,,—». If one wants to reject H, only if w, is less than u,, then the alterna-
tive hypothesis is H;: u; < w,, and one would reject Hy if 1y < —t,,, 1, 2.

To illustrate the procedure, consider the Portland cement data in Table 2.1. For these
data, we find that

Modified Mortar Unmodified Mortar
y, = 16.76 kgf/cm? y, = 17.04 kgf/cm?
53 =10.100 52 =10.061
S, =0.316 S, =0.248

n, =10 n, =10
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Because the sample standard deviations are reasonably similar, it is not unreasonable to con-
clude that the population standard deviations (or variances) are equal. Therefore, we can use
Equation 2.24 to test the hypotheses

Hy: oy = po
Hytpy #

Furthermore, n, + n, —2 = 10 + 10 — 2 = 18, and if we choose o = 0.05, then we would
reject Hy:p, = u, if the numerical value of the test statistic fy > f,5,5 = 2.101, or if £, <
—to005.18 = —2.101. These boundaries of the critical region are shown on the reference distri-
bution (# with 18 degrees of freedom) in Figure 2.10.

Using Equation 2.25 we find that

(m — DSt + (1, — DS3

2 =
S n +n —2
_9(0.100) + 9(0.061)
~ T lo+10-2 008l
S, = 0.284
and the test statistic is
Lo N7 1676 — 17.04
) = =
/1 1 1 1
S, n7]+n72 0.284 ﬁ+ﬁ
_ —0.28 _ _
©0.127 2.20
Because 1, = —2.20 < —fy05.13 = —2.101, we would reject H, and conclude that the mean

tension bond strengths of the two formulations of Portland cement mortar are different. This
is a potentially important engineering finding. The change in mortar formulation had the
desired effect of reducing the cure time, but there is evidence that the change also affected
the tension bond strength. One can conclude that the modified formulation reduces the bond
strength (just because we conducted a two-sided test, this does not preclude drawing a one-
sided conclusion when the null hypothesis is rejected). If the reduction in mean bond
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strength is of practical importance (or has engineering significance in addition to statistical
significance) then more development work and further experimentation will likely be
required.

The Use of P-Values in Hypothesis Testing. One way to report the results of
a hypothesis test is to state that the null hypothesis was or was not rejected at a specified
a-value or level of significance. This is often called fixed significance level testing. For
example, in the Portland cement mortar formulation above, we can say that H, : u, = u, was
rejected at the 0.05 level of significance. This statement of conclusions is often inadequate
because it gives the decision maker no idea about whether the computed value of the test sta-
tistic was just barely in the rejection region or whether it was very far into this region.
Furthermore, stating the results this way imposes the predefined level of significance on other
users of the information. This approach may be unsatisfactory because some decision makers
might be uncomfortable with the risks implied by e = 0.05.

To avoid these difficulties, the P-value approach has been adopted widely in practice.
The P-value is the probability that the test statistic will take on a value that is at least as
extreme as the observed value of the statistic when the null hypothesis H,, is true. Thus, a P-
value conveys much information about the weight of evidence against H,, and so a decision
maker can draw a conclusion at any specified level of significance. More formally, we define
the P-value as the smallest level of significance that would lead to rejection of the null
hypothesis H,,.

It is customary to call the test statistic (and the data) significant when the null hypoth-
esis H,, is rejected; therefore, we may think of the P-value as the smallest level « at which the
data are significant. Once the P-value is known, the decision maker can determine how
significant the data are without the data analyst formally imposing a preselected level of
significance.

It is not always easy to compute the exact P-value for a test. However, most modern
computer programs for statistical analysis report P-values, and they can be obtained on
some handheld calculators. We will show how to approximate the P-value for the Portland
cement mortar experiment. Because |fo| = 2.20 > 1,55 = 2.101, we know that the P-
value is less than 0.05. From Appendix Table II, for a ¢ distribution with 18 degrees of free-
dom, and tail area probability 0.01 we find #,,, ;5 = 2.552. Now |f,| = 2.20 < 2.552, so
because the alternative hypothesis is two sided, we know that the P-value must be between
0.05 and 2(0.01) = 0.02. Some handheld calculators have the capability to calculate P-values.
One such calculator is the HP-48. From this calculator, we obtain the P-value for the value

to = —2.20 in the Portland cement mortar formulation experiment as P = 0.0411. Thus
the null hypothesis H,: w; = w, would be rejected at any level of significance o >
0.0411.

Computer Solution. Many statistical software packages have capability for statisti-
cal hypothesis testing. The output from both the Minitab and the JMP two-sample #-test pro-
cedure applied to the Portland cement mortar formulation experiment is shown in Table 2.2.
Notice that the output includes some summary statistics about the two samples (the abbrevi-
ation “SE mean” in the Minitab section of the table refers to the standard error of the mean,
s/\/ﬁ) as well as some information about confidence intervals on the difference in the two
means (which we will discuss in the next section). The programs also test the hypothesis of
interest, allowing the analyst to specify the nature of the alternative hypothesis (“not =" in
the Minitab output implies H, : u; # w,).

The output includes the computed value of 7, the value of the test statistic #, (JMP
reports a positive value of 7, because of how the sample means are subtracted in the numerator
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m TABLE 2.2
Computer Output for the Two-Sample #-Test

Minitab
Two-sample T for Modified vs Unmodified

N Mean Std. Dev. SE Mean
Modified 10 16.764 0.316 0.10
Unmodified 10 17.042 0.248 0.078

Difference=mu (Modified) —mu (Unmodified)

Estimate for difference: —0.278000

95% CI for difference: (—0.545073, —-0.010927)
T-Test of difference=0 (vs not= ): T-Value=-2.19
P-Value=0.042 DF=18

Both use Pooled Std. Dev.=0.2843

JMP t-test
Unmodified-Modified

Assuming equal variances

Difference 0.278000 t Ratio 2.186876
Std Err Dif 0.127122 DF 18
Upper CL Dif 0.545073 Prob> |t]| 0.0422
Lower CL Dif 0.010927 Prob>t 0.0211
Confidence 0.95 Prob< t 0.9789 & 2 o0 o o

of the test statistic), and the P-value. Notice that the computed value of the 7 statistic differs
slightly from our manually calculated value and that the P-value is reported to be P = 0.042.
JMP also reports the P-values for the one-sided alternative hypothesis. Many software pack-
ages will not report an actual P-value less than some predetermined value such as 0.0001 and
instead will return a “default” value such as “<<0.001” or in some cases, zero.

Checking Assumptions in the t-Test. In using the r-test procedure we make the
assumptions that both samples are random samples that are drawn from independent popula-
tions that can be described by a normal distribution, and that the standard deviation or vari-
ances of both populations are equal. The assumption of independence is critical, and if the run
order is randomized (and, if appropriate, other experimental units and materials are selected
at random), this assumption will usually be satisfied. The equal variance and normality
assumptions are easy to check using a normal probability plot.

Generally, probability plotting is a graphical technique for determining whether sample
data conform to a hypothesized distribution based on a subjective visual examination of the
data. The general procedure is very simple and can be performed quickly with most statistics
software packages. The supplemental text material discusses manual construction of nor-

mal probability plots.
To construct a probability plot, the observations in the sample are first ranked from small-
est to largest. That is, the sample yy, y,, . . ., y, is arranged as Yy, Yo, - - - » Yy Where yy, is the

smallest observation, y,,, is the second smallest observation, and so forth, with y, the largest. The
ordered observations y; are then plotted against their observed cumulative frequency (j — 0.5)/n.
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The cumulative frequency scale has been arranged so that if the hypothesized distribution ade-
quately describes the data, the plotted points will fall approximately along a straight line; if the
plotted points deviate significantly from a straight line, the hypothesized model is not appropri-
ate. Usually, the determination of whether or not the data plot as a straight line is subjective.

To illustrate the procedure, suppose that we wish to check the assumption that tension
bond strength in the Portland cement mortar formulation experiment is normally distributed.
We initially consider only the observations from the unmodified mortar formulation. A
computer-generated normal probability plot is shown in Figure 2.11. Most normal probability
plots present 100(j — 0.5)/n on the left vertical scale (and occasionally 100[1— (j — 0.5)/n] is
plotted on the right vertical scale), with the variable value plotted on the horizontal scale. Some
computer-generated normal probability plots convert the cumulative frequency to a standard
normal z score. A straight line, chosen subjectively, has been drawn through the plotted points.
In drawing the straight line, you should be influenced more by the points near the middle of
the plot than by the extreme points. A good rule of thumb is to draw the line approximately
between the 25th and 75th percentile points. This is how the lines in Figure 2.11 for each sample
were determined. In assessing the “closeness” of the points to the straight line, imagine a fat
pencil lying along the line. If all the points are covered by this imaginary pencil, a normal
distribution adequately describes the data. Because the points for each sample in Figure 2.11
would pass the fat pencil test, we conclude that the normal distribution is an appropriate model
for tension bond strength for both the modified and the unmodified mortar.

We can obtain an estimate of the mean and standard deviation directly from the normal
probability plot. The mean is estimated as the 50th percentile on the probability plot, and the
standard deviation is estimated as the difference between the 84th and 50th percentiles. This
means that we can verify the assumption of equal population variances in the Portland cement
experiment by simply comparing the slopes of the two straight lines in Figure 2.11. Both lines
have very similar slopes, and so the assumption of equal variances is a reasonable one. If this
assumption is violated, you should use the version of the #-test described in Section 2.4.4. The
supplemental text material has more information about checking assumptions on the 7-test.

When assumptions are badly violated, the performance of the 7-test will be affected.
Generally, small to moderate violations of assumptions are not a major concern, but any fail-
ure of the independence assumption and strong indications of nonnormality should not be
ignored. Both the significance level of the test and the ability to detect differences between
the means will be adversely affected by departures from assumptions. Transformations are
one approach to dealing with this problem. We will discuss this in more detail in Chapter 3.
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Nonparametric hypothesis testing procedures can also be used if the observations come from
nonnormal populations. Refer to Montgomery and Runger (2011) for more details.

An Alternate Justification to the t-Test. The two-sample -test we have just present-
ed depends in theory on the underlying assumption that the two populations from which the
samples were randomly selected are normal. Although the normality assumption is required to
develop the test procedure formally, as we discussed above, moderate departures from normal-
ity will not seriously affect the results. It can be argued that the use of a randomized design
enables one to test hypotheses without any assumptions regarding the form of the distribution.
Briefly, the reasoning is as follows. If the treatments have no effect, all [20!/(10!10!)] =
184,756 possible ways that the 20 observations could occur are equally likely. Corresponding
to each of these 184,756 possible arrangements is a value of 7, If the value of #, actually
obtained from the data is unusually large or unusually small with reference to the set of
184,756 possible values, it is an indication that u; # w,.

This type of procedure is called a randomization test. It can be shown that the -test is
a good approximation of the randomization test. Thus, we will use #-tests (and other procedures
that can be regarded as approximations of randomization tests) without extensive concern
about the assumption of normality. This is one reason a simple procedure such as normal prob-
ability plotting is adequate to check the assumption of normality.

2.4.2 Confidence Intervals

Although hypothesis testing is a useful procedure, it sometimes does not tell the entire story. It is
often preferable to provide an interval within which the value of the parameter or parameters in
question would be expected to lie. These interval statements are called confidence intervals. In
many engineering and industrial experiments, the experimenter already knows that the means w,
and pu, differ; consequently, hypothesis testing on w; = w, is of little interest. The experimenter
would usually be more interested in knowing how much the means differ. A confidence interval
on the difference in means w, — u, is used in answering this question.

To define a confidence interval, suppose that 6 is an unknown parameter. To obtain an
interval estimate of 0, we need to find two statistics L and U such that the probability statement

PL<s0<U)=1—-a«a 2.27)
is true. The interval
L<0<U (2.28)

is called a 100(1 — «) percent confidence interval for the parameter 0. The interpretation
of this interval is that if, in repeated random samplings, a large number of such intervals are
constructed, 100(1 — «) percent of them will contain the true value of 6. The statistics L and
U are called the lower and upper confidence limits, respectively, and 1 — « is called the
confidence coefficient. If « = 0.05, Equation 2.28 is called a 95 percent confidence interval
for 6. Note that confidence intervals have a frequency interpretation; that is, we do not know
if the statement is true for this specific sample, but we do know that the method used to
produce the confidence interval yields correct statements 100(1 — «) percent of the time.

Suppose that we wish to find a 100(1 — «) percent confidence interval on the true dif-
ference in means u; — u, for the Portland cement problem. The interval can be derived in the
following way. The statistic

yi— Y — (U — )

is distributed as 7, ., _,. Thus,
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Y=y — (U — )
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Comparing Equations 2.29 and 2.27, we see that

— — 1 1
V1= Yo = tapntn—2 Sy n, + n, e 1)

- - 1 1
=0 =T a2 Sy n + ,72 (2.30)
is a 100(1 — «) percent confidence interval for p; — u,.
The actual 95 percent confidence interval estimate for the difference in mean tension
bond strength for the formulations of Portland cement mortar is found by substituting in

Equation 2.30 as follows:
16.76 — 17.04 — (2.101)0.284V 5 + & = w, — w,
= 16.76 — 17.04 + (2.101)0.284V 5 + -
-028 027 = u; — p, = —0.28+0.27
055 = w— wm = —0.01

Thus, the 95 percent confidence interval estimate on the difference in means extends from
—0.55 to —0.01 kgf/cm?®. Put another way, the confidence interval is u, — u, = —0.28 *
0.27 kgf/cm?, or the difference in mean strengths is —0.28 kgf/cm?, and the accuracy of this
estimate is = 0.27 kgf/cm?. Note that because u; — w, = 0 is not included in this interval, the
data do not support the hypothesis that w;, = u, at the 5 percent level of significance (recall
that the P-value for the two-sample 7-test was 0.042, just slightly less than 0.05). It is likely
that the mean strength of the unmodified formulation exceeds the mean strength of the mod-
ified formulation. Notice from Table 2.2 that both Minitab and JMP reported this confidence
interval when the hypothesis testing procedure was conducted.

243 Choice of Sample Size

Selection of an appropriate sample size is one of the most important parts of any experimental
design problem. One way to do this is to consider the impact of sample size on the estimate of
the difference in two means. From Equation 2.30 we know that the 100(1 — )% confidence
interval on the difference in two means is a measure of the precision of estimation of the
difference in the two means. The length of this interval is determined by
1 1

ta/2, n +n,—2 Sp nil + 772
We consider the case where the sample sizes from the two populations are equal, so that n, =
n, = n. Then the length of the CI is determined by
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Consequently the precision with which the difference in the two means is estimated
depends on two quantities—S,,, over which we have no control, and 7, 2n,z\/ﬂ, which
we can control by choosing the sample size n. Figure 2.12 is a plot of 7/, 5, — 2\/% versus
n for a = 0.05. Notice that the curve descends rapidly as n increases up to about n = 10 and
less rapidly beyond that. Since S, is relatively constant and 2,1,2\/271 isn’t going to
change much for sample sizes beyond n = 10 or 12, we can conclude that choosing a sample
size of n = 10 or 12 from each population in a two-sample 95% CI will result in a CI that
results in about the best precision of estimation for the difference in the two means that is
possible given the amount of inherent variability that is present in the two populations.

We can also use a hypothesis testing framework to determine sample size. The choice
of sample size and the probability of type II error 8 are closely connected. Suppose that we
are testing the hypotheses

Hy:py = o
Hy:py #

and that the means are not equal so that 8 = w, — u,. Because H,: u, = u, is not true, we are
concerned about wrongly failing to reject H,. The probability of type II error depends on the
true difference in means 8. A graph of B versus 6 for a particular sample size is called the oper-
ating characteristic curve, or O.C. curve for the test. The 8 error is also a function of sample
size. Generally, for a given value of 8, the 3 error decreases as the sample size increases. That is, a
specified difference in means is easier to detect for larger sample sizes than for smaller ones.

An alternative to the OC curve is a power curve, which typically plots power or 1 — f3,
versus sample size for a specified difference in the means. Some software packages perform
power analysis and will plot power curves. A set of power curves constructed using JMP for
the hypotheses

Hy:py = o
Hy:py #

is shown in Figure 2.13 for the case where the two population variances o7 and o3 are
unknown but equal (67 = 03 = ¢” ) and for a level of significance of & = 0.05. These power
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curves also assume that the sample sizes from the two populations are equal and that the sam-
ple size shown on the horizontal scale (say n) is the total sample size, so that the sample size
in each population is n/2. Also notice that the difference in means is expressed as a ratio to
the common standard deviation; that is

Iy — o

o= (o

From examining these curves we observe the following:

1. The greater the difference in means u;, — pu,, the higher the power (smaller type
II error probability). That is, for a specified sample size and significance level «,
the test will detect large differences in means more easily than small ones.

2. As the sample size get larger, the power of the test gets larger (the type II error
probability gets smaller) for a given difference in means and significance level «.
That is, to detect a specified difference in means we may make the test more pow-
erful by increasing the sample size.

Operating curves and power curves are often helpful in selecting a sample size to use in an
experiment. For example, consider the Portland cement mortar problem discussed previously.
Suppose that a difference in mean strength of 0.5 kgf/cm? has practical impact on the use of
the mortar, so if the difference in means is at least this large, we would like to detect it with a
high probability. Thus, because w, — w, = 0.5 kgf/cm? is the “critical” difference in means
that we wish to detect, we find that the power curve parameter would be 6 = 0.5/0.
Unfortunately, & involves the unknown standard deviation o. However, suppose on the basis of
past experience we think that it is very unlikely that the standard deviation will exceed
0.25 kgf/cm?®. Then substituting o = 0.25 kgf/cm? into the expression for & results in § = 2. If
we wish to reject the null hypothesis when the difference in means w; — u, = 0.5 with prob-
ability at least 0.95 (power = 0.95) with « = 0.05, then referring to Figure 2.13 we find that the
required sample size on the horizontal axis is 16, approximately. This is the total sample size,
so the sample size in each population should be

n=16/2 = 8.

In our example, the experimenter actually used a sample size of 10. The experimenter could
have elected to increase the sample size slightly to guard against the possibility that the prior
estimate of the common standard deviation o was too conservative and was likely to be some-
what larger than 0.25.

Operating characteristic curves often play an important role in the choice of sample size
in experimental design problems. Their use in this respect is discussed in subsequent chap-
ters. For a discussion of the uses of operating characteristic curves for other simple compar-
ative experiments similar to the two-sample #-test, see Montgomery and Runger (2011).

Many statistics software packages can also assist the experimenter in performing power
and sample size calculations. The following boxed display illustrates several computations for
the Portland cement mortar problem from the power and sample size routine for the two-sample
t test in Minitab. The first section of output repeats the analysis performed with the OC
curves; find the sample size necessary for detecting the critical difference in means of
0.5 kgf/cm?, assuming that the standard deviation of strength is 0.25 kgf/cm?. Notice that the
answer obtained from Minitab, n, = n, = 8, is identical to the value obtained from the OC
curve analysis. The second section of the output computes the power for the case where the
critical difference in means is much smaller; only 0.25 kgf/cm?. The power has dropped con-
siderably, from over 0.95 to 0.562. The final section determines the sample sizes that would
be necessary to detect an actual difference in means of 0.25 kgf/cm?® with a power of at least
0.9. The required sample size turns out to be considerably larger, n; = n, = 23.
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m FIGURE 2.13 Power Curves (from JMP) for the Two-Sample ¢-Test Assuming Equal
Varianes and o = 0.05. The Sample Size on the Horizontal Axis is the Total sample Size, so the
sample Size in Each population is n = sample size from graph/2.

Power and Sample Size

2-Sample t-Test

Testing mean 1=mean 2 (versus not=)
Calculating power for mean 1=mean 2+ difference
Alpha=0.05 Sigma=0.25

Sample Target Actual
Difference Size Power Power
0.5 8 0.9500 0.9602

Power and Sample Size
2-Sample t-Test

Testing mean 1 =mean 2 (versus not =)
Calculating power for mean 1=mean 2+ difference
Alpha=0.05 Sigma=0.25

Sample
Difference Size Power
0.25 10 0.5620

Power and Sample Size
2-Sample t-Test

Testing mean 1=mean 2 (versus not =)
Calculating power for mean 1=mean 2+ difference
Alpha=0.05 Sigma=0.25

Sample Target Actual
Difference Size Power Power
0.25 23 0.9000 0.9125
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244  The Case Where o7 # o3

If we are testing
Hy:py = po
Hiipy # oy

and cannot reasonably assume that the variances o and o3 are equal, then the two-sample
t-test must be modified slightly. The test statistic becomes

=22 (2.31)
S8
P + =

n; ny

This statistic is not distributed exactly as . However, the distribution of #, is well approximat-
ed by t if we use
ng m
v = (2.32)

(S | (Yny)
I’ll - 1 I’l2 - 1

as the number of degrees of freedom. A strong indication of unequal variances on a normal
probability plot would be a situation calling for this version of the 7-test. You should be able
to develop an equation for finding that confidence interval on the difference in mean for the
unequal variances case easily.

exavpLE 2.1 [

Nerve preservation is important in surgery because acci-
dental injury to the nerve can lead to post-surgical problems
such as numbness, pain, or paralysis. Nerves are usually
identified by their appearance and relationship to nearby
structures or detected by local electrical stimulation (elec-
tromyography), but it is relatively easy to overlook them.
An article in Nature Biotechnology (“Fluorescent Peptides

We would like to test the hypothesis that the mean normalized fluorescence after two hours is
greater for nerve tissue then for muscle tissue. That is, if u; is the mean normalized fluorescence

Highlight Peripheral Nerves During Surgery in Mice,” Vol.
29, 2011) describes the use of a fluorescently labeled pep-
tide that binds to nerves to assist in identification. Table 2.3
shows the normalized fluorescence after two hours for
nerve and muscle tissue for 12 mice (the data were read
from a graph in the paper).

for nerve tissue and is the mean normalized fluorescence for muscle tissue, we want to test

Hy:py = py
Hiipy > py

The descriptive statistics output from Minitab is shown below:

Variable N Mean
Nerve 12 4228
Non-nerve 12 2534

StDev Minimum Median Maximum
1918 450 4825 6625
961 1130 2650 3900
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TABLE 2.3
Normalized Fluorescence After Two Hours
Observation Nerve Muscle
1 6625 3900
2 6000 3500
3 5450 3450
4 5200 3200
5 5175 2980
6 4900 2800
7 4750 2500
8 4500 2400
9 3985 2200
10 900 1200
11 450 1150
12 2800 1130

Notice that the two sample standard deviations are quite different, so the assumption of equal
variances in the pooled #-test may not be appropriate. Figure 2.14 is the normal probability
plot from Minitab for the two samples. This plot also indicates that the two population vari-
ances are probably not the same.

Because the equal variance assumption is not appropriate here, we will use the two-
sample 7-test described in this section to test the hypothesis of equal means. The test statistic,
Equation 2.31, is

o Yi—Y» 4228 — 2534 — 57354
O - - - .

st N 53 (1918) N (961)

n; n, 12 12

Variable
—o— Nerve
-4=- Non-nerve

Percent
o1
<

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Normalized Fluorescence

m FIGURE 2.14 Normalized Fluorescence Data from Table 2.3
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The number of degrees of freedom are calculated from Equation 2.32:

2 s%\? (1918)*  (961)*2
(m R 2 " 16,1055
v — = e .
St/ m) n (S3 /m)*  [(1918)*/ 12T N [(961)* / 12]
n — 1 n, — 1 11 11

If we are going to find a P-value from a table of the #-distribution, we should round the degrees
of freedom down to 16. Most computer programs interpolate to determine the P-value. The
Minitab output for the two-sample #-test is shown below. Since the P-value reported is small
(0.015), we would reject the null hypothesis and conclude that the mean normalized fluores-
cence for nerve tissue is greater than the mean normalized fluorescence for muscle tissue.

Difference = mu (Nerve) - mu (Non-nerve)

Estimate for difference: 1694

95% Llower bound for difference: 613

T-Test of difference = 0 (vs >): T-Value = 2.74 P-Value = 0.007 DF = 16

2.4.5  The Case Where o} and o3 Are Known

If the variances of both populations are known, then the hypotheses

Hy:py = o
Hytpy # Wy
may be tested using the statistic
i~y
Zy = 12 : - (2:33)
g ()
noony

If both populations are normal, or if the sample sizes are large enough so that the central limit
theorem applies, the distribution of Z; is N(0, 1) if the null hypothesis is true. Thus, the criti-
cal region would be found using the normal distribution rather than the ¢. Specifically, we
would reject H, if |Zy| > Z,,,, where Z,, is the upper a/2 percentage point of the standard nor-
mal distribution. This procedure is sometimes called the two-sample Z-test. A P-value
approach can also be used with this test. The P-value would be found as P = 2 [1 — ®(|Z,])],
where ®(x) is the cumulative standard normal distribution evaluated at the point x.

Unlike the #-test of the previous sections, the test on means with known variances does not
require the assumption of sampling from normal populations. One can use the central limit the-
orem to justify an approximate normal distribution for the difference in sample means y; — y,

The 100(1 — «) percent confidence interval on u; — u, where the variances are known is

ol o3 P o

o _ o7
Vi 7 Y2 T Zap T M= My = Vi~ 0t Zyp w Tt (234

I\

As noted previously, the confidence interval is often a useful supplement to the hypothesis test-
ing procedure.

2.4.6 Comparing a Single Mean to a Specified Value

Some experiments involve comparing only one population mean w to a specified value, say,
Mo- The hypotheses are
Hy:p = po
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If the population is normal with known variance, or if the population is nonnormal but the sam-
ple size is large enough so that the central limit theorem applies, then the hypothesis may be
tested using a direct application of the normal distribution. The one-sample Z-test statistic is

_ Y~ Mo
alN'n

If Hy: u = pg is true, then the distribution of Z, is N(0, 1). Therefore, the decision rule for
Hy: u = s to reject the null hypothesis if | Z,| > Z,,. A P-value approach could also be used.
The value of the mean w, specified in the null hypothesis is usually determined in one
of three ways. It may result from past evidence, knowledge, or experimentation. It may be the
result of some theory or model describing the situation under study. Finally, it may be the
result of contractual specifications.
The 100(1 — «) percent confidence interval on the true population mean is

Y= Zypo!Nn = u = 3+ Zpo!NVn

Z

(2.35)

exavpLE 2.2 [

A supplier submits lots of fabric to a textile manufacturer.
The customer wants to know if the lot average breaking
strength exceeds 200 psi. If so, she wants to accept the lot.
Past experience indicates that a reasonable value for the
variance of breaking strength is 100(psi)>. The hypotheses
to be tested are

Hy:p = 200
H,: > 200

Note that this is a one-sided alternative hypothesis. Thus,
we would accept the lot only if the null hypothesis H,: u =
200 could be rejected (i.e., if Z, > Z,).

Four specimens are randomly selected, and the average
breaking strength observed is y = 214 psi. The value of the
test statistic is

_ Y~ Ko _ 214 — 200
o/Nn 10/V4

If a type I error of = 0.05 is specified, we find Z, = Z, s =
1.645 from Appendix Table I. The P-value would be
computed using only the area in the upper tail of the stan-
dard normal distribution, because the alternative hypothesis
is one-sided. The P-value is P=1— ®(2.80) =1 —
0.99744 = 0.00256. Thus H,, is rejected, and we conclude
that the lot average breaking strength exceeds 200 psi.

Z =2.80

If the variance of the population is unknown, we must make the additional assumption
that the population is normally distributed, although moderate departures from normality will
not seriously affect the results.

To test Hy : i = u, in the variance unknown case, the sample variance S” is used to esti-
mate o°. Replacing o with S in Equation 2.35, we have the one-sample ¢-test statistic

_ Y~ Mo
SIN'n
The null hypothesis Hy : i = u, would be rejected if |t| > 7,1, where £, denotes the

upper a/2 percentage point of the ¢ distribution with n — 1 degrees of freedom. A P-value
approach could also be used. The 100(1 — «) percent confidence interval in this case is

Iy

(2.37)

y— ta/Z.n—lS/\/;l =ps=y+ ta/2,n—1S/\/;l (2.38)

24.7

Tables 2.4 and 2.5 summarize the #-test and z-test procedures discussed above for sample
means. Critical regions are shown for both two-sided and one-sided alternative hypotheses.

Summary
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m TABLE 2.4
Tests on Means with Variance Known

Fixed Significance Level

Hypothesis Test Statistic Criteria for Rejection P-Value
Hy: =y
Hy:tp 7 |Zo| > Zopo P =2[1 — ®(|Z)]
Hy: = po -
_ Y T Mo _
Hytp < po Zy="—"+ 2y < —Z, P = P(Zy)
C oy = a/N'n
Hy: = pyo
H :p>pu Zy>Z, P=1-®Z)
Hy: py =y
Hy:py # |Zo| > Zapo P =2[1 — O(|Z])]
Hy:py = o - _ =
. R T ) _
Hytpy < po Zy = —— 2y < —Z, P = P(Zy)
ol , o3
ntony
Hy:py = o
Hytpy > py Zy>Z, P=1-®Z)

m TABLE 2.5
Tests on Means of Normal Distributions, Variance Unknown

Fixed Significance Level

Hypothesis Test Statistic Criteria for Rejection P-Value
Hy: = o sum of the probability
Hi: o # lto] > a1 above t, and below —1,
Hy: = po V-
H:p<p, ty = -0 o < —lon-i probability below 7,
. SINn
Hy: = pyo
H:p>p, To > tyn—1 probability above ¢,
if o7 = o}
Hy:py =,
N T »n .
H:py # u, o= —-—""— lto] > taps sum of the probability
s 1 " 1 above 7;and below —1,
LA VRO 2

v=n +n—2

if ol # o3
Hy:py = p, Y-
H < p, ty = % ty < —ty, probability below £,
ST 8
nolon
ST 83\
Hy:py = p, N + T,
H :w > p, Ty >ty probability above ¢,

p=—— 7
(S%/"l)z n (S%/"z)z
n — 1 n, — 1
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2.5 Inferences About the Differences in Means,
Paired Comparison Designs

2.5.1 The Paired Comparison Problem

In some simple comparative experiments, we can greatly improve the precision by making
comparisons within matched pairs of experimental material. For example, consider a hardness
testing machine that presses a rod with a pointed tip into a metal specimen with a known force.
By measuring the depth of the depression caused by the tip, the hardness of the specimen is
determined. Two different tips are available for this machine, and although the precision
(variability) of the measurements made by the two tips seems to be the same, it is suspected
that one tip produces different mean hardness readings than the other.

An experiment could be performed as follows. A number of metal specimens (e.g., 20)
could be randomly selected. Half of these specimens could be tested by tip 1 and the other
half by tip 2. The exact assignment of specimens to tips would be randomly determined.
Because this is a completely randomized design, the average hardness of the two samples
could be compared using the #-test described in Section 2.4.

A little reflection will reveal a serious disadvantage in the completely randomized
design for this problem. Suppose the metal specimens were cut from different bar stock that
were produced in different heats or that were not exactly homogeneous in some other way that
might affect the hardness. This lack of homogeneity between specimens will contribute to the
variability of the hardness measurements and will tend to inflate the experimental error, thus
making a true difference between tips harder to detect.

To protect against this possibility, consider an alternative experimental design. Assume
that each specimen is large enough so that fwo hardness determinations may be made on it.
This alternative design would consist of dividing each specimen into two parts, then randomly
assigning one tip to one-half of each specimen and the other tip to the remaining half. The
order in which the tips are tested for a particular specimen would also be randomly selected.
The experiment, when performed according to this design with 10 specimens, produced the
(coded) data shown in Table 2.6.

We may write a statistical model that describes the data from this experiment as

i=1,2
yi/:Mi+Bj+Eij{j:1 210 (2.39)

bl

m TABLE 2.6
Data for the Hardness Testing Experiment

Specimen Tip 1 Tip 2
1 7 6
2 3 3
3 3 5
4 4 3
5 8 8
6 3 2
7 2 4
8 9 9
9 5 4

10 4 5
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where y;; is the observation on hardness for tip i on specimen j, w; is the true mean hardness
of the ith tip, B; is an effect on hardness due to the jth specimen, and €; is a random experi-
mental error with mean zero and variance o?. That is, o' is the variance of the hardness meas-
urements from tip 1, and o3 is the variance of the hardness measurements from tip 2.

Note that if we compute the jth paired difference

d=y; =y Jj=12...,10 (2.40)

the expected value of this difference is

e = Ed)

= E(ylj - )’2j)

= E(y,) — E()’zj)

= M +B_/_(,U~2+B_/)
= M T M

That is, we may make inferences about the difference in the mean hardness readings of the two
tips w; — u, by making inferences about the mean of the differences w,. Notice that the addi-
tive effect of the specimens 8; cancels out when the observations are paired in this manner.
Testing H,: i, = u, is equivalent to testing
H():Md =0
Hl :Md #0

This is a single-sample 7-test. The test statistic for this hypothesis is

d
ty= —— (2.41)
* SV
where
— _ 1 n
d—ﬁ;4 (2.42)
is the sample mean of the differences and
n — o 1<n )2 12
d —d d; — - d;
S, = ,21 (d ) /21 i n ,;1 i (2.43)
n—1 n—1

is the sample standard deviation of the differences. H,: u, = 0 would be rejected if |t,| >
tyna—1- A P-value approach could also be used. Because the observations from the factor
levels are “paired” on each experimental unit, this procedure is usually called the paired

t-test.
For the data in Table 2.6, we find
d=7—-6 =1 dg =3—-2=1
db=3-3 =0 d =2 —4=-2
dy=3-5=-2 dg =9—-9=0
d=4-3 =1 dy =5—-—4=1

ds=8-8 =4-5=-1

I
-
A
o
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m FIGURE 2.15 The reference distribution (¢ with 9 degrees
of freedom) for the hardness testing problem

Thus,
N B NI U
d—njzldj g (- =-010
Sa-)$af| " [Boiev]”
Sd = = J n = J = 107_1 = 1.20
n—1

Suppose we choose a = 0.05. Now to make a decision, we would compute #, and reject H,, if
lto] > 190050 = 2.262.
The computed value of the paired -test statistic is

d ~0.10
o = = = -0.26
sV 1.20V10

and because |fy| = 0.26 P 1,50 = 2.262, we cannot reject the hypothesis H,: u, = 0. That
is, there is no evidence to indicate that the two tips produce different hardness readings.
Figure 2.15 shows the £, distribution with 9 degrees of freedom, the reference distribution for
this test, with the value of 7, shown relative to the critical region.

Table 2.7 shows the computer output from the Minitab paired #-test procedure for this
problem. Notice that the P-value for this test is P = 0.80, implying that we cannot reject the
null hypothesis at any reasonable level of significance.

s TABLE 2.7
Minitab Paired #-Test Results for the Hardness Testing Example

Paired T for Tip 1-Tip 2

N Mean Std. Dev. SE Mean
Tip 1 10 4.800 2.394 0.757
Tip 2 10 4.900 2.234 0.706
Difference 10 —-0.100 1.197 0.379

95% CI for mean difference: (-0.956, 0.756)
t-Test of mean difference=0(vs not=0):
T-Value=-0.26 P-Value=0.798




56 Chapter 2 B Simple Comparative Experiments

2.5.2 Advantages of the Paired Comparison Design

The design actually used for this experiment is called the paired comparison design, and it
illustrates the blocking principle discussed in Section 1.3. Actually, it is a special case of a
more general type of design called the randomized block design. The term block refers to
a relatively homogeneous experimental unit (in our case, the metal specimens are the
blocks), and the block represents a restriction on complete randomization because the treat-
ment combinations are only randomized within the block. We look at designs of this type in
Chapter 4. In that chapter the mathematical model for the design, Equation 2.39, is written
in a slightly different form.

Before leaving this experiment, several points should be made. Note that, although
2n = 2(10) = 20 observations have been taken, only n — 1 = 9 degrees of freedom are avail-
able for the ¢ statistic. (We know that as the degrees of freedom for ¢ increase, the test becomes
more sensitive.) By blocking or pairing we have effectively “lost” n — 1 degrees of freedom,
but we hope we have gained a better knowledge of the situation by eliminating an additional
source of variability (the difference between specimens).

We may obtain an indication of the quality of information produced from the paired
design by comparing the standard deviation of the differences S, with the pooled standard
deviation §, that would have resulted had the experiment been conducted in a completely
randomized manner and the data of Table 2.5 been obtained. Using the data in Table 2.5 as
two independent samples, we compute the pooled standard deviation from Equation 2.25 to
be S, = 2.32. Comparing this value to §, = 1.20, we see that blocking or pairing has reduced
the estimate of variability by nearly 50 percent.

Generally, when we don’t block (or pair the observations) when we really should have,
S, will always be larger than S,. It is easy to show this formally. If we pair the observations,
it is easy to show that S3 is an unbiased estimator of the variance of the differences d; under
the model in Equation 2.39 because the block effects (the 3;) cancel out when the differences
are computed. However, if we don’t block (or pair) and treat the observations as two
independent samples, then S is not an unbiased estimator of o~ under the model in Equation
2.39. In fact, assuming that both population variances are equal,

ES) =o” + 21 B;
=

That is, the block effects 3; inflate the variance estimate. This is why blocking serves as a
noise reduction design technique.

We may also express the results of this experiment in terms of a confidence interval on
M1 — M. Using the paired data, a 95 percent confidence interval on w;, — w, is

d = t0.025,9Sd/\/;l
—=0.10 = (2.262)(1.20)/V'10
—-0.10 = 0.86

Conversely, using the pooled or independent analysis, a 95 percent confidence interval on
My~ My is

- _ = 1 1
— -+ —_— —_—
Vi— Y F o loosis S, n, + n,

4.80 —4.90 = (2.101)2.32)V 5 + &
—0.10 + 2.18
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The confidence interval based on the paired analysis is much narrower than the confidence
interval from the independent analysis. This again illustrates the noise reduction property of
blocking.

Blocking is not always the best design strategy. If the within-block variability is the
same as the between-block variability, the variance of y; — y, will be the same regardless of
which design is used. Actually, blocking in this situation would be a poor choice of design
because blocking results in the loss of n — 1 degrees of freedom and will actually lead to a
wider confidence interval on w; — w,. A further discussion of blocking is given in Chapter 4.

2.6 Inferences About the Variances of Normal Distributions

In many experiments, we are interested in possible differences in the mean response for two
treatments. However, in some experiments it is the comparison of variability in the data that
is important. In the food and beverage industry, for example, it is important that the variabil-
ity of filling equipment be small so that all packages have close to the nominal net weight or
volume of content. In chemical laboratories, we may wish to compare the variability of two
analytical methods. We now briefly examine tests of hypotheses and confidence intervals for
variances of normal distributions. Unlike the tests on means, the procedures for tests on vari-
ances are rather sensitive to the normality assumption. A good discussion of the normality
assumption is in Appendix 2A of Davies (1956).

Suppose we wish to test the hypothesis that the variance of a normal population equals
a constant, for example, o'3. Stated formally, we wish to test

2 — 2
Ho.(T =0y

H,:0> # o} 2.44)
The test statistic for Equation 2.44 is

, _SS _(n—1s
"o o

(2.45)

where SS = 37 ,(y; — y)? is the corrected sum of squares of the sample observations. The
appropriate reference distribution for y3 is the chi-square distribution with n — 1 degrees of
freedom. The null hypothesis is rejected if x5 > x 2,1 0T if X§ < XT-(@apn—1> Where X,
and X%—(a/l),n—l are the upper a/2 and lower 1 — (a/2) percentage points of the chi-square
distribution with n — 1 degrees of freedom, respectively. Table 2.8 gives the critical regions
for the one-sided alternative hypotheses. The 100(1 — «) percent confidence interval on ¢” is
2 2
@28 g 22 D8 (2.46)
Xal2,n—1 X1-(a2)n—1
Now consider testing the equality of the variances of two normal populations. If inde-
pendent random samples of size n; and n, are taken from populations 1 and 2, respectively,
the test statistic for

Hy:0? =03
H o} # o} (2.47)
is the ratio of the sample variances
_Si

= 2.48
52 (2.48)

Fy
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m TABLE 2.8
Tests on Variances of Normal Distributions

Fixed Significance Level

Hypothesis Test Statistic Criteria for Rejection
L2 2 2 2
HO.O'Z—O'O X0>Xa/2,n*lor
. 2 2 2
H :0" #0} X0 < Xi-an.n-1
2
H,: 0> =0} (n — 1)s?
. 2 2 _ 2 2
H1.0'2<0'0 Xo= — 5 X0 < Xi-an-1
T
H,: 0% =0}
. 2 2 2
H1.0'2>0'0 XO>X0(J1—1
Hy: 0} =03 _ 52 Fo > Foyn—1.n,-1 0T
2 2 07 o2
Hl 71 * o2 Sz FO < Fl—a/2,/1‘—l.n3—l
Hy: 0% = 03 S3
; 5 F(J :7 FO>F(x.n2—l,n1—l
H:oi < o; S
Hy: 0} =03 ST
0 ; 22 Fy = —; Fo>Fqn 1,1
Hl g >0'2 Sz

The appropriate reference distribution for F, is the F distribution with n; — 1 numerator
degrees of freedom and n, — 1 denominator degrees of freedom. The null hypothesis would
be rejected if Fy > Fop, 1,1 OF if Fy < Fi_@nyu-1-1» Where Fop, ;. | and
F\_@)n,—1.0,—1 denote the upper «/2 and lower 1 — (a/2) percentage points of the F' distribu-
tion with n; — 1 and n, — 1 degrees of freedom. Table IV of the Appendix gives only upper-
tail percentage points of F; however, the upper- and lower-tail points are related by

1

F

U0y

Fl—a,vl,vz = (2-49)

Critical values for the one-sided alternative hypothesis are given in Table 2.8. Test procedures
for more than two variances are discussed in Section 3.4.3. We will also discuss the use of the
variance or standard deviation as a response variable in more general experimental settings.

exavpLE 2.3 [

A chemical engineer is investigating the inherent variability

of two types of test equipment that can be used to monitor $2 14

the output of a production process. He suspects that the old Fy = Iy 1.34
. . sz 10.8

equipment, type 1, has a larger variance than the new one. 2

Thus, he wishes to test the hypothesis From Appendix Table IV we find that F 5,9 = 3.10, so

10.8. The test statistic is

Holo =0
.2 2
H :o1>0;

Two random samples of n; = 12 and n, = 10 observations
are taken, and the sample variances are S5 = 14.5 and S5 =

the null hypothesis cannot be rejected. That is, we have
found insufficient statistical evidence to conclude that the
variance of the old equipment is greater than the variance of
the new equipment.
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The 100(1 — «) confidence interval for the ratio of the population variances o /03 is

ST oi _ S

;% Flfa/Z,nzfl,n,fl — :% = ?% Fa/Z,nzfl,nﬁl
To illustrate the use of Equation 2.50, the 95 percent confidence interval for the ratio of vari-
ances o1/o; in Example 2.2 is, using Fy s = 3.59 and F o501 = 1/Fygs.110 = 1/3.92 =

(2.50)

0.255,
14.5

10.8

2.7 Problems

2
(o 14.5
= =< =
0.255) = o = 1038 (3.59)
ol

0.34 = = 4.82

o3

2.1. Computer output for a random sample of data is
shown below. Some of the quantities are missing. Compute
the values of the missing quantities.

Variable N Mean SE Mean Std. Dev. Variance Minimum Maximum
Y 9 19.96 ? 3.12 ? 15.94 27.16

2.2.  Computer output for a random sample of data is
shown below. Some of the quantities are missing. Compute
the values of the missing quantities.

SE Mean Std. Dev. Sum
0.159 ? 399.851

Variable N Mean
Y 16 ?

2.3.  Suppose that we are testing H,: w = u, versus
H,: u # w,. Calculate the P-value for the following observed
values of the test statistic:
(a) Z,=225 (b)Z,=1.55
d Z,=195 (e)Z,= —0.10

(€) Zy = 2.10

2.4. Suppose that we are testing H,: u = u, versus
H,: p > . Calculate the P-value for the following observed
values of the test statistic:
(a) Z,=245 (b)Z,=—1.53
d Z,=195 (e)Z,= —025

(©) Z, =215

2.5. Consider the computer output shown below.

One-Sample Z

Test of mu=30 vs not=230
The assumed standard deviation=1.2

SE Mean
0.3000

95% CI z P
(30.6120, 31.7880) ? ?

N Mean
16 31.2000

(a) Fill in the missing values in the output. What conclu-
sion would you draw?

(b) Is this a one-sided or two-sided test?

(¢) Use the output and the normal table to find a 99 percent
CI on the mean.

(d)What is the P-value if the alternative hypothesis is
H,:pn>30?
2.6. Suppose that we are testing Hy, : @; = u, versus H,:
My # M, where the two sample sizes are n; = n, = 12. Both
sample variances are unknown but assumed equal. Find
bounds on the P-value for the following observed values of
the test statistic.

@)ty =230 (b)ty =341 (¢) 1, =195 (d) 1, = —2.45
2.7. Suppose that we are testing Hy : u; = w, versus H;:
My > 1, where the two sample sizes are n; = n, = 10. Both
sample variances are unknown but assumed equal. Find
bounds on the P-value for the following observed values of
the test statistic.

(a)ty =231 (b) 1, =3.60 (¢) 1, =1.95 (d) 1, = 2.19
2.8.  Consider the following sample data: 9.37, 13.04,
11.69, 8.21, 11.18, 10.41, 13.15, 11.51, 13.21, and 7.75. Is it
reasonable to assume that this data is a sample from a normal
distribution? Is there evidence to support a claim that the
mean of the population is 10?7
2.9. A computer program has produced the following out-
put for a hypothesis-testing problem:

Difference in sample means: 2.35

Degrees of freedom: 18

Standard error of the difference in sample means: ?
Test statistic: tg = 2.01

P-value: 0.0298

(a) What is the missing value for the standard error?
(b) Is this a two-sided or a one-sided test?
(¢) If @ = 0.05, what are your conclusions?

(d) Find a 90% two-sided CI on the difference in
means.
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2.10. A computer program has produced the following out-
put for a hypothesis-testing problem:

Difference in sample means: 11.5

Degrees of freedom: 24

Standard error of the difference in sample means: ?
Test statistic: to = -1.88

P-value: 0.0723

(a) What is the missing value for the standard error?

(b) Is this a two-sided or a one-sided test?

(¢) If @ = 0.05, what are your conclusions?

(d) Find a 95% two-sided CI on the difference in means.
2.11. Suppose that we are testing H,:u = w, versus
H,: pu > py with a sample size of n = 15. Calculate bounds

on the P-value for the following observed values of the test
statistic:

(a) 1y = 2.35 (b) t, = 3.55 (¢) 1, = 2.00 (d) t, = 1.55

2.12. Suppose that we are testing H,:u = u, versus
H,:p # uy with a sample size of n = 10. Calculate bounds
on the P-value for the following observed values of the test
statistic:

(a) t, =2.48 (b) 1, = —3.95 (¢) 1, = 2.69

d) 1,=188 (e)t,=—1.25

2.13. Consider the computer output shown below.

One-Sample T: Y
Test of mu=91 vs. not=91

Variable N Mean Std. Dev. SE Mean 95% CI T P
Y 25 92.5805 ? 0.4673 (91.6160, ?) 3.38 0.002

(a) Fill in the missing values in the output. Can the null
hypothesis be rejected at the 0.05 level? Why?

(b) Is this a one-sided or a two-sided test?

(¢) If the hypotheses had been H,: w =90 versus
H,: u 7 90 would you reject the null hypothesis at the
0.05 level?

(d) Use the output and the ¢ table to find a 99 percent two-
sided CI on the mean.

(e) What is the P-value if the alternative hypothesis is
H:p> 917

2.14. Consider the computer output shown below.

One-Sample T: Y

Test of mu=25 vs > 25

95% Lower
Variable N Mean Std. Dev. SE Mean Bound T P
Y 12 25.6818 ? 0.3360 ? ? 0.034

(a) How many degrees of freedom are there on the #-test
statistic?

(b) Fill in the missing information.

2.15. Consider the computer output shown below.

Two-Sample T-Test and Cl: Y1, Y2

Two-sample T for Y1 vs Y2

N Mean Std. Dev. SE Mean
Y1 20 50.19 1.71 0.38
Y2 20 52.52 2.48 0.55

Difference=mu (X1) —mu (X2)

Estimate for difference: —2.33341

95% CI for difference: (—3.69547, —0.97135)
T-Test of difference=0 (vs not =) : T-Value=-3.47
P-Value=0.001 DF=38

Both use Pooled Std. Dev.=2.1277

(a) Can the null hypothesis be rejected at the 0.05 level?
Why?
(b) Is this a one-sided or a two-sided test?

(¢) If the hypotheses had been H,: u, — p, = 2 versus
H,:w, — wm,# 2 would you reject the null hypothesis
at the 0.05 level?

(d) If the hypotheses had been H,: u, — u, = 2 versus
H,:p, — n, <2 would you reject the null hypothesis
at the 0.05 level? Can you answer this question with-
out doing any additional calculations? Why?

(e) Use the output and the ¢ table to find a 95 percent
upper confidence bound on the difference in means.

(f) What is the P-value if the hypotheses are Hy: u, —
Mo = 2 versus Hy: p; — u, # 27

2.16. The breaking strength of a fiber is required to be at
least 150 psi. Past experience has indicated that the standard
deviation of breaking strength is o = 3 psi. A random sample
of four specimens is tested, and the results are y, = 145, y, =
153, y; = 150, and y, = 147.

(a) State the hypotheses that you think should be tested in
this experiment.

(b) Test these hypotheses using a = 0.05. What are your
conclusions?

(¢) Find the P-value for the test in part (b).

(d) Construct a 95 percent confidence interval on the mean
breaking strength.

2.17. The viscosity of a liquid detergent is supposed to
average 800 centistokes at 25°C. A random sample of 16
batches of detergent is collected, and the average viscosity is
812. Suppose we know that the standard deviation of viscosity
is o = 25 centistokes.

(a) State the hypotheses that should be tested.

(b) Test these hypotheses using & = 0.05. What are your

conclusions?

(¢) What is the P-value for the test?

(d) Find a 95 percent confidence interval on the mean.
2.18. The diameters of steel shafts produced by a certain
manufacturing process should have a mean diameter of 0.255
inches. The diameter is known to have a standard deviation of
o =0.0001 inch. A random sample of 10 shafts has an aver-
age diameter of 0.2545 inch.



(a) Set up appropriate hypotheses on the mean w.
(b) Test these hypotheses using a = 0.05. What are your
conclusions?
(¢) Find the P-value for this test.
(d) Construct a 95 percent confidence interval on the mean
shaft diameter.
2.19. A normally distributed random variable has an
unknown mean u and a known variance o> = 9. Find the sam-
ple size required to construct a 95 percent confidence interval
on the mean that has total length of 1.0.
2.20. The shelf life of a carbonated beverage is of interest.
Ten bottles are randomly selected and tested, and the follow-
ing results are obtained:

Days
108 138
124 163
124 159
106 134

115 139

(a) We would like to demonstrate that the mean shelf life
exceeds 120 days. Set up appropriate hypotheses for
investigating this claim.

(b) Test these hypotheses using @ = 0.01. What are your
conclusions?

(¢) Find the P-value for the test in part (b).

(d) Construct a 99 percent confidence interval on the mean
shelf life.

2.21. Consider the shelf life data in Problem 2.20. Can shelf
life be described or modeled adequately by a normal distribu-
tion? What effect would the violation of this assumption have
on the test procedure you used in solving Problem 2.15?

2.22. The time to repair an electronic instrument is a normal-
ly distributed random variable measured in hours. The repair
times for 16 such instruments chosen at random are as follows:

Hours
159 280 101 212
224 379 179 264
222 362 168 250
149 260 485 170

(a) You wish to know if the mean repair time exceeds 225
hours. Set up appropriate hypotheses for investigating
this issue.

(b) Test the hypotheses you formulated in part (a). What
are your conclusions? Use @ = 0.05.

(¢) Find the P-value for the test.

(d) Construct a 95 percent confidence interval on mean
repair time.
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2.23. Reconsider the repair time data in Problem 2.22. Can
repair time, in your opinion, be adequately modeled by a nor-
mal distribution?

2.24. 'Two machines are used for filling plastic bottles with
a net volume of 16.0 ounces. The filling processes can be
assumed to be normal, with standard deviations of o = 0.015
and o, = 0.018. The quality engineering department suspects
that both machines fill to the same net volume, whether or not
this volume is 16.0 ounces. An experiment is performed by
taking a random sample from the output of each machine.

Machine 1 Machine 2
16.03 16.01 16.02 16.03
16.04 15.96 15.97 16.04
16.05 15.98 15.96 16.02
16.05 16.02 16.01 16.01
16.02 15.99 15.99 16.00

(a) State the hypotheses that should be tested in this
experiment.

(b) Test these hypotheses using o« = 0.05. What are your
conclusions?

(¢) Find the P-value for this test.

(d) Find a 95 percent confidence interval on the difference
in mean fill volume for the two machines.

2.25. Two types of plastic are suitable for use by an elec-
tronic calculator manufacturer. The breaking strength of this
plastic is important. It is known that o; = o, = 1.0 psi. From
random samples of n; = 10 and n, = 12 we obtainy, = 162.5
and y, = 155.0. The company will not adopt plastic 1 unless
its breaking strength exceeds that of plastic 2 by at least 10
psi. Based on the sample information, should they use plastic
1? In answering this question, set up and test appropriate
hypotheses using @ = 0.01. Construct a 99 percent confidence
interval on the true mean difference in breaking strength.
2.26.
chemical flares of two different formulations. The design
engineers are interested in both the mean and variance of the
burning times.

Type 1 Type 2
65 82 64 56
81 67 71 69
57 59 83 74
66 75 59 82
82 70 65 79

(a) Test the hypothesis that the two variances are equal.
Use a = 0.05.

(b) Using the results of (a), test the hypothesis that the
mean burning times are equal. Use & = 0.05. What is
the P-value for this test?

The following are the burning times (in minutes) of []]
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(c) Discuss the role of the normality assumption in this
problem. Check the assumption of normality for both
types of flares.

2.27. An article in Solid State Technology, “Orthogonal
Design for Process Optimization and Its Application to
Plasma Etching” by G. Z. Yin and D. W. Jillie (May 1987)
describes an experiment to determine the effect of the C,F;
flow rate on the uniformity of the etch on a silicon wafer
used in integrated circuit manufacturing. All of the runs
were made in random order. Data for two flow rates are as
follows:

C,F; Flow Uniformity Observation

sceMm) 1 2 3 4 5 6
125 2.7 46 26 30 32 38
200 4.6 34 29 35 41 51

(a) Does the C,Fy flow rate affect average etch uniformi-
ty? Use a = 0.05.

(b) What is the P-value for the test in part (a)?

(¢) Does the C,F4 flow rate affect the wafer-to-wafer vari-
ability in etch uniformity? Use a = 0.05.

(d) Draw box plots to assist in the interpretation of the
data from this experiment.

2.28. A new filtering device is installed in a chemical unit.
Before its installation, a random sample yielded the follow-
ing information about the percentage of impurity: y, = 12.5,
§7 = 101.17, and n, = 8. After installation, a random sample
yielded y, = 10.2, 83 = 94.73, n, = 9.
(a) Can you conclude that the two variances are equal?
Use a = 0.05.

(b) Has the filtering device reduced the percentage of
impurity significantly? Use a = 0.05.

2.29. Photoresist is a light-sensitive material applied to
semiconductor wafers so that the circuit pattern can be
imaged on to the wafer. After application, the coated wafers
are baked to remove the solvent in the photoresist mixture
and to harden the resist. Here are measurements of photore-
sist thickness (in kA) for eight wafers baked at two differ-
ent temperatures. Assume that all of the runs were made in
random order.

95 °C 100 °C
11.176 5.263
7.089 6.748
8.097 7.461
11.739 7.015
11.291 8.133
10.759 7.418
6.467 3.772
8.315 8.963

(a) Is there evidence to support the claim that the high-
er baking temperature results in wafers with a lower
mean photoresist thickness? Use a = 0.05.

(b) What is the P-value for the test conducted in part (a)?

(¢) Find a 95 percent confidence interval on the difference in
means. Provide a practical interpretation of this interval.

(d) Draw dot diagrams to assist in interpreting the results
from this experiment.

(e) Check the assumption of normality of the photoresist
thickness.

(f) Find the power of this test for detecting an actual dif-
ference in means of 2.5 kA.

(g) What sample size would be necessary to detect an
actual difference in means of 1.5 kA with a power of
at least 0.9?

2.30. Front housings for cell phones are manufactured in
an injection molding process. The time the part is allowed
to cool in the mold before removal is thought to influence
the occurrence of a particularly troublesome cosmetic
defect, flow lines, in the finished housing. After manufac-
turing, the housings are inspected visually and assigned a
score between 1 and 10 based on their appearance, with 10
corresponding to a perfect part and 1 corresponding to a
completely defective part. An experiment was conducted
using two cool-down times, 10 and 20 seconds, and 20
housings were evaluated at each level of cool-down time.
All 40 observations in this experiment were run in random
order. The data are as follows.

10 seconds 20 seconds
1 3 7 6
2 6 8 9
1 5 5 5
3 3 9 7
5 2 5 4
1 1 8 6
5 6 6 8
2 8 4 5
3 2 6 8
5 3 7 7

(a) Is there evidence to support the claim that the longer
cool-down time results in fewer appearance defects?
Use a = 0.05.

(b) What is the P-value for the test conducted in part (a)?

(¢) Find a 95 percent confidence interval on the difference
in means. Provide a practical interpretation of this
interval.

(d) Draw dot diagrams to assist in interpreting the results
from this experiment.

(e) Check the assumption of normality for the data from
this experiment.



2.31. Twenty observations on etch uniformity on silicon
wafers are taken during a qualification experiment for a plas-
ma etcher. The data are as follows:

5.34 6.65 4.76 5.98 7.25
6.00 7.55 5.54 5.62 6.21
5.97 7.35 5.44 4.39 4.98
5.25 6.35 4.61 6.00 532

(a) Construct a 95 percent confidence interval estimate
of o?.
(b) Test the hypothesis that o = 1.0. Use @ = 0.05. What
are your conclusions?
(¢) Discuss the normality assumption and its role in this
problem.
(d) Check normality by constructing a normal probability
plot. What are your conclusions?
2.32. The diameter of a ball bearing was measured by 12
inspectors, each using two different kinds of calipers. The
results were

Inspector Caliper 1 Caliper 2
1 0.265 0.264
2 0.265 0.265
3 0.266 0.264
4 0.267 0.266
5 0.267 0.267
6 0.265 0.268
7 0.267 0.264
8 0.267 0.265
9 0.265 0.265

10 0.268 0.267
11 0.268 0.268
12 0.265 0.269

(a) Is there a significant difference between the means of
the population of measurements from which the two
samples were selected? Use a = 0.05.

(b) Find the P-value for the test in part (a).

(¢) Construct a 95 percent confidence interval on the dif-
ference in mean diameter measurements for the two
types of calipers.

2.33. Anarticle in the journal Neurology (1998, Vol. 50, pp.
1246-1252) observed that monozygotic twins share numerous
physical, psychological, and pathological traits. The investi-
gators measured an intelligence score of 10 pairs of twins.
The data obtained are as follows:

Pair Birth Order: 1 Birth Order: 2
1 6.08 5.73
2 6.22 5.80
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3 7.99 8.42
4 7.44 6.84
5 6.48 6.43
6 7.99 8.76
7 6.32 6.32
8 7.60 7.62
9 6.03 6.59
10 7.52 7.67

(a) Is the assumption that the difference in score is nor-
mally distributed reasonable?

(b) Find a 95% confidence interval on the difference in
mean score. Is there any evidence that mean score
depends on birth order?

(c) Test an appropriate set of hypotheses indicating that
the mean score does not depend on birth order.

2.34.  An article in the Journal of Strain Analysis (vol. 18,
no. 2, 1983) compares several procedures for predicting the
shear strength for steel plate girders. Data for nine girders in
the form of the ratio of predicted to observed load for two of
these procedures, the Karlsruhe and Lehigh methods, are as
follows:

Girder Karlsruhe Method Lehigh Method
S1/1 1.186 1.061
S2/1 1.151 0.992
S3/1 1.322 1.063
S4/1 1.339 1.062
S5/1 1.200 1.065
S2/1 1.402 1.178
S2/2 1.365 1.037
S2/3 1.537 1.086
S2/4 1.559 1.052

(a) Is there any evidence to support a claim that there is a
difference in mean performance between the two
methods? Use & = 0.05.

(b) What is the P-value for the test in part (a)?

(¢) Construct a 95 percent confidence interval for the dif-
ference in mean predicted to observed load.

(d) Investigate the normality assumption for both samples.

(e) Investigate the normality assumption for the difference
in ratios for the two methods.

(f) Discuss the role of the normality assumption in the
paired r-test.

2.35. The deflection temperature under load for two differ-
ent formulations of ABS plastic pipe is being studied. Two
samples of 12 observations each are prepared using each for-

mulation and the deflection temperatures (in °F) are reported
below:
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Formulation 1 Formulation 2

206 193 192 177 176 198
188 207 210 197 185 188
205 185 194 206 200 189
187 189 178 201 197 203

(a) Construct normal probability plots for both samples.
Do these plots support assumptions of normality and
equal variance for both samples?

(b) Do the data support the claim that the mean deflection
temperature under load for formulation 1 exceeds that
of formulation 2? Use « = 0.05.

(¢) What is the P-value for the test in part (a)?

2.36. Refer to the data in Problem 2.35. Do the data support
a claim that the mean deflection temperature under load for
formulation 1 exceeds that of formulation 2 by at least 3°F?

In semiconductor manufacturing wet chemical
etching is often used to remove silicon from the backs of
wafers prior to metalization. The etch rate is an important
characteristic of this process. Two different etching solutions
are being evaluated. Eight randomly selected wafers have
been etched in each solution, and the observed etch rates (in
mils/min) are as follows.

Solution 1 Solution 2

9.9 10.6 10.2 10.6
9.4 10.3 10.0 10.2
10.0 9.3 10.7 10.4
10.3 9.8 10.5 10.3

(a) Do the data indicate that the claim that both solutions
have the same mean etch rate is valid? Use o = 0.05
and assume equal variances.

(b) Find a 95 percent confidence interval on the difference
in mean etch rates.

(¢) Use normal probability plots to investigate the adequa-
cy of the assumptions of normality and equal variances.

2.38. Two popular pain medications are being compared
on the basis of the speed of absorption by the body.
Specifically, tablet 1 is claimed to be absorbed twice as fast
as tablet 2. Assume that o} and o3 are known. Develop a test
statistic for

Hy:2uy = py
H:2p # w,
2.39. Continuation of Problem 2.38. An article in Nature

(1972, pp. 225-226) reported on the levels of monoamine oxi-
dase in blood platelets for a sample of 43 schizophrenic

patients resulting in ¥y = 2.69 and s, = 2.30 while for a sam-
ple of 45 normal patients the results were ¥, = 6.35 and s, =
4.03. The units are nm/mg protein/h. Use the results of the
previous problem to test the claim that the mean monoamine
oxidase level for normal patients is at last twice the mean level
for schizophrenic patients. Assume that the sample sizes are
large enough to use the sample standard deviations as the true
parameter values.

2.40. Suppose we are testing
Hy:py = wy
Hytpy #

where o3 > o3 are known. Our sampling resources are con-
strained such that n; + n, = N. Show that an allocation of the
observation n, n, to the two samp that lead the most powerful
test is in the ratio n,/n, = o,/o,.

2.41. Continuation of Problem 2.40. Suppose that we
want to construct a 95% two-sided confidence interval on the
difference in two means where the two sample standard devi-
ations are known to be o, = 4 and o, = 8. The total sample
size is restricted to N = 30. What is the length of the 95% CI
if the sample sizes used by the experimenter are n, = n, = 15?
How much shorter would the 95% CI have been if the exper-
imenter had used an optimal sample size allocation?

2.42. Develop Equation 2.46 for a 100(1 — «) percent con-
fidence interval for the variance of a normal distribution.

2.43. Develop Equation 2.50 for a 100(1 — «) percent con-
fidence interval for the ratio o3/o3, where o3 and o3 are the
variances of two normal distributions.

2.44. Develop an equation for finding a 100 (1 — «) percent
confidence interval on the difference in the means of two nor-
mal distributions where o3 Z 3. Apply your equation to the
Portland cement experiment data, and find a 95 percent confi-
dence interval.

2.45. Construct a data set for which the paired #-test statis-
tic is very large, but for which the usual two-sample or pooled
t-test statistic is small. In general, describe how you created
the data. Does this give you any insight regarding how the
paired z-test works?

2.46. Consider the experiment described in Problem 2.26.
If the mean burning times of the two flares differ by as much
as 2 minutes, find the power of the test. What sample size
would be required to detect an actual difference in mean burn-
ing time of 1 minute with a power of at least 0.90?

2.47. Reconsider the bottle filling experiment described in
Problem 2.24. Rework this problem assuming that the two
population variances are unknown but equal.

2.48. Consider the data from Problem 2.24. If the mean fill
volume of the two machines differ by as much as 0.25 ounces,
what is the power of the test used in Problem 2.19? What sam-
ple size would result in a power of at least 0.9 if the actual dif-
ference in mean fill volume is 0.25 ounces?
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3.1

Chapter 3 B Experiments with a Single Factor: The Analysis of Variance

In Chapter 2, we discussed methods for comparing two conditions or treatments. For
example, the Portland cement tension bond experiment involved two different mortar for-
mulations. Another way to describe this experiment is as a single-factor experiment with
two levels of the factor, where the factor is mortar formulation and the two levels are the
two different formulation methods. Many experiments of this type involve more than two
levels of the factor. This chapter focuses on methods for the design and analysis of single-
factor experiments with an arbitrary number a levels of the factor (or a treatments). We will
assume that the experiment has been completely randomized.

An Example

In many integrated circuit manufacturing steps, wafers are completely coated with a layer of
material such as silicon dioxide or a metal. The unwanted material is then selectively removed
by etching through a mask, thereby creating circuit patterns, electrical interconnects, and
areas in which diffusions or metal depositions are to be made. A plasma etching process is
widely used for this operation, particularly in small geometry applications. Figure 3.1 shows
the important features of a typical single-wafer etching tool. Energy is supplied by a radio-
frequency (RF) generator causing plasma to be generated in the gap between the electrodes.
The chemical species in the plasma are determined by the particular gases used.
Fluorocarbons, such as CF, (tetrafluoromethane) or C,F, (hexafluoroethane), are often used
in plasma etching, but other gases and mixtures of gases are relatively common, depending
on the application.

An engineer is interested in investigating the relationship between the RF power setting
and the etch rate for this tool. The objective of an experiment like this is to model the rela-
tionship between etch rate and RF power, and to specify the power setting that will give a
desired target etch rate. She is interested in a particular gas (C,Fs) and gap (0.80 cm) and
wants to test four levels of RF power: 160, 180, 200, and 220 W. She decided to test five
wafers at each level of RF power.

This is an example of a single-factor experiment with a = 4 levels of the factor and
n = 5 replicates. The 20 runs should be made in random order. A very efficient way to gen-
erate the run order is to enter the 20 runs in a spreadsheet (Excel), generate a column of
random numbers using the RAND () function, and then sort by that column.

Gas control panel

RF
generator

Anode

Gas supply ,_:li— Wafer
Cathode

#‘je Valve

—_—

Vacuum pump

m FIGURE 3.1 A single-wafer plasma etching tool
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Suppose that the test sequence obtained from this process is given as below:

Excel Random

Test Sequence Number (Sorted) Power
1 12417 200
2 18369 220
3 21238 220
4 24621 160
5 29337 160
6 32318 180
7 36481 200
8 40062 160
9 43289 180

10 49271 200
11 49813 220
12 52286 220
13 57102 160
14 63548 160
15 67710 220
16 71834 180
17 77216 180
18 84675 180
19 89323 200
20 94037 200

This randomized test sequence is necessary to prevent the effects of unknown nuisance vari-
ables, perhaps varying out of control during the experiment, from contaminating the results.
To illustrate this, suppose that we were to run the 20 test wafers in the original nonrandom-
ized order (that is, all five 160 W power runs are made first, all five 180 W power runs are
made next, and so on). If the etching tool exhibits a warm-up effect such that the longer it is
on, the lower the observed etch rate readings will be, the warm-up effect will potentially con-
taminate the data and destroy the validity of the experiment.

Suppose that the engineer runs the experiment that we have designed in the random
order. The observations that she obtains on etch rate are shown in Table 3.1.

It is always a good idea to examine experimental data graphically. Figure 3.2a presents box
plots for etch rate at each level of RF power, and Figure 3.2b a scatter diagram of etch rate ver-
sus RF power. Both graphs indicate that etch rate increases as the power setting increases. There

Etch Rate Data (in A/min) from the Plasma Etching Experiment

Observations
Power
(W) 1 2 3 4 5 Totals Averages
160 575 542 530 539 570 2756 551.2
180 565 593 590 579 610 2937 587.4
200 600 651 610 637 629 3127 625.4
220 725 700 715 685 710 3535 707.0




68 Chapter 3 B Experiments with a Single Factor: The Analysis of Variance

750 750
L d
= 700 B | 2w :
E € .
< <
o 650 o 650— .
© © [ 3
o o H
5 El S . -
£ s00|- EI £ 600 : .
s .
550 |— 550 —
L[]
| | | hd | l |
160 180 200 220 160 180 200 220
Power (w) Power (w)
(@) Comparative box plot (b) Scatter diagram

m FIGURE 3.2 Box plots and scatter diagram of the etch rate data

is no strong evidence to suggest that the variability in etch rate around the average depends on the
power setting. On the basis of this simple graphical analysis, we strongly suspect that (1) RF power
setting affects the etch rate and (2) higher power settings result in increased etch rate.

Suppose that we wish to be more objective in our analysis of the data. Specifically,
suppose that we wish to test for differences between the mean etch rates at all a = 4 levels
of RF power. Thus, we are interested in testing the equality of all four means. It might seem
that this problem could be solved by performing a t-test for all six possible pairs of means.
However, this is not the best solution to this problem. First of all, performing all six pairwise
t-tests is inefficient. It takes a lot of effort. Second, conducting all these pairwise compar-
isons inflates the type I error. Suppose that all four means are equal, so if we select @ = 0.05,
the probability of reaching the correct decision on any single comparison is 0.95. However,
the probability of reaching the correct conclusion on all six comparisons is considerably less
than 0.95, so the type I error is inflated.

The appropriate procedure for testing the equality of several means is the analysis of
variance. However, the analysis of variance has a much wider application than the problem
above. It is probably the most useful technique in the field of statistical inference.

3.2 The Analysis of Variance

m TABLE 3.2

Suppose we have a treatments or different levels of a single factor that we wish to compare.
The observed response from each of the a treatments is a random variable. The data would appear
as in Table 3.2. An entry in Table 3.2 (e.g., y;) represents the jth observation taken under factor
level or treatment i. There will be, in general, n observations under the ith treatment. Notice that
Table 3.2 is the general case of the data from the plasma etching experiment in Table 3.1.

Typical Data for a Single-Factor Experiment

Treatment
(Level) Observations Totals Averages
1 Y Y2 cee Yin Y yi.
2 Va1 Yoo B Yon Ya. ya.
a yal yaZ R ytm yi L
Y. Y.
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Models for the Data. We will find it useful to describe the observations from an
experiment with a model. One way to write this model is

R e @
where y;; is the ijth observation, u; is the mean of the ith factor level or treatment, and € is a
random error component that incorporates all other sources of variability in the experiment
including measurement, variability arising from uncontrolled factors, differences between the
experimental units (such as test material, etc.) to which the treatments are applied, and the
general background noise in the process (such as variability over time, effects of environmen-
tal variables, and so forth). It is convenient to think of the errors as having mean zero, so that
E(yy) = w;.

Equation 3.1 is called the means model. An alternative way to write a model for the
data is to define

M= p+ T, i=1,2,...,a
so that Equation 3.1 becomes

i=1,2,...,a

Vi =pt+ Tt E:j/{ 3.2)

j=12,...,n
In this form of the model, w is a parameter common to all treatments called the overall mean,
and T, is a parameter unique to the ith treatment called the ith treatment effect. Equation 3.2
is usually called the effects model.

Both the means model and the effects model are linear statistical models; that is, the
response variable y;; is a linear function of the model parameters. Although both forms of the
model are useful, the effects model is more widely encountered in the experimental design lit-
erature. It has some intuitive appeal in that u is a constant and the treatment effects 7; repre-
sent deviations from this constant when the specific treatments are applied.

Equation 3.2 (or 3.1) is also called the one-way or single-factor analysis of variance
(ANOVA) model because only one factor is investigated. Furthermore, we will require that
the experiment be performed in random order so that the environment in which the treatments
are applied (often called the experimental units) is as uniform as possible. Thus, the exper-
imental design is a completely randomized design. Our objectives will be to test appropri-
ate hypotheses about the treatment means and to estimate them. For hypothesis testing, the
model errors are assumed to be normally and independently distributed random variables with
mean zero and variance o°. The variance o is assumed to be constant for all levels of the fac-
tor. This implies that the observations

yij ~ N + 7, 0%

and that the observations are mutually independent.

Fixed or Random Factor? The statistical model, Equation 3.2, describes two differ-
ent situations with respect to the treatment effects. First, the a treatments could have been
specifically chosen by the experimenter. In this situation, we wish to test hypotheses about the
treatment means, and our conclusions will apply only to the factor levels considered in the
analysis. The conclusions cannot be extended to similar treatments that were not explicitly
considered. We may also wish to estimate the model parameters (u, 7;, o%). This is called the
fixed effects model. Alternatively, the a treatments could be a random sample from a larg-
er population of treatments. In this situation, we should like to be able to extend the conclu-
sions (which are based on the sample of treatments) to all treatments in the population,
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whether or not they were explicitly considered in the analysis. Here, the 7; are random vari-
ables, and knowledge about the particular ones investigated is relatively useless. Instead, we
test hypotheses about the variability of the 7; and try to estimate this variability. This is called
the random effects model or components of variance model. We discuss the single-factor
random effects model in Section 3.9. However, we will defer a more complete discussion of
experiments with random factors to Chapter 13.

Analysis of the Fixed Effects Model

In this section, we develop the single-factor analysis of variance for the fixed effects model.
Recall that y; represents the total of the observations under the ith treatment. Let y; represent
the average of the observations under the ith treatment. Similarly, let y_ represent the grand
total of all the observations and y_represent the grand average of all the observations.
Expressed symbolically,

yi.:Eyij Yi. = yiln i=1,2,...,a
j=1

n

yi Y.=V.IN 3.3)

D

Y. =

i=1j=1
where N = an is the total number of observations. We see that the “dot” subscript notation

implies summation over the subscript that it replaces.
We are interested in testing the equality of the a treatment means; that is, E(y;) = u +

T, =W, i = 1,2,...,a. The appropriate hypotheses are
Hytpy = po = = g
Hy:u; # w; for at least one pair (i, j) 34

In the effects model, we break the ith treatment mean w; into two components such that
m; = p + 7. We usually think of u as an overall mean so that

e

lP«i
a M

1

This definition implies that

e

=0

1

i=1

That is, the treatment or factor effects can be thought of as deviations from the overall mean.'
Consequently, an equivalent way to write the above hypotheses is in terms of the treatment
effects 7;, say

HO:TI =Ty, = """ T, = O
H:m,#0 for at least one i

Thus, we speak of testing the equality of treatment means or testing that the treatment effects
(the 7;) are zero. The appropriate procedure for testing the equality of a treatment means is
the analysis of variance.

! For more information on this subject, refer to the supplemental text material for Chapter 3.
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3.3.1 Decomposition of the Total Sum of Squares

The name analysis of variance is derived from a partitioning of total variability into its com-
ponent parts. The total corrected sum of squares

2 ylf - 5)2

is used as a measure of overall variability in the data. Intuitively, this is reasonable because if
we were to divide SS; by the appropriate number of degrees of freedom (in this case, an — 1 =
N — 1), we would have the sample variance of the y’s. The sample variance is, of course, a
standard measure of variability.

Note that the total corrected sum of squares SS; may be written as

T Ma

> 2 by =y =2 2 16— y) + (g = 3P (3.5)

or

D=
D=
~~
<

<

|
<
~5

Il
)
D=
~~
:<i
'*<i
HMQ

2 Yij — yi.)z

2 El 21 O — y..)(yl‘j - )
=1 j=
However, the cross-product term in this last equation is zero, because
Z vy = yi) = yi. = ny, =y, — n(yi/n) = 0

Therefore, we have

M=
M
;?
'\<i
i Ma
T Mn

Z yi = V) (3.6)

Equation 3.6 is the fundamental ANOVA identity. It states that the total variability in the data,
as measured by the total corrected sum of squares, can be partitioned into a sum of squares
of the differences between the treatment averages and the grand average plus a sum of
squares of the differences of observations within treatments from the treatment average. Now,
the difference between the observed treatment averages and the grand average is a measure of
the differences between treatment means, whereas the differences of observations within a
treatment from the treatment average can be due to only random error. Thus, we may write
Equation 3.6 symbolically as

SST = SSTreatments + SSE

where SStcaments 1 called the sum of squares due to treatments (i.e., between treatments), and
SSp is called the sum of squares due to error (i.e., within treatments). There are an = N total
observations; thus, SS;has N — 1 degrees of freedom. There are a levels of the factor (and a
treatment means), SO SSteamens NS @ — 1 degrees of freedom. Finally, there are n replicates
within any treatment providing n — 1 degrees of freedom with which to estimate the experi-
mental error. Because there are a treatments, we have a(n — 1) = an — a = N — a degrees of
freedom for error.

It is instructive to examine explicitly the two terms on the right-hand side of the funda-
mental ANOVA identity. Consider the error sum of squares

i (yij - yi.)z = i[i (yij - y,'.)z]

j=1 i=1

||
I
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In this form, it is easy to see that the term within square brackets, if divided by n — 1, is the
sample variance in the ith treatment, or

n
E (yij - yi.)z
s2="1 _ i=12...,a
n—1
Now a sample variances may be combined to give a single estimate of the common popula-
tion variance as follows:

n

a _72
n—DSt+mn—DS3+ -+ @n— 1S il[,zl O y")]

m—D+@—1)+ -+ @m—1) Sw-1
i=1

_ SSe
S N—-a)

Thus, SSz/(N — a) is a pooled estimate of the common variance within each of the a treatments.
Similarly, if there were no differences between the a treatment means, we could use the
variation of the treatment averages from the grand average to estimate o°. Specifically,

n;@fif

a—1 a—1

SSTrealments _

is an estimate of ¢ if the treatment means are equal. The reason for this may be intuitively seen
as follows: The quantity =¢_,(y;, — y.)*/(a — 1) estimates o”/n, the variance of the treatment
averages, so n>(y; — y.)*/(a — 1) must estimate o~ if there are no differences in treatment
means.

We see that the ANOVA identity (Equation 3.6) provides us with two estimates of
o’—one based on the inherent variability within treatments and the other based on the
variability between treatments. If there are no differences in the treatment means, these
two estimates should be very similar, and if they are not, we suspect that the observed
difference must be caused by differences in the treatment means. Although we have used
an intuitive argument to develop this result, a somewhat more formal approach can be
taken.

The quantities

SS reatments
MSTreatmems = ﬁ
and
SS;

are called mean squares. We now examine the expected values of these mean squares.
Consider

SS 1 a n o
EMS,) = E( v _Ea> =V E[E > Oy~ y,-.)z]

i=1j=1

_ 1 a n 2 _ 72
=N E[i > (3 — 2y + yi.)]
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=N£aE[izy%—zniyz+niy,%]
j i=1 i=1

PR

Substituting the model (Equation 3.1) into this equation, we obtain

E(MSE)_E[i i(u+ri+ Eij)z_%i <iﬂ+7i+6g>2]
i=1 j=1 i=1

Mn

ﬁ\H

Now when squaring and taking expectation of the quantity within the brackets, we see that
terms involving €; and €] are replaced by o and no”, respectively, because E(e;) = 0
Furthermore, all cross products involving €; have zero expectation. Therefore, after squaring
and taking expectation, the last equation becomes

E(MSE)=NI[N,U, +n27f+N0'2—N;L2—nETf—aa'2]
=1 i=1

or
EMS;) = o?

By a similar approach, we may also show that’

E(MSTreatmems) = 0-2 + =

Thus, as we argued heuristically, MS, = SS;/(N — a) estimates o7, and, if there are no differ-
ences in treatment means (which implies that 7, = 0), MStcuments = SOTreaments/ (@ — 1) also
estimates ¢~. However, note that if treatment means do differ, the expected value of the treat-
ment mean square is greater than o’

It seems clear that a test of the hypothesis of no difference in treatment means can be
performed by comparing MSt..menis a0d MS;. We now consider how this comparison may be
made.

3.3.2 Statistical Analysis

We now investigate how a formal test of the hypothesis of no differences in treatment means
(Hy:py = pp = - -+ =, or equivalently, Hy:t; = 7, =--- = 71, = 0) can be performed.
Because we have assumed that the errors €, are normally and independently distributed with
mean zero and variance o”, the observatlons y;; are normally and independently distributed
with mean w + 7; and variance o”. Thus, SS; is a sum of squares in normally distributed
random variables; consequently, it can be shown that SST/a'2 is distributed as chi-square with
N — 1 degrees of freedom. Furthermore, we can show that SS;/0” is chi-square with N — a
degrees of freedom and that SSq,.,men/0” is chi-square with a — 1 degrees of freedom if the
null hypothesis Hy:7; = 0 is true. However, all three sums of squares are not necessarily
independent because SSteamens aNd SSg add to §S7. The following theorem, which is a spe-
cial form of one attributed to William G. Cochran, is useful in establishing the independence
of $S; and SSyeatments:

% Refer to the supplemental text material for Chapter 3.
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THEOREM 3-1
Cochran’s Theorem

Let Z, be NID(O, 1) fori = 1,2, ..., vand
ZZ:'Z:Q1+Q2+"'+Qs

where s = v, and Q, has v; degrees of freedom (i = 1,2, ...,s). Then O, Q,, . .., O,
are independent chi-square random variables with v,, v,, . . ., v, degrees of freedom,
respectively, if and only if

v=v,tuv,+t +v

s

Because the degrees of freedom for SSteamens ad SSg add to N — 1, the total number
of degrees of freedom, Cochran’s theorem implies that SStumen/0~ and SS; /o2 are independ-
ently distributed chi-square random variables. Therefore, if the null hypothesis of no differ-
ence in treatment means is true, the ratio

F. = SSTreatments/(a - 1) — MSTreatmems
0 SS/(N — a) MS;

3.7)

is distributed as F with @ — 1 and N — a degrees of freedom. Equation 3.7 is the test statis-
tic for the hypothesis of no differences in treatment means.

From the expected mean squares we see that, in general, MS; is an unbiased estimator of
o”. Also, under the null hypothesis, MStuumens iS an unbiased estimator of o*. However, if the
null hypothesis is false, the expected value of MSreumens i greater than o2, Therefore, under the
alternative hypothesis, the expected value of the numerator of the test statistic (Equation 3.7) is
greater than the expected value of the denominator, and we should reject H, on values of the test
statistic that are too large. This implies an upper-tail, one-tail critical region. Therefore, we
should reject H, and conclude that there are differences in the treatment means if

FO > Fa,afl,Nfa

where F|, is computed from Equation 3.7. Alternatively, we could use the P-value approach
for decision making. The table of F percentages in the Appendix (Table IV) can be used to
find bounds on the P-value.

The sums of squares may be computed in several ways. One direct approach is to make
use of the definition

Yij — .= —y)+ (yij - )
Use a spreadsheet to compute these three terms for each observation. Then, sum up the
squares to obtain SS7, SSteamentss and SSz. Another approach is to rewrite and simplify the def-

initions of SSteamens and SS7 in Equation 3.6, which results in
2

S8 = 2 X0 - yN (3.8)

i=1j )

~
L=t}

2

v 3.9)

<

I o
SSTreatments “n 21 Yi. —
i=

=]

and

SSE = SST - SSTreatments (3‘10)
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s TABLE 3.3
The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Sum of Degrees of Mean

Source of Variation Squares Freedom Square F,
SSTrealmems
& - - MS reatments

Between treatments =ny -y a—1 MStcamens Fo = —hreatments

=1 N B MS;
Error (within treatments) SSE = 8S; — SStreatments N—a MS;
Total SSp =2 X — .. ) N—1

i=1j=1

This approach is nice because some calculators are designed to accumulate the sum of entered
numbers in one register and the sum of the squares of those numbers in another, so each num-
ber only has to be entered once. In practice, we use computer software to do this.

The test procedure is summarized in Table 3.3. This is called an analysis of variance

(or ANOVA) table.
EXAMPLE 3.1 The Plasma Etching Experiment
To illustrate the analysis of variance, return to the first exam- We will use the analysis of variance to test Hy:u, =
ple discussed in Section 3.1. Recall that the engineer is Wy, = My = p, against the alternative H,;: some means are
interested in determining if the RF power setting affects the different. The sums of squares required are computed using
etch rate, and she has run a completely randomized experi- Equations 3.8, 3.9, and 3.10 as follows:

ment with four levels of RF power and five replicates. For
convenience, we repeat here the data from Table 3.1:

Observed Etch Rate (A/min)

RF Power Totals Averages
(W) 1 2 3 4 5 yi i
160 575 542 530 539 570 2756 551.2
180 565 593 590 579 610 2937 587.4
200 600 651 610 637 629 3127 625.4
220 725 700 715 685 710 3535 707.0
y. = 12,355 y. = 617.75
3 2 SSg = SS7 — SStee
_ 2 Y. E T Treatments
SS =2 2%~ = 72,209.75 — 66,870.55 = 5339.20
(5750 + (542) + - + (110 — (12,355) Usually, t'hese calculations would .be performec} on a
_ 20 computer, using a software package with the capability to
a 72’209'475 2 analyze data from designed experiments.
SSireaments = = 332 — 2= The ANOVA is summarized in Table 3.4. Note that the
= N . RF power or between-treatment mean square (22,290.18)
12,355 i i ithin-
_1 [Q756)2 + - + (3535)}] — ( ) is many times larger than.th.e V&.llthln treatn.lept or error
5 20 mean square (333.70). This indicates that it is unlikely

= 66,870.55 that the treatment means are equal. More formally, we
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m TABLE 3.4
ANOVA for the Plasma Etching Experiment

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F, P-Value
RF Power 66,870.55 3 22,290.18 Fy, = 66.80 <0.01
Error 5339.20 16 333.70
Total 72,209.75 19

can compute the F ratio F, = 22,290.18/333.70 = 66.80 rate. We could also compute a P-value for this test statis-
and compare this to an appropriate upper-tail percentage tic. Figure 3.3 shows the reference distribution (F; ;) for

point of the Fj |, distribution. To use a fixed significance thf" test statistic F. Clelarly, the P-value %S very small in
level approach, suppose that the experimenter has select- this case. From Appendix Table A-4, we find that F g 316
ed @ = 0.05. From Appendix Table IV we find that = 5.29 and because F, > 5.29, we can conclude that an
Fooss16 = 3.24. Because F, = 66.80 > 3.24, we reject upper bound for the P-value is 0.01; that is, P < 0.01 (the

p _ -9
H, and conclude that the treatment means differ; that is, exact P-value is P = 2.88 X 10°7).

the RF power setting significantly affects the mean etch

0.8

=
=)

S
[N}

Probability density
o
i
III|III|III|III

' T R |/\/| I |
0 4 8 12 eeT 70
Fo01,316 Fo F, = 66.80
Fo.05,3,16

m FIGURE 3.3 The reference distribution (F; ) for
the test statistic F, in Example 3.1

Coding the Data. Generally, we need not be too concerned with computing because
there are many widely available computer programs for performing the calculations. These
computer programs are also helpful in performing many other analyses associated with exper-
imental design (such as residual analysis and model adequacy checking). In many cases, these
programs will also assist the experimenter in setting up the design.

However, when hand calculations are necessary, it is sometimes helpful to code the
observations. This is illustrated in the next example.
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EXAMPLE 3.2

The ANOVA calculations may often be made more easily
or accurately by coding the observations. For example,
consider the plasma etching data in Example 3.1. Suppose
we subtract 600 from each observation. The coded data
are shown in Table 3.5. It is easy to verify that

SS; = (=257 + (—58)> + -+

+ (110)*> — Eo) = 72,209.75
(110)° =~ = 72,209.
(—244)* + (—63)> + (127)* + (535)*
SSTrealmenls = 5
— C) = 66,870.55
20 T
and
SSE = 5339.20

m TABLE 3.5
Coded Etch Rate Data for Example 3.2

Comparing these sums of squares to those obtained in
Example 3.1, we see that subtracting a constant from the
original data does not change the sums of squares.

Now suppose that we multiply each observation in
Example 3.1 by 2. It is easy to verify that the sums of
squares for the transformed data are SS; = 288,839.00,
SSTreatments = 267,482.20, and SS; = 21,356.80. These
sums of squares appear to differ considerably from those
obtained in Example 3.1. However, if they are divided
by 4 (i.e., 2%), the results are identical. For example,
for the treatment sum of squares 267,482.20/4 =
66,870.55. Also, for the coded data, the F ratio is F =
(267,482.20/3)/(21,356.80/16) = 66.80, which is identi-
cal to the F ratio for the original data. Thus, the ANOVAs
are equivalent.

Observations
RF Power Totals
W) 1 2 3 4 5 y;
160 —25 —58 —70 —61 —30 —244
180 —35 =7 —10 —21 10 —63
200 0 51 10 37 29 127
220 125 100 115 85 110 535

Randomization Tests and Analysis of Variance. In our development of the ANOVA
F test, we have used the assumption that the random errors €; are normally and independently
distributed random variables. The F test can also be justified as an approximation to a random-
ization test. To illustrate this, suppose that we have five observations on each of two treatments
and that we wish to test the equality of treatment means. The data would look like this:

Treatment 1 Treatment 2
Yu Yau
Y12 Y2
Y13 Y23
Yia Yoq
Yis Yas
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We could use the ANOVA F test to test Hy: w; = w,. Alternatively, we could use a somewhat
different approach. Suppose we consider all the possible ways of allocating the 10 numbers
in the above sample to the two treatments. There are 10!/5!5! = 252 possible arrangements
of the 10 observations. If there is no difference in treatment means, all 252 arrangements are
equally likely. For each of the 252 arrangements, we calculate the value of the F statistic using
Equation 3.7. The distribution of these F values is called a randomization distribution, and
a large value of F indicates that the data are not consistent with the hypothesis Hy: @, = w,.
For example, if the value of F actually observed was exceeded by only five of the values of
the randomization distribution, this would correspond to rejection of H,: u, = u, at a signif-
icance level of @ = 5/252 = 0.0198 (or 1.98 percent). Notice that no normality assumption is
required in this approach.

The difficulty with this approach is that, even for relatively small problems, it is
computationally prohibitive to enumerate the exact randomization distribution. However,
numerous studies have shown that the exact randomization distribution is well approxi-
mated by the usual normal-theory F distribution. Thus, even without the normality
assumption, the ANOVA F test can be viewed as an approximation to the randomization
test. For further reading on randomization tests in the analysis of variance, see Box,
Hunter, and Hunter (2005).

3.3.3 Estimation of the Model Parameters
We now present estimators for the parameters in the single-factor model
Vi = M + 7+ €

and confidence intervals on the treatment means. We will prove later that reasonable estimates
of the overall mean and the treatment effects are given by

Q=

<

T Y i=1,2...,a (3.11)

b
=

1

These estimators have considerable intuitive appeal; note that the overall mean is estimated
by the grand average of the observations and that any treatment effect is just the difference
between the treatment average and the grand average.

A confidence interval estimate of the ith treatment mean may be easily determined.
The mean of the ith treatment is

M =pt T

A point estimator of w; would be t; = o + 7, = y,. Now, if we assume that the errors
are normally distributed, each treatment average y; is distributed NID(u,, 0*/n). Thus, if o
were known, we could use the normal distribution to define the confidence interval. Using the
MS; as an estimator of o, we would base the confidence interval on the ¢ distribution.
Therefore, a 100(1 — «) percent confidence interval on the ith treatment mean u; is

_ MS _ MS,
Yii ™ lap,N-a TE =W =Yt tapn-a TE (3.12)

Differences in treatments are frequently of great practical interest. A 100(1 — «) percent con-
fidence interval on the difference in any two treatments means, say u; — u;, would be

_ _ 2MS _ _ 2MS
Yi. = Y. T lann-a 7 £< i = =Y. — Y.t fapn-a 7 £ 3.13)
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exavpLE 3.3 [

Using the data in Example 3.1, we may find the estimates 333.70 333.70
of the overall mean and the treatment effects as (o= 707.00 = 2.120 /=== = u, = 707.00 + 2.120 /==

12,355/20 = 617.75 and

7:1 =y
7:2=§2
T3 = s
Ty = Ya

551.20 — 617.75 = —66.55 or
587.40 — 617.75 = —30.35

707.00 — 17.32 = p, = 707.00 + 17.32

—y.=625.40 — 617.75 = 7.65
.~ Y. =707.00 = 617.75 = 89.25 Thus, the desired 95 percent confidence interval is

689.68 = u, = 724.32.

A 95 percent confidence interval on the mean of
treatment 4 (220W of RF power) is computed from

Equation 3.12 as

Simultaneous Confidence Intervals. The confidence interval expressions given
in Equations 3.12 and 3.13 are one-at-a-time confidence intervals. That is, the confidence
level 1 — a applies to only one particular estimate. However, in many problems, the exper-
imenter may wish to calculate several confidence intervals, one for each of a number of
means or differences between means. If there are r such 100(1 — «) percent confidence
intervals of interest, the probability that the r intervals will simultaneously be correct is at
least 1 — ra. The probability ra is often called the experimentwise error rate or overall
confidence coefficient. The number of intervals r does not have to be large before the set of
confidence intervals becomes relatively uninformative. For example, if there are r = 5
intervals and e = 0.05 (a typical choice), the simultaneous confidence level for the set of
five confidence intervals is at least 0.75, and if » = 10 and o = 0.05, the simultaneous con-
fidence level is at least 0.50.

One approach to ensuring that the simultaneous confidence level is not too small is to
replace /2 in the one-at-a-time confidence interval Equations 3.12 and 3.13 with a/(2r). This
is called the Bonferroni method, and it allows the experimenter to construct a set of r simul-
taneous confidence intervals on treatment means or differences in treatment means for which
the overall confidence level is at least 100(1 — «) percent. When r is not too large, this is a
very nice method that leads to reasonably short confidence intervals. For more information,
refer to the supplemental text material for Chapter 3.

3.34 Unbalanced Data

In some single-factor experiments, the number of observations taken within each treatment
may be different. We then say that the design is unbalanced. The analysis of variance
described above may still be used, but slight modifications must be made in the sum of
squares formulas. Let n; observations be taken under treatment i ({ = 1,2, ...,a) and N =
2| n;. The manual computational formulas for SS; and SSq;cumens DECOMeE

SSr=X >3- (3.14)
i=1j=1 N
and
a 12 2
_ yi Y.
SSTreatmems - 1:21 E N (3.15)

No other changes are required in the analysis of variance.
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There are two advantages in choosing a balanced design. First, the test statistic is rela-
tively insensitive to small departures from the assumption of equal variances for the a treat-
ments if the sample sizes are equal. This is not the case for unequal sample sizes. Second, the
power of the test is maximized if the samples are of equal size.

34 Model Adequacy Checking

The decomposition of the variability in the observations through an analysis of variance identity
(Equation 3.6) is a purely algebraic relationship. However, the use of the partitioning to test for-
mally for no differences in treatment means requires that certain assumptions be satisfied.
Specifically, these assumptions are that the observations are adequately described by the model

Yi=pt T tE;

and that the errors are normally and independently distributed with mean zero and constant
but unknown variance o”. If these assumptions are valid, the analysis of variance procedure
is an exact test of the hypothesis of no difference in treatment means.

In practice, however, these assumptions will usually not hold exactly. Consequently, it is
usually unwise to rely on the analysis of variance until the validity of these assumptions has
been checked. Violations of the basic assumptions and model adequacy can be easily investigated
by the examination of residuals. We define the residual for observation j in treatment i as

e =Yy — Vi (3.16)
where y; is an estimate of the corresponding observation y; obtained as follows:
9ij = :& + a’i
=y. =)
=i (3.17)

Equation 3.17 gives the intuitively appealing result that the estimate of any observation in the
ith treatment is just the corresponding treatment average.

Examination of the residuals should be an automatic part of any analysis of variance. If
the model is adequate, the residuals should be structureless; that is, they should contain no
obvious patterns. Through analysis of residuals, many types of model inadequacies and vio-
lations of the underlying assumptions can be discovered. In this section, we show how model
diagnostic checking can be done easily by graphical analysis of residuals and how to deal
with several commonly occurring abnormalities.

34.1 The Normality Assumption

A check of the normality assumption could be made by plotting a histogram of the residuals.
If the NID(0, ) assumption on the errors is satisfied, this plot should look like a sample from
a normal distribution centered at zero. Unfortunately, with small samples, considerable fluc-
tuation in the shape of a histogram often occurs, so the appearance of a moderate departure
from normality does not necessarily imply a serious violation of the assumptions. Gross devi-
ations from normality are potentially serious and require further analysis.

An extremely useful procedure is to construct a normal probability plot of the resid-
uals. Recall from Chapter 2 that we used a normal probability plot of the raw data to check
the assumption of normality when using the #-test. In the analysis of variance, it is usually
more effective (and straightforward) to do this with the residuals. If the underlying error dis-
tribution is normal, this plot will resemble a straight line. In visualizing the straight line, place
more emphasis on the central values of the plot than on the extremes.
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Etch Rate Data and Residuals from Example 3.1*

Observations (j)

Power (W) 1 2 3 4 5 i =i
| 238 | o2 212 122 | 188
160 575 (13) 542 (14) 530 (8) 539 (5) 570 (4) 551.2
[ 224 | 5.6 | 26 | 8.4 | 226
180 565 (18) 593 (9) 590 (6) 579 (16) 610 (17) 587.4
| 254 | 256 |-15.4 | 116 | 36
200 600 (7) 651 (19) 610 (10) 637 (20) 629 (1) 625.4
| 180 | -7.0 | 8.0 [-22.0 | 30
220 725 (2) 700 (3) 715 (15) 685 (11) 710 (12) 707.0

“The residuals are shown in the box in each cell. The numbers in parentheses indicate the order in which each experimental run was made.

s FIGURE 3.4
Normal probability
plot of residuals for

Example 3.1

Table 3.6 shows the original data and the residuals for the etch rate data in Example 3.1.
The normal probability plot is shown in Figure 3.4. The general impression from examining
this display is that the error distribution is approximately normal. The tendency of the normal
probability plot to bend down slightly on the left side and upward slightly on the right side
implies that the tails of the error distribution are somewhat thinner than would be anticipated
in a normal distribution; that is, the largest residuals are not quite as large (in absolute value)
as expected. This plot is not grossly nonnormal, however.

In general, moderate departures from normality are of little concern in the fixed effects
analysis of variance (recall our discussion of randomization tests in Section 3.3.2). An error dis-
tribution that has considerably thicker or thinner tails than the normal is of more concern than a
skewed distribution. Because the F test is only slightly affected, we say that the analysis of
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variance (and related procedures such as multiple comparisons) is robust to the normality
assumption. Departures from normality usually cause both the true significance level and the
power to differ slightly from the advertised values, with the power generally being lower. The ran-
dom effects model that we will discuss in Section 3.9 and Chapter 13 is more severely affected by
nonnormality.

A very common defect that often shows up on normal probability plots is one residual
that is very much larger than any of the others. Such a residual is often called an outlier. The
presence of one or more outliers can seriously distort the analysis of variance, so when a
potential outlier is located, careful investigation is called for. Frequently, the cause of the
outlier is a mistake in calculations or a data coding or copying error. If this is not the cause,
the experimental circumstances surrounding this run must be carefully studied. If the outly-
ing response is a particularly desirable value (high strength, low cost, etc.), the outlier may
be more informative than the rest of the data. We should be careful not to reject or discard
an outlying observation unless we have reasonably nonstatistical grounds for doing so. At
worst, you may end up with two analyses; one with the outlier and one without.

Several formal statistical procedures may be used for detecting outliers [e.g., see Stefansky
(1972), John and Prescott (1975), and Barnett and Lewis (1994)]. Some statistical software pack-
ages report the results of a statistical test for normality (such as the Anderson-Darling test) on the
normal probability plot of residuals. This should be viewed with caution as those tests usually
assume that the data to which they are applied are independent and residuals are not independent.

A rough check for outliers may be made by examining the standardized residuals

€

dj = 3.18
N/, (3.18)
If the errors €; are N(0, o), the standardized residuals should be approximately normal with mean
zero and unit variance. Thus, about 68 percent of the standardized residuals should fall within the
limits =1, about 95 percent of them should fall within *£2, and virtually all of them should fall
within *3. A residual bigger than 3 or 4 standard deviations from zero is a potential outlier.
For the tensile strength data of Example 3.1, the normal probability plot gives no indi-
cation of outliers. Furthermore, the largest standardized residual is

_ e 256 _ 256 _ .
VMs, V33370 1827

which should cause no concern.

d,

34.2 Plot of Residuals in Time Sequence

Plotting the residuals in time order of data collection is helpful in detecting strong correlation
between the residuals. A tendency to have runs of positive and negative residuals indicates pos-
itive correlation. This would imply that the independence assumption on the errors has been
violated. This is a potentially serious problem and one that is difficult to correct, so it is impor-
tant to prevent the problem if possible when the data are collected. Proper randomization of the
experiment is an important step in obtaining independence.

Sometimes the skill of the experimenter (or the subjects) may change as the experiment
progresses, or the process being studied may “drift” or become more erratic. This will often result
in a change in the error variance over time. This condition often leads to a plot of residuals ver-
sus time that exhibits more spread at one end than at the other. Nonconstant variance is a poten-
tially serious problem. We will have more to say on the subject in Sections 3.4.3 and 3.4.4.

Table 3.6 displays the residuals and the time sequence of data collection for the tensile
strength data. A plot of these residuals versus run order or time is shown in Figure 3.5. There
is no reason to suspect any violation of the independence or constant variance assumptions.



3.4 Model Adequacy Checking 83

25.6/— o o 256 o
o o
m O o o
12.85— o 12.85 | o
o o
1] I:I n I:I
= o o o © o g o
=3 >
T 0.1 S 01
7] w
Q Q
o oc
o o
p O o o
-12.65|— o -12.65 -8
o o
o o o 8 o o
—25.4— o —25.4 [— o
I 11 I 11 I 11 I 11 I 11 I 11 I 1 I I I I I
1 4 7 0 13 16 19 551.20 500.15 629.10 668.05 707.00
Run order or time Predicted
m FIGURE 3.5 Plot of residuals versus m FIGURE 3.6 Plot of residuals versus
run order or time fitted values

343 Plot of Residuals Versus Fitted Values

If the model is correct and the assumptions are satisfied, the residuals should be structureless;
in particular, they should be unrelated to any other variable including the predicted response.
A simple check is to plot the residuals versus the fitted values y,. (For the single-factor exper-
iment model, remember that y; = y;, the ith treatment average.) This plot should not reveal
any obvious pattern. Figure 3.6 plots the residuals versus the fitted values for the tensile
strength data of Example 3.1. No unusual structure is apparent.

A defect that occasionally shows up on this plot is nonconstant variance. Sometimes the
variance of the observations increases as the magnitude of the observation increases. This would
be the case if the error or background noise in the experiment was a constant percentage of the
size of the observation. (This commonly happens with many measuring instruments—error is a
percentage of the scale reading.) If this were the case, the residuals would get larger as y; gets
larger, and the plot of residuals versus y,; would look like an outward-opening funnel or mega-
phone. Nonconstant variance also arises in cases where the data follow a nonnormal, skewed dis-
tribution because in skewed distributions the variance tends to be a function of the mean.

If the assumption of homogeneity of variances is violated, the F test is only slightly affect-
ed in the balanced (equal sample sizes in all treatments) fixed effects model. However, in unbal-
anced designs or in cases where one variance is very much larger than the others, the problem
is more serious. Specifically, if the factor levels having the larger variances also have the small-
er sample sizes, the actual type I error rate is larger than anticipated (or confidence intervals have
lower actual confidence levels than were specified). Conversely, if the factor levels with larger
variances also have the larger sample sizes, the significance levels are smaller than anticipated
(confidence levels are higher). This is a good reason for choosing equal sample sizes whenev-
er possible. For random effects models, unequal error variances can significantly disturb infer-
ences on variance components even if balanced designs are used.

Inequality of variance also shows up occasionally on the plot of residuals versus run
order. An outward-opening funnel pattern indicates that variability is increasing over time.
This could result from operator/subject fatigue, accumulated stress on equipment, changes in
material properties such as catalyst degradation, or tool wear, or any of a number of causes.
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The usual approach to dealing with nonconstant variance when it occurs for the above
reasons is to apply a variance-stabilizing transformation and then to run the analysis of
variance on the transformed data. In this approach, one should note that the conclusions of
the analysis of variance apply to the transformed populations.

Considerable research has been devoted to the selection of an appropriate transformation.
If experimenters know the theoretical distribution of the observations, they may utilize this
information in choosing a transformation. For example, if the observations follow the Poisson
distribution, the square root transformation y; = \/yT/ ory; = V1 + y, would be used. If
the data follow the lognormal distribution, the logarithmic transformation y; = log y; is
appropriate. For binomial data expressed as fractions, the arcsin transformation
yi = arcsin \/y7 is useful. When there is no obvious transformation, the experimenter usually
empirically seeks a transformation that equalizes the variance regardless of the value of the mean.
We offer some guidance on this at the conclusion of this section. In factorial experiments, which
we introduce in Chapter 5, another approach is to select a transformation that minimizes the inter-
action mean square, resulting in an experiment that is easier to interpret. In Chapter 15, we discuss
in more detail methods for analytically selecting the form of the transformation. Transformations
made for inequality of variance also affect the form of the error distribution. In most cases, the
transformation brings the error distribution closer to normal. For more discussion of transforma-
tions, refer to Bartlett (1947), Dolby (1963), Box and Cox (1964), and Draper and Hunter (1969).

Statistical Tests for Equality of Variance. Although residual plots are frequently
used to diagnose inequality of variance, several statistical tests have also been proposed. These
tests may be viewed as formal tests of the hypotheses

HO:O'% = 0'% == a’ﬁ
H, :above not true for at least one o'’

A widely used procedure is Bartlett’s test. The procedure involves computing a statis-

tic whose sampling distribution is closely approximated by the chi-square distribution with

a — 1 degrees of freedom when the a random samples are from independent normal popula-
tions. The test statistic is

X3 = 230267 (3.19)

where

<
Il

(N — a)log, S[27 - E (n; = Dlogy Siz
i=1

c=1 -I—S,(Cll_l)(i(ni— D! _(N—a)—1>

i=1
2 (= 1S
2 _ =1
Sp N-—a
and S7 is the sample variance of the ith population.
The quantity ¢ is large when the sample variances S? differ greatly and is equal to zero

when all S7 are equal. Therefore, we should reject H, on values of yj that are too large; that
is, we reject H,, only when

X6 Xea-1
where x2,, is the upper @ percentage point of the chi-square distribution with @ — 1 degrees
of freedom. The P-value approach to decision making could also be used.

Bartlett’s test is very sensitive to the normality assumption. Consequently, when the
validity of this assumption is doubtful, Bartlett’s test should not be used.
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exavpie 3.«

In the plasma etch experiment, the normality assumption is
not in question, so we can apply Bartlett’s test to the etch
rate data. We first compute the sample variances in each
treatment and find that 7 = 400.7, 3 = 280.3, S3 = 421.3,
and S = 232.5. Then

, _ 4400.7) + 4(280.3) + 4(421.3) + 4(232.5)

2 y = 3337

q = 1610g,o(333.7) — 4[log,;400.7 + log,;280.3
+ log,421.3 + log,232.5] = 0.21

14+ L (4 L)_
c 1+3(3)(4 ]6> 1.10

and the test statistic is

0.21
X5 = 2.3026 ﬁ =
From Appendix Table 111, we find that 55 = 7.81 (the
P-value is P = 0.934), so we cannot reject the null hypoth-
esis. There is no evidence to counter the claim that all five
variances are the same. This is the same conclusion reached
by analyzing the plot of residuals versus fitted values.

0.43

Because Bartlett’s test is sensitive to the normality assumption, there may be situations where
an alternative procedure would be useful. Anderson and McLean (1974) present a useful dis-
cussion of statistical tests for equality of variance. The modified Levene test [see Levene
(1960) and Conover, Johnson, and Johnson (1981)] is a very nice procedure that is robust to
departures from normality. To test the hypothesis of equal variances in all treatments, the
modified Levene test uses the absolute deviation of the observations y;; in each treatment from
the treatment median, say, ;. Denote these deviations by
i=1,2,...,a
dj = |y —y,»|{. L,2,....n

J = L4 i

The modified Levene test then evaluates whether or not the means of these deviations are
equal for all treatments. It turns out that if the mean deviations are equal, the variances of the
observations in all treatments will be the same. The test statistic for Levene’s test is simply
the usual ANOVA F statistic for testing equality of means applied to the absolute deviations.

exampLE 3.5 [

A civil engineer is interested in determining whether four
different methods of estimating flood flow frequency pro-
duce equivalent estimates of peak discharge when applied to
the same watershed. Each procedure is used six times on the
watershed, and the resulting discharge data (in cubic feet per
second) are shown in the upper panel of Table 3.7. The
analysis of variance for the data, summarized in Table 3.8,
implies that there is a difference in mean peak discharge
estimates given by the four procedures. The plot of residu-
als versus fitted values, shown in Figure 3.7, is disturbing
because the outward-opening funnel shape indicates that the
constant variance assumption is not satisfied.

We will apply the modified Levene test to the peak dis-
charge data. The upper panel of Table 3.7 contains the treat-
ment medians y; and the lower panel contains the deviations
d;; around the medians. Levene’s test consists of conducting
a standard analysis of variance on the d;;. The F test statistic
that results from this is F,, = 4.55, for which the P-value is
P =0.0137. Therefore, Levene’s test rejects the null
hypothesis of equal variances, essentially confirming the
diagnosis we made from visual examination of Figure 3.7.
The peak discharge data are a good candidate for data trans-
formation.
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m TABLE 3.7

Peak Discharge Data
Estimation
Method Observations ¥; ¥i S;
1 0.34 0.12 1.23 0.70 1.75 0.12 0.71 0.520 0.66
2 0.91 2.94 2.14 2.36 2.86 4.55 2.63 2.610 1.09
3 6.31 8.37 9.75 6.09 9.82 7.24 7.93 7.805 1.66
4 17.15 11.82 10.95 17.20 14.35 16.82 14.72 15.59 2.77
Estimation
Method Deviations d;; for the Modified Levene Test
1 0.18 0.40 0.71 0.18 1.23 0.40
2 1.70 0.33 0.47 0.25 0.25 1.94
3 1.495 0.565 1.945 1.715 2.015 0.565
4 1.56 3.77 4.64 1.61 1.24 1.23

s TABLE 3.8
Analysis of Variance for Peak Discharge Data

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F, P-Value
Methods 708.3471 3 236.1157 76.07 <0.001
Error 62.0811 20 3.1041
Total 770.4282 23
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m FIGURE 3.7 Plot of residuals versus §,J for
Example 3.5
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Empirical Selection of a Transformation. We observed above that if experi-
menters knew the relationship between the variance of the observations and the mean, they
could use this information to guide them in selecting the form of the transformation. We now
elaborate on this point and show one method for empirically selecting the form of the required
transformation from the data.

Let E(y) = w be the mean of y, and suppose that the standard deviation of y is propor-
tional to a power of the mean of y such that

a
o, < W

We want to find a transformation on y that yields a constant variance. Suppose that the trans-
formation is a power of the original data, say

ye=y (3.20)
Then it can be shown that
oy o pt et 3.21)

Clearly, if we set A = 1 — «, the variance of the transformed data y* is constant.

Several of the common transformations discussed previously are summarized in Table
3.9. Note that A = 0 implies the log transformation. These transformations are arranged in
order of increasing strength. By the strength of a transformation, we mean the amount of
curvature it induces. A mild transformation applied to data spanning a narrow range has lit-
tle effect on the analysis, whereas a strong transformation applied over a large range may
have dramatic results. Transformations often have little effect unless the ratio y,,./Vmin 15
larger than 2 or 3.

In many experimental design situations where there is replication, we can empirically
estimate « from the data. Because in the ith treatment combination o, o uf = 6w, where 6
is a constant of proportionality, we may take logs to obtain

logo, =log 0 + alog u; (3.22)

Therefore, a plot of log o, versus log u; would be a straight line with slope «. Because we
don’t know o, and w,;, we may substitute reasonable estimates of them in Equation 3.22 and
use the slope of the resulting straight line fit as an estimate of «.. Typically, we would use the
standard deviation S, and the average y; of the ith treatment (or, more generally, the ith treat-
ment combination or set of experimental conditions) to estimate o, and u,.

To investigate the possibility of using a variance-stabilizing transformation on the
peak discharge data from Example 3.5, we plot log S; versus log y; in Figure 3.8. The slope
of a straight line passing through these four points is close to 1/2 and from Table 3.9 this
implies that the square root transformation may be appropriate. The analysis of variance for

m TABLE 3.9
Variance-Stabilizing Transformations

Relationship

Between o, and p a A=1 -« Transformation Comment

0, © constant 0 1 No transformation

o, w'? 172 172 Square root Poisson (count) data
O, W 1 0 Log

o, o« p? 3/2 —1/2 Reciprocal square root

o, o’ 2 -1 Reciprocal
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y; for the peak discharge data from Example 3.5

the transformed data y* = \/y is presented in Table 3.10, and a plot of residuals versus the
predicted response is shown in Figure 3.9. This residual plot is much improved in compar-
ison to Figure 3.7, so we conclude that the square root transformation has been helpful.
Note that in Table 3.10 we have reduced the degrees of freedom for error and total by 1 to
account for the use of the data to estimate the transformation parameter «.

In practice, many experimenters select the form of the transformation by simply trying
several alternatives and observing the effect of each transformation on the plot of residuals
versus the predicted response. The transformation that produced the most satisfactory resid-
ual plot is then selected. Alternatively, there is a formal method called the Box-Cox Method
for selecting a variance-stability transformation. In chapter 15 we discuss and illustrate this
procedure. It is widely used and implemented in many software packages.

344 Plots of Residuals Versus Other Variables

If data have been collected on any other variables that might possibly affect the response, the
residuals should be plotted against these variables. For example, in the tensile strength exper-
iment of Example 3.1, strength may be significantly affected by the thickness of the fiber, so
the residuals should be plotted versus fiber thickness. If different testing machines were used
to collect the data, the residuals should be plotted against machines. Patterns in such residual
plots imply that the variable affects the response. This suggests that the variable should be
either controlled more carefully in future experiments or included in the analysis.

s TABLE 3.10
Analysis of Variance for Transformed Peak Discharge Data, y* = \/;

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F, P-Value
Methods 32.6842 3 10.8947 76.99 <0.001
Error 2.6884 19 0.1415

Total 35.3726 22
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3.5 Practical Interpretation of Results

After conducting the experiment, performing the statistical analysis, and investigating the
underlying assumptions, the experimenter is ready to draw practical conclusions about the
problem he or she is studying. Often this is relatively easy, and certainly in the simple exper-
iments we have considered so far, this might be done somewhat informally, perhaps by
inspection of graphical displays such as the box plots and scatter diagram in Figures 3.1 and
3.2. However, in some cases, more formal techniques need to be applied. We will present
some of these techniques in this section.

3.5.1 A Regression Model

The factors involved in an experiment can be either quantitative or qualitative. A quantitative
factor is one whose levels can be associated with points on a numerical scale, such as tempera-
ture, pressure, or time. Qualitative factors, on the other hand, are factors for which the levels
cannot be arranged in order of magnitude. Operators, batches of raw material, and shifts are typ-
ical qualitative factors because there is no reason to rank them in any particular numerical order.

Insofar as the initial design and analysis of the experiment are concerned, both types of
factors are treated identically. The experimenter is interested in determining the differences,
if any, between the levels of the factors. In fact, the analysis of variance treat the design fac-
tor as if it were qualitative or categorical. If the factor is really qualitative, such as operators,
it is meaningless to consider the response for a subsequent run at an intermediate level of the
factor. However, with a quantitative factor such as time, the experimenter is usually interest-
ed in the entire range of values used, particularly the response from a subsequent run at an
intermediate factor level. That is, if the levels 1.0, 2.0, and 3.0 hours are used in the experi-
ment, we may wish to predict the response at 2.5 hours. Thus, the experimenter is frequently
interested in developing an interpolation equation for the response variable in the experiment.
This equation is an empirical model of the process that has been studied.

The general approach to fitting empirical models is called regression analysis, which
is discussed extensively in Chapter 10. See also the supplemental text material for this
chapter. This section briefly illustrates the technique using the etch rate data of Example 3.1.

Figure 3.10 presents scatter diagrams of etch rate y versus the power x for the experi-
ment in Example 3.1. From examining the scatter diagram, it is clear that there is a strong
relationship between etch rate and power. As a first approximation, we could try fitting a lin-
ear model to the data, say

Y=g+ Bix te

where 3, and 3, are unknown parameters to be estimated and € is a random error term. The
method often used to estimate the parameters in a model such as this is the method of least
squares. This consists of choosing estimates of the 3’s such that the sum of the squares of the
errors (the €’s) is minimized. The least squares fit in our example is

$ = 137.62 + 2.527x

(If you are unfamiliar with regression methods, see Chapter 10 and the supplemental text
material for this chapter.)

This linear model is shown in Figure 3.10a. It does not appear to be very satisfactory at
the higher power settings. Perhaps an improvement can be obtained by adding a quadratic
term in x. The resulting quadratic model fit is

y = 1147.77 — 8.2555 x + 0.028375 x*
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m FIGURE 3.10 Scatter diagrams and regression models for the etch rate data of Example 3.1

This quadratic fit is shown in Figure 3.10b. The quadratic model appears to be superior to the
linear model because it provides a better fit at the higher power settings.

In general, we would like to fit the lowest order polynomial that adequately describes
the system or process. In this example, the quadratic polynomial seems to fit better than the
linear model, so the extra complexity of the quadratic model is justified. Selecting the order
of the approximating polynomial is not always easy, however, and it is relatively easy to over-
fit, that is, to add high-order polynomial terms that do not really improve the fit but increase
the complexity of the model and often damage its usefulness as a predictor or interpolation
equation.

In this example, the empirical model could be used to predict etch rate at power settings
within the region of experimentation. In other cases, the empirical model could be used for
process optimization, that is, finding the levels of the design variables that result in the best
values of the response. We will discuss and illustrate these problems extensively later in the
book.

3.5.2 Comparisons Among Treatment Means

Suppose that in conducting an analysis of variance for the fixed effects model the null hypoth-
esis is rejected. Thus, there are differences between the treatment means but exactly which
means differ is not specified. Sometimes in this situation, further comparisons and analysis
among groups of treatment means may be useful. The ith treatment mean is defined as u; =
n + 75, and w; is estimated by y;. Comparisons between treatment means are made in terms
of either the treatment totals {y;} or the treatment averages {?L]. The procedures for making
these comparisons are usually called multiple comparison methods. In the next several sec-
tions, we discuss methods for making comparisons among individual treatment means or
groups of these means.
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3.5.3 Graphical Comparisons of Means

It is very easy to develop a graphical procedure for the comparison of means following an
analysis of variance. Suppose that the factor of interest has a levels and that y,, y,, ..., y, are
the treatment averages. If we know o, any treatment average would have a standard deviation
a/Vn. Consequently, if all factor level means are identical, the observed sample means y;
would behave as if they were a set of observations drawn at random from a normal distribu-
tion with mean y_and standard deviation o/V/n. Visualize a normal distribution capable of
being slid along an axis below which the y,, y,, ..., y, are plotted. If the treatment means are
all equal, there should be some position for this distribution that makes it obvious that the y;
values were drawn from the same distribution. If this is not the case, the y; values that appear
not to have been drawn from this distribution are associated with factor levels that produce
different mean responses.

The only flaw in this logic is that o is unknown. Box, Hunter, and Hunter (2005)
point out that we can replace o with VMS; from the analysis of variance and use a ¢ dis-
tribution with a scale factor VMS,/n instead of the normal. Such an arrangement for the
etch rate data of Example 3.1 is shown in Figure 3.11. Focus on the ¢ distribution shown
as a solid line curve in the middle of the display.

To sketch the ¢ distribution in Figure 3.11, simply multiply the abscissa ¢ value by the
scale factor

VMS/n = V/330.70/5 = 8.13

and plot this against the ordinate of 7 at that point. Because the ¢ distribution looks much like
the normal, except that it is a little flatter near the center and has longer tails, this sketch is
usually easily constructed by eye. If you wish to be more precise, there is a table of abscissa
t values and the corresponding ordinates in Box, Hunter, and Hunter (2005). The distribution
can have an arbitrary origin, although it is usually best to choose one in the region of the y,.
values to be compared. In Figure 3.11, the origin is 615 A/min.

Now visualize sliding the ¢ distribution in Figure 3.11 along the horizontal axis as indi-
cated by the dashed lines and examine the four means plotted in the figure. Notice that there
is no location for the distribution such that all four averages could be thought of as typical,
randomly selected observations from the distribution. This implies that all four means are not
equal; thus, the figure is a graphical display of the ANOVA results. Furthermore, the figure
indicates that all four levels of power (160, 180, 200, 220 W) produce mean etch rates that
differ from each other. In other words, w, # u, #u; # Wq.

This simple procedure is a rough but effective technique for many multiple comparison
problems. However, there are more formal methods. We now give a brief discussion of some
of these procedures.

'¢"~~‘ '¢‘-"s‘
/. S ~ —_— % s
/' \~ /' ‘\

160 180 200 220
| le | . | Y |
500 550 600 650 700 750

[ ]

m FIGURE 3.11 Etch rate averages from Example 3.1 in relation to a ¢ distribution
with scale factor VMSy/n = V/330.70/5 = 8.13
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3.54 Contrasts

Many multiple comparison methods use the idea of a contrast. Consider the plasma etching
experiment of Example 3.1. Because the null hypothesis was rejected, we know that some
power settings produce different etch rates than others, but which ones actually cause this dif-
ference? We might suspect at the outset of the experiment that 200 W and 220 W produce the
same etch rate, implying that we would like to test the hypothesis

Hy:ps = py
Hy:tps # py
or equivalently
Hyrps — py =0
Hips — s #0 (3.23)
If we had suspected at the start of the experiment that the average of the lowest levels of
power did not differ from the average of the highest levels of power, then the hypothesis
would have been
Hytpy + po = s + py
Hytpy + po # ps + oy

or
Hytpy + py = 3 — g =0
Hytpg + o = s — g # 0 (3.24)
In general, a contrast is a linear combination of parameters of the form
a
I'= E Cilk;
i=1
where the contrast constants ¢, ¢, . . . , ¢, sum to zero; that is, 2, ¢; = 0. Both of the above

hypotheses can be expressed in terms of contrasts:

a

Hy: E cip =0
=1
Hy: Y e # 0 (3.25)
=1
The contrast constants for the hypotheses in Equation 3.23 are ¢, = ¢, =0, ¢; = +1, and
¢, = —1, whereas for the hypotheses in Equation 3.24, they are ¢, = ¢, = +1 and ¢; =
Cy = — 1.

Testing hypotheses involving contrasts can be done in two basic ways. The first method
uses a 7-test. Write the contrast of interest in terms of the treatment averages, giving

M=

C=2cy

i=1

The variance of C is

2
V(C) = T

s

c? (3.26)
i=1

when the sample sizes in each treatment are equal. If the null hypothesis in Equation 3.25 is

true, the ratio
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has the N(0, 1) distribution. Now we would replace the unknown variance o’ by its estimate,
the mean square error MS; and use the statistic

I\ZH
D
<l

= — (3.27)

<
S
k=

ANGE
o
=1

to test the hypotheses in Equation 3.25. The null hypothesis would be rejected if I7,| in
Equation 3.27 exceeds t,/, y—-

The second approach uses an F test. Now the square of a ¢ random variable with v
degrees of freedom is an F random variable with 1 numerator and v denominator degrees of
freedom. Therefore, we can obtain

Fo=3=-— L (3.28)

as an F statistic for testing Equation 3.25. The null hypothesis would be rejected if F, >
F,1n-o We can write the test statistic of Equation 3.28 as

_ MS.  SSd1
O MS,  MS,

where the single degree of freedom contrast sum of squares is

2
i Y.
i=1

P L — (3.29)

a
2
i=1

D=

S =

Confidence Interval for a Contrast. Instead of testing hypotheses about a contrast,
it may be more useful to construct a confidence interval. Suppose that the contrast of interest
is

a
I'= E Cili
i=1
Replacing the treatment means with the treatment averages yields

c= E ¢ Y.
i=1

Because

E<§a: ¢ y,-_) = Ea: Cilki and V(C) = o*n i c?
i=1 i=1

i=1

the 100(1 — @) percent confidence interval on the contrast % c;u; is

a a a a
— 2 2
CiYi. T lapn-ay| T 2E=EDGm =26Vt apya m > (330)

1 i=1 i=1 i=1 i=1

e

1
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Note that we have used MS;; to estimate o”. Clearly, if the confidence interval in Equation 3.30
includes zero, we would be unable to reject the null hypothesis in Equation 3.25.

Standardized Contrast. When more than one contrast is of interest, it is often useful to
evaluate them on the same scale. One way to do this is to standardize the contrast so that it has
variance o”. If the contrast =¢_,c;u; is written in terms of treatment averages as =¢_c; ., divid-
ing it by V/(1/n)2~ ,c7 will produce a standardized contrast with variance o°. Effectively, then,
the standardized contrast is

d p—
21 Ci* Vi,
=

where

* Ci

a

=~

Cs
1

S|

i=

Unequal Sample Sizes. When the sample sizes in each treatment are different, minor
modifications are made in the above results. First, note that the definition of a contrast now
requires that

Other required changes are straightforward. For example, the ¢ statistic in Equation 3.27
becomes

3.5.5 Orthogonal Contrasts

A useful special case of the procedure in Section 3.5.4 is that of orthogonal contrasts. Two
contrasts with coefficients {c;} and {d,} are orthogonal if

i cd; =0
=1

or, for an unbalanced design, if

For a treatments, the set of @ — 1 orthogonal contrasts partition the sum of squares due to
treatments into a — 1 independent single-degree-of-freedom components. Thus, tests per-
formed on orthogonal contrasts are independent.
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There are many ways to choose the orthogonal contrast coefficients for a set of treat-
ments. Usually, something in the nature of the experiment should suggest which comparisons
will be of interest. For example, if there are a = 3 treatments, with treatment 1 a control and
treatments 2 and 3 actual levels of the factor of interest to the experimenter, appropriate
orthogonal contrasts might be as follows:

Coefficients for

Treatment Orthogonal Contrasts
1 (control) -2 0
2 (level 1) 1 -1
3 (level 2) 1 1
Note that contrast 1 with ¢; = —2, 1, 1 compares the average effect of the factor with the con-

trol, whereas contrast 2 with d; = 0, —1, 1 compares the two levels of the factor of interest.

Generally, the method of contrasts (or orthogonal contrasts) is useful for what are called
preplanned comparisons. That is, the contrasts are specified prior to running the experiment
and examining the data. The reason for this is that if comparisons are selected after examin-
ing the data, most experimenters would construct tests that correspond to large observed dif-
ferences in means. These large differences could be the result of the presence of real effects,
or they could be the result of random error. If experimenters consistently pick the largest dif-
ferences to compare, they will inflate the type I error of the test because it is likely that, in an
unusually high percentage of the comparisons selected, the observed differences will be the
result of error. Examining the data to select comparisons of potential interest is often called
data snooping. The Scheffé method for all comparisons, discussed in the next section, per-
mits data snooping.

exampLE 3.c [

Consider the plasma etching experiment in Example 3.1.
There are four treatment means and three degrees of free-
dom between these treatments. Suppose that prior to run-
ning the experiment the following set of comparisons
among the treatment means (and their associated contrasts)
were specified:

Hypothesis Contrast

Hy: py =y Ci=y.

Hytpy + o= + g G =y + 3 —y3 =
Hy: ps = py G = V3. = Ya.

Notice that the contrast coefficients are orthogonal. Using
the data in Table 3.4, we find the numerical values of the
contrasts and the sums of squares to be as follows:

C, = +1(551.2) — 1(587.4) = —36.2

(-36.2)2
SSe, = ——— = 3276.10
@)

_ +1(551.2) + 1(587.4)

C = 6254) — 10707.0) ~ 1938
(—193.8)?
5. = 2 _ 4604805
1w
5
C; = +1(625.4) — 1(707.6) = —81.6
(—81.6)
SSe = 0 = 16,646.40
S
5(2)

These contrast sums of squares completely partition the
treatment sum of squares. The tests on such orthogonal
contrasts are usually incorporated in the ANOVA, as
shown in Table 3.11. We conclude from the P-values that
there are significant differences in mean etch rates between
levels 1 and 2 and between levels 3 and 4 of the power set-
tings, and that the average of levels 1 and 2 does differ sig-
nificantly from the average of levels 3 and 4 at the o =
0.05 level.
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m TABLE 3.11

Analysis of Variance for the Plasma Etching Experiment

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F, P-Value
Power setting 66,870.55 3 22,290.18 66.80 <0.001
Orthogonal contrasts
Cripy = Wy (3276.10) 1 3276.10 9.82 <0.01
Coipy + s = s + py (46,948.05) 1 46,948.05 140.69 <0.001
Cs: s = Wy (16,646.40) 1 16,646.40 49.88 <0.001
Error 5,339.20 16 333.70
Total 72,209.75 19

3.5.6 Scheffé’s Method for Comparing All Contrasts

In many situations, experimenters may not know in advance which contrasts they wish to
compare, or they may be interested in more than a — 1 possible comparisons. In many
exploratory experiments, the comparisons of interest are discovered only after preliminary
examination of the data. Scheffé (1953) has proposed a method for comparing any and all
possible contrasts between treatment means. In the Scheffé method, the type I error is at most
a for any of the possible comparisons.

Suppose that a set of m contrasts in the treatment means

I,=clp + oty + F Couty u=1,2,...,m (3.31)
of interest have been determined. The corresponding contrast in the treatment averages y; is
Cu: cluyl. + C2uy2.+“.+ caL&a. u= 1’2""’m (3°32)

and the standard error of this contrast is

Se, = [MSg Y, (ciin) (3.33)
i=1

where n; is the number of observations in the ith treatment. It can be shown that the critical
value against which C, should be compared is

Seu = Sc,V(a = DFq 1 n-a (3.34)

To test the hypothesis that the contrast I, differs significantly from zero, refer C, to the critical
value. If |C,| > S, the hypothesis that the contrast I, equals zero is rejected.

The Scheffé procedure can also be used to form confidence intervals for all possible
contrasts among treatment means. The resulting intervals, say C, — S, =I',=C, + S, . are

simultaneous confidence intervals in that the probability that all of them are simultaneously
true is at least 1 — a.
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To illustrate the procedure, consider the data in Example 3.1 and suppose that the con-
trasts of interests are

Uy= oy + o — s — iy
and
Dy = —

The numerical values of these contrasts are

Ci =Y.ty =Y. = Va
= 551.2 + 587.4 — 625.4 — 707.0 = —193.80

and

C, = Y. = Ya
= 5512 — 707.0 = —155.8

The standard errors are found from Equation 3.33 as

5
Se = [MSp Y (cin) = V333701 + 1+ 1+ 1)/5 = 16.34
i=1

5
Se, = [MSg Y, (ch/n) = V/333.70(1 + 1)/5 = 11.55
i=1

and

From Equation 3.34, the 1 percent critical values are

Soor1 = Se V(@ — DFgpra 1n-0 = 16.34V3(5.29) = 65.09

and

Soorz = S, V(@ = DFggre 1y-o = 11.55V3(5.29) = 45.97

Because |Cy| > Sy, we conclude that the contrastI'; = w, + u, — u3 — py does not equal
zero; that is, we conclude that the mean etch rates of power settings 1 and 2 as a group differ
from the means of power settings 3 and 4 as a group. Furthermore, because |C,| > S5, we
conclude that the contrast I', = u; — w4 does not equal zero; that is, the mean etch rates of
treatments 1 and 4 differ significantly.

3.5.7 Comparing Pairs of Treatment Means

In many practical situations, we will wish to compare only pairs of means. Frequently, we
can determine which means differ by testing the differences between all pairs of treatment
means. Thus, we are interested in contrasts of the form I' = u, — w; for all i # j. Although
the Scheffé method described in the previous section could be easily applied to this problem,
it is not the most sensitive procedure for such comparisons. We now turn to a consideration
of methods specifically designed for pairwise comparisons between all a population means.

Suppose that we are interested in comparing all pairs of a treatment means and that the null
hypotheses that we wish to test are Hy: w; = w,; for all i # j. There are numerous procedures
available for this problem. We now present two popular methods for making such comparisons.
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Tukey’s Test. Suppose that, following an ANOVA in which we have rejected the null
hypothesis of equal treatment means, we wish to test all pairwise mean comparisons:

Hy:py =
Hy:p; #

foralli # j. Tukey (1953) proposed a procedure for testing hypotheses for which the over-
all significance level is exactly & when the sample sizes are equal and at most & when the
sample sizes are unequal. His procedure can also be used to construct confidence intervals on
the differences in all pairs of means. For these intervals, the simultaneous confidence level is
100(1 — «) percent when the sample sizes are equal and at least 100(1 — «) percent when
sample sizes are unequal. In other words, the Tukey procedure controls the experimentwise
or “family” error rate at the selected level «. This is an excellent data snooping procedure
when interest focuses on pairs of means.
Tukey’s procedure makes use of the distribution of the studentized range statistic

— ymax - ymin

VMS/n

where y,... and y,;, are the largest and smallest sample means, respectively, out of a group of
p sample means. Appendix Table VII contains values of ¢, (p, f), the upper o percentage
points of g, where fis the number of degrees of freedom associated with the MS;. For equal
sample sizes, Tukey’s test declares two means significantly different if the absolute value of
their sample differences exceeds

Ms
T, = qua.f) [ (3.35)

Equivalently, we could construct a set of 100(1 — «) percent confidence intervals for all pairs
of means as follows:

_ _ MS
Yi. = Y. — q.(a, f) nE =M

- Ms,
=3 =Vt adaf) s i # (3.36)

When sample sizes are not equal, Equations 3.35 and 3.36 become

_ 494a.f)
V2

MSE<,1, + 1) 3.37)

;

and

1 1
MSE(n_ + n-) =M T My

- - %laf) 1,1
=y, —y t V2 MSE(n,- + ﬁ/
respectively. The unequal sample size version is sometimes called the Tukey—Kramer
procedure.

), i#+j (338
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exavpLE 3.7 [

To illustrate Tukey’s test, we use the data from the plasma
etching experiment in Example 3.1. With & = 0.05 and f =
16 degrees of freedom for error, Appendix Table VII gives
Goos(4, 16) = 4.05. Therefore, from Equation 3.35,

IMS /
Toos = Goos(4, 16) TE = 4.05 3335770 = 33.09

Thus, any pairs of treatment averages that differ in absolute
value by more than 33.09 would imply that the correspon-
ding pair of population means are significantly different.
The four treatment averages are

Y. =5512 7y, = 5874
¥, = 6254 3, = 707.0

and the differences in averages are

Y. — ¥, = 551.2 — 587.4 = —36.20*
Y. — y5. = 551.2 — 625.4 = —74.20*
Y. — ys. = 551.2 — 707.0 = —155.8%*
Y, — y5. = 587.4 — 625.4 = —38.0*
Yo, — ya. = 587.4 — 707.0 = —119.6*
V3. — yi. = 625.4 — 707.0 = —81.60*
The starred values indicate the pairs of means that are sig-
nificantly different. Note that the Tukey procedure indicates
that all pairs of means differ. Therefore, each power setting

results in a mean etch rate that differs from the mean etch
rate at any other power setting.

When using any procedure for pairwise testing of means, we occasionally find that the
overall F test from the ANOVA is significant, but the pairwise comparison of means fails to
reveal any significant differences. This situation occurs because the F test is simultaneously
considering all possible contrasts involving the treatment means, not just pairwise compar-
isons. That is, in the data at hand, the significant contrasts may not be of the form u; — u;.

The derivation of the Tukey confidence interval of Equation 3.36 for equal sample sizes
is straightforward. For the studentized range statistic g, we have

max(y; — u;) — min(y, — ;)
P( =qla.f))=1-a
V MS/n
If max( y, — m;) — min( y; — w,) is less than or equal to g, (a, f )V MSg/n, it must be true that
|(3i. = 1) — (3, — )| = qu(a, )NV MSg/n for every pair of means. Therefore

MSp __ - MS;;
P(“Ia(“’f)\/j =% TN T T )= qa(a,f)\/j) =1-a

Rearranging this expression to isolate u; — u; between the inequalities will lead to the set of
100(1 — «) percent simultaneous confidence intervals given in Equation 3.38.

The Fisher Least Significant Difference (LSD) Method. The Fisher method for
comparing all pairs of means controls the error rate « for each individual pairwise compari-
son but does not control the experimentwise or family error rate. This procedure uses the 7 sta-
tistic for testing Hy: p; = u;
yi. - yj.
ty=—F/———— 3.39)

w1+ 1)
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Assuming a two-sided alternative, the pair of means u,; and w; would be declared significant-
ly different if |y, — ¥;.| > tapn—o VMSi(1/n; + 1/n)). The quantity

LSD = 1,0y MSE@ + ;) (3.40)
i J
is called the least significant difference. If the design is balanced, n, = n, = - - - = n, = n,

and

[2mS
LSD = fyny-ay| (3.41)

To use the Fisher LSD procedure, we simply compare the observed difference between
each pair of averages to the corresponding LSD. If |y, — ij_| > LSD, we conclude that the
population means u; and w; differ. The ¢ statistic in Equation 3.39 could also be used.

exavpLE 3.5 [

To illustrate the procedure, if we use the data from the Y. — y5. = 551.2 — 625.4 = —74.2%
experiment in Example 3.1, the LSD at & = 0.05 is

Vi = ya = 5512 — 707.0 = —155.8*

[2MS 2(333.70 = =
LSD = tA025,16 TE = 2.120F = 24.49 yz. - y3. = 587.4 - 625.4 = _38.0*

Yo, — Ya = 587.4 — 707.0 = —119.6*

Thus, any pair of treatment averages that differ in absolute
value by more than 24.49 would imply that the correspon- yi. — yi. = 625.4 — 707.0 = —81.6*
ding pair of population means are significantly different.

The differences in averages are

The starred values indicate pairs of means that are signifi-
cantly different. Clearly, all pairs of means differ signifi-

Y.~ Yo, = 551.2 — 587.4 = —36.2* cantly.

Note that the overall « risk may be considerably inflated using this method. Specifically,
as the number of treatments a gets larger, the experimentwise or family type I error rate (the
ratio of the number of experiments in which at least one type I error is made to the total num-
ber of experiments) becomes large.

Which Pairwise Comparison Method Do I Use? Certainly, a logical question at
this point is, Which one of these procedures should I use? Unfortunately, there is no clear-
cut answer to this question, and professional statisticians often disagree over the utility of
the various procedures. Carmer and Swanson (1973) have conducted Monte Carlo simula-
tion studies of a number of multiple comparison procedures, including others not discussed
here. They report that the least significant difference method is a very effective test for
detecting true differences in means if it is applied only after the F test in the ANOVA is sig-
nificant at 5 percent. However, this method does not contain the experimentwise error rate.
Because the Tukey method does control the overall error rate, many statisticians prefer to
use it.

As indicated above, there are several other multiple comparison procedures. For articles
describing these methods, see O’Neill and Wetherill (1971), Miller (1977), and Nelson
(1989). The books by Miller (1991) and Hsu (1996) are also recommended.
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3.5.8

In many experiments, one of the treatments is a control, and the analyst is interested in
comparing each of the other a — | treatment means with the control. Thus, only a — 1
comparisons are to be made. A procedure for making these comparisons has been devel-
oped by Dunnett (1964). Suppose that treatment a is the control and we wish to test the
hypotheses

Comparing Treatment Means with a Control

Hy:pi =

Hy:p; # g

fori=1,2,...,a— 1. Dunnett’s procedure is a modification of the usual #-test. For each
hypothesis, we compute the observed differences in the sample means

|yi._yu.| l.:1,2,,_,,a—1

The null hypothesis H,: u; = u, is rejected using a type I error rate « if

- - 1 1
|yi. - ya| > da(a - lvf) MSE(I’ZI + >

nll

(3.42)

where the constant d,(a — 1, f) is given in Appendix Table VIII. (Both two- and one-sided
tests are possible.) Note that « is the joint significance level associated with all ¢ — 1 tests.

exampLE 3.9 [

To illustrate Dunnett’s test, consider the experiment from
Example 3.1 with treatment 4 considered as the control. In
this example,a = 4,a — 1 =3,f= 16,and n, = n = 5. At
the 5 percent level, we find from Appendix Table VIII that
dy5(3, 16) = 2.59. Thus, the critical difference becomes

2MS 12(333.70
= E—-1259 % =29.92

(Note that this is a simplification of Equation 3.42 resulting
from a balanced design.) Thus, any treatment mean that dif-

dy5(3, 16)

fers in absolute value from the control by more than 29.92
would be declared significantly different. The observed dif-
ferences are

1vs.4:5, —y, = 551.2 — 707.0 = —155.8
2vs. 4:3, — y, = 587.4 — 707.0 = —119.6
3vs. 4y, — y, = 625.4 — 707.0 = —81.6

Note that all differences are significant. Thus, we
would conclude that all power settings are different from
the control.

When comparing treatments with a control, it is a good idea to use more observations
for the control treatment (say n,) than for the other treatments (say #), assuming equal num-
bers of observations for the remaining a — 1 treatments. The ratio n,/n should be chosen to
be approximately equal to the square root of the total number of treatments. That is, choose
n/n =Va.
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Sample Computer Output

Computer programs for supporting experimental design and performing the analysis of variance
are widely available. The output from one such program, Design-Expert, is shown in Figure
3.12, using the data from the plasma etching experiment in Example 3.1. The sum of squares
corresponding to the “Model” is the usual SSyumenss fOr @ single-factor design. That source is
further identified as “A.” When there is more than one factor in the experiment, the model sum
of squares will be decomposed into several sources (A, B, etc.). Notice that the analysis of vari-
ance summary at the top of the computer output contains the usual sums of squares, degrees of
freedom, mean squares, and test statistic F,. The column “Prob > F” is the P-value (actually,
the upper bound on the P-value because probabilities less than 0.0001 are defaulted to 0.0001).

In addition to the basic analysis of variance, the program displays some other useful
information. The quantity “R-squared” is defined as

 SSuoqer _ 66,870.55
- SSTotal a 72520975 N 09261

RZ

and is loosely interpreted as the proportion of the variability in the data “explained” by the
ANOVA model. Thus, in the plasma etching experiment, the factor “power” explains about
92.61 percent of the variability in etch rate. Clearly, we must have 0 = R* < 1, with larg-
er values being more desirable. There are also some other R>-like statistics displayed in
the output. The “adjusted” R? is a variation of the ordinary R’ statistic that reflects the
number of factors in the model. It can be a useful statistic for more complex experiments
with several design factors when we wish to evaluate the impact of increasing or decreas-
ing the number of model terms. “Std. Dev.” is the square root of the error mean square,

V333.70 = 18.27, and “C.V.” is the coefficient of variation, defined as (VMS/y )100. The
coefficient of variation measures the unexplained or residual variability in the data as a per-
centage of the mean of the response variable. “PRESS” stands for “prediction error sum of
squares,” and it is a measure of how well the model for the experiment is likely to predict
the responses in a new experiment. Small values of PRESS are desirable. Alternatively, one
can calculate an R* for prediction based on PRESS (we will show how to do this later). This
R}.q in our problem is 0.8845, which is not unreasonable, considering that the model
accounts for about 93 percent of the variability in the current experiment. The “adequate
precision” statistic is computed by dividing the difference between the maximum predict-
ed response and the minimum predicted response by the average standard deviation of all
predicted responses. Large values of this quantity are desirable, and values that exceed four
usually indicate that the model will give reasonable performance in prediction.

Treatment means are estimated, and the standard error (or sample standard deviation of
each treatment mean, V MS,/n) is displayed. Differences between pairs of treatment means
are investigated by using a hypothesis testing version of the Fisher LSD method described in
Section 3.5.7.

The computer program also calculates and displays the residuals, as defined in Equation
3.16. The program will also produce all of the residual plots that we discussed in Section 3.4.
There are also several other residual diagnostics displayed in the output. Some of these will be
discussed later. Design-Expert also displays the studentized residual (called “Student Residual”
in the output), calculate as

¢jj

- \/MSE(I — Leveragey)

Tij

where Leverage;; is a measure of the influence of the ij" observation on the model. We will dis-
cuss leverage in more detail and show how it is calculated in chapter 10. Studentized residuals
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Response: Etch Rate

ANOVA for Selected Factorial Model
Analysis of variance table [Partial sum of squares]

Sum of Mean F
Source Squares DF Square Value Prob >F
Model 66870.55 3 22290.18 66.80 <0.0001 significant
A 66870.55 3 22290.18 66.80 <0.0001
Pure Error 5338.20 16 333.70

Cor Total 72209.75 19

The Model F-value of 66.80 implies that the model is significant. There is only a 0.01% chance
that a "Model F-Value" this large could occur due to noise.

Values of "Prob > F" less than 0.0500 indicate that model terms are significant.

In this case, A are significant model terms.

Values greater than 0.1000 indicate that the model terms are not significant.

If there are many insignificant model terms (not counting those required to support hierarchy),
model reduction may improve your model.

Std. Dev. 18.27 R-Squared 0.9261
Mean 617.75 Adj R-Squared 0.9122
C.V. 2.96 Pred R-Squared 0.8846
PRESS 8342.50 Adeq Precision 19.071

The "Pred R-Squared" of 0.8845 is in reasonable agreement with the "Adj R-Squared" of 0.9122.

"Adeq Precision" measures the signal-to-noise ratio. A ratio greater than four is disirable. Your ratio
of 19.071 indicates an adequate signal. This model can be used to navigate the design space.

Treatment Means (Adjusted, If Necessary)

Estimated Standard

Mean Error

1-160 551.20 8.17

2-180 587.40 8.17

3-200 625.40 8.17

4-220 707.00 8.17

Mean Standard t for Hy

Treatment Difference DF Error Coeff=0 Prob > |t|
Tvs2 -36.20 1 11.55 -3.13 0.0064
1vs3 -74.20 1 11.55 -6.42 <0.0001
Tvs4 —-155.80 1 11.55 -13.49 <0.0001
2vs3 -38.00 1 11.565 -3.29 0.0046
2vs 4 -119.60 1 11.55 -10.35 <0.0001
3vs4 -81.60 1 11.55 -7.06 <0.0001

Values of "Prob > [t|" less than 0.0500 indicate that the difference in the treatment means

is significant.

Values of "Prob > |t|" greater than 0.1000 indicate that the difference in the two treatment means
is not significant.

Diagnostics Case Statistics

Standard Actual Predicted Student Cook's Outlier Run
Order Value Value Residual Leverage Residual Distance t Order
1 575.00 551.20 23.80 0.200 1.457 0.133 1514 13

542.00 551.20 -9.20 0.200 -0.563 0.020 —-0.551 14
3 530.00 551.20 -21.20 0.200 -1.298 0.105 -1.328 8
4 539.00 551.20 -12.20 0.200 -0.747 0.035 -0.736 5
5 570.00 551.20 18.80 0.200 1.151 0.083 1.163 4
6 565.00 587.40 -22.40 0.200 -1.371 0.117 -1.413 18
7 593.00 587.40 5.60 0.200 0.343 0.007 0.333 9
8 590.00 587.40 2.60 0.200 0.159 0.002 0.154 6
9 579.00 587.40 -8.40 0.200 -0.514 0.017 -0.502 16
10 610.00 587.40 22.60 0.200 1.383 0.120 1.427 17
11 600.00 625.40 —-25.40 0.200 -1.555 0.151 -1.634 7
12 651.00 625.40 25.60 0.200 1.567 0.153 1.649 19
13 610.00 625.40 -15.40 0.200 -0.943 0.056 -0.939 10
14 637.00 625.40 11.60 0.200 0.710 0.032 0.699 20
15 629.00 625.40 3.60 0.200 0.220 0.003 0.214 1
16 725.00 707.00 18.00 0.200 1.102 0.076 1.110 2
17 700.00 707.00 -7.00 0.200 -0.428 0.011 -0.417 3
18 715.00 707.00 8.00 0.200 0.490 0.015 0.478 15
19 685.00 707.00 -22.00 0.200 -1.346 0.113 -1.385 11
20 710.00 707.00 3.00 0.200 0.184 0.002 0.178 12

Proceed to Diagnostic Plots (the next icon in progression). Be sure to look at the
(1) Normal probability plot of the studentized residuals to check for normality of residuals.
(2) Studentized residuals versus predicted values to check for constant error.
(3) Outlier t versus run order to look for outliers, i.e., influential values.
(4) Box-Cox plot for power transformations.

If all the model statistics and diagnostic plots are OK, finish up with the Model Graphs icon.

m FIGURE 3.12 Design-Expert computer output for Example 3.1
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One-way ANOVA: Etch Rate versus Power

Source DF SS MS F P
Power 3 66871 22290 66.80 0.000
Error 16 5339 334

Total 19 72210

S=-1827 R-Sq=92.61% R-Sq (adj) = 91.22%

Individual 95% Cls For Mean Based on
Pooled StDev

Level N Mean Std.Dev. } } } !
160 5 551.20 20.02 (=——x )
180 5 58740 16.74 (——x* )
200 5 625.40 20.53 (——* )
220 5 70700 15.25 (——* )
1 1 1 1
T T T T
550 600 650 700

Pooled Std. Dev. = 18.27

Turkey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Power

Individual confidence level = 98.87%

Power = 160 subtracted from

Power Lower Center  Upper - } } }

180 3N 36.20 69.29 ( *—)
200 411 74.20 107.29 (——x )
220 122.71 155.80 188.89 ( *—)
1 1 1 1
T T T T
-100 0 100 200
Power = 180 subtracted from
Power Lower Center  Upper } } } }
200 4.91 38.00 71.09 ( *#—)
220 8651  119.60  152.69 (—x—)
1 1 1 1
T T T T
-100 0 100 200
Power = 200 subtracted from
Power Lower Center Upper - - } }
220 48.51 81.60 114.69 (——%—)
1 1 1 1
T T T T
-100 0 100 200

m FIGURE 3.13  Minitab computer output for Example 3.1

are considered to be more effective in identifying potential rather than either the ordinary resid-
uals or standardized residuals.

Finally, notice that the computer program also has some interpretative guidance embed-
ded in the output. This “advisory” information is fairly standard in many PC-based statistics
packages. Remember in reading such guidance that it is written in very general terms and may
not exactly suit the report writing requirements of any specific experimenter. This advisory
output may be hidden upon request by the user.

Figure 3.13 presents the output from Minitab for the plasma etching experiment. The out-
put is very similar to the Design-Expert output in Figure 3.12. Note that confidence intervals on
each individual treatment mean are provided and that the pairs of means are compared using
Tukey’s method. However, the Tukey method is presented using the confidence interval format
instead of the hypothesis-testing format that we used in Section 3.5.7. None of the Tukey con-
fidence intervals includes zero, so we would conclude that all of the means are different.
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Figure 3.14 is the output from JMP for the plasma etch experiment in Example 3.1.
The output information is very similar to that from Design-Expert and Minitab. The plots
of actual observations versus the predicted values and residuals versus the predicted values
are default output. There is an option in JMP to provide the Fisher LSD procedure or
Tukey’s method to compare all pairs of means.

3.7 Determining Sample Size

In any experimental design problem, a critical decision is the choice of sample size—that is,
determining the number of replicates to run. Generally, if the experimenter is interested
in detecting small effects, more replicates are required than if the experimenter is interested in
detecting large effects. In this section, we discuss several approaches to determining sample
size. Although our discussion focuses on a single-factor design, most of the methods can be
used in more complex experimental situations.

3.7.1 Operating Characteristic Curves

Recall that an operating characteristic (OC) curve is a plot of the type II error probability
of a statistical test for a particular sample size versus a parameter that reflects the extent to
which the null hypothesis is false. These curves can be used to guide the experimenter in
selecting the number of replicates so that the design will be sensitive to important potential
differences in the treatments.

We consider the probability of type II error of the fixed effects model for the case of
equal sample sizes per treatment, say

1 — P{Reject Hy|H, is false}
=1 = P(Fy>F,, \yd|H, s false) (3.43)

B

To evaluate the probability statement in Equation 3.43, we need to know the distribution of
the test statistic F|, if the null hypothesis is false. It can be shown that, if H,, is false, the statistic
Fy = MStcamens/MSE 1s distributed as a noncentral F random variable witha — 1 and N — a
degrees of freedom and the noncentrality parameter 6. If 6 = 0, the noncentral F distribution
becomes the usual (central) F distribution.

Operating characteristic curves given in Chart V of the Appendix are used to evaluate
the probability statement in Equation 3.43. These curves plot the probability of type II error
(B) against a parameter ®, where

n T
P = (3.44)
ao

-

2
i

The quantity @ is related to the noncentrality parameter 8. Curves are available for « = 0.05
and @ = 0.01 and a range of degrees of freedom for numerator and denominator.

In using the OC curves, the experimenter must specify the parameter ® and the value of
o”. This is often difficult to do in practice. One way to determine @ is to choose the actual val-
ues of the treatment means for which we would like to reject the null hypothesis with high
probability. Thus, if w, o, . . . , , are the specified treatment means, we find the 7; in Equation
348 as T, = w; — W, where p = (1/a)={w; is the average of the individual treatment means.
The estimate of * may be available from prior experience, a previous experiment or a prelim-
inary test (as suggested in Chapter 1), or a judgment estimate. When we are uncertain about
the value of o, sample sizes could be determined for a range of likely values of o” to study the
effect of this parameter on the required sample size before a final choice is made.
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Response Etch rate
Whole Model

Actual by Predicted Plot

Etch rate Actual

750

(o] )] ~
o a1 o
o o o
| | |

550

550

T T T T T T T
700

600 650

Etch rate Predicted P < .0001

RSq = 0.93 RMSE = 18.26

7

Summary of Fit

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance
Source

Model

Error

C. Total

Effect Tests

Source
RF power

DF

3

16

19
Nparm DF
3 3

Residual by Predicted Plot

Sum of Squares

0.92606

0.912196
18.26746

66870.550
5339.200
72209.750

Sum of Squares
66870.550

Etch rate
Residual

30
20

T T T T T
550 600 650
Etch rate Predicted

T
700

RF power

Least Squares Means Table

Level
160
180
200
220

m FIGURE 3.14

Least Sq Mean
551.20000
587.40000
625.40000
707.00000

Std Error

8.1694553
8.1694553
8.1694553
8.1694553

JMP output from Example 3.1

617.75
20

Mean Square

22290.2
333.7

F Ratio
66.7971

Mean
551.200
587.400
625.400
707.000

F Ratio

66.7971
Prob> F
<.0001

Prob > F
<.0001
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exampLE 3.10 [

Consider the plasma etching experiment described in power will be no larger than o = 25 A/min. Then, by using

Example 3.1. Suppose that the experimenter is interested in Equation 3.44, we have
rejecting the null hypothesis with a probability of at least 4
0.90 if the four treatment means are 2
o = " ; T n(6,250) )
my =575 p, =600 p; =650 and p, = 675 - 202 - 4(25)? -
She plans to use « = 0.01. In this case, because E?ZIM =
2500, we have = (1/4)2500 = 625 and We use the OC curve fora — 1 =4 — 1 =3 withN —a =
a(n — 1) = 4(n — 1) error degrees of freedom and a =
=@ — =575 — 625 = =50 0.01 (see.Appendix Chart Y). As aﬁrs.t gqess at t?e required
_ =600 — 625 = —25 sample size, try n = 3 replicates. This yields ®° = 2.5n =
(R B 2.5(3) = 7.5, ® = 2.74, and 4(2) = 8 error degrees of free-
T3 = M3 — = 650 — 625 = 25 dom. Consequently, from Chart V, we find that 8 = 0.25.
_ — _ _ Therefore, the power of the test is approximately 1 — 8 =
= — p =675 — 625 = 50
4T KT M 1 — 0.25 = 0.75, which is less than the required 0.90, and
Thus, E?:ﬂ'lz- = 6250. Suppose the experimenter feels that so we conclude that n = 3 replicates are not sufficient.
the standard deviation of etch rate at any particular level of Proceeding in a similar manner, we can construct the fol-
lowing display:
n P’ P a(n — 1) B Power (1 — B)
3 7.5 2.74 8 0.25 0.75
4 10.0 3.16 12 0.04 0.96
5 12.5 3.54 16 <0.01 >0.99

Thus, 4 or 5 replicates are sufficient to obtain a test with the
required power.

A significant problem with this approach to using OC curves is that it is usually difficult to
select a set of treatment means on which the sample size decision should be based. An alternate
approach is to select a sample size such that if the difference between any two treatment means
exceeds a specified value, the null hypothesis should be rejected. If the difference between any
two treatment means is as large as D, it can be shown that the minimum value of D is

2
P2 = D (3.45)

2a0?

Because this is a minimum value of @2, the corresponding sample size obtained from the
operating characteristic curve is a conservative value; that is, it provides a power at least as
great as that specified by the experimenter.

To illustrate this approach, suppose that in the plasma etching experiment from Example
3.1, the experimenter wished to reject the null hypothesis with probability at least 0.90 if
any two treatment means differed by as much as 75 A/min and « = 0.01. Then, assuming that
o = 25 psi, we find the minimum value of @2 to be

P — n(75)* _
2(4)(25%)
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Now we can use the OC curves exactly as in Example 3.10. Suppose we try n = 4 repli-
cates. This results in ®? = 1.125(4) = 4.5, ® = 2.12, and 4(3) = 12 degrees of freedom for
error. From the OC curve, we find that the power is approximately 0.65. For n = 5 replicates,
we have ®* = 5.625, ® = 2.37, and 4(4) = 16 degrees of freedom for error. From the OC
curve, the power is approximately 0.8. For n = 6 replicates, we have ®* = 6.75, ® = 2.60,
and 4(5) = 20 degrees of freedom for error. From the OC curve, the power exceeds 0.90, so
n = 6 replicates are required.

Minitab uses this approach to perform power calculations and find sample sizes for
single-factor ANOVAs. Consider the following display:

Power and Sample Size
One-way ANOVA

Alpha = 0.01 Assumed standard deviation = 25

Number of Levels = 4
Sample Maximum
SS Means Size Power Difference
2812.5 5 0.804838 75

The sample size is for each Llevel.
Power and Sample Size
One-way ANOVA

Alpha = 0.01 Assumed standard deviation = 25
Number of Levels 5 4

Sample Target Maximum
SS Means Size Power Actual Power Difference
2812.5 [ 0.9 0.915384 75

The sample size is for each Llevel.

In the upper portion of the display, we asked Minitab to calculate the power for n = 5 repli-
cates when the maximum difference in treatment means is 75. Notice that the results closely
match those obtained from the OC curves. The bottom portion of the display the output when
the experimenter requests the sample size to obtain a target power of at least 0.90. Once again,
the results agree with those obtained from the OC curve.

3.7.2 Specifying a Standard Deviation Increase

This approach is occasionally helpful in choosing the sample size. If the treatment means do
not differ, the standard deviation of an observation chosen at random is o. If the treatment
means are different, however, the standard deviation of a randomly chosen observation is

o+ (i T?/a)

i=1

If we choose a percentage P for the increase in the standard deviation of an observation
beyond which we wish to reject the hypothesis that all treatment means are equal, this is
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equivalent to choosing

o2+ (ﬁ: T,-Z/a>
i=1

=1+ 0.01P (P = percent)

ag
or
E *a
S =V +001Py — 1
so that
/E tila
®=""1_ =\ +001PY — 1(\Vn) (3.46)
A

Thus, for a specified value of P, we may compute ® from Equation 3.46 and then use the
operating characteristic curves in Appendix Chart V to determine the required sample size.

For example, in the plasma etching experiment from Example 3.1, suppose that we wish
to detect a standard deviation increase of 20 percent with a probability of at least 0.90 and
a = 0.05. Then

® = V(1272 — 1(Vn) = 0.66Vn

Reference to the operating characteristic curves shows that n = 10 replicates would be
required to give the desired sensitivity.

3.7.3 Confidence Interval Estimation Method

This approach assumes that the experimenter wishes to express the final results in terms of
confidence intervals and is willing to specify in advance how wide he or she wants these con-
fidence intervals to be. For example, suppose that in the plasma etching experiment from
Example 3.1, we wanted a 95 percent confidence interval on the difference in mean etch rate
for any two power settings to be +=30 A/min and a prior estimate of o is 25. Then, using
Equation 3.13, we find that the accuracy of the confidence interval is

2MS,
* a/2.N—a T

Suppose that we try n = 5 replicates. Then, using o* = (25)* = 625 as an estimate of MS;,
the accuracy of the confidence interval becomes
2(625
+2.120 % = +33.52

which does not meet the requirement. Trying n = 6 gives
2(625)

£2.086 |7 2> = 30,11
Trying n = 7 gives
2625
+2.064 ¥ — +27.58

Clearly, n = 7 is the smallest sample size that will lead to the desired accuracy.
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The quoted level of significance in the above illustration applies only to one confi-
dence interval. However, the same general approach can be used if the experimenter wishes
to prespecify a set of confidence intervals about which a joint or simultaneous confidence
statement is made (see the comments about simultaneous confidence intervals in Section
3.3.3). Furthermore, the confidence intervals could be constructed about more general con-
trasts in the treatment means than the pairwise comparison illustrated above.

3.8 Other Examples of Single-Factor Experiments

3.8.1 Chocolate and Cardiovascular Health

An article in Nature describes an experiment to investigate the effect of consuming chocolate
on cardiovascular health (“Plasma Antioxidants from Chocolate,” Nature, Vol. 424, 2003,
pp- 1013). The experiment consisted of using three different types of chocolates: 100 g of dark
chocolate, 100 g of dark chocolate with 200 mL of full-fat milk, and 200 g of milk chocolate.
Twelve subjects were used, 7 women and 5 men, with an average age range of 32.2 = 1 years,
an average weight of 65.8 = 3.1 kg, and body-mass index of 21.9 + 0.4 kg m 2. On different
days a subject consumed one of the chocolate-factor levels and one hour later the total antiox-
idant capacity of their blood plasma was measured in an assay. Data similar to that summarized
in the article are shown in Table 3.12.

Figure 3.15 presents box plots for the data from this experiment. The result is an indication
that the blood antioxidant capacity one hour after eating the dark chocolate is higher than for the
other two treatments. The variability in the sample data from all three treatments seems very sim-
ilar. Table 3.13 is the Minitab ANOVA output. The test statistic is highly significant (Minitab
reports a P-value of 0.000, which is clearly wrong because P-values cannot be zero; this means
that the P-value is less than 0.001), indicating that some of the treatment means are different. The
output also contains the Fisher LSD analysis for this experiment. This indicates that the mean
antioxidant capacity after consuming dark chocolate is higher than after consuming dark choco-
late plus milk or milk chocolate alone, and the mean antioxidant capacity after consuming dark
chocolate plus milk or milk chocolate alone are equal. Figure 3.16 is the normal probability plot
of the residual and Figure 3.17 is the plot of residuals versus predicted values. These plots do not
suggest any problems with model assumptions. We conclude that consuming dark chocolate
results in higher mean blood antioxidant capacity after one hour than consuming either dark
chocolate plus milk or milk chocolate alone.

3.8.2 A Real Economy Application of a Designed Experiment

Designed experiments have had tremendous impact on manufacturing industries, including
the design of new products and the improvement of existing ones, development of new

m TABLE 3.12
Blood Plasma Levels One Hour Following Chocolate Consumption

Subjects (Observations)

Factor 1 2 3 4 5 6 7 8 9 10 11 12

DC 118.8 122.6 1156 113.6 1195 115.9 1158 1151 1169 1154 1156 1079
DC+MK 1054  101.1 102.7 97.1 101.9 98.9 100.0 99.8  102.6 100.9  104.5 93.5
MC 102.1 105.8 99.6 102.7 98.8 100.9 102.8 98.7 94.7 97.8 99.7 98.6
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m FIGURE 3.15 Box plots of the blood antioxidant
capacity data from the chocolate consumption experiment

DC+MK

Minitab ANOVA Output, Chocolate Consumption Experiment

MC

One-way ANOVA: DC, DC+MK, MC

Source DF S
Factor 2 1952.
Error 33 344,
Total 35 2296.

S = 3.230 R-Sq

S
6
3
9

Level N Mean
DC 12 116.06
DC+MK 12 100.70
MC 12 100.18

Pooled Sthev = 3.23

M
976.
10.

85.01

StDev
3.53
3.24
2.89

S
3
4

%

F P

93.58 0.000

R-Sq(adj) = 84.107%
Individual 957% CIs For Mean Based on
Pooled StDev

___+ _________ + ________

(==%—==)

(=% —==)

___+ _________ + ________
100.0 105.0 110

Fisher 957 Individual Confidence Intervals
ALL Pairwise Comparisons
Simultaneous confidence level =

DC subtracted from:

Lower Center
DC+MK -18.041 -15.358
MC -18.558 -15.875

DC+MK subtracted from:

Lower Center

MC -3.200 -0.51

7

Uppe
2.16

r
6

Upper
-12.675
-13.192

88.02

(
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————————— +
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100 102 104 106 108 110 112 114 116 118
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m FIGURE 3.17 Plot of residuals versus the

m FIGURE 3.16 Normal probability plot of the residu-  predicted values from the chocolate consumption
als from the chocolate consumption experiment experiment

manufacturing processes, and process improvement. In the last 15 years, designed experi-
ments have begun to be widely used outside of this traditional environment. These applications
are in financial services, telecommunications, health care, e-commerce, legal services, market-
ing, logistics and transporation, and many of the nonmanufacturing components of manufac-
turing businesses. These types of businesses are sometimes referred to as the real economy. It
has been estimated that manufacturing accounts for only about 20 percent of the total US
economy, so applications of experimental design in the real economy are of growing impor-
tance. In this section, we present an example of a designed experiment in marketing.

A soft drink distributor knows that end-aisle displays are an effective way to increase
sales of the product. However, there are several ways to design these displays: by varying the
text displayed, the colors used, and the visual images. The marketing group has designed
three new end-aisle displays and wants to test their effectiveness. They have identified 15
stores of similar size and type to participate in the study. Each store will test one of the dis-
plays for a period of one month. The displays are assigned at random to the stores, and each
display is tested in five stores. The response variable is the percentage increase in sales activ-
ity over the typical sales for that store when the end-aisle display is not in use. The data from
this experiment are shown in Table 3.13.

Table 3.14 shows the analysis of the end-asile display experiment. This analysis was con-
ducted using JMP. The P-value for the model F statistic in the ANOVA indicates that there is a
difference in the mean percentage increase in sales between the three display types. In this appli-
cation, we had JMP use the Fisher LSD procedure to compare the pairs of treatment means (JMP
labels these as the least squares means). The results of this comparison are presented as confidence
intervals on the difference in pairs of means. For pairs of means where the confidence interval
includes zero, we would not declare that pair of means are different. The JMP output indicates that
display designs 1 and 2 are similar in that they result in the same mean increase in sales, but that

s TABLE 3.13
The End-Aisle Display Experimental Design

Display
Design Sample Observations, Percent Increase in Sales
1 5.43 5.71 6.22 6.01 5.29

6.24 6.71 5.98 5.66 6.60
3 8.79 9.20 7.90 8.15 7.55
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display design 3 is different from both designs 1 and 2 and that the mean increase in sales for dis-
play 3 exceeds that of both designs 1 and 2. Notice that JMP automatically includes some useful
graphics in the output, a plot of the actual observations versus the predicted values from the model,
and a plot of the residuals versus the predicted values. There is some mild indication that display
design 3 may exhibit more variability in sales increase than the other two designs.

s TABLE 3.14
JMP Output for the End-Aisle Display Experiment

Response Sales Increase
Whole Model

Actual by Predicted Plot
95

8.5
8
7 4
6.5 —

5.5 -

Sales
increase actual

1 T T

5.0 6.0 6.5 7.5 8.5 9.5
Sales increase predicted

P <.0001 RSq = 0.86 RMSE = 0.5124

Summary of Fit

RSquare 0.856364
RSquare Adj 0.832425
Root Mean Square Error 0.512383
Mean of Response 6.762667
Observations (or Sum Wgts) 15
Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 2 18.783053 9.39153 35.7722
Error 12 3.150440 0.26254 Prob>F
C.Total 14 21.933493 <.0001
Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob > F
Display 2 2 18.783053 35.7722 <.001
Residual by Predicted Plot
1.0 S

3 0.5 . . .

$3 :

23 o0 -

g8 . .

=z . .

9 0.5 .

-1.0 T T T T T T T T
5.0 6.0 6.5 7.5 8.5 9.5
Sales increase predicted
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n TABLE 3.14

(Continued)

Least Squares Means Table

Level Least Sq Mean Std Error Mean
1 5.7320000 0.22914479 5.73200
2 6.2380000 0.22914479 6.23800
3 8.3180000 0.22914479 8.31800

LSMeans Differences Student’s t

a =0.050 r = 2.17881

LSMean[i] By LSMean [i]

Mean[i]-Mean [i] 1 2 3
Std Err Dif
Lower CL Dif
Upper CL Dif
1 0 —0.5006 —2.586
0 0.32406 0.32406
0 —1.2121 —3.2921
0 0.20007 —1.8799
2 0.506 0 —-2.08
0.32406 0 0.32406
—0.2001 0 —2.7861
1.21207 0 —1.3739
3 2.586 2.08 0
0.32406 0.32406 0
1.87993 1.37393 0
3.29207 2.78607 0
Level Least Sq Mean
3 A 8.3180000
2 B 6.2380000
1 B 5.7320000

Levels not connected by same letter are significantly different.

3.8.3 Discovering Dispersion Effects

We have focused on using the analysis of variance and related methods to determine which
factor levels result in differences among treatment or factor level means. It is customary to
refer to these effects as location effects. If there was inequality of variance at the different
factor levels, we used transformations to stabilize the variance to improve our inference on
the location effects. In some problems, however, we are interested in discovering whether the
different factor levels affect variability; that is, we are interested in discovering potential dis-
persion effects. This will occur whenever the standard deviation, variance, or some other
measure of variability is used as a response variable.

To illustrate these ideas, consider the data in Table 3.15, which resulted from a designed
experiment in an aluminum smelter. Aluminum is produced by combining alumina with other
ingredients in a reaction cell and applying heat by passing electric current through the cell.
Alumina is added continuously to the cell to maintain the proper ratio of alumina to other ingre-
dients. Four different ratio control algorithms were investigated in this experiment. The response
variables studied were related to cell voltage. Specifically, a sensor scans cell voltage several
times each second, producing thousands of voltage measurements during each run of the exper-
iment. The process engineers decided to use the average voltage and the standard deviation of
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s TABLE 3.15
Data for the Smelting Experiment

Ratio

Control Observations

Algorithm 1 2 3 4 5 6

1 4.93(0.05)  4.86(0.04) 4.75(0.05) 4.95(0.06) 4.79(0.03) 4.88(0.05)
2 4.85(0.04)  4.91(0.02)  4.79(0.03)  4.85(0.05)  4.75(0.03)  4.85(0.02)
3 4.83(0.09)  4.88(0.13) 4.90(0.11) 4.75(0.15) 4.82(0.08) 4.90(0.12)
4 4.89(0.03)  4.77(0.04) 4.94(0.05) 4.86(0.05) 4.79(0.03) 4.76(0.02)

m TABLE 3.16
Analysis of Variance for the Natural Logarithm of Pot Noise

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
Ratio control algorithm 6.166 3 2.055 21.96 <0.001
Error 1.872 20 0.094

Total 8.038 23

cell voltage (shown in parentheses) over the run as the response variables. The average voltage
is important because it affects cell temperature, and the standard deviation of voltage (called
“pot noise” by the process engineers) is important because it affects the overall cell efficiency.

An analysis of variance was performed to determine whether the different ratio control
algorithms affect average cell voltage. This revealed that the ratio control algorithm had no
location effect; that is, changing the ratio control algorithms does not change the average cell
voltage. (Refer to Problem 3.38.)

To investigate dispersion effects, it is usually best to use

log(s) or log(s?)

as a response variable since the log transformation is effective in stabilizing variability in the
distribution of the sample standard deviation. Because all sample standard deviations of pot
voltage are less than unity, we will use

y = —In(s)
as the response variable. Table 3.16 presents the analysis of variance for this response, the nat-
ural logarithm of “pot noise.” Notice that the choice of a ratio control algorithm affects pot
noise; that is, the ratio control algorithm has a dispersion effect. Standard tests of model ade-
quacy, including normal probability plots of the residuals, indicate that there are no problems

with experimental validity. (Refer to Problem 3.39.)
Figure 3.18 plots the average log pot noise for each ratio control algorithm and also
presents a scaled 7 distribution for use as a reference distribution in discriminating between
ratio control algorithms. This plot clearly reveals that ratio control algorithm 3 produces

mFIGURE 3.18 Average
/\ log pot noise [—In (s)] for
four ratio control algorithms
relative to a scaled ¢ distribution

| i I; i i | with scale factor VMS,/n =
2.00 3.00 4.00 V0.094/6 = 0.125

Average log pot noise [-In (s)]
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greater pot noise or greater cell voltage standard deviation than the other algorithms. There
does not seem to be much difference between algorithms 1, 2, and 4.

The Random Effects Model

3.9.1 A Single Random Factor

An experimenter is frequently interested in a factor that has a large number of possible levels.
If the experimenter randomly selects a of these levels from the population of factor levels, then
we say that the factor is random. Because the levels of the factor actually used in the experi-
ment were chosen randomly, inferences are made about the entire population of factor levels.
We assume that the population of factor levels is either of infinite size or is large enough to be
considered infinite. Situations in which the population of factor levels is small enough to employ
a finite population approach are not encountered frequently. Refer to Bennett and Franklin
(1954) and Searle and Fawcett (1970) for a discussion of the finite population case.
The linear statistical model is

_ i=1,2,...,a

where both the treatment effects 7; and €;; are random variables. We will assume that the treat-
ment effects 7, are NID (0, o2) random variables' and that the errors are NID (0, o), random
variables, and that the 7;and € are independent. Because 7; is independent of €;;, the variance
of any observation is

ij»

Viyy) = o; + o’

The variances o2 and o are called variance components, and the model (Equation 3.47) is
called the components of variance or random effects model. The observations in the random
effects model are normally distributed because they are linear combinations of the two normally
and independently distributed random variables 7; and &;. However, unlike the fixed effects
case in which all of the observations y; are independent, in the random model the observations
y; are only independent if they come from different factor levels. Specifically, we can show that
the covariance of any two observations is

Cov <yz‘j» ytjf'> = 0'3 i#J

Cov (yij, yirjf> =0 i#i

Note that the observations within a specific factor level all have the same covariance, because
before the experiment is conducted, we expect the observations at that factor level to be sim-
ilar because they all have the same random component. Once the experiment has been con-
ducted, we can assume that all observations can be assumed to be independent, because the
parameter 7; has been determined and the observations in that treatment differ only because
of random error.

We can express the covariance structure of the observations in the single-factor random
effects model through the covariance matrix of the observations. To illustrate, suppose that
we have a = 3 treatments and n = 2 replicates. There are N = 6 observations, which we can
write as a vector

" The as assumption that the [7;] are independent random variables implies that the usual assumption of 3¢_, 7, = 0 from the fixed
effects model does not apply to the random effects model.
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and the 6 X 6 covariance matrix of these observations is

2+ o 0 0 0 0

o’ o+ o 0 0 0 0

0 0 P+ & 0 0

Com=1 0 2 F+a 0 0
0 0 0 0 P+ &P
0 0 0 0 2 Pt

The main diagonals of this matrix are the variances of each individual observation and every
off-diagonal element is the covariance of a pair of observations.

3.9.2 Analysis of Variance for the Random Model
The basic ANOVA sum of squares identity
SST = SSTreatmems + SSE (3°48)

is still valid. That is, we partition the total variability in the observations into a component
that measures the variation between treatments (SSteumens) @ld @ component that measures
the variation within treatments (SS;). Testing hypotheses about individual treatment effects is
not very meaningful because they were selected randomly, we are more interested in the pop-
ulation of treatments, so we test hypotheses about the variance component o 2.

HO: 0'3 = 0
H:02 >0 (3.49)
If a’f = 0, all treatments are identical; but if crf = 0, variability exists between treatments.

As before, SS,/0” is distributed as chi-square with N — a degrees of freedom and, under the
null hypothesis, SSteaumens/0 is distributed as chi-square with @ — 1 degrees of freedom. Both
random variables are independent. Thus, under the null hypothesis > = 0, the ratio

SSTrealments
a—1 _ MSTreatmems
SS;  MS,
N —a

Fy = (3.50)

is distributed as F with a — 1 and N — a degrees of freedom. However, we need to examine
the expected mean squares to fully describe the test procedure.
Consider
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When squaring and taking expectation of the quantities in brackets, we see that terms involv-
ing 77 are replaced by o7 as E (r;) = 0. Also, terms involving €;, €2, and 3¢ 3" 7} are
replaced by no?, ano?, and an?, respectively. Furthermore, all cross-product terms involving
7; and €; have zero expectation. This leads to

E(MSTreatmems) = Cl% [NMZ + N(Tz + Cl0'2 - N[Jzz - }’ZO'E - 0'2]

or
E(MSteqmens) = 07 + no? (3.51)
Similarly, we may show that
EMS;) = o (3.52)

From the expected mean squares, we see that under H,, both the numerator and denom-
inator of the test statistic (Equation 3.50) are unbiased estimators of o*, whereas under H, the
expected value of the numerator is greater than the expected value of the denominator.
Therefore, we should reject H,, for values of F|, that are too large. This implies an upper-tail,
one-tail critical region, so we reject Hy if Fy > F,, ,_1 y—a.

The computational procedure and ANOVA for the random effects model are identical
to those for the fixed effects case. The conclusions, however, are quite different because they
apply to the entire population of treatments.

393 Estimating the Model Parameters

We are usually interested in estimating the variance components (¢ and ¢2) in the model.
One very simple procedure that we can use to estimate o> and o2 is called the analysis of
variance method because it makes use of the lines in the analysis of variance table. The pro-
cedure consists of equating the expected mean squares to their observed values in the ANOVA
table and solving for the variance components. In equating observed and expected mean
squares in the single-factor random effects model, we obtain

MStesmens = O + no?
and
MS; = o?
Therefore, the estimators of the variance components are
o’ = MSg (3.53)

and

A MSTrealmems - MSE

o . (3.54)
For unequal sample sizes, replace n in Equation 13.8 by
L oxn
np=——| Sy — (3.55)

a—1 i=1

[
=
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The analysis of variance method of variance component estimation is a method of
moments procedure. It does not require the normality assumption. It does yield estimators of *
and o2 that are best quadratic unbiased (i.e., of all unbiased quadratic functions of the observa-
tions, these estimators have minimum variance). There is a different method based on maximum
likelihood that can be used to estimate the variance components that will be introduced later.

Occasionally, the analysis of variance method produces a negative estimate of a variance
component. Clearly, variance components are by definition nonnegative, so a negative estimate
of a variance component is viewed with some concern. One course of action is to accept the esti-
mate and use it as evidence that the true value of the variance component is zero, assuming that
sampling variation led to the negative estimate. This has intuitive appeal, but it suffers from some
theoretical difficulties. For instance, using zero in place of the negative estimate can disturb
the statistical properties of other estimates. Another alternative is to reestimate the negative vari-
ance component using a method that always yields nonnegative estimates. Still another alterna-
tive is to consider the negative estimate as evidence that the assumed linear model is incorrect and
reexamine the problem. Comprehensive treatment of variance component estimation is given by
Searle (1971a, 1971b), Searle, Casella, and McCullogh (1992), and Burdick and Graybill (1992).

exampLE 3.11 [

A textile company weaves a fabric on a large number of
looms. It would like the looms to be homogeneous so that it
obtains a fabric of uniform strength. The process engineer
suspects that, in addition to the usual variation in strength
within samples of fabric from the same loom, there may also

s TABLE 3.17
Strength Data for Example 3.11

be significant variations in strength between looms. To
investigate this, she selects four looms at random and makes
four strength determinations on the fabric manufactured on
each loom. This experiment is run in random order, and the
data obtained are shown in Table 3.17. The ANOVA is con-

Observations
Looms 1 2 3 4 Vi
1 98 97 99 96 390
2 91 90 93 92 366
3 96 95 97 95 383
4 95 96 99 98 388

ducted and is shown in Table 3.18. From the ANOVA, we
conclude that the looms in the plant differ significantly.
The variance components are estimated by > = 1.90 and
62 = 29.73 = 1.90 _ 6.96
4
s TABLE 3.18
Analysis of Variance for the Strength Data

1527 = y.
Therefore, the variance of any observation on strength is
estimated by
6,=67+ 62 =190 + 6.96 = 8.86.
Most of this variability is attributable to differences
between looms.

Source of Variation Sum of Squares Degrees of Freedom Mean Square F, P-Value
Looms 89.19 29.73 15.68 <0.001
Error 22.75 12 1.90

Total 111.94 15
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~2
m

LSL 1 usL LSL r usL

(a) Variability of process output. (b) Variability of process output if gf =0.

m FIGURE 3.19 Process output in the fiber strength problem

This example illustrates an important use of variance components—isolating different
sources of variability that affect a product or system. The problem of product variability fre-
quently arises in quality assurance, and it is often difficult to isolate the sources of variabili-
ty. For example, this study may have been motivated by an observation that there is too much
variability in the strength of the fabric, as illustrated in Figure 3.19a. This graph displays the
process output (fiber strength) modeled as a normal distribution with variance ; = 8.86.
(This is the estimate of the variance of any observation on strength from Example 3.11.)
Upper and lower specifications on strength are also shown in Figure 3.19a, and it is relative-
ly easy to see that a fairly large proportion of the process output is outside the specifications
(the shaded tail areas in Figure 3.19a). The process engineer has asked why so much fabric is
defective and must be scrapped, reworked, or downgraded to a lower quality product. The
answer is that most of the product strength variability is the result of differences between
looms. Different loom performance could be the result of faulty setup, poor maintenance,
ineffective supervision, poorly trained operators, defective input fiber, and so forth.

The process engineer must now try to isolate the specific causes of the differences in
loom performance. If she could identify and eliminate these sources of between-loom variabili-
ty, the variance of the process output could be reduced considerably, perhaps to as low as 6'3 =
1.90, the estimate of the within-loom (error) variance component in Example 3.11. Figure
3.19b shows a normal distribution of fiber strength with 6'}2, = 1.90. Note that the proportion
of defective product in the output has been dramatically reduced. Although it is unlikely that
all of the between-loom variability can be eliminated, it is clear that a significant reduction in
this variance component would greatly increase the quality of the fiber produced.

We may easily find a confidence interval for the variance component ¢”. If the observations
are normally and independently distributed, then (N — a)MS/o” is distributed as x%_,. Thus,

(N — a)MS; _

2 2 —
P|:Xl(a/2),Na = 2 = Xa/Z,Na] =1-«
o

and a 100(1 — «) percent confidence interval for o” is

N = aMSy _ , _ (N = aMS;

2 2
Xal2.N-a X1-(al2)N—a

(3.56)

Since MS; = 190, N = 16, a = 4, xg.o25.12 = 23,3367 and x§o75, 1o = 4.4038, the 95% CI
on 0% is 0.9770 = ¢? = 5.1775.
Now consider the variance component o-2. The point estimator of o2 is

~AD MSTreatments - MSE
0= "

The random variable (@ — 1)MS umen/(0° + n02) is distributed as y2_,, and (N — a)MS/o”
is distributed as x3_,. Thus, the probability distribution of &2 is a linear combination of two
chi-square random variables, say
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Mlezrl - ”2)(%17(4
where
o’ + no? J a?
uy=————0 and u, = —F——
Y@ —- 1 27 (N — a)

Unfortunately, a closed-form expression for the distribution of this linear combination of chi-
square random variables cannot be obtained. Thus, an exact confidence interval for o2 cannot
be constructed. Approximate procedures are given in Graybill (1961) and Searle (1971a).
Also see Section 13.6 of Chapter 13.

It is easy to find an exact expression for a confidence interval on the ratio o%/(o2 + o).
This ratio is called the intraclass correlation coefficient, and it reflects the proportion of the
variance of an observation [recall that V(y;) = o2 + ¢?] that is the result of differences between
treatments. To develop this confidence interval for the case of a balanced design, note that
MS preaimens and MS; are independent random variables and, furthermore, it can be shown that

MSTrealments/(no-z + 0-2)
MS,lo?

-~ Fu*l,N*a

Thus,

MS. 2
(Fl—a/Z,a—l,N—a = ;Z;Imems n020+ o? = F‘“v““”‘“) =l-a (3.57)
E T

By rearranging Equation 13.11, we may obtain the following:

2
P(L =7 < U) =1-a (3.58)
g

where

1 M STreatmems 1 >
L= -1 (3.59a)
n < MSE Fa/2,a—l,N—a

and

1 MS Treatments 1 )
U= -1 (3.59b)
n ( MSE Fl—a/2,a—1,N—a

Note that L and U are 100(1 — «) percent lower and upper confidence limits, respective-
ly, for the ratio 0'3/0'2. Therefore, a 100(1 — «) percent confidence interval for
o(o? + oY) is
L _ of _ U
L+L 7 o242 14U

(3.60)

To illustrate this procedure, we find a 95 percent confidence interval on o?/(o2 + o)
for the strength data in Example 3.11. Recall that MSt mens = 29.73, MS; = 1.90, a = 4,
n = 4, F0'025,3,12 = 4.47, and F0.975,3,12 = 1/F0'025’]273 = 1/14.34 = 0.070. Therefore, from

Equation 3.59a and b,
_ 11 (29.73 | S R
L= 4[( 1.90 )(4.47) 1] 0.625

Al (2973\ 1\ |
v= 4[( 1.90 ><0.07o> 1] 55.633
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and from Equation 3.60, the 95 percent confidence interval on o%/(c? + o) is

2

0625 _ 0:  _ 55633
1625 ~ o214 o2 56.633

or
2

038 = — 7 = 098
o+ o
We conclude that variability between looms accounts for between 38 and 98 percent of the
variability in the observed strength of the fabric produced. This confidence interval is relative-
ly wide because of the small number of looms used in the experiment. Clearly, however, the
variability between looms (o°2) is not negligible.

Estimation of the Overall Mean p. In many random effects experiments the exper-
imenter is interested in estimating the overall mean w. From the basic model assumptions it
is easy to see that the expected value of any observation is just the overall mean.
Consequently, an unbiased estimator of the overall mean is

a=y.
So for Example 3.11 the estimate of the overall mean strength is

- Y. _ 1527 _
=y N 16 95.44

A

It is also possible to find a 100(1 — a)% confidence interval on the overall mean. The
variance of y is

[ n

_ ;J;yl] l’l0'2+0'2
VOOI=Vl—w 1=

The numerator of this ratio is estimated by the treatment mean square, so an unbiased estima-
tor of V(y)is

5 = MS reatments
05 = Mg

—

Therefore, the 100(1 — @)% CI on the overall mean is

_ /MS
Sp=Y. Tt e an-n ——Treatments (3.61)

To find a 95% CI on the overall mean in the fabric strength experiment from Example 3.11,
we need MSy,eumens = 29.73 and 1, ¢p5.1, = 2.18. The CI is computed from Equation 3.61 as

follows:
- _ 2 S -7 MSTreatmems
Y. ta/Z,a(n—l) T an m=). + ta/Z,a(n—l) T an
95.44 — 2.18 92335 544+218/ 73

92.78 = p = 98.10

V. = lan, a1

<
e

]
g

%)
=
led
g
&
=
z

A



3.9 The Random Effects Model 1 23

So, at 95 percent confidence the mean strength of the fabric produced by the looms in
this facility is between 92.78 and 98.10. This is a relatively wide confidence interval because
a small number of looms were sampled and there is a large difference between looms as
reflected by the large portion of total variability that is accounted for by the differences
between looms.

Maximum Likelihood Estimation of the Variance Components. Earlier in this
section we presented the analysis of variance method of variance component estimation.
This method is relatively straightforward to apply and makes use of familiar quantities—
the mean squares in the analysis of variance table. However, the method has some disad-
vantages. As we pointed out previously, it is a method of moments estimator, a technique
that mathematical statisticians generally do not prefer to use for parameter estimation
because it often results in parameter estimates that do not have good statistical properties.
One obvious problem is that it does not always lead to an easy way to construct confidence
intervals on the variance components of interest. For example, in the single-factor random
model there is not a simple way to construct confidence intervals on o2, which is certainly
a parameter of primary interest to the experimenter. The preferred parameter estimation
technique is called the method of maximum likelihood. The implementation of this
method can be somewhat involved, particularly for an experimental design model, but it has
been incorporated in some modern computer software packages that support designed
experiments, including JMP.

A complete presentation of the method of maximum likelihood is beyond the scope of
this book, but the general idea can be illustrated very easily. Suppose that x is a random vari-
able with probability distribution f(x, ), where 6 is an unknown parameter. Let x|, x5, . . . , x,
be a random sample of n observations. The joint probability distribution of the sample is

Hf(xn 0). The likelihood function is just this joint probability distribution with the sample
observatlons consider fixed and the parameter # unknown. Note that the likelihood function,
say

L(xl’ Xoseees Xy Hf(xp 0)

is now a function of only the unknown parameter 6. The maximum likelihood estimator of 6 is
the value of 6 that maximizes the likelihood function L(x,, x,, ..., x,; ). To illustrate how this
applies to an experimental design model with random effects, let y be the an X 1 vector of obser-
vations for a single-factor random effects model with a treatments and n replicates and let 3, be
the an X an covariance matrix of the observations. Refer to Section 3.9.1 where we developed
this covariance matrix for the special case where @ = 3 and n = 2. The likelihood function is

1

N _ L
L(X1 15 X1050evs Xgpy Mo 0'3’ o) = (27T)N/2|E|]/2 ex

p |:_é ¥y — )27y - jNM):|
where N = an is the total number of observations, jy is an N X 1 vector of 1s, and w is the
overall mean in the model. The maximum likelihood estimates of the parameters u, 0'3, and
o” are the values of these quantities that maximize the likelihood function.

Maximum likelihood estimators (MLEs) have some very useful properties. For large sam-
ples, they are unbiased, and they have a normal distribution. Furthermore, the inverse of the matrix
of second derivatives of the likelihood function (multiplied by —1) is the covariance matrix of the
MLE:s. This makes it relatively easy to obtain approximate confidence intervals on the MLEs.

The standard variant of maximum likelihood estimation that is used for estimating vari-
ance components is known as the residual maximum likelihood (REML) method. It is pop-
ular because it produces unbiased estimators and like all MLEs, it is easy to find CIs. The basic



124 Chapter 3 B Experiments with a Single Factor: The Analysis of Variance

m TABLE 3.19

characteristic of REML is that it takes the location parameters in the model into account when
estimating the random effects. As a simple example, suppose that we want to estimate the mean
and variance of a normal distribution using the method of maximum likelihood. It is easy to
show that the MLEs are

Notice that the MLE & % is not the familiar sample standard deviation. It does not take the esti-
mation of the location parameter u into account. The REML estimator would be

The REML estimator is unbiased.

To illustrate the REML method, Table 3.19 presents the JMP output for the loom exper-
iment in Example 3.11. The REML estimates of the model parameters pw, 02,, and o? are
shown in the output. Note that the REML estimates of the variance components are identical
to those found earlier by the ANOVA method. These two methods will agree for balanced
designs. However, the REML output also contains the covariance matrix of the variance
components. The square roots of the main diagonal elements of this matrix are the standard

JMP Output for the Loom Experiment in Example 3.11

Response Y

Summary of Fit

RSquare 0.793521

RSquare Adj 0.793521

Root Mean Square Error 1.376893

Mean of Response 95.4375

Observations (or Sum Wgts) 16

Parameter Estimates

Term Estimate Std Error DFDen t Ratio Prob>lItl
Intercept 95.4375 1.363111 3 70.01 <.0001%*

REML Variance Component Estimates
Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total

X1 3.6703297 6.9583333 6.0715247 —4.941636 18.858303 78.588
Residual 1.8958333 0.7739707 0.9748608 5.1660065 21.412
Total 8.8541667 100.000
Covariance Matrix of Variance Component Estimates

Random Effect X1 Residual

X1 36.863412 —0.149758

Residual —0.149758 0.5990307
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errors of the variance components. If 6 is the MLE of 6 and & (0 ) is its estimated standard
error, then the approximate 100(1 — a)% CI on 0 is

6 —Z,60)=60=6 +Z,60)

JMP uses this approach to find the approximate Cls o and o shown in the output. The
95 percent CI from REML for o7 is very similar to the chi-square based interval computed
earlier in Section 3.9.

3.10 The Regression Approach to the Analysis of Variance

We have given an intuitive or heuristic development of the analysis of variance. However, it
is possible to give a more formal development. The method will be useful later in understand-
ing the basis for the statistical analysis of more complex designs. Called the general regres-
sion significance test, the procedure essentially consists of finding the reduction in the total
sum of squares for fitting the model with all parameters included and the reduction in sum of
squares when the model is restricted to the null hypotheses. The difference between these two
sums of squares is the treatment sum of squares with which a test of the null hypothesis can
be conducted. The procedure requires the least squares estimators of the parameters in the
analysis of variance model. We have given these parameter estimates previously (in Section
3.3.3); however, we now give a formal development.

3.10.1 Least Squares Estimation of the Model Parameters
We now develop estimators for the parameter in the single-factor ANOVA fixed-effects model
Vi=mt T teE;

using the method of least squares. To find the least squares estimators of w and 7;, we first
form the sum of squares of the errors

L= ; 2 € = ; == 1) (3.61)

j=1 i=1j
and then choose values of w and 7, say & and 7;, that minimize L. The appropriate values
would be the solutions to the a + 1 simultaneous equations

ENNS
M=

L
an

A A

s Ti

oL
JT;

i

=0 i=12,...,a

/~L’Tf
Differentiating Equation 3.61 with respect to w and 7; and equating to zero, we obtain

and

which, after simplification, yield
No + nt +n1y +--+ n7, =y,
ni + nt =y,
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m + nAq.'z =M

ni +n1, =y, (3.62)

The a + 1 equations (Equation 3.62) in @ + 1 unknowns are called the least squares
normal equations. Notice that if we add the last @ normal equations, we obtain the first normal
equation. Therefore, the normal equations are not linearly independent, and no unique solution
for w, 7, . . ., 7, exists. This has happened because the effects model is overparameterized.
This difficulty can be overcome by several methods. Because we have defined the treatment
effects as deviations from the overall mean, it seems reasonable to apply the constraint

Y7 =0 (3.63)
i=1

Using this constraint, we obtain as the solution to the normal equations

>
=l el

T i=12,...,a (3.64)

This solution is obviously not unique and depends on the constraint (Equation 3.63) that
we have chosen. At first this may seem unfortunate because two different experimenters could
analyze the same data and obtain different results if they apply different constraints. However,
certain functions of the model parameters are uniquely estimated, regardless of the con-
straint. Some examples are 7; — 7;, which would be estimated by 7, — 7, = y; — y;, and the
ith treatment mean w; = w + 7, which would be estimated by &; = & + 7, = y,.

Because we are usually interested in differences among the treatment effects rather than
their actual values, it causes no concern that the 7; cannot be uniquely estimated. In general,
any function of the model parameters that is a linear combination of the left-hand side of the
normal equations (Equations 3.48) can be uniquely estimated. Functions that are uniquely
estimated regardless of which constraint is used are called estimable functions. For more
information, see the supplemental material for this chapter. We are now ready to use these
parameter estimates in a general development of the analysis of variance.

3.10.2 The General Regression Significance Test

A fundamental part of this procedure is writing the normal equations for the model. These
equations may always be obtained by forming the least squares function and differentiating it
with respect to each unknown parameter, as we did in Section 3.9.1. However, an easier
method is available. The following rules allow the normal equations for any experimental
design model to be written directly:

RULE 1. There is one normal equation for each parameter in the model to be estimated.

RULE 2. The right-hand side of any normal equation is just the sum of all observations
that contain the parameter associated with that particular normal equation.
To illustrate this rule, consider the single-factor model. The first normal equation is for
the parameter w; therefore, the right-hand side is y because all observations contain pu.
RULE 3. The left-hand side of any normal equation is the sum of all model parameters,
where each parameter is multiplied by the number of times it appears in the total on
the right-hand side. The parameters are written with a circumflex (") to indicate that
they are estimators and not the true parameter values.

For example, consider the first normal equation in a single-factor experiment. According
to the above rules, it would be

N +n7 +n7y + -+ n7, =y,
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because u appears in all N observations, 7, appears only in the n observations taken under the
first treatment, 7, appears only in the n observations taken under the second treatment, and so
on. From Equation 3.62, we verify that the equation shown above is correct. The second nor-
mal equation would correspond to 7; and is

n,& + na’l =)

because only the observations in the first treatment contain 7, (this gives y,_as the right-hand
side), w and 7, appear exactly » times in y,, and all other 7; appear zero times. In general, the
left-hand side of any normal equation is the expected value of the right-hand side.

Now, consider finding the reduction in the sum of squares by fitting a particular model
to the data. By fitting a model to the data, we “explain” some of the variability; that is, we
reduce the unexplained variability by some amount. The reduction in the unexplained vari-
ability is always the sum of the parameter estimates, each multiplied by the right-hand side
of the normal equation that corresponds to that parameter. For example, in a single-factor
experiment, the reduction due to fitting the full model y; = u + 7; + € is

R(u, 7) = iy, + 7y + Toyo, + - + T,
=y, + 2 Ty (3.65)
i=1

The notation R(u, 7) means that reduction in the sum of squares from fitting the model con-
taining w and {7;}. R(u, 7) is also sometimes called the “regression” sum of squares for the full
model y; = u + 7, + €; The number of degrees of freedom associated with a reduction in
the sum of squares, such as R(u, 7), is always equal to the number of linearly independent nor-
mal equations. The remaining variability unaccounted for by the model is found from

SSp = E] 21 yi — R(u, ) (3.66)
i=1j=

This quantity is used in the denominator of the test statistic for Hy:7, =7, = ... = 7, = 0.

We now illustrate the general regression significance test for a single-factor experiment and
show that it yields the usual one-way analysis of variance. The model is y; = u + 7; + €, and
the normal equations are found from the above rules as

i

No +nty +n7ty +-- + 07, =y

ni + n =y
ni + n1, =y,
njL +ar, =y,

Compare these normal equations with those obtained in Equation 3.62.
Applying the constraint ¢ ,7;, = 0, we find that the estimators for w and 7, are

A

m=y. %i:yl_y“ i=1,2,...,a

The reduction in the sum of squares due to fitting this full model is found from Equation 3.51 as

R(w, 1) = [’«)’.. + 2 7A'i)’i.
i=1
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which has a degrees of freedom because there are a linearly independent normal equations.
The error sum of squares is, from Equation 3.66,

7
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SSg = 2} R(w, 7)
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and has N — a degrees of freedom.

To find the sum of squares resulting from the treatment effects (the {7,}), we consider
a reduced model; that is, the model to be restricted to the null hypothesis (7; = 0 for all i).
The reduced model is y; = u + €. There is only one normal equation for this model:

Nz =y,
and the estimator of w is & = y_. Thus, the reduction in the sum of squares that results from

fitting the reduced model containing only w is
2

R(w) = (R)() =%

Because there is only one normal equation for this reduced model, R(x) has one degree of
freedom. The sum of squares due to the {7,}, given that u is already in the model, is the dif-
ference between R(w, 7) and R(w), which is
R(1|p) = R(w. 7) = R(w)
= R(Full Model) — R(Reduced Model)

with a — 1 degrees of freedom, which we recognize from Equation 3.9 as SSumens- Making the
usual normality assumption, we obtain appropriate statistic for testing Hy:my =7, =--=17,=0
R(r|w)(/(a — 1)

[E 3 5%~ R r)] |ov-a

i=1 _/7

2

=\~

F():

which is distributed as F,_; y_, under the null hypothesis. This is, of course, the test statistic
for the single-factor analysis of variance.

Nonparametric Methods in the Analysis of Variance

3.11.1 The Kruskal-Wallis Test

In situations where the normality assumption is unjustified, the experimenter may wish to use
an alternative procedure to the F test analysis of variance that does not depend on this assump-
tion. Such a procedure has been developed by Kruskal and Wallis (1952). The Kruskal-Wallis
test is used to test the null hypothesis that the a treatments are identical against the alternative
hypothesis that some of the treatments generate observations that are larger than others. Because
the procedure is designed to be sensitive for testing differences in means, it is sometimes con-
venient to think of the Kruskal-Wallis test as a test for equality of treatment means. The
Kruskal-Wallis test is a nonparametric alternative to the usual analysis of variance.

To perform a Kruskal-Wallis test, first rank the observations y; in ascending order and
replace each observation by its rank, say R;;, with the smallest observation having rank 1. In
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the case of ties (observations having the same value), assign the average rank to each of the
tied observations. Let R; be the sum of the ranks in the ith treatment. The test statistic is

2 2
[ER NV D : 1)] (3.67)

where n; is the number of observations in the ith treatment, /N is the total number of observa-
tions, and

n; 2
5% = [E 2 R — N(N:D] (3.68)

i=1j=
Note that S? is just the variance of the ranks. If there are no ties, S> = N(N + 1)/12 and the
test statistic simplifies to

12 R2

H = ml - - 3(N + 1) (3.69)

When the number of ties is moderate, there will be little difference between Equations 3.68
and 3.69, and the simpler form (Equation 3.69) may be used. If the n; are reasonably large,
say n; = 5, H is distributed approximately as y2_, under the null hypothesis. Therefore, if

H>X§t,a*l

the null hypothesis is rejected. The P-value approach could also be used.

exampLE 3.12 [

The data from Example 3.1 and their corresponding ranks and the test statistic is
are shown in Table 3.20. There are ties, so we use Equation R NN + 1)
3.67 as the test statistic. From Equation 3.67 H= 1[2 b ]
o =R 4
20(21)? _
5= - 9[2869 50— | = 3497 = S157 279630 = 2205]
= 1691
m TABLE 3.20
Data and Ranks for the Plasma Etching Experiment in Example 3.1
Power

160 180 200 220
Yij le Y2 sz Y3 R3j Yaj R4j
575 6 565 4 600 10 725 20
542 3 593 9 651 15 700 17
530 1 590 8 610 11.5 715 19
539 2 579 7 637 14 685 16
570 5 610 11.5 629 13 710 18
R, 17 39.5 63.5 90

Because H > x{o;3 = 11.34, we would reject the null value for H = 16.91is P = 7.38 X 10~*) This is the same
hypothesis and conclude that the treatments differ. (The P- conclusion as given by the usual analysis of variance F test.
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3.11.2

The procedure used in the previous section of replacing the observations by their ranks is
called the rank transformation. It is a very powerful and widely useful technique. If we
were to apply the ordinary F test to the ranks rather than to the original data, we would
obtain

General Comments on the Rank Transformation

B Hl(a — 1)
 (N—1-— HIN — a)

F, (3.70)

as the test statistic [see Conover (1980), p. 337]. Note that as the Kruskal-Wallis statistic H
increases or decreases, Fj, also increases or decreases, so the Kruskal-Wallis test is equivalent
to applying the usual analysis of variance to the ranks.

The rank transformation has wide applicability in experimental design problems for
which no nonparametric alternative to the analysis of variance exists. This includes many of
the designs in subsequent chapters of this book. If the data are ranked and the ordinary F test
is applied, an approximate procedure that has good statistical properties results [see Conover
and Iman (1976, 1981)]. When we are concerned about the normality assumption or the effect
of outliers or “wild” values, we recommend that the usual analysis of variance be performed
on both the original data and the ranks. When both procedures give similar results, the analy-
sis of variance assumptions are probably satisfied reasonably well, and the standard analysis
is satisfactory. When the two procedures differ, the rank transformation should be preferred
because it is less likely to be distorted by nonnormality and unusual observations. In such
cases, the experimenter may want to investigate the use of transformations for nonnormality
and examine the data and the experimental procedure to determine whether outliers are pres-
ent and why they have occurred.

3.1.

An experimenter has conducted a single-factor exper-

iment with four levels of the factor, and each factor level has
been replicated six times. The computed value of the F-statis-
tic is F, = 3.26. Find bounds on the P-value.

3.2.  An experimenter has conducted a single-factor
experiment with six levels of the factor, and each factor level
has been replicated three times. The computed value of the
F- statistic is F, = 5.81. Find bounds on the P-value.

3.3. A computer ANOVA output is shown below. Fill in
the blanks. You may give bounds on the P-value.

One-way ANOVA

Source DF SSs ms F P

Factor 3 36.15 ? ? ?
Error ? ? ?
Total 19 196.04
34. A computer ANOVA output is shown below. Fill in

the blanks. You may give bounds on the P-value.

One-way ANOVA

Source DF SS mMs F P

Factor ? ? 246.93 ? ?
Error 25 186.53 ?
Total 29 1174 .24
3.5. An article appeared in The Wall Street Journal on

Tuesday, April 27, 2010, with the title “Eating Chocolate Is
Linked to Depression.” The article reported on a study funded
by the National Heart, Lung and Blood Institute (part of the
National Institutes of Health) and conducted by faculty at the
University of California, San Diego, and the University of
California, Davis. The research was also published in the
Archives of Internal Medicine (2010, pp. 699-703). The study
examined 931 adults who were not taking antidepressants and
did not have known cardiovascular disease or diabetes. The
group was about 70% men and the average age of the group
was reported to be about 58. The participants were asked
about chocolate consumption and then screened for depres-
sion using a questionnaire. People who score less than 16 on
the questionnaire are not considered depressed, while those



with scores above 16 and less than or equal to 22 are consid-
ered possibly depressed, while those with scores above 22 are
considered likely to be depressed. The survey found that peo-
ple who were not depressed ate an average 5.4 servings of
chocolate per month, possibly depressed individuals ate an
average of 8.4 servings of chocolate per month, while those
individuals who scored above 22 and were likely to be
depressed ate the most chocolate, an average of 11.8 servings
per month. No differentiation was made between dark and
milk chocolate. Other foods were also examined, but no pat-
tern emerged between other foods and depression. Is this
study really a designed experiment? Does it establish a cause-
and-effect link between chocolate consumption and depres-
sion? How would the study have to be conducted to establish
such a cause-and effect link?

3.6.  An article in Bioelectromagnetics (“Electromagnetic
Effects on Forearm Disuse Osteopenia: A Randomized,
Double-Blind, Sham-Controlled Study,” Vol. 32, 2011, pp.
273-282) described a randomized, double-blind, sham-con-
trolled, feasibility and dosing study to determine if a com-
mon pulsing electromagnetic field (PEMF) treatment could
moderate the substantial osteopenia that occurs after fore-
arm disuse. Subjects were randomized into four groups after
a distal radius fracture, or carpal surgery requiring immobi-
lization in a cast. Active or identical sham PEMF transduc-
ers were worn on the distal forearm for 1, 2, or 4h/day for
8 weeks starting after cast removal (“baseline”) when bone
density continues to decline. Bone mineral density (BMD)
and bone geometry were measured in the distal forearm by
dual energy X-ray absorptiometry (DXA) and peripheral
quantitative computed tomography (pQCT). The data below
are the percent losses in BMD measurements on the radius
after 16 weeks for patients wearing the active or sham PEMF
transducers for 1, 2, or 4h/day (data were constructed to
match the means and standard deviations read from a graph
in the paper).
(a) Is there evidence to support a claim that PEMF usage
affects BMD loss? If so, analyze the data to determine
which specific treatments produce the differences.

(b) Analyze the residuals from this experiment and comment
on the underlying assumptions and model adequacy.

PEMF PEMF PEMF
Sham 1 h/day 2 h/day 4 h/day
4.51 5.32 4.73 7.03
7.95 6.00 5.81 4.65
4.97 5.12 5.69 6.65
3.00 7.08 3.86 5.49
7.97 5.48 4.06 6.98
223 6.52 6.56 4.85
3.95 4.09 8.34 7.26
5.64 6.28 3.01 5.92
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9.35 7.77 6.71 5.58
6.52 5.68 6.51 791
4.96 8.47 1.70 4.90
6.10 458 5.89 4.54
7.19 4.11 6.55 8.18
4.03 5.72 5.34 5.42
2.72 591 5.88 6.03
9.19 6.89 7.50 7.04
5.17 6.99 3.28 5.17
5.70 4.98 5.38 7.60
5.85 9.94 7.30 7.90
6.45 6.38 5.46 7.91

3.7.  The tensile strength of Portland cement is being stud-
ied. Four different mixing techniques can be used economi-
cally. A completely randomized experiment was conducted
and the following data were collected:

Mixing
Technique Tensile Strength (Ib/in%)
1 3129 3000 2865 2890
2 3200 3300 2975 3150
3 2800 2900 2985 3050
4 2600 2700 2600 2765

(a) Test the hypothesis that mixing techniques affect the
strength of the cement. Use o = 0.05.

(b) Construct a graphical display as described in Section
3.5.3 to compare the mean tensile strengths for the
four mixing techniques. What are your conclusions?

(¢) Use the Fisher LSD method with @ = 0.05 to make
comparisons between pairs of means.

(d) Construct a normal probability plot of the residuals.
What conclusion would you draw about the validity of
the normality assumption?

(e) Plot the residuals versus the predicted tensile strength.
Comment on the plot.

(f) Prepare a scatter plot of the results to aid the interpre-
tation of the results of this experiment.

3.8(a) Rework part (c) of Problem 3.7 using Tukey’s test
with @ = 0.05. Do you get the same conclusions from
Tukey’s test that you did from the graphical procedure
and/or the Fisher LSD method?

(b) Explain the difference between the Tukey and Fisher
procedures.

3.9.  Reconsider the experiment in Problem 3.7. Find a 95
percent confidence interval on the mean tensile strength of the
Portland cement produced by each of the four mixing techniques.
Also find a 95 percent confidence interval on the difference in
means for techniques 1 and 3. Does this aid you in interpreting
the results of the experiment?



132

[I] 3.10. A product developer is investigating the tensile strength
of a new synthetic fiber that will be used to make cloth for
men’s shirts. Strength is usually affected by the percentage of
cotton used in the blend of materials for the fiber. The engineer
conducts a completely randomized experiment with five levels
of cotton content and replicates the experiment five times. The
data are shown in the following table.

Cotton

Weight

Percent Observations
15 7 7 15 11 9
20 12 17 12 18 18
25 14 19 19 18 18
30 19 25 22 19 23
35 7 10 11 15 11

(a) Is there evidence to support the claim that cotton con-
tent affects the mean tensile strength? Use
a = 0.05.

(b) Use the Fisher LSD method to make comparisons
between the pairs of means. What conclusions can you
draw?

(¢) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.11. Reconsider the experiment described in Problem
3.10. Suppose that 30 percent cotton content is a control. Use
Dunnett’s test with @ = 0.05 to compare all of the other
means with the control.

[[] 3.12. A pharmaceutical manufacturer wants to investigate
the bioactivity of a new drug. A completely randomized
single-factor experiment was conducted with three dosage
levels, and the following results were obtained.

Dosage Observations
20g 24 28 37 30
30g 37 44 31 35
40 ¢g 42 47 52 38

(a) Is there evidence to indicate that dosage level affects
bioactivity? Use o = 0.05.

(b) If it is appropriate to do so, make comparisons
between the pairs of means. What conclusions can you
draw?

(¢) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.13.  Arental car company wants to investigate whether the
type of car rented affects the length of the rental period. An
experiment is run for one week at a particular location, and
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10 rental contracts are selected at random for each car type.
The results are shown in the following table.

Type of Car Observations

Subcompact 3 5 3 7 6 S5 3 2 1 6
Compact 1 3 4 7 5 6 3 2 1 17
Midsize 4 1 3 5 7 1 2 4 2 7
Full size 35 7 510 3 4 7 2 17

(a) Is there evidence to support a claim that the type of car
rented affects the length of the rental contract? Use «
= 0.05. If so, which types of cars are responsible for
the difference?

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

(c) Notice that the response variable in this experiment is
a count. Should this cause any potential concerns
about the validity of the analysis of variance?
3.14. Ibelong to a golf club in my neighborhood. I divide the
year into three golf seasons: summer (June—September), winter
(November—March), and shoulder (October, April, and May).
I believe that I play my best golf during the summer (because I
have more time and the course isn’t crowded) and shoulder
(because the course isn’t crowded) seasons, and my worst golf
is during the winter (because when all of the part-year residents
show up, the course is crowded, play is slow, and I get frustrat-
ed). Data from the last year are shown in the following table.

Season Observations

Summer 83 85 85 87 90 88 88 84 91 90
Shoulder 91 87 84 87 85 86 83

Winter 94 91 87 85 87 91 92 86

(a) Do the data indicate that my opinion is correct? Use a
= 0.05.

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.15. A regional opera company has tried three approaches
to solicit donations from 24 potential sponsors. The 24 poten-
tial sponsors were randomly divided into three groups of
eight, and one approach was used for each group. The dollar
amounts of the resulting contributions are shown in the fol-
lowing table.

Approach Contributions (in $)

1 1000 1500 1200 1800 1600 1100 1000 1250
2 1500 1800 2000 1200 2000 1700 1800 1900
3 900 1000 1200 1500 1200 1550 1000 1100




(a) Do the data indicate that there is a difference in
results obtained from the three different approaches?
Use a = 0.05.

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.16. An experiment was run to determine whether four
specific firing temperatures affect the density of a certain type
of brick. A completely randomized experiment led to the fol-
lowing data:

Temperature Density
100 21.8 21.9 21.7 21.6 21.7
125 21.7 214 21.5 21.4
150 21.9 21.8 21.8 21.6 21.5
175 21.9 21.7 21.8 21.4

(a) Does the firing temperature affect the density of the
bricks? Use a = 0.05.

(b) Is it appropriate to compare the means using the Fisher
LSD method (for example) in this experiment?

(¢) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(d) Construct a graphical display of the treatment as
described in Section 3.5.3. Does this graph adequately
summarize the results of the analysis of variance in
part (a)?

3.17. Rework part (d) of Problem 3.16 using the Tukey
method. What conclusions can you draw? Explain carefully
how you modified the technique to account for unequal
sample sizes.

3.18. A manufacturer of television sets is interested in the
effect on tube conductivity of four different types of coating
for color picture tubes. A completely randomized experiment
is conducted and the following conductivity data are
obtained:

Coating Type Conductivity
1 143 141 150 146
2 152 149 137 143
3 134 136 132 127
4 129 127 132 129

(a) Is there a difference in conductivity due to coating
type? Use a = 0.05.

(b) Estimate the overall mean and the treatment effects.

(¢) Compute a 95 percent confidence interval estimate
of the mean of coating type 4. Compute a 99 percent
confidence interval estimate of the mean difference
between coating types 1 and 4.
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(d) Test all pairs of means using the Fisher LSD method
with a = 0.05.

(e) Use the graphical method discussed in Section 3.5.3 to
compare the means. Which coating type produces the
highest conductivity?

(f) Assuming that coating type 4 is currently in use, what
are your recommendations to the manufacturer? We
wish to minimize conductivity.

3.19. Reconsider the experiment from Problem 3.18.
Analyze the residuals and draw conclusions about model
adequacy.

3.20. An article in the ACI Materials Journal (Vol. 84,
1987, pp. 213-216) describes several experiments investi-
gating the rodding of concrete to remove entrapped air.
A 3-inch X 6-inch cylinder was used, and the number of
times this rod was used is the design variable. The resulting
compressive strength of the concrete specimen is the
response. The data are shown in the following table:

Rodding
Level Compressive Strength
10 1530 1530 1440
15 1610 1650 1500
20 1560 1730 1530
25 1500 1490 1510

(a) Is there any difference in compressive strength due to
the rodding level? Use o = 0.05.

(b) Find the P-value for the F statistic in part (a).

(¢) Analyze the residuals from this experiment. What con-
clusions can you draw about the underlying model
assumptions?

(d) Construct a graphical display to compare the treatment
means as described in Section 3.5.3.

3.21. Anarticle in Environment International (Vol. 18, No. 4,
1992) describes an experiment in which the amount of radon
released in showers was investigated. Radon-enriched water
was used in the experiment, and six different orifice diameters
were tested in shower heads. The data from the experiment are
shown in the following table:

Orifice

Diameter Radon Released (%)
0.37 80 83 83 85
0.51 75 75 79 79
0.71 74 73 76 77
1.02 67 72 74 74
1.40 62 62 67 69
1.99 60 61 64 66

(a) Does the size of the orifice affect the mean percentage
of radon released? Use o = 0.05.
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(b) Find the P-value for the F statistic in part (a).

(¢) Analyze the residuals from this experiment.

(d) Find a 95 percent confidence interval on the mean per-
cent of radon released when the orifice diameter is 1.40.

(e) Construct a graphical display to compare the treatment
means as described in Section 3.5.3 What conclusions
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(¢) Analyze the residuals from this experiment. Are the
basic analysis of variance assumptions satisfied?
3.24. Four different designs for a digital computer circuit
are being studied to compare the amount of noise present. The
following data have been obtained:

can you draw? Circuit
3.22. The response time in milliseconds was determined for Design Noise Observed
three different types of circuits that could be used in an auto-
. . 1 19 20 19 30 8
matic valve shutoff mechanism. The results from a complete-
ly randomized experiment are shown in the following table: 2 80 61 73 56 80
3 47 26 25 35 50
Circuit Type Response Time 4 95 46 83 78 97
9 12 10 8 15
o) 20 21 23 17 30 (a) Is the same amount of noise present for all four
3 6 5 ] 16 7 designs? Use a = 0.05.

(a) Test the hypothesis that the three circuit types have the
same response time. Use a = 0.01.

(b) Use Tukey’s test to compare pairs of treatment means.
Use a = 0.01.

(¢) Use the graphical procedure in Section 3.5.3 to com-
pare the treatment means. What conclusions can you
draw? How do they compare with the conclusions
from part (b)?

(d) Construct a set of orthogonal contrasts, assuming that
at the outset of the experiment you suspected the
response time of circuit type 2 to be different from the
other two.

(e) If you were the design engineer and you wished to
minimize the response time, which circuit type would
you select?

(f) Analyze the residuals from this experiment. Are the
basic analysis of variance assumptions satisfied?

[[] 3.23. The effective life of insulating fluids at an accelerated
load of 35 kV is being studied. Test data have been obtained
for four types of fluids. The results from a completely ran-
domized experiment were as follows:

Fluid Type Life (in h) at 35 kV Load
1 176 189 163 174 20.1 21.6
2 16.9 153 186 17.1 195 203
3 214 236 194 185 205 223
4 193 21.1 169 175 183 198

(a) Is there any indication that the fluids differ? Use a =
0.0s.

(b) Which fluid would you select, given that the objective
is long life?

(b) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(¢) Which circuit design would you select for use? Low
noise is best.

3.25. Four chemists are asked to determine the percentage
of methyl alcohol in a certain chemical compound. Each
chemist makes three determinations, and the results are the
following:

Percentage of

Chemist Methyl Alcohol
1 84.99 84.04 84.38
2 85.15 85.13 84.88
3 84.72 84.48 85.16
4 84.20 84.10 84.55

(a) Do chemists differ significantly? Use o = 0.05.
(b) Analyze the residuals from this experiment.

(¢) If chemist 2 is a new employee, construct a meaning-
ful set of orthogonal contrasts that might have been
useful at the start of the experiment.

3.26. Three brands of batteries are under study. It is suspect-
ed that the lives (in weeks) of the three brands are different.
Five randomly selected batteries of each brand are tested with
the following results:

Weeks of Life
Brand 1 Brand 2 Brand 3
100 76 108
96 80 100
92 75 96
96 84 98
92 82 100



(a) Are the lives of these brands of batteries different?
(b) Analyze the residuals from this experiment.

(¢) Construct a 95 percent confidence interval estimate on
the mean life of battery brand 2. Construct a 99 per-
cent confidence interval estimate on the mean differ-
ence between the lives of battery brands 2 and 3.

(d) Which brand would you select for use? If the manu-
facturer will replace without charge any battery that
fails in less than 85 weeks, what percentage would
the company expect to replace?

3.27. Four catalysts that may affect the concentration of one
component in a three-component liquid mixture are being
investigated. The following concentrations are obtained from
a completely randomized experiment:

Catalyst
1 2 3 4
58.2 56.3 50.1 52.9
57.2 54.5 54.2 49.9
58.4 57.0 554 50.0
55.8 55.3 51.7

54.9

(a) Do the four catalysts have the same effect on the con-
centration?

(b) Analyze the residuals from this experiment.

(¢) Construct a 99 percent confidence interval estimate of
the mean response for catalyst 1.

[I] 3.28. An experiment was performed to investigate the

effectiveness of five insulating materials. Four samples of
each material were tested at an elevated voltage level to accel-
erate the time to failure. The failure times (in minutes) are
shown below:

Material Failure Time (minutes)
1 110 157 194 178
2 1 2 4 18
3 880 1256 5276 4355
4 495 7040 5307 10,050
5 7 5 29 2

(a) Do all five materials have the same effect on mean fail-
ure time?

(b) Plot the residuals versus the predicted response.
Construct a normal probability plot of the residuals.
What information is conveyed by these plots?

(¢) Based on your answer to part (b) conduct another
analysis of the failure time data and draw appropriate
conclusions.
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3.29. A semiconductor manufacturer has developed three
different methods for reducing particle counts on wafers. All
three methods are tested on five different wafers and the after
treatment particle count obtained. The data are shown below:

Method Count
31 10 21 4 1
62 40 24 30 35
3 53 27 120 97 68

(a) Do all methods have the same effect on mean particle
count?

(b) Plot the residuals versus the predicted response.
Construct a normal probability plot of the residuals.
Are there potential concerns about the validity of the
assumptions?

(c) Based on your answer to part (b) conduct another
analysis of the particle count data and draw appropri-
ate conclusions.

3.30. A manufacturer suspects that the batches of raw mate-
rial furnished by his supplier differ significantly in calcium
content. There are a large number of batches currently in the
warehouse. Five of these are randomly selected for study. A
chemist makes five determinations on each batch and obtains
the following data:

Batch 1 Batch2 Batch3 Batch4 Batch5
23.46 23.59 23.51 23.28 23.29
23.48 23.46 23.64 23.40 23.46
23.56 23.42 23.46 23.37 23.37
23.39 23.49 23.52 23.46 23.32
23.40 23.50 23.49 23.39 23.38

(a) Is there significant variation in calcium content from
batch to batch? Use a = 0.05.

(b) Estimate the components of variance.
(¢) Find a 95 percent confidence interval for o2 / (02 + o7).

(d) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

3.31. Several ovens in a metal working shop are used to
heat metal specimens. All the ovens are supposed to operate at
the same temperature, although it is suspected that this may
not be true. Three ovens are selected at random, and their tem-
peratures on successive heats are noted. The data collected are
as follows:

Oven Temperature

1 491.50 498.30 498.10 493.50 493.60
2 488.50 484.65 479.90 477.35
3 490.10 484.80 488.25 473.00 471.85 478.65
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(a) Is there significant variation in temperature between
ovens? Use a = 0.05.

(b) Estimate the components of variance for this model.

(¢) Analyze the residuals from this experiment and draw
conclusions about model adequacy.

3.32. An article in the Journal of the Electrochemical
Society (Vol. 139, No. 2, 1992, pp. 524-532) describes an
experiment to investigate the low-pressure vapor deposition of
polysilicon. The experiment was carried out in a large-capaci-
ty reactor at Sematech in Austin, Texas. The reactor has sever-
al wafer positions, and four of these positions are selected at
random. The response variable is film thickness uniformity.
Three replicates of the experiment were run, and the data are
as follows:

Wafer Position Uniformity
1 2.76 5.67 4.49
2 1.43 1.70 2.19
3 2.34 1.97 1.47
4 0.94 1.36 1.65

(a) Is there a difference in the wafer positions? Use o =
0.05.

(b) Estimate the variability due to wafer positions.
(c) Estimate the rendom error component.

(d) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.33. Consider the vapor-deposition experiment described
in Problem 3.32.

(a) Estimate the total variability in the uniformity response.

(b) How much of the total variability in the uniformity
response is due to the difference between positions in
the reactor?

(¢) To what level could the variability in the uniformity
response be reduced if the position-to-position vari-
ability in the reactor could be eliminated? Do you
believe this is a significant reduction?

3.34.  An article in the Journal of Quality Technology (Vol.
13, No. 2, 1981, pp. 111-114) describes an experiment that
investigates the effects of four bleaching chemicals on pulp
brightness. These four chemicals were selected at random
from a large population of potential bleaching agents. The
data are as follows:

Oven Temperature
1 77.199 74466 92746 76.208 82.876
2 80.522 79.306 81914 80.346 73.385
3 79.417 78.017 91.596 80.802 80.626
4 78.001 78.358 77.544 77.364 77.386
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(a) Is there a difference in the chemical types? Use a =
0.05.

(b) Estimate the variability due to chemical types.

(¢) Estimate the variability due to random error.

(d) Analyze the residuals from this experimental and com-

ment on model adequacy.

3.35. Consider the single-factor random effects model dis-
cussed in this chapter. Develop a procedure for finding a
100(1 — @)% confidence interval on the ratio o’/(c? + o).
Assume that the experiment is balanced.

3.36. Consider testing the equality of the means of two nor-
mal populations, where the variances are unknown but are
assumed to be equal. The appropriate test procedure is
the pooled #-test. Show that the pooled #-test is equivalent to
the single-factor analysis of variance.

3.37. Show that the variance of the linear combination
Ly is 002 e

3.38. In a fixed effects experiment, suppose that there are n
observations for each of the four treatments. Let 02, Q2, O3 be
single-degree-of-freedom components for the orthogonal con-
trasts. Prove that SSeumens = 07 + 03 + 03

3.39. Use Bartlett’s test to determine if the assumption of
equal variances is satisfied in Problem 3.24. Use a = 0.05.
Did you reach the same conclusion regarding equality of vari-
ances by examining residual plots?

3.40. Use the modified Levene test to determine if the
assumption of equal variances is satisfied in Problem 3.26.
Use o = 0.05. Did you reach the same conclusion regarding
the equality of variances by examining residual plots?

3.41. Refer to Problem 3.22. If we wish to detect a maximum
difference in mean response times of 10 milliseconds with a
probability of at least 0.90, what sample size should be used?
How would you obtain a preliminary estimate of ¢>?

3.42. Refer to Problem 3.26.

(a) If we wish to detect a maximum difference in battery life
of 10 hours with a probability of at least 0.90, what sam-
ple size should be used? Discuss how you would obtain
a preliminary estimate of o” for answering this question.

(b) If the difference between brands is great enough so that
the standard deviation of an observation is increased by
25 percent, what sample size should be used if we wish
to detect this with a probability of at least 0.90?

3.43. Consider the experiment in Problem 3.26. If we wish
to construct a 95 percent confidence interval on the difference
in two mean battery lives that has an accuracy of =2 weeks,
how many batteries of each brand must be tested?

3.44. Suppose that four normal populations have means of
=50, u, = 60, u; = 50, and w, = 60. How many obser-
vations should be taken from each population so that the
probability of rejecting the null hypothesis of equal popula-
tion means is at least 0.90? Assume that o = 0.05 and that a
reasonable estimate of the error variance is o> = 25.



3.45. Refer to Problem 3.44.

(a) How would your answer change if a reasonable esti-
mate of the experimental error variance were 0@ = 367

(b) How would your answer change if a reasonable esti-
mate of the experimental error variance were 0@ = 497

(¢) Can you draw any conclusions about the sensitivity of
your answer in this particular situation about how your
estimate of o affects the decision about sample size?

(d) Can you make any recommendations about how we
should use this general approach to choosing n in
practice?

3.46. Refer to the aluminum smelting experiment described
in Section 3.8.3. Verify that ratio control methods do not affect
average cell voltage. Construct a normal probability plot of the
residuals. Plot the residuals versus the predicted values. Is there
an indication that any underlying assumptions are violated?

3.47. Refer to the aluminum smelting experiment in
Section 3.8.3. Verity the ANOVA for pot noise summarized in
Table 3.16. Examine the usual residual plots and comment on
the experimental validity.

3.48. Four different feed rates were investigated in an
experiment on a CNC machine producing a component part
used in an aircraft auxiliary power unit. The manufacturing
engineer in charge of the experiment knows that a critical
part dimension of interest may be affected by the feed rate.
However, prior experience has indicated that only disper-
sion effects are likely to be present. That is, changing the
feed rate does not affect the average dimension, but it could
affect dimensional variability. The engineer makes five pro-
duction runs at each feed rate and obtains the standard devi-
ation of the critical dimension (in 10~* mm). The data are
shown below. Assume that all runs were made in random
order.

Production Run

Feed Rate

(in/min) 1 2 3 4 5
10 0.09 0.10 0.13 0.08 0.07
12 0.06 0.09 0.12 0.07 0.12
14 0.11 0.08 0.08 0.05 0.06
16 0.19 0.13 0.15 0.20 0.11

(a) Does feed rate have any effect on the standard devia-
tion of this critical dimension?

(b) Use the residuals from this experiment to investigate
model adequacy. Are there any problems with experi-
mental validity?

3.49.

(a) Write out the least squares normal equations for this
problem and solve them for & and 7, using the usual
constraint (3,27 = 0). Estimate 7, — 7,.

Consider the data shown in Problem 3.22.
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3.12 Problems

(b) Solve the equations in (a) using the constraint 7; = 0.
Are the estimators 7; and [ the same as you found in
(a)? Why? Now estimater; — 7, and compare your
answer with that for (a). What statement can you make
about estimating contrasts in the 7;?

(¢) Estimate w + 7,21, — 1, —m,andpw + 7 + T
using the two solutions to the normal equations. Compare
the results obtained in each case.

3.50. Apply the general regression significance test to the
experiment in Example 3.5. Show that the procedure yields
the same results as the usual analysis of variance.

3.51. Use the Kruskal-Wallis test for the experiment in
Problem 3.23. Compare the conclusions obtained with those
from the usual analysis of variance.

3.52. Use the Kruskal-Wallis test for the experiment in
Problem 3.23. Are the results comparable to those found by
the usual analysis of variance?

3.53. Consider the experiment in Example 3.5. Suppose
that the largest observation on etch rate is incorrectly record-
ed as 250 A/min. What effect does this have on the usual
analysis of variance? What effect does it have on the
Kruskal-Wallis test?

3.54. A textile mill has a large number of looms. Each loom
is supposed to provide the same output of cloth per minute. To
investigate this assumption, five looms are chosen at random,
and their output is noted at different times. The following data
are obtained:

Loom Output (Ib/min)
1 14.0 14.1 14.2 14.0 14.1
2 13.9 13.8 13.9 14.0 14.0
3 14.1 14.2 14.1 14.0 13.9
4 13.6 13.8 14.0 13.9 13.7
5 13.8 13.6 13.9 13.8 14.0

(a) Explain why this is a random effects experiment. Are
the looms equal in output? Use a = 0.05.
(b) Estimate the variability between looms.
(c) Estimate the experimental error variance.
(d) Find a 95 percent confidence interval for o2 / (o2 + o?).
(e) Analyze the residuals from this experiment. Do you think
that the analysis of variance assumptions are satisfied?
(f) Use the REML method to analyze this data. Compare
the 95 percent confidence interval on the error vari-
ance from REML with the exact chi-square confidence
interval.
3.55. A manufacturer suspects that the batches of raw mate-
rial furnished by his supplier differ significantly in calcium
content. There are a large number of batches currently in the
warehouse. Five of these are randomly selected for study.
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A chemist makes five determinations on each batch and
obtains the following data:

Chapter 3 B Experiments with a Single Factor: The Analysis of Variance

Batch 1 Batch 2 Batch3 Batch4 Batch 5
23.46 23.59 23.51 23.28 23.29
23.48 23.46 23.64 23.40 23.46
23.56 23.42 23.46 23.37 23.37
23.39 23.49 23.52 23.46 23.32
23.40 23.50 23.49 23.39 23.38

(a) Is there significant variation in calcium content from
batch to batch? Use a = 0.05.

(b) Estimate the components of variance.

(¢) Find a 95 percent confidence interval for o / (02 + o).

(d) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(e) Use the REML method to analyze this data. Compare
the 95 percent confidence interval on the error vari-
ance from REML with the exact chi-square confidence
interval.
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4.1 The Randomized Complete Block Design

In any experiment, variability arising from a nuisance factor can affect the results. Generally,
we define a nuisance factor as a design factor that probably has an effect on the response,
but we are not interested in that effect. Sometimes a nuisance factor is unknown and uncon-
trolled; that is, we don’t know that the factor exists, and it may even be changing levels while
we are conducting the experiment. Randomization is the design technique used to guard
against such a “lurking” nuisance factor. In other cases, the nuisance factor is known but
uncontrollable. If we can at least observe the value that the nuisance factor takes on at each
run of the experiment, we can compensate for it in the statistical analysis by using the analy-
sis of covariance, a technique we will discuss in Chapter 14. When the nuisance source of
variability is known and controllable, a design technique called blocking can be used to sys-
tematically eliminate its effect on the statistical comparisons among treatments. Blocking is
an extremely important design technique used extensively in industrial experimentation and
is the subject of this chapter.

To illustrate the general idea, reconsider the hardness testing experiment first described in
Section 2.5.1. Suppose now that we wish to determine whether or not four different tips produce
different readings on a hardness testing machine. An experiment such as this might be part of a
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m TABLE 4.1
Randomized Complete Block Design for the Hardness Testing Experiment

Test Coupon (Block)

1 2 3 4

Tip 3 Tip 3 Tip 2 Tip 1
Tip 1 Tip 4 Tip 1 Tip 4
Tip 4 Tip 2 Tip 3 Tip 2
Tip 2 Tip 1 Tip 4 Tip 3

gauge capability study. The machine operates by pressing the tip into a metal test coupon, and
from the depth of the resulting depression, the hardness of the coupon can be determined. The
experimenter has decided to obtain four observations on Rockwell C-scale hardness for each tip.
There is only one factor—tip type—and a completely randomized single-factor design would
consist of randomly assigning each one of the 4 X 4 = 16 runs to an experimental unit, that
is, a metal coupon, and observing the hardness reading that results. Thus, 16 different metal test
coupons would be required in this experiment, one for each run in the design.

There is a potentially serious problem with a completely randomized experiment in this
design situation. If the metal coupons differ slightly in their hardness, as might happen if they
are taken from ingots that are produced in different heats, the experimental units (the
coupons) will contribute to the variability observed in the hardness data. As a result, the
experimental error will reflect both random error and variability between coupons.

We would like to make the experimental error as small as possible; that is, we would
like to remove the variability between coupons from the experimental error. A design that
would accomplish this requires the experimenter to test each tip once on each of four
coupons. This design, shown in Table 4.1, is called a randomized complete block design
(RCBD). The word “complete” indicates that each block (coupon) contains all the treatments
(tips). By using this design, the blocks, or coupons, form a more homogeneous experimental
unit on which to compare the tips. Effectively, this design strategy improves the accuracy of
the comparisons among tips by eliminating the variability among the coupons. Within a
block, the order in which the four tips are tested is randomly determined. Notice the similar-
ity of this design problem to the paired #-test of Section 2.5.1. The randomized complete block
design is a generalization of that concept.

The RCBD is one of the most widely used experimental designs. Situations for which
the RCBD is appropriate are numerous. Units of test equipment or machinery are often dif-
ferent in their operating characteristics and would be a typical blocking factor. Batches of raw
material, people, and time are also common nuisance sources of variability in an experiment
that can be systematically controlled through blocking.'

Blocking may also be useful in situations that do not necessarily involve nuisance fac-
tors. For example, suppose that a chemical engineer is interested in the effect of catalyst feed
rate on the viscosity of a polymer. She knows that there are several factors, such as raw mate-
rial source, temperature, operator, and raw material purity that are very difficult to control in
the full-scale process. Therefore she decides to test the catalyst feed rate factor in blocks,
where each block consists of some combination of these uncontrollable factors. In effect, she
is using the blocks to test the robustness of her process variable (feed rate) to conditions she
cannot easily control. For more discussion of this, see Coleman and Montgomery (1993).

! A special case of blocking occurs where the blocks are experimental units such as people, and each block receives the treatments own time
or the treatment effects are measured at different times. These are called repeated measures designs. They are discussed in chapter 15.
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Block 1 Block 2 Block b m FIGURE 4.1 The randomized
complete block design
Y1 Y12 Y
I Y2 Yo
Y31 Y32 s Yap
ya‘| yaz yab

4.1.1 Statistical Analysis of the RCBD

Suppose we have, in general, a treatments that are to be compared and b blocks. The random-
ized complete block design is shown in Figure 4.1. There is one observation per treatment in
each block, and the order in which the treatments are run within each block is determined ran-
domly. Because the only randomization of treatments is within the blocks, we often say that
the blocks represent a restriction on randomization.

The statistical model for the RCBD can be written in several ways. The traditional
model is an effects model:

i =1,2,...,
Vi=mtTntBite {;:12“.2 4.1)

where w is an overall mean, 7, is the effect of the ith treatment, §3; is the effect of the jth block,
and €; is the usual NID (0, 0?) random error term. We will initially consider treatments and
blocks to be fixed factors. The case of random blocks, which is very important, is considerd in
Section 4.1.3. Just as in the single-factor experimental design model in Chapter 3, the effects
model for the RCBD is an overspecified model. Consequently, we usually think of the treat-
ment and block effects as deviations from the overall mean so that

b
>7=0 and X B =0
i=1 j=1
It is also possible to use a means model for the RCBD, say

i=1,2,...,a
Vi = My T € {j=1,2,...,b

where w; = u + 7; + B;. However, we will use the effects model in Equation 4.1 throughout
this chapter.

In an experiment involving the RCBD, we are interested in testing the equality of the
treatment means. Thus, the hypotheses of interest are

Hytpy = pp ==
H,:at least one w; # w;

Because the ith treatment mean w; = ( 1/b)E]’-’:, (u + 7, + B) = u + 7, an equivalent way to
write the above hypotheses is in terms of the treatment effects, say

Hyrn=7m="=17,=0
H,:1; # 0 at least one i

The analysis of variance can be easily extended to the RCBD. Let y; be the total of all
observations taken under treatment i, y; be the total of all observations in block j, y_ be the
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grand total of all observations, and N = ab be the total number of observations. Expressed
mathematically,

b
n=2y i=L2....a 4.2)
Jj=1
= i .] - 19 29 5 b (4.3)
and
a b a b
=2 2= 2= 2y “.4)
=1j=1 = J=

Similarly, y; is the average of the observations taken under treatment i, y; is the average of the
observations in block j, and y_ is the grand average of all observations. That is,

yi. = vi/b y._/ = y.j/a y.=yIN 4.5)
We may express the total corrected sum of squares as
a b a b
‘21 21 vy — yy = 21 21 [(yi. =)
=17= =1J=
+ (y.j —y)+ (yij - Vi~ y.j + y“]z (4.6)

By expanding the right-hand side of Equation 4.6, we obtain

£M=

a b
1 (yij - y")z =b 2@;‘. - },.)2 +a 21 (y.j - y,.)z
i=1 j= j=
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Simple but tedious algebra proves that the three cross products are zero. Therefore,

a b a b
2 2()’;/ -y)=b E(yl -y) +a El(yj -y
=

i=1j=1

b
2 204~V m Rty @7

i Ma

represents a partition of the total sum of squares. This is the fundamental ANOVA equation
for the RCBD. Expressing the sums of squares in Equation 4.7 symbolically, we have

SST = SSTreatments + SSB]ocks + SSE (4'8)

Because there are N observations, SS;has N — 1 degrees of freedom. There are a treat-
ments and b blocks, s0 SSteaments ad SSgioes have @ — 1 and b — 1 degrees of freedom, respec-
tively. The error sum of squares is just a sum of squares between cells minus the sum of squares
for treatments and blocks. There are ab cells with ab — 1 degrees of freedom between them,
so SSghasab—1—(a—1)—(b—1)=(a— 1)(b — 1) degrees of freedom. Furthermore,
the degrees of freedom on the right-hand side of Equation 4.8 add to the total on the left; there-
fore, making the usual normality assumptions on the errors, one may use Theorem 3-1 to show
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that SS 1reaments/T > SSpiock/0 and SS,/o* are independently distributed chi-square random vari-
ables. Each sum of squares divided by its degrees of freedom is a mean square. The expected
value of the mean squares, if treatments and blocks are fixed, can be shown to be

S
.Mm
)

2
i

E(MSTreatmems) = 0-2 + :

E(MSBlocks) = 0-2 + ﬁ
EWMS;) = o*
Therefore, to test the equality of treatment means, we would use the test statistic

_ M STreatments

F,
0 MS,;

which is distributed as F,_ ,— ;1) if the null hypothesis is true. The critical region is the
upper tail of the F distribution, and we would reject Hy if Fy > F, .| ,—1)p-1)- A P-value
approach can also be used.

We may also be interested in comparing block means because, if these means do not
differ greatly, blocking may not be necessary in future experiments. From the expected mean
squares, it seems that the hypothesis H,:8; = 0 may be tested by comparing the statistic
Fo = MSgjoa/MSE 10 Fo 1 (u—1y—1)- However, recall that randomization has been applied
only to treatments within blocks; that is, the blocks represent a restriction on randomiza-
tion. What effect does this have on the statistic Fy = MSg;,./MSg? Some differences in treat-
ment of this question exist. For example, Box, Hunter, and Hunter (2005) point out that the
usual analysis of variance F test can be justified on the basis of randomization only,” without
direct use of the normality assumption. They further observe that the test to compare block
means cannot appeal to such a justification because of the randomization restriction; but if the
errors are NID(0, o), the statistic F, = MSg;,/MS; can be used to compare block means.
On the other hand, Anderson and McLean (1974) argue that the randomization restriction pre-
vents this statistic from being a meaningful test for comparing block means and that this
F ratio really is a test for the equality of the block means plus the randomization restriction
[which they call a restriction error; see Anderson and McLean (1974) for further details].

In practice, then, what do we do? Because the normality assumption is often question-
able, to view Fy = MSg,/MSg as an exact F test on the equality of block means is not a good
general practice. For that reason, we exclude this F test from the analysis of variance table.
However, as an approximate procedure to investigate the effect of the blocking variable,
examining the ratio of MSy,, to MSy is certainly reasonable. If this ratio is large, it implies
that the blocking factor has a large effect and that the noise reduction obtained by blocking
was probably helpful in improving the precision of the comparison of treatment means.

The procedure is usually summarized in an ANOVA table, such as the one shown in
Table 4.2. The computing would usually be done with a statistical software package.
However, computing formulas for the sums of squares may be obtained for the elements in
Equation 4.7 by working directly with the identity

e A e D R R TR A

2 Actually, the normal-theory F distribution is an approximation to the randomization distribution generated by calculating F,, from
every possible assignment of the responses to the treatments.
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mn TABLE 4.2
Analysis of Variance for a Randomized Complete Block Design

Source Degrees
of Variation Sum of Squares of Freedom Mean Square F,
SS reatments MS reatments
Treatments SS rreatments a—1 ﬁ ;475;‘
SS

Blocks SSaiocks b—1 ; ‘ﬂlk
E SS (a— Db -1 S

rror = a ( @—Db -1
Total SSr N-—1

These quantities can be computed in the columns of a spreadsheet (Excel). Then each column
can be squared and summed to produce the sum of squares. Alternatively, computing formu-

las can be expressed in terms of treatment and block totals. These formulas are

and the error sum of squares is obtained by subtraction as

y2

SS; = 2 2

PP

a 2

1 W

SS s — 7 i xT

Treatment thEI Y N

14, »

S = + D32 — 2=

Blocks aj;} Vi N
SST - SSTreatments - SSBlocks

exampLE 4.1 [

A medical device manufacturer produces vascular grafts
(artificial veins). These grafts are produced by extruding
billets of polytetrafluoroethylene (PTFE) resin combined
with a lubricant into tubes. Frequently, some of the tubes in
a production run contain small, hard protrusions on the
external surface. These defects are known as “flicks.” The
defect is cause for rejection of the unit.

The product developer responsible for the vascular
grafts suspects that the extrusion pressure affects the occur-
rence of flicks and therefore intends to conduct an experi-
ment to investigate this hypothesis. However, the resin is
manufactured by an external supplier and is delivered to the
medical device manufacturer in batches. The engineer also
suspects that there may be significant batch-to-batch varia-

tion, because while the material should be consistent with
respect to parameters such as molecular weight, mean par-
ticle size, retention, and peak height ratio, it probably isn’t
due to manufacturing variation at the resin supplier and nat-
ural variation in the material. Therefore, the product devel-
oper decides to investigate the effect of four different levels
of extrusion pressure on flicks using a randomized com-
plete block design considering batches of resin as blocks.
The RCBD is shown in Table 4.3. Note that there are four
levels of extrusion pressure (treatments) and six batches of
resin (blocks). Remember that the order in which the extru-
sion pressures are tested within each block is random. The
response variable is yield, or the percentage of tubes in the
production run that did not contain any flicks.

4.9)

(4.10)

@.11)

4.12)



4.1 The Randomized Complete Block Design 1 45

s TABLE 4.3
Randomized Complete Block Design for the Vascular Graft Experiment

Batch of Resin (Block)

Extrusion Treatment
Pressure (PSI) 1 2 3 4 5 6 Total
8500 90.3 89.2 98.2 93.9 87.4 97.9 556.9
8700 92.5 89.5 90.6 94.7 87.0 95.8 550.1
8900 85.5 90.8 89.6 86.2 88.0 93.4 533.5
9100 82.5 89.5 85.6 87.4 78.9 90.7 514.6
Block Totals 350.8 359.0 364.0 362.2 341.3 377.8 y. = 2155.1
To perform the analysis of variance, we need the follow- 1< y?
ing sums of squares: SSBiocks = g ; N
4 6 y2
=2 2V~ N = 21(50.87 + (359.07 + -~ + (377.8)]
i=1 j=1
2155.1) (2155.1)
=193,999.31 f%=480.31 Iy R 192.25
1 4 y2 Sg = SS7 — SStrcatments — SSBlocks
SSteamens = 5 2%~ — 480.31 — 178.17 — 192.25 = 109.89
é[(556 9)> + (550.1)% + (533.5)° The ANOVA is shown in Table 4.4. Using a = 0.05, the
5 critical value of F'is Fyps 515 = 3.29. Because 8.11 > 3.29,
+ (514.6)] — (2155.1) = 178.17 we conclude that extrusion pressure affects the mean yield.
24 The P-value for the test is also quite small. Also, the resin

batches (blocks) seem to differ significantly, because the
mean square for blocks is large relative to error.

mn TABLE 4.4
Analysis of Variance for the Vascular Graft Experiment

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
Treatments (extrusion pressure) 178.17 3 59.39 8.11 0.0019
Blocks (batches) 192.25 5 38.45

Error 109.89 15 7.33

Total 480.31 23

It is interesting to observe the results we would have obtained from this experiment had
we not been aware of randomized block designs. Suppose that this experiment had been run
as a completely randomized design, and (by chance) the same design resulted as in Table 4.3.
The incorrect analysis of these data as a completely randomized single-factor design is shown
in Table 4.5.

Because the P-value is less than 0.05, we would still reject the null hypothesis and con-
clude that extrusion pressure significantly affects the mean yield. However, note that the mean
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s TABLE 4.5
Incorrect Analysis of the Vascular Graft Experiment as a Completely Randomized Design

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
Extrusion pressure 178.17 3 59.39 3.95 0.0235
Error 302.14 20 15.11

Total 480.31 23

square for error has more than doubled, increasing from 7.33 in the RCBD to 15.11. All of
the variability due to blocks is now in the error term. This makes it easy to see why we some-
times call the RCBD a noise-reducing design technique; it effectively increases the signal-to-
noise ratio in the data, or it improves the precision with which treatment means are compared.
This example also illustrates an important point. If an experimenter fails to block when he or
she should have, the effect may be to inflate the experimental error, and it would be possible
to inflate the error so much that important differences among the treatment means could not
be identified.

Sample Computer Output. Condensed computer output for the vascular graft exper-
iment in Example 4.1, obtained from Design-Expert and JMP is shown in Figure 4.2. The
Design-Expert output is in Figure 4.2a and the JMP output is in Figure 4.2b. Both outputs are
very similar, and match the manual computation given earlier. Note that JMP computes an
F-statistic for blocks (the batches). The sample means for each treatment are shown in the out-
put. At 8500 psi, the mean yield is y,, = 92.82, at 8700 psi the mean yield is y, = 91.68, at
8900 psi the mean yield is y;, = 88.92, and at 9100 psi the mean yield is y, = 85.77.
Remember that these sample mean yields estimate the treatment means w;, t,, i3, and piy.
The model residuals are shown at the bottom of the Design-Expert output. The residuals are
calculated from

€; = Yy~ Yy
and, as we will later show, the fitted values are y; =y, + y; — ¥, s0
e =Yy — Y~ ¥t 4.13)

In the next section, we will show how the residuals are used in model adequacy checking.

Multiple Comparisons. 1If the treatments in an RCBD are fixed, and the analysis
indicates a significant difference in treatment means, the experimenter is usually interested in
multiple comparisons to discover which treatment means differ. Any of the multiple compar-
ison procedures discussed in Section 3.5 may be used for this purpose. In the formulas of
Section 3.5, simply replace the number of replicates in the single-factor completely random-
ized design (n) by the number of blocks (b). Also, remember to use the number of error
degrees of freedom for the randomized block [(a — 1)(b — 1)] instead of those for the com-
pletely randomized design [a(n — 1)].

The Design-Expert output in Figure 4.2 illustrates the Fisher LSD procedure. Notice
that we would conclude that w; = w,, because the P-value is very large. Furthermore,
m, differs from all other means. Now the P-value for Hy:u, = w3 is 0.097, so there is some
evidence to conclude that w, # us;, and u, # u, because the P-value is 0.0018. Overall,
we would conclude that lower extrusion pressures (8500 psi and 8700 psi) lead to fewer
defects.



Response: Yield
ANOVA for Selected Factorial Model
Analysis of Variance Table [Partial Sum of Squares]

Source
Block
Model
A
Residual
Cor Total
Std. Dev.
Mean
C.V.
PRESS

1-8500
2-8700
3-8900
4-9100

Treatment
1vs.2
1vs.3
1vs.4
2vs.3
2vs.4
3vs.4d

4.1 The Randomized Complete Block Design

Standard Actual Predicted

Order

OCOONOOOTAWN =

Sum of Mean F
Squares DF Square  Value Prob > F
192.25 5 38.45
178.17 3 59.39 8.1 0.0019
178.17 3 59.39 8.11 0.0019
109.89 15 7.33
480.31 23
2.71 R-Squared 0.6185
89.80 Adj R-Squared 0.5422
3.01 Pred R-Squared 0.0234
281.31 Adeq Precision 9.759
Treatment Means (Adjusted, If Necessary)
Estimated Standard
Mean Error
92.82 1.10
91.68 1.10
88.92 1.10
85.77 1.10
Mean Standard tfor Hy
Difference DF Error Coeff=0
1.13 1 1.56 0.73
3.90 1 1.56 2.50
7.05 1 1.56 4.51
2.77 1 1.56 1.77
5.92 1 1.56 3.79
3.15 1 1.56 2.02
Diagnostics Case Statistics
Student Cook's
Value Value Residual Leverage Residual Distance
90.30 90.72 -0.42 0.375 -0.197 0.003
89.20 92.77 -3.57 0.375 -1.669 0.186
98.20 94.02 4.18 0.375 1.953 0.254
93.90 93.57 0.33 0.375 0.154 0.002
87.40 88.35 -0.95 0.375 -0.442 0.013
97.90 97.47 0.43 0.375 0.201 0.003
92.50 89.59 291 0.375 1.361 0.124
89.50 91.64 -2.14 0.375 -0.999 0.067
90.60 92.89 -2.29 0.375 -1.069 0.076
94.70 92.44 2.26 0.375 1.057 0.075
87.00 87.21 -0.21 0.375 -0.099 0.001
95.80 96.34 -0.54 0.375 -0.251 0.004
85.50 86.82 -1.32 0.375 -0.617 0.025
90.80 88.87 1.93 0.375 0.902 0.054
89.60 90.12 -0.52 0.375 -0.243 0.004
86.20 89.67 -3.47 0.375 -1.622 0.175
88.00 84.45 3.55 0.375 1.661 0.184
93.40 93.57 -0.17 0.375 -0.080 0.000
82.50 83.67 -1.17 0.375 -0.547 0.020
89.50 85.72 3.78 0.375 1.766 0.208
85.60 86.97 -1.37 0.375 -0.641 0.027
87.40 86.52 0.88 0.375 0.411 0.011
78.90 81.30 -2.40 0.375 -1.120 0.084
90.70 90.42 0.28 0.375 0.130 0.001

Note: Predicted values include block corrections.

m FIGURE 4.2

(a)

Prob > |t|
0.4795
0.0247
0.0004
0.0970
0.0018
0.0621

Outlier
t
-0.190
-1.787

2.185
0.149
-0.430
0.194
1.405
-0.999
-1.075
1.062
-0.096
-0.243
-0.604
0.896
-0.236
-1.726
1.776
-0.077
-0.534
1.917
-0.628
0.399
-1.130
0.126

Computer output for Example 4.1. (@) Design-Expert; (b) JMP
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Oneway Analysis of Yield By Pressure

Block
Batch

Oneway Anova
Summary of Fit

Rsquare 0.771218

Adj Rsquare 0.649201

Root Mean Square Error 2.706612

Mean of Response 89.79583

Observations (or Sum Wgts) 24

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob > F
Pressure 3 178.17125 59.3904 8.1071 0.0019
Batch 5 192.25208 38.4504 5.2487 0.0055
Error 15 109.88625 7.3257

C.Total 23 480.30958

Means for Oneway Anova

Level Number Mean Std. Error Lower 95% Upper 95%
8500 6 92.8167 1.1050 90.461 95.172
8700 6 91.6833 1.1050 89.328 94.039
8900 6 88.9167 1.1050 86.561 91.272
9100 6 85.7667 1.1050 83.411 88.122

Std.Error uses a pooled estimate of error variance

Block Means

Batch Mean
87.7000
89.7500
91.0000
90.5500
85.3250
94.4500

(b)

o O A WN -

Number

m FIGURE 4.2 (Continued)

4

A DD DD

We can also use the graphical procedure of Section 3.5.1 to compare mean yield at the
four extrusion pressures. Figure 4.3 plots the four means from Example 4.1 relative to a
scaled  distribution with a scale factor VMS,/b = \/7.33/6 = 1.10. This plot indicates that
the two lowest pressures result in the same mean yield, but that the mean yields for 8700 psi and

[

o W

[ N

[

80 85

Yield

90

95

m FIGURE 4.3 Mean
yields for the four extrusion
pressures relative to a
scaled ¢ distribution with a
scale factor

VMSp/b = V7.33/6 = 1.10
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8900 psi (u, and us3) are also similar. The highest pressure (9100 psi) results in a mean
yield that is much lower than all other means. This figure is a useful aid in interpreting the
results of the experiment and the Fisher LSD calculations in the Design-Expert output in
Figure 4.2.

4.1.2 Model Adequacy Checking

We have previously discussed the importance of checking the adequacy of the assumed
model. Generally, we should be alert for potential problems with the normality assumption,
unequal error variance by treatment or block, and block—treatment interaction. As in the
completely randomized design, residual analysis is the major tool used in this diagnostic
checking. The residuals for the randomized block design in Example 4.1 are listed at the bot-
tom of the Design-Expert output in Figure 4.2.

A normal probability plot of these residuals is shown in Figure 4.4. There is no severe
indication of nonnormality, nor is there any evidence pointing to possible outliers. Figure 4.5
plots the residuals versus the fitted values y;. There should be no relationship between the size
of the residuals and the fitted values y;. This plot reveals nothing of unusual interest. Figure
4.6 shows plots of the residuals by treatment (extrusion pressure) and by batch of resin or
block. These plots are potentially very informative. If there is more scatter in the residuals for
a particular treatment, that could indicate that this treatment produces more erratic response
readings than the others. More scatter in the residuals for a particular block could indicate that
the block is not homogeneous. However, in our example, Figure 4.6 gives no indication of
inequality of variance by treatment but there is an indication that there is less variability in
the yield for batch 6. However, since all of the other residual plots are satisfactory, we will
ignore this.

4.17917— o
o
o
o
2.24167— o
o
© k%) o
© ©
=] > D
5 T 0.304167[— o
3 3 g
oc oc
o0 o
o o
5]
-1.63333|—
o U
1 —
-3.57083|— o o
| | | | | | | | | |
-3.57083 —6.63333 0.304167 2.24167 4.17917 81.30 85.34 89.38 93.43 97.47
Residual Predicted

m FIGURE 4.4 Normal probability plot m FIGURE 4.5 Plot of residuals versus y;

of residuals for Example 4.1 for Example 4.1
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Extrusion pressure Batch of raw material (block)

(a) (b)

m FIGURE 4.6 Plot of residuals by extrusion pressure (treatment) and by batches of resin (block) for

Example 4.1

Sometimes the plot of residuals versus y; has a curvilinear shape; for example, there
may be a tendency for negative residuals to occur with low y;; values, positive residuals with
intermediate y;; values, and negative residuals with high y;; values. This type of pattern is sug-
gestive of interaction between blocks and treatments. If this pattern occurs, a transformation
should be used in an effort to eliminate or minimize the interaction. In Section 5.3.7, we
describe a statistical test that can be used to detect the presence of interaction in a random-
ized block design.

4.1.3 Some Other Aspects of the Randomized
Complete Block Design

Additivity of the Randomized Block Model. The linear statistical model that we
have used for the randomized block design

yl:/.=p,+7,-+,8j+e,-j

is completely additive. This says that, for example, if the first treatment causes the expected
response to increase by five units (7, = 5) and if the first block increases the expected response
by 2 units (8, = 2), the expected increase in response of both treatment 1 and block 1 together
SEy)=pm+7+B,=p+5+2=p+ 7. In general, treatment 1 always increases the
expected response by 5 units over the sum of the overall mean and the block effect.

Although this simple additive model is often useful, in some situations it is inadequate.
Suppose, for example, that we are comparing four formulations of a chemical product using
six batches of raw material; the raw material batches are considered blocks. If an impurity in
batch 2 affects formulation 2 adversely, resulting in an unusually low yield, but does not affect
the other formulations, an interaction between formulations (or treatments) and batches (or
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blocks) has occurred. Similarly, interactions between treatments and blocks can occur when
the response is measured on the wrong scale. Thus, a relationship that is multiplicative in the
original units, say

E(yy) = pib
is linear or additive in a log scale since, for example,
InE(y)) =Inu + In7 + In g,
or
E(yj) = p* + 77 + Bf

Although this type of interaction can be eliminated by a transformation, not all interactions
are so easily treated. For example, transformations do not eliminate the formulation—batch
interaction discussed previously. Residual analysis and other diagnostic checking procedures
can be helpful in detecting nonadditivity.

If interaction is present, it can seriously affect and possibly invalidate the analysis of
variance. In general, the presence of interaction inflates the error mean square and may
adversely affect the comparison of treatment means. In situations where both factors, as well
as their possible interaction, are of interest, factorial designs must be used. These designs are
discussed extensively in Chapters 5 through 9.

Random Treatments and Blocks. Our presentation of the randomized complete
block design thus far has focused on the case when both the treatments and blocks were con-
sidered as fixed factors. There are many situations where either treatments or blocks (or both)
are random factors. It is very common to find that the blocks are random. This is usually what
the experimenter would like to do, because we would like for the conclusions from the exper-
iment to be valid across the population of blocks that the ones selected for the experiments
were sampled from. First, we consider the case where the treatments are fixed and the blocks
are random. Equation 4.1 is still the appropriate statistical model, but now the block effects
are random, that is, we assume that the g8;, j = 1, 2,..., b are NID(0, olﬁ) random variables.
This is a special case of a mixed model (because it contains both fixed and random factors).
In Chapters 13 and 14 we will discuss mixed models in more detail and provide several exam-
ples of situations where they occur. Our discussion here is limited to the RCBD.

Assuming that the RCBD model Equation 4.1 is appropriate, if the blocks are random
and the treatments are fixed we can show that:

EQyy) =pn + 1, i=1,2,...,a
Vy,) = of; + o2
Cov(yy, yiy) =0, j# ] 4.14)
Cov(yy, yip) = 0',23 i #1
Thus, the variance of the observations is constant, the covariance between any two observa-
tions in different blocks is zero, but the covariance between two observations from the same

block is of;. The expected mean squares from the usual ANOVA partitioning of the total sum
of squares are

a

b

E(MSTreatments) = 0-2 + aiz_l 1

E(MSpoq) = 0> + a0’y (4.15)
EMSy) = o*
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The appropriate statistic for testing the null hypothesis of no treatment effects (all
7, = 0)1is
_ MSTreatmem
Fo= MS,;

which is exactly the same test statistic we used in the case where the blocks were fixed. Based
on the expected mean squares, we can obtain an ANOVA-type estimator of the variance com-
ponent for blocks as

A2 MSBlocks B MSE
o = ———

a (4.16)

For example, for the vascular graft experiment in Example 4.1 the estimate of o-f; is

=17.78

o MSpoas — MSp — 38.45 — 7.33
0 = a B 4

This is a method-of-moments estimate and there is no simple way to find a confidence inter-
val on the block variance component 0'32. The REML method would be preferred here. Table 4.6
is the JMP output for Example 4.1 assuming that blocks are random. The REML estimate of
Ué is exactly the same as the ANOVA estimate, but REML automatically produces the stan-
dard error of the estimate (6.116215) and the approximate 95 percent confidence interval.
JMP gives the test for the fixed effect (pressure), and the results are in agreement with those
originally reported in Example 4.1. REML also produces the point estimate and CI for the
error variance o”. The ease with which confidence intervals can be constructed is a major rea-
son why REML has been so widely adopted.

Now consider a situation where there is an interaction between treatments and
blocks. This could be accounted for by adding an interaction term to the original statisti-
cal model Equation 4.1. Let (78);; be the interaction effect of treatment / in block j. Then
the model is

_ i=1,2,.,a
Y= p+ T+ B+ (@B + 8,-]{1. 1.2 b 4.17)

The interaction effect is assumed to be random because it involves the random block effects.
It O%B is the variance component for the block treatment interaction, then we can show that
the expected mean squares are

b7
E(MSTreatmems) = 02 + O-ZTB + i 1
a —

E(MSpia) = 0* + ac} @.18)
EMSy) = & + 0%

From the expected mean squares, we see that the usual F-statistic F = MSt,caumenyM Sy would
be used to test for no treatment effects. So another advantage of the random block model is
that the assumption of no interaction in the RCBD is not important. However, if blocks are
fixed and there is interaction, then the interaction effect is not in the expected mean square for
treatments but it is in the error expected mean square, so there would not be a statistical test
for the treatment effects.
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TABLE 4.6
JMP Output for Example 4.1 with Blocks Assumed Random

Response Y

Summary of Fit

RSquare 0.756688
RSquare Adj 0.720192
Root Mean Square Error 2.706612
Mean of Response 89.79583
Observations (or Sum Wgts) 24

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total
Block 1.0621666 7.7811667 6.116215 —4.206394 19.768728 51.507
Residual 7.32575 2.6749857 3.9975509 17.547721 48.493
Total 15.106917 100.000

Covariance Matrix of Variance Component Estimates

Random Effect Block Residual

Block 37.408085 —1.788887

Residual —1.788887 7.1555484

Fixed Effect Tests

Source Nparm DF DFDen F Ratio Prob > F
Pressure 3 3 15 8.1071 0.0019*

Choice of Sample Size. Choosing the sample size, or the number of blocks to run,
is an important decision when using an RCBD. Increasing the number of blocks increases
the number of replicates and the number of error degrees of freedom, making design more
sensitive. Any of the techniques discussed in Section 3.7 for selecting the number of repli-
cates to run in a completely randomized single-factor experiment may be applied directly to
the RCBD. For the case of a fixed factor, the operating characteristic curves in Appendix
Chart V may be used with

S
-M@
<
-

¥ =

4.19)

(S}

where there are a — 1 numerator degrees of freedom and (¢ — 1)(b — 1) denominator degrees
of freedom.



154

Chapter 4 B Randomized Blocks, Latin Squares, and Related Designs

exampLE 4.2

Consider the RCBD for the vascular grafts described in
Example 4.1. Suppose that we wish to determine the appro-
priate number of blocks to run if we are interested in detect-
ing a true maximum difference in yield of 6 with a reasonably
high probability and an estimate of the standard deviation
of the errors is o = 3. From Equation 3.45, the minimum
value of ®? is (writing b, the number of blocks, for n)

If we use b = 5 blocks, ® = V0.5b = V0.5(5) = 1.58,
and there are (@ — 1)(b — 1) = 3(4) = 12 error degrees of
freedom. Appendix Chart V with v, =a — 1 =3 and @ =
0.05 indicates that the S risk for this design is approxi-
mately 0.55 (power =1 — 8 =045). If we use b=206
blocks, ® = V0.5 = V0.5(6) = 1.73, with (a — 1)
(b — 1) = 3(5) = 15 error degrees of freedom, and the cor-

responding f risk is approximately 0.4 (power =1 — 3 =
0.6). Because the batches of resin are expensive and the cost
of experimentation is high, the experimenter decides to use
six blocks, even though the power is only about 0.6 (actually
many experiments work very well with power values of only
=0.5b 0.5 or higher).

bD?

P? =
2a0?

where D is the maximum difference we wish to detect. Thus,
, b6y
2(4)(3)°

Estimating Missing Values. When using the RCBD, sometimes an observation in
one of the blocks is missing. This may happen because of carelessness or error or for reasons
beyond our control, such as unavoidable damage to an experimental unit. A missing observa-
tion introduces a new problem into the analysis because treatments are no longer orthogonal
to blocks; that is, every treatment does not occur in every block. There are two general
approaches to the missing value problem. The first is an approximate analysis in which the
missing observation is estimated and the usual analysis of variance is performed just as if the
estimated observation were real data, with the error degrees of freedom reduced by 1. This
approximate analysis is the subject of this section. The second is an exact analysis, which is
discussed in Section 4.1.4.

Suppose the observation y;; for treatment i in block j is missing. Denote the missing
observation by x. As an illustration, suppose that in the vascular graft experiment of Example
4.1 there was a problem with the extrusion machine when the 8700 psi run was conducted in
the fourth batch of material, and the observation y,, could not be obtained. The data might
appear as in Table 4.7.

In general, we will let y;; represent the grand total with one missing observation, y; rep-
resent the total for the treatment with one missing observation, and y’; be the total for the
block with one missing observation. Suppose we wish to estimate the missing observation x

n TABLE 4.7
Randomized Complete Block Design for the Vascular Graft Experiment with One Missing Value

Batch of Resin (Block)

Extrusion

Pressures (PSI) 1 2 3 4 5 6

8500 90.3 89.2 98.2 93.9 87.4 97.9 556.9
8700 92.5 89.5 90.6 X 87.0 95.8 4554
8900 85.5 90.8 89.6 86.2 88.0 93.4 533.5
9100 82.5 89.5 85.6 87.4 78.9 90.7 514.6
Block totals 350.8 359.0 364.0 267.5 341.3 377.8 y'. =2060.4
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s TABLE 4.8
Approximate Analysis of Variance for Example 4.1 with One Missing Value

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
Extrusion pressure 166.14 3 55.38 7.63 0.0029
Batches of raw material 189.52 5 37.90

Error 101.70 14 7.26

Total 457.36 23

so that x will have a minimum contribution to the error sum of squares. Because SS; =
E:LIE_;’:]( Vi~ Y. —y; t y_), this is equivalent to choosing x to minimize

a b 5 1 a b 2 1 b 2 1 a b 2
SSp= 2 2y~ 2\ 2 i) ~ a2\ 2 i) T\ 2 2 v
i=1j=1 i=1\j=1 i=1 i=1j=1
or

SS; = 2 — %(y’,-. + = L0+ a—lb(y{. + X7 + R 4.20)

where R includes all terms not involving x. From dSS; /dx = 0, we obtain
ay; + by; =y

X = m (4.21)

as the estimate of the missing observation.

For the data in Table 4.7, we find that y, = 455.4, y', = 267.5, and y’ = 2060.4.
Therefore, from Equation 4.16,

_ _ 4(455.4) + 6(267.5) — 2060.4
oo 3)5)

The usual analysis of variance may now be performed using y,, = 91.08 and reducing the
error degrees of freedom by 1. The analysis of variance is shown in Table 4.8. Compare the
results of this approximate analysis with the results obtained for the full data set (Table 4.4).

If several observations are missing, they may be estimated by writing the error sum of
squares as a function of the missing values, differentiating with respect to each missing value,
equating the results to zero, and solving the resulting equations. Alternatively, we may use
Equation 4.21 iteratively to estimate the missing values. To illustrate the iterative approach,
suppose that two values are missing. Arbitrarily estimate the first missing value, and then use
this value along with the real data and Equation 4.21 to estimate the second. Now Equation
4.21 can be used to reestimate the first missing value, and following this, the second can be
reestimated. This process is continued until convergence is obtained. In any missing value
problem, the error degrees of freedom are reduced by one for each missing observation.

= 91.08

4.14 Estimating Model Parameters and the General
Regression Significance Test

If both treatments and blocks are fixed, we may estimate the parameters in the RCBD model
by least squares. Recall that the linear statistical model is

i=1,2,...,a
yi=pmt 1+ B te; {jzlz._. b (4.22)

E}
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Applying the rules in Section 3.9.2 for finding the normal equations for an experimen-
tal design model, we obtain

wiabj + b + b¥ + o 4+ b3, + aBy + af, + - + aB, = v,
T bp + b7 + B+ B+t B = oy
T bl + b7, + Bt Bttt By = o
7. bl b1, + [31 + [32 + oo+ éb = Ya
By ah + A 4+ H o+ o+ &+ aB, =y,
B oap + T+ T+ 0+ 7, + aéz = Y2
By ai + h o+ Ayt 3, + ap, =y, @23

Notice that the second through the (a + 1)st equations in Equation 4.23 sum to the first
normal equation, as do the last b equations. Thus, there are two linear dependencies in the
normal equations, implying that two constraints must be imposed to solve Equation 4.23. The
usual constraints are

a b .
=0 >B=0 (4.24)
i=1 j=1

Using these constraints helps simplify the normal equations considerably. In fact, they
become

ab =y,
bu+ b=y, i=1,2,...,a
app+aB; =y, j=1,2,...,b (4.25)
whose solution is
=y,
=y, -y, i=1,2,...,a
Bi=y,—y. j=1,2...,b (4.26)

Using the solution to the normal equation in Equation 4.26, we may find the estimated or fit-
ted values of y; as

S)ij =p+7+ B;
=y.+ Q. —y)+ (y._/ -y)
=y + y.j -y

This result was used previously in Equation 4.13 for computing the residuals from a random-
ized block design.
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The general regression significance test can be used to develop the analysis of variance
for the randomized complete block design. Using the solution to the normal equations given
by Equation 4.26, the reduction in the sum of squares for fitting the full model is

a b .
R 7 B) = . + 2 Fov+ 2 By,

=y +2 (y, — v+ E(y, Y.y
2 a 2 b 2
Y. - Y. - Y.
=== 4 — = 4 — =
ab ,:El i ab ,:21 VX ab
a 2 b y2 2
= E i + E Y.
i=1 b j=10a ab
with a + b — 1 degrees of freedom, and the error sum of squares is

with (a — 1)(b — 1) degrees of freedom. Compare this last equation with SSy in Equation 4.7.
To test the hypothesis Hy: 7; = 0, the reduced model is

Vi=mTBite

which is just a single-factor analysis of variance. By analogy with Equation 3.5, the reduction
in the sum of squares for fitting the reduced model is

5]

b yj
R(w. B) = 2,
=

which has b degrees of freedom. Therefore, the sum of squares due to {;} after fitting u and
{B;} 1s
R(|p, B) = R(u, 7. B) = R(u, B)
= R(full model) — R(reduced model)
a 2 y?j y2 b y,zj
B 2 a B E B j=1 ;

[
D=
>[=, @‘

!
SR 1

1

which we recognize as the treatment sum of squares with @ — 1 degrees of freedom (Equa-

tion 4.10).
The block sum of squares is obtained by fitting the reduced model

y,_-/I,LL-l-Tl--i-e,_-/-
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which is also a single-factor analysis. Again, by analogy with Equation 3.5, the reduction in
the sum of squares for fitting this model is

Nt
=t

R(u, 7) = E

Sl

with a degrees of freedom. The sum of squares for blocks {;} after fitting u and {7} is

RB|w, 7) = R(, 7, B) — R(u, 7)
& yp i ¥ &y
XVt e 2%
g2
j=1 4 ab

with b — 1 degrees of freedom, which we have given previously as Equation 4.11.

We have developed the sums of squares for treatments, blocks, and error in the random-
ized complete block design using the general regression significance test. Although we would
not ordinarily use the general regression significance test to actually analyze data in a ran-
domized complete block, the procedure occasionally proves useful in more general random-
ized block designs, such as those discussed in Section 4.4.

Exact Analysis of the Missing Value Problem. In Section 4.1.3 an approximate
procedure for dealing with missing observations in the RCBD was presented. This approx-
imate analysis consists of estimating the missing value so that the error mean square is
minimized. It can be shown that the approximate analysis produces a biased mean square
for treatments in the sense that E(MSt.camentss) 18 1larger than E(MSy) if the null hypothesis
is true. Consequently, too many significant results are reported.

The missing value problem may be analyzed exactly by using the general regression
significance test. The missing value causes the design to be unbalanced, and because all the
treatments do not occur in all blocks, we say that the treatments and blocks are not orthog-
onal. This method of analysis is also used in more general types of randomized block
designs; it is discussed further in Section 4.4. Many computer packages will perform this
analysis.

4.2 The Latin Square Design

In Section 4.1 we introduced the randomized complete block design as a design to reduce the
residual error in an experiment by removing variability due to a known and controllable nui-
sance variable. There are several other types of designs that utilize the blocking principle. For
example, suppose that an experimenter is studying the effects of five different formulations of
a rocket propellant used in aircrew escape systems on the observed burning rate. Each formu-
lation is mixed from a batch of raw material that is only large enough for five formulations to
be tested. Furthermore, the formulations are prepared by several operators, and there may be
substantial differences in the skills and experience of the operators. Thus, it would seem that
there are two nuisance factors to be “averaged out” in the design: batches of raw material and
operators. The appropriate design for this problem consists of testing each formulation exact-
ly once in each batch of raw material and for each formulation to be prepared exactly once by
each of five operators. The resulting design, shown in Table 4.9, is called a Latin square
design. Notice that the design is a square arrangement and that the five formulations
(or treatments) are denoted by the Latin letters A, B, C, D, and E; hence the name Latin square.
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s TABLE 4.9
Latin Square Design for the Rocket Propellant Problem

Operators

Batches of

Raw Material 1 2 3 4 5
1 A=24 B =20 cC=19 D =24 E=24
2 B=17 Cc=24 D =30 E =27 A =136
3 Cc=18 D =38 E =126 A=27 B =21
4 D =26 E =31 A =26 B =23 c=22
5 E=22 A =30 B =20 Cc=29 D =31

We see that both batches of raw material (rows) and operators (columns) are orthogonal to
treatments.

The Latin square design is used to eliminate two nuisance sources of variability; that is,
it systematically allows blocking in two directions. Thus, the rows and columns actually
represent two restrictions on randomization. In general, a Latin square for p factors, or a
p X p Latin square, is a square containing p rows and p columns. Each of the resulting p* cells
contains one of the p letters that corresponds to the treatments, and each letter occurs once
and only once in each row and column. Some examples of Latin squares are

4 X4 SXS$§ 6 X6
ABDC ADBEC ADCEBF
BCAD DACBE BAECFD
CDBA CBEDA CEDFAB
DACB BEACD DCFBEA
ECDAB FBADCE
EFBADC

Latin squares are closely related to a popular puzzle called a sudoku puzzle that origi-
nated in Japan (sudoku means “single number” in Japanese). The puzzle typically consists of
a9 X 9 grid, with nine additional 3 X 3 blocks contained within. A few of the spaces contain
numbers and the others are blank. The goal is to fill the blanks with the integers from 1 to 9 so
that each row, each column, and each of the nine 3 X 3 blocks making up the grid contains just
one of each of the nine integers. The additional constraint that a standard 9 X 9 sudoku puzzle
have 3 X 3 blocks that also contain each of the nine integers reduces the large number of pos-
sible 9 X 9 Latin squares to a smaller but still quite large number, approximately 6 X 10?'.

Depending on the number of clues and the size of the grid, sudoku puzzles can be
extremely difficult to solve. Solving an n X n sudoku puzzle belongs to a class of computa-
tional problems called NP-complete (the NP refers to non-polynomial computing time). An
NP-complete problem is one for which it’s relatively easy to check whether a particular
answer is correct but may require an impossibly long time to solve by any simple algorithm as
n gets larger.

Solving a sudoku puzzle is also equivalent to “coloring” a graph—an array of points
(vertices) and lines (edges) in a particular way. In this case, the graph has 81 vertices, one for
each cell of the grid. Depending on the puzzle, only certain pairs of vertices are joined by an
edge. Given that some vertices have already been assigned a “color” (chosen from the nine
number possibilities), the problem is to “color” the remaining vertices so that any two ver-
tices joined by an edge don’t have the same “color.”
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The statistical model for a Latin square is

i=1,2,...,p
yp=mtoa,+1+B teui=12,...,p 4.27)
k=1,2,...,p

where y;; is the observation in the ith row and kth column for the jth treatment, u is the over-
all mean, «; is the ith row effect, 7; is the jth treatment effect, 3, is the kth column effect, and
€ is the random error. Note that this is an effects model. The model is completely additive;
that is, there is no interaction between rows, columns, and treatments. Because there is only
one observation in each cell, only two of the three subscripts 7, j, and k are needed to denote
a particular observation. For example, referring to the rocket propellant problem in Table 4.8,
if i = 2 and k = 3, we automatically find j = 4 (formulation D), and if i = 1 and j = 3 (for-
mulation C), we find k = 3. This is a consequence of each treatment appearing exactly once
in each row and column.

The analysis of variance consists of partitioning the total sum of squares of the N = p?
observations into components for rows, columns, treatments, and error, for example,

SST = SSRDWS + SSColumns + SSTreatmems + SSE (4'2’8)

with respective degrees of freedom
pPP—l=p—1+p—1+p—1+@-2p -1

Under the usual assumption that €, is NID (0, 0?), each sum of squares on the right-hand side

of Equation 4.28 is, upon division by o2, an independently distributed chi-square random vari-

able. The appropriate statistic for testing for no differences in treatment means is

_ MSTreatments

- MS,

which is distributed as F,_; (,_,),—, under the null hypothesis. We may also test for no row effect

and no column effect by forming the ratio of MSg, Or MScgumns 0 MS. However, because the

rows and columns represent restrictions on randomization, these tests may not be appropriate.
The computational procedure for the ANOVA in terms of treatment, row, and column

totals is shown in Table 4.10. From the computational formulas for the sums of squares, we

see that the analysis is a simple extension of the RCBD, with the sum of squares resulting

from rows obtained from the row totals.

Fy

an TABLE 4.10
Analysis of Variance for the Latin Square Design

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F,
_ l L 2 i _ SSTreatmenls _ MSTreatmems
Treatments SSTreatmems - pj; yj N 14 1 p— 1 FO - MSE
1< ¥, SSRrows
Rows SSrows = 17,:1 yi. = N p—1 piiol
1 2 y%. SS umns
Columns SScolumns = 771;1 yfk N p—1 PC‘%]
E SS,. (by subtraction) (p—2(p—1) S5
rror subtraction — — —
e P =rp P -2p -1

2

Total SSr = SOD v — o Pl
e N
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exampLE 4.3 [

Consider the rocket propellant problem previously The sum of squares resulting from the formulations is com-
described, where both batches of raw material and opera- puted from these totals as
tors represent randomization restrictions. The design for

this experiment, shown in Table 4.8, is a 5 X 5 Latin o1&, YL
square. After coding by subtracting 25 from each observa- SSFomulations = ﬁj; Vo = N
tion, we have the data in Table 4.11. The sums of squares

2

for the total, batches (rows), and operators (columns) are 182 + (—24)> + (—13)* + 242 + 52
computed as follows: = 5
2
_ Y. (10)?
SS; = T _ =
P = 2220~y 55 = 330.00
(10)* . .
=680 — 25 - 676.00 The error sum of squares is found by subtraction
P 2
SSBatches = %2 yzz - yﬁ SSg = SSr — SSpatches — SSOperators — SSFormulations
i=1

=676.00 —68.00 —150.00 —330.00 =128.00
= S[(-147 + 9 + 52 + 32 + 7
The analysis of variance is summarized in Table 4.12. We

2
_ (1Y) = 68.00 conclude that there is a significant difference in the mean
25 2 burning rate generated by the different rocket propellant
sty = li V4 — Y. formulations. There is also an indication that differences
R = N between operators exist, so blocking on this factor was a
P ) g
_1 [(—18)% + 182 + (—4)> + 5% + 97] good precaution. There is no strong evidence of a differ-
5 ence between batches of raw material, so it seems that in
_ (10)* — 150.00 this particular experiment we were unnecessarily con-
25 ’ cerned about this source of variability. However, blocking
The totals for the treatments (Latin letters) are on batches of raw material is usually a good idea.
Latin Letter Treatment Total
A yi =18
B Yo = —24
c y3. =13
D Ya =24
E Ys. =5

n TABLE 4.11
Coded Data for the Rocket Propellant Problem

Operators

Batches of

Raw Material 1 2 3 4 5 Yi.
1 A=—1 = -5 C=-6 D= —1 E= -1 —14
2 = -8 C=— D=5 E=2 A=11 9
3 Cc=-17 D=13 E=1 A= B=-4 5
4 D= E = A= B= -2 C=-3 3
5 E=-3 A= B=-5 cC=4 D= 7
Yok —18 18 —4 5 9 10=y_
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mn TABLE 4.12
Analysis of Variance for the Rocket Propellant Experiment

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
Formulations 330.00 4 82.50 7.73 0.0025
Batches of raw material 68.00 4 17.00

Operators 150.00 4 37.50

Error 128.00 12 10.67

Total 676.00 24

As in any design problem, the experimenter should investigate the adequacy of the model by
inspecting and plotting the residuals. For a Latin square, the residuals are given by

Ciik = Viik — Vijk

= ik — Vi. — y.j. — Yt 2y

The reader should find the residuals for Example 4.3 and construct appropriate plots.

A Latin square in which the first row and column consists of the letters written in alpha-
betical order is called a standard Latin square, which is the design shown in Example 4.4. A
standard Latin square can always be obtained by writing the first row in alphabetical order and
then writing each successive row as the row of letters just above shifted one place to the left.
Table 4.13 summarizes several important facts about Latin squares and standard Latin squares.

As with any experimental design, the observations in the Latin square should be taken in
random order. The proper randomization procedure is to select the particular square employed at
random. As we see in Table 4.13, there are a large number of Latin squares of a particular size,
so it is impossible to enumerate all the squares and select one randomly. The usual procedure is

s TABLE 4.13
Standard Latin Squares and Number of Latin Squares of Various Sizes’

Size 3X3 4X4 5X5 6X6 7X7 pXp
Examples of ABC ABCD ABCDE ABCDEF ABCDEFG ABC ... P
standard squares BCA BCDA BAECD BCFADE BCDEFGA BCD ... A
CAB CDAB CDAEB CFBEAD CDEFGAB CDE ... B
DABC DEBAC DEABFC DEFGABC
ECDBA EADFCB EFGABCD
FDECBA FGABCDE PAB ... (P—1)
GABCDEF
Number of 1 4 56 9408 16,942,080 —
standard squares
Total number of 12 576 161,280 818,851,200 61,479,419,904,000 pl(p— DI X
Latin squares (number of

standard squares)

“Some of the information in this table is found in Fisher and Yates (1953). Little is known about the properties of Latin squares larger than 7 X 7.
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to select an arbitrary Latin square from a table of such designs, as in Fisher and Yates (1953), or
start with a standard square, and then arrange the order of the rows, columns, and letters at
random. This is discussed more completely in Fisher and Yates (1953).

Occasionally, one observation in a Latin square is missing. For a p X p Latin square,
the missing value may be estimated by

PO YY) — 2y
Vi »-20( -1

where the primes indicate totals for the row, column, and treatment with the missing value,
and y’ _is the grand total with the missing value.

Latin squares can be useful in situations where the rows and columns represent factors
the experimenter actually wishes to study and where there are no randomization restrictions.
Thus, three factors (rows, columns, and letters), each at p levels, can be investigated in only
p? runs. This design assumes that there is no interaction between the factors. More will be said
later on the subject of interaction.

4.29)

Replication of Latin Squares. A disadvantage of small Latin squares is that they
provide a relatively small number of error degrees of freedom. For example, a 3 X 3 Latin
square has only two error degrees of freedom, a 4 X 4 Latin square has only six error degrees
of freedom, and so forth. When small Latin squares are used, it is frequently desirable to repli-
cate them to increase the error degrees of freedom.

A Latin square may be replicated in several ways. To illustrate, suppose that the 5 X 5
Latin square used in Example 4.4 is replicated n times. This could have been done as follows:

1. Use the same batches and operators in each replicate.

2. Use the same batches but different operators in each replicate (or, equivalently, use
the same operators but different batches).

3. Use different batches and different operators.

The analysis of variance depends on the method of replication.

Consider case 1, where the same levels of the row and column blocking factors are used
in each replicate. Let y;;, be the observation in row i, treatment j, column k, and replicate /.
There are N = np? total observations. The ANOVA is summarized in Table 4.14.

Analysis of Variance for a Replicated Latin Square, Case 1

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F,
1 z 2 y2 SSTreatments MSTreatmems
T — - = -1 —_—— ——
reatments np j; Yi. N )4 b1 MS,
1 &, Y. SSrous
R — - = -1 —
ows np ::El Vi N p b1
L L 2 i _ SSColumns
Columns np 1;1 A N p—1 7}) _—
n 2 SSrepli
) 1 y.. Replicates
Replicates [?1; S N n—1 T
. S8k
Error Subtraction (p — Dln(p + 1) — 3]

(p — Din(p + 1) — 3]

2
Total PPN =1
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m TABLE 4.15
Analysis of Variance for a Replicated Latin Square, Case 2

Source of Degrees of Mean
Variation Sum of Squares Freedom Square F,
1 z 2 y2 _ SSTrealmenls MSTreatmenls
Treatments np ,; Vi N p—1 b1 S,
1 L& 2 < Y. 2[ SSRows
Rows - = QT n(p—1 —
= izzly"l 1:21 P’ (P ) n(p —1)
. 1 z 2 y2 SSColumns
Columns @/{Z} Yo — W pP— 1 ﬁ
n 2 SSreplic
. L 5 L _ Replicates
Replicates = 121 Y TN n—1 P
E Subtracti (p — 1) 1) 5%
rTor ubtraction — D(mp — —
i b (p— Dp = 1)
Yo
Total EE;}[: y,-zj/d - W np2 -1
L

Now consider case 2 and assume that new batches of raw material but the same opera-
tors are used in each replicate. Thus, there are now five new rows (in general, p new rows)
within each replicate. The ANOVA is summarized in Table 4.15. Note that the source of vari-
ation for the rows really measures the variation between rows within the n replicates.

Finally, consider case 3, where new batches of raw material and new operators are used in
each replicate. Now the variation that results from both the rows and columns measures the vari-
ation resulting from these factors within the replicates. The ANOVA is summarized in Table 4.16.

There are other approaches to analyzing replicated Latin squares that allow some inter-
actions between treatments and squares (refer to Problem 4.30).

Crossover Designs and Designs Balanced for Residual Effects. Occasionally,
one encounters a problem in which time periods are a factor in the experiment. In general, there
are p treatments to be tested in p time periods using np experimental units. For example,
a human performance analyst is studying the effect of two replacement fluids on dehydration

Analysis of Variance for a Replicated Latin Square, Case 3

Source of Degrees of Mean
Variation Sum of Squares Freedom Square F,
L L 2 ﬁ _ SSTreatmems M. STredtmems
Treatments np ,:E] Vi N p—1 7}) 1 7MSE
1 L& 2 S y 21 SSROWS
Rows - i) n(p—1 —
PRI (v =1 e
1 L& 2 = y2[ SSColumns
Columns = - n(p — 1 —
p;;yum 1:21[)2 (p ) n(p — 1)
n 2 SSrepli
. L > L - Replicates
Replicates p 1:21 Y TN n—1 P
E Subtracti (p— Din(p — 1) — 1] S5¢
ITor ubtraction — D[n(p — 1) —
i g b (p = Din(p = 1) = 1]
Total np* — 1

Yo
EEEE yizjkl N
ij ko1
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Latin Squares

I II 1T IV \Y VI VII VIII IX X
Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Periodl A B B A B A ABAB B A A B A B A B A B
Period2 B A A B AB BABA A B B A B A B A B A

m FIGURE 4.7 A crossover design

m TABLE 4.17
Analysis of Variance for the Crossover

Design in Figure 4.7

Source of Degrees of
Variation Freedom
Subjects (columns) 19
Periods (rows) 1
Fluids (letters) 1
Error 18
Total 39

in 20 subjects. In the first period, half of the subjects (chosen at random) are given fluid A and
the other half fluid B. At the end of the period, the response is measured and a period of time
is allowed to pass in which any physiological effect of the fluids is eliminated. Then the
experimenter has the subjects who took fluid A take fluid B and those who took fluid B take
fluid A. This design is called a crossover design. It is analyzed as a set of 10 Latin squares
with two rows (time periods) and two treatments (fluid types). The two columns in each of
the 10 squares correspond to subjects.

The layout of this design is shown in Figure 4.7. Notice that the rows in the Latin square
represent the time periods and the columns represent the subjects. The 10 subjects who
received fluid A first (1, 4, 6,7, 9, 12, 13, 15, 17, and 19) are randomly determined.

An abbreviated analysis of variance is summarized in Table 4.17. The subject sum of
squares is computed as the corrected sum of squares among the 20 subject totals, the period
sum of squares is the corrected sum of squares among the rows, and the fluid sum of squares
is computed as the corrected sum of squares among the letter totals. For further details of the
statistical analysis of these designs see Cochran and Cox (1957), John (1971), and Anderson
and McLean (1974).

It is also possible to employ Latin square type designs for experiments in which the
treatments have a residual effect—that is, for example, if the data for fluid B in period 2 still
reflected some effect of fluid A taken in period 1. Designs balanced for residual effects are
discussed in detail by Cochran and Cox (1957) and John (1971).

4.3 The Graeco-Latin Square Design

Consider a p X p Latin square, and superimpose on it a second p X p Latin square in which
the treatments are denoted by Greek letters. If the two squares when superimposed have the
property that each Greek letter appears once and only once with each Latin letter, the two
Latin squares are said to be orthogonal, and the design obtained is called a Graeco-Latin
square. An example of a 4 X 4 Graeco-Latin square is shown in Table 4.18.
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mn TABLE 4.18
4 X 4 Graeco-Latin Square Design

Column
Row 1 2 3 4
1 Aa BB Cy Dé
2 BS Ay Dp Ca
3 (0/¢] Da Ad By
4 Dy Cé Ba AB

The Graeco-Latin square design can be used to control systematically three sources of
extraneous variability, that is, to block in three directions. The design allows investigation of
four factors (rows, columns, Latin letters, and Greek letters), each at p levels in only p2 runs.
Graeco-Latin squares exist for all p = 3 except p = 6.

The statistical model for the Graeco-Latin square design is

i=1L,2,...,p

i=1,2,...,
y’7k1:M+9i+Tj+wk+\P’+€iﬂ‘l]Jc=12...g (4.30)

I=1,2,...,p

where y;, is the observation in row i and column [ for Latin letter j and Greek letter k, 6, is
the effect of the ith row, 7; is the effect of Latin letter treatment j, w, is the effect of Greek
letter treatment k, W, is the effect of column /, and €, is an NID (0, o?) random error com-
ponent. Only two of the four subscripts are necessary to completely identify an observation.

The analysis of variance is very similar to that of a Latin square. Because the Greek let-
ters appear exactly once in each row and column and exactly once with each Latin letter, the
factor represented by the Greek letters is orthogonal to rows, columns, and Latin letter treat-
ments. Therefore, a sum of squares due to the Greek letter factor may be computed from the
Greek letter totals, and the experimental error is further reduced by this amount. The computa-
tional details are illustrated in Table 4.19. The null hypotheses of equal row, column, Latin let-
ter, and Greek letter treatments would be tested by dividing the corresponding mean square by
mean square error. The rejection region is the upper tail point of the F),_, (, 3, distribution.

mn TABLE 4.19
Analysis of Variance for a Graeco-Latin Square Design

Source of Variation Sum of Squares Degrees of Freedom
Latin letter treatments ss, =L S Vi = o p—1
Lo p&S N
14,
Greek letter treatments SSe =5 2V — 5 p—1
p k:l ke N
Rows SS, :liy-z —i p—1
Rows p “ [ N N
14, v
Columns SSColumns - 171:21 Yo W P~ 1
Error SS (by subtraction) p=3Hp-—-1D

2

Y.
Total SSr =222 Viu — i -1
ij ko1
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exampLE 4.4

Suppose that in the rocket propellant experiment of
Example 4.3 an additional factor, test assemblies, could be
of importance. Let there be five test assemblies denoted by
the Greek letters o, 3, vy, 8, and e. The resulting 5 X 5
Graeco-Latin square design is shown in Table 4.20.

Notice that, because the totals for batches of raw mate-
rial (rows), operators (columns), and formulations (Latin
letters) are identical to those in Example 4.3, we have

SShatches = 68.00,  SSoperarors = 150.00,
and SSFormu]ations = 330.00

The totals for the test assemblies (Greek letters) are

Greek Letter Test Assembly Total
a ya.=10
B Y. = 6
Y Y. =3
o Ya = —4
€ y.s. =13

s TABLE 4.20

Thus, the sum of squares due to the test assemblies is

o

P

SSAssemblies = 1%1;1 ka - W

= 2110 + (=6) + (=37
(10)°

25

The complete ANOVA is summarized in Table 4.21.
Formulations are significantly different at 1 percent. In
comparing Tables 4.21 and 4.12, we observe that removing
the variability due to test assemblies has decreased the
experimental error. However, in decreasing the experimen-
tal error, we have also reduced the error degrees of freedom
from 12 (in the Latin square design of Example 4.3) to 8.
Thus, our estimate of error has fewer degrees of freedom,
and the test may be less sensitive.

+ (—4)® + 137 — = 62.00

Graeco-Latin Square Design for the Rocket Propellant Problem

Batches of Operators
Raw Material 1 2 3 4 5 Yi..
1 Aa = —1 By= -5 Ce = —6 DB =—1 Es = —1 —14
2 BB = —8 Cs = —1 Da = Ey=2 Ae =11 9
3 Cy= -7 De =13 EB=1 Ab =2 Ba = —4 5
4 Dé =1 Ea = Ay=1 Be = —2 cB=-3 3
5 Ee = -3 AB=5 Bé = —5 Ca =4 Dy=6 7
Yo —18 18 —4 5 9 10=y
s TABLE 4.21
Analysis of Variance for the Rocket Propellant Problem
Sum of Degrees of
Source of Variation Squares Freedom Mean Square F, P-Value
Formulations 330.00 4 82.50 10.00 0.0033
Batches of raw material 68.00 4 17.00
Operators 150.00 4 37.50
Test assemblies 62.00 4 15.50
Error 66.00 8 8.25
Total 676.00 24
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The concept of orthogonal pairs of Latin squares forming a Graeco-Latin square can be
extended somewhat. A p X p hypersquare is a design in which three or more orthogonal p X p
Latin squares are superimposed. In general, up to p + 1 factors could be studied if a complete set
of p — 1 orthogonal Latin squares is available. Such a design would utilize all (p + 1)(p — 1) =
p* — 1 degrees of freedom, so an independent estimate of the error variance is necessary. Of
course, there must be no interactions between the factors when using hypersquares.

4.4 Balanced Incomplete Block Designs

In certain experiments using randomized block designs, we may not be able to run all the treat-
ment combinations in each block. Situations like this usually occur because of shortages of exper-
imental apparatus or facilities or the physical size of the block. For example, in the vascular graft
experiment (Example 4.1), suppose that each batch of material is only large enough to accommo-
date testing three extrusion pressures. Therefore, each pressure cannot be tested in each batch. For
this type of problem it is possible to use randomized block designs in which every treatment is
not present in every block. These designs are known as randomized incomplete block designs.

When all treatment comparisons are equally important, the treatment combinations
used in each block should be selected in a balanced manner, so that any pair of treatments
occur together the same number of times as any other pair. Thus, a balanced incomplete
block design (BIBD) is an incomplete block design in which any two treatments appear
together an equal number of times. Suppose that there are a treatments and that each block
can hold exactly k (k < a) treatments. A balanced incomplete block design may be construct-
ed by taking (7) blocks and assigning a different combination of treatments to each block.
Frequently, however, balance can be obtained with fewer than (i) blocks. Tables of BIBDs are
given in Fisher and Yates (1953), Davies (1956), and Cochran and Cox (1957).

As an example, suppose that a chemical engineer thinks that the time of reaction for a chem-
ical process is a function of the type of catalyst employed. Four catalysts are currently being inves-
tigated. The experimental procedure consists of selecting a batch of raw material, loading the pilot
plant, applying each catalyst in a separate run of the pilot plant, and observing the reaction time.
Because variations in the batches of raw material may affect the performance of the catalysts, the
engineer decides to use batches of raw material as blocks. However, each batch is only large enough
to permit three catalysts to be run. Therefore, a randomized incomplete block design must be used.
The balanced incomplete block design for this experiment, along with the observations recorded,
is shown in Table 4.22. The order in which the catalysts are run in each block is randomized.

44.1 Statistical Analysis of the BIBD

As usual, we assume that there are a treatments and b blocks. In addition, we assume that each
block contains k treatments, that each treatment occurs r times in the design (or is replicated

m TABLE 4.22
Balanced Incomplete Block Design for Catalyst Experiment

Block (Batch of Raw Material)

Treatment

(Catalyst) 1 2 3 4 yi
1 73 74 — 71 218

2 — 75 67 72 214

3 73 75 68 — 216

4 75 — 72 75 222

¥, 221 224 207 218 870 =y,
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r times), and that there are N = ar = bk total observations. Furthermore, the number of times
each pair of treatments appears in the same block is

If a = b, the design is said to be symmetric.

The parameter A must be an integer. To derive the relationship for A, consider any treat-
ment, say treatment 1. Because treatment 1 appears in r blocks and there are k — 1 other treat-
ments in each of those blocks, there are r(k — 1) observations in a block containing treatment 1.
These r(k — 1) observations also have to represent the remaining ¢ — 1 treatments A times.
Therefore, A(a — 1) = r(k — 1).

The statistical model for the BIBD is

yi=m T+ B te; 4.31)

where y;; is the ith observation in the jth block, u is the overall mean, 7; is the effect of the ith
treatment, 3; is the effect of the jth block, and €; is the NID (0, o?) random error component.
The total variability in the data is expressed by the total corrected sum of squares:

2
S =33 v - yﬁ 4.32)
i

Total variability may be partitioned into
SST = SSTreatments(adjusted) + SSBlocks + SSE

where the sum of squares for treatments is adjusted to separate the treatment and the block
effects. This adjustment is necessary because each treatment is represented in a different set
of r blocks. Thus, differences between unadjusted treatment totals y,, y,, ..., ¥, are also
affected by differences between blocks.

The block sum of squares is

2

b
SSpioss = & 235~ % (4.33)
i=1

=

where y; is the total in the jth block. SSg. has b — 1 degrees of freedom. The adjusted treat-
ment sum of squares is

k2, 0
SSTrealmems(adjusted) = # (4.34)

where Q; is the adjusted total for the ith treatment, which is computed as

b
O=v—rZmy, i=1l2....a 433)

j=1
with n; = 1 if treatment 7 appears in block j and n; = 0 otherwise. The adjusted treatment

totals will always sum to zero. SStcuments(adjusteay Nas @ — 1 degrees of freedom. The error sum
of squares is computed by subtraction as

SSE = SST - SSTreatmems(adjusted) - SSBlocks (4‘36)

and has N — a — b + 1 degrees of freedom.
The appropriate statistic for testing the equality of the treatment effects is

FO _ MSTrealments(adjusted)
The ANOVA is summarized in Table 4.23.
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mn TABLE 4.23
Analysis of Variance for the Balanced Incomplete Block Design

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F,
2
k E Qi SSTreatments(adjusted) MSTl'eutments(udj usted)
Treatments a—1 —_— Fp=——7o—
- Aa a—1 MSy
(adjusted) ) <5
l 2 _ yf _ Blocks
Blocks X 2 YiT N b—1 P
E SS (by subtracti N—a—b+1 5S¢
rror & (by subtraction) a N—a— b ¥l
32
Total 22— v N-—1

exampLE 4.5 I

Consider the data in Table 4.22 for the catalyst experiment. 0, = (218) — %(221 + 224 + 218) = —9/3

Thisisa BIBD witha =4, b =4, k=3, r=3, N\ = 2, and . 1 _
N = 12. The analysis of this data is as follows. The total O = (2l = Zly == 225 5 218 e

sum of squares is 0, = (216) — 3(221 + 207 + 224) = —4/3

sS; =SS 2 — yi 0, = (222) — %(221 + 207 + 218) = 20/3
& i)
v 5 The adjusted sum of squares for treatments is computed
= 63.156 — (870) = 81.00 from Equation 4.34 as
’ 12 ’ 4
The block sum of squares is found from Equation 4.33 as kE QI2
i=1
SS 1 i y2 _ yz SSTrealmenls(adjusled) = \a
Blocks = 7 J 17
3|t 12 _3[E9/3) + (<T/3)F + (—4/3)7 + (20/3)]
Loy , . o _ 70 2)4)
3[(221) + (207)" + (224)" + (218)7] 2 — 2275

= 55.00

The error sum of squares is obtained by subtraction as
To compute the treatment sum of squares adjusted for §S. = SS. — SS ' _ 55
blocks, we first determine the adjusted treatment totals 2 a [EeatenC L e Hlods
using Equation 4.35 as =81.00 — 22.75 — 55.00 = 3.25

The analysis of variance is shown in Table 4.24. Because
the P-value is small, we conclude that the catalyst
employed has a significant effect on the time of reaction.

mn TABLE 4.24

Analysis of Variance for Example 4.5

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value

Treatments (adjusted 22.75 3 7.58 11.66 0.0107
for blocks)

Blocks 55.00 3 =

Error 3.25 5 0.65

Total 81.00 11
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If the factor under study is fixed, tests on individual treatment means may be of interest. If
orthogonal contrasts are employed, the contrasts must be made on the adjusted treatment
totals, the {Q;} rather than the {y, }. The contrast sum of squares is

swo)

i=1
a

ra), ¢l
i=1

where {c;} are the contrast coefficients. Other multiple comparison methods may be used to
compare all the pairs of adjusted treatment effects, which we will find in Section 4.4.2, are
estimated by 7; = kQ/(Aa). The standard error of an adjusted treatment effect is

[kM.
S = St (4.37)
Aa

In the analysis that we have described, the total sum of squares has been partitioned into
an adjusted sum of squares for treatments, an unadjusted sum of squares for blocks, and an
error sum of squares. Sometimes we would like to assess the block effects. To do this, we
require an alternate partitioning of SSy, that is,

SST = SSTrealments + SSBlocks(adjusted) + SSE

SS. =

Here SStieaments 1 unadjusted. If the design is symmetric, that is, if @ = b, a simple formula
may be obtained for SSpgjoeks(adgiusiearr The adjusted block totals are

/ 1< .
Qy=y; =g Zmy J=12....b (4.38)
and
b
r2, @y
=
SSBlocks(adjusted) = T (4-39)
The BIBD in Example 4.5 is symmetric because a = b = 4. Therefore,
Q) = (221) — 3(218 + 216 + 222) = 7/3
Q) = (224) — (218 + 214 + 216) = 24/3
Q; = (207) — 3214 + 216 + 222) = —31/3
0, = (218) — 3218 + 214 + 222) = 0
and
3[(7/3)* + (24/3)* + (—31/3)* + (0)*]
SS ocks(adjusted) — = 66.08
Blocks(adjusted) 2@
Also,
218)° + (214)* + (216)* + (222)? 870)*
SSTreatments = ( ) ( ) 3 ( ) ( ) - ( 12) = 11.67

A summary of the analysis of variance for the symmetric BIBD is given in Table 4.25.
Notice that the sums of squares associated with the mean squares in Table 4.25 do not add to
the total sum of squares, that is,

SST s SSTreatmems(adjusted) + SSBlocks(adjusted) + SSE

This is a consequence of the nonorthogonality of treatments and blocks.
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mn TABLE 4.25
Analysis of Variance for Example 4.5, Including Both Treatments and Blocks

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F, P-Value
Treatments (adjusted) 22.75 3 7.58 11.66 0.0107
Treatments (unadjusted) 11.67 3
Blocks (unadjusted) 55.00 3
Blocks (adjusted) 66.08 3 22.03 33.90 0.0010
Error 3.25 5 0.65
Total 81.00 11

Computer Output. There are several computer packages that will perform the analy-
sis for a balanced incomplete block design. The SAS General Linear Models procedure is one
of these and Minitab and JMP are others. The upper portion of Table 4.26 is the Minitab
General Linear Model output for Example 4.5. Comparing Tables 4.26 and 4.25, we see that
Minitab has computed the adjusted treatment sum of squares and the adjusted block sum of
squares (they are called “Adj SS” in the Minitab output).

The lower portion of Table 4.26 is a multiple comparison analysis, using the Tukey
method. Confidence intervals on the differences in all pairs of means and the Tukey test are
displayed. Notice that the Tukey method would lead us to conclude that catalyst 4 is different
from the other three.

4.4.2 Least Squares Estimation of the Parameters

Consider estimating the treatment effects for the BIBD model. The least squares normal equa-
tions are
a b .
wiNp + rE T+ kzl Bj =
i=

i=1

b .

TR T+ Y=y i=1,2,...,a (4.40)
Jj=1 '

B,:kﬂ-ﬁ-zln,ﬁ',--l—kﬁ/:y.j j=1,2...,b

Imposing =7, = ELA%_, = 0, we find that & = y . Furthermore, using the equations for {;} to
eliminate the block effects from the equations for {7;}, we obtain

b
rk% rT - E 2 nz] i p kyi. - 21 nljy/ (4.41)
=

Note that the right-hand side of Equation 4.36 is kQ;, where Q; is the ith adjusted treatment
total (see Equation 4.29). Now, because E, min,: = Aif p # iand n = n,,; (because n,; = 0
or 1), we may rewrite Equation 4.41 as

ij'*pj

rk— D5 =AY 7, =kQ;, i=12,...,a (4.42)
p=1
p#l
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mn TABLE 4.26
Minitab (General Linear Model) Analysis for Example 4.5
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General Linear Model

Factor Type Levels Values
Catalyst fixed 4 12 3 4
Block fixed 4 12 3 4
Analysis of Variance for Time, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F P
Catalyst 3 11.667 22.750 7.583 11.67 0.011
Block 3 66.083 66.083 22.028 33.89 0.001
Error 5 3.250 3.250 0.650
Total 11 81.000
Tukey 95.07% Simultaneous Confidence Intervals
Response Variable Time
ALL Pairwise Comparisons among Levels of Catalyst
Catalyst = 1 subtracted from:
Catalyst Lower Center Upper —-——-—-———-—--—- +-—————— +-—————— +-————
2 —-2.327 0.2500 2.827 (=== e )
3 -1.952 0.6250 3.202 (m—————— e )
4 1.048 3.6250 6.202 (=== e )
—————————— L e e P e e
0.0 2.5 5.0
Catalyst = 2 subtracted from:
Catalyst Lower Center Upper —-—-—-——————-—- +-——————- +—-——————- +-————-
3 —-2.202 0.3750 2.952 (m—————— e )
4 0.798 3.3750 5.952 (=== e )
—————————— o e T e L e e E
0.0 2.5 5.0
Catalyst = 3 subtracted from:
Catalyst Lower Center Upper -—--—-——————-—- +-——————- +-——————- +-————-
4 0.4228 3.000 5.577 (= e )
—————————— e e T L e e
0.0 2.5 5.0

Tukey Simultaneous Tests
Response Variable Time
ALL Pairwise Comparisons among Levels of Catalyst

Catalyst = 1 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value
2 0.2500 0.6982 0.3581 0.9825
3 0.6250 0.6982 0.8951 0.8085
4 3.6250 0.6982 5.1918 0.0130
Catalyst = 2 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value
3 0.3750 0.6982 0.5371 0.9462
4 3.3750 0.6982 4.8338 0.0175
Catalyst = 3 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value

4 3.000 0.6982 4.297 0.0281
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a
1

Finally, note that the constraint ={_,7, = 0 implies that ¢_,7, =—7, and recall that r(k— 1) =
A(a — 1) to obtain P

at,=kQ, i=1,2...,a (4.43)

Therefore, the least squares estimators of the treatment effects in the balanced incomplete
block model are

. kO,
T,.=—Q i=1,2,...,a (4.44)
Aa

As an illustration, consider the BIBD in Example 4.5. Because Q, = —9/3, Q, = —7/3,
Q5 = —4/3, and Q, = 20/3, we obtain

R (Gl ) S G/ B

T oM ™= @
L343 . 3003)
Ty = D0 4/8 Ty @) 20/8

as we found in Section 4.4.1.

4.4.3 Recovery of Interblock Information in the BIBD

The analysis of the BIBD given in Section 4.4.1 is usually called the intrablock analysis
because block differences are eliminated and all contrasts in the treatment effects can be
expressed as comparisons between observations in the same block. This analysis is appro-
priate regardless of whether the blocks are fixed or random. Yates (1940) noted that, if the
block effects are uncorrelated random variables with zero means and variance a’é, one may
obtain additional information about the treatment effects ;. Yates called the method of
obtaining this additional information the interblock analysis.

Consider the block totals y; as a collection of b observations. The model for these obser-
vations [following John (1971)] is

vy = kp+ Xy + (kﬁj + ej> (4.45)
i=1 i=1

where the term in parentheses may be regarded as error. The interblock estimators of w and
7; are found by minimizing the least squares function

b a 2
L=21<y.j—k,u,—21n,~j’ri>
j= i=

This yields the following least squares normal equations:

pwiNp +r2, m =y,

i=1

Ti:krfj,-i-r:ri-I—)tE 7rp=2nijy.j i=1,2...,a (4.46)
p=1 J=1
p#l

where & and 7; denote the interblock estimators. Imposing the constraint (L,7, = 0 , we
obtain the solutions to Equations 4.46 as

i=y. (4.47)

b —_—
E n;y; — kry..
Jj=1

L U i=1,2,...,a (4.48)
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It is possible to show that the interblock estimators {5’,»} and the intrablock estimators {9’,} are
uncorrelated.

The interblock estimators {7;| can differ from the intrablock estimators {7;}. For exam-
ple, the interblock estimators for the BIBD in Example 4.5 are computed as follows:

= _ 663 — (3)(3)(72.50)

| 15 = 10.50
;= 649 3(3)_(3;(72.50) a5
e 3(3)_(3;(72.50) 0,50
;= 046 3(3)_(3;(72.50) 650

Note that the values of Ej;ln,-jy ,; were used previously on page 169 in computing the adjusted
treatment totals in the intrablock analysis.

Now suppose we wish to combine the interblock and intrablock estimators to obtain a
single, unbiased, minimum variance estimate of each 7;. It is possible to show that both 7; and
7; are unbiased and also that

- k(a—1) , )
Vi) = ———0 (intrablock)
Aa
and
V(T) = Ma= 1) (0> + kog)  (interblock)
Yoalr —A) B
We use a linear combination of the two estimators, say
T =T+ e (4.49)

to estimate 7;. For this estimation method, the minimum variance unbiased combined estima-
tor 7 should have weights ; = u,/(u; + u,) and o, = u,/(u; + u,), where u, = 1/V(7;) and
u, = 1/V(7;). Thus, the optimal weights are inversely proportional to the variances of

7, and 7;. This implies that the best combined estimator is

k(a — 1 k(a — 1
T Ka— 1) (c* + k(rf;) + 5',-7(61 ) o’
Tk = a(r = A) Ad? i=1,2 a
i ka—1) , kl@a—1) , ) P
+ +
7 o ar =N (o ko g)

which can be simplified to

b
kQ,~(0'2 + k0',23) + (E ngy,; — kry")a2
% =1

= i=1L2....a  (450)
(r — Mo? + da(o” + kop)

Unfortunately, Equation 4.50 cannot be used to estimate the 7, because the variances o
and o-é are unknown. The usual approach is to estimate o and 0',23 from the data and replace
these parameters in Equation 4.50 by the estimates. The estimate usually taken for o is the
error mean square from the intrablock analysis of variance, or the intrablock error. Thus,

6 = MS,
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The estimate of o-f; is found from the mean square for blocks adjusted for treatments. In gen-
eral, for a balanced incomplete block design, this mean square is

MSgiocrsadusedy = & — 1) (4.51)

and its expected value [which is derived in Graybill (1961)] is

ar—1) ,

E[MSBlocks(adjustcd)] = 0-2 + b —1 O-B

. . AD .
Thus, if MSgioksdiusica) > MSE, the estimate of o is

_ [MSBlocks(adiusted) - MSE](b -1

&é W =1 (4.52)
and if MSpcrsdjusiea) = MSg, wWe set &é = (. This results in the combined estimator
b
in(a'z + k(}é) + <2 ngy,; — kW..)‘}z
j=1 (}é > 0 (4.53a)
TF = (r — No* + Aa@6? + k&;) ’
yi. — (a)y,
ro G =0 (4.53b)

We now compute the combined estimates for the data in Example 4.5. From Table 4.25 we
obtain 6> = MS, = 0.65 and MSgiocksiadjusieay = 22.03. (Note that in computing MSgockg(adijusted)
we make use of the fact that this is a symmetric design. In general, we must use Equation
4.51. Because MSgocksadjustcdy > MSE, we use Equation 4.52 to estimate oé as

_ (22.03 — 0.65)(3)

T e

T

Therefore, we may substitute 6> = 0.65 and 6',3 = 8.02 into Equation 4.53a to obtain the com-
bined estimates listed below. For convenience, the intrablock and interblock estimates are also
given. In this example, the combined estimates are close to the intrablock estimates because
the variance of the interblock estimates is relatively large.

Parameter Intrablock Estimate Interblock Estimate Combined Estimate
7 —1.12 10.50 —1.09
T, —0.88 —3.50 —0.88
T3 -0.50 —0.50 —0.50

T, 2.50 —6.50 247
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4.5 Problems

4.1. The ANOVA from a randomized complete block
experiment output is shown below.

Source DF SS MS F P
Treatment 4 1010.56 ? 29.84 7
Block ? ? 64.765 7 ?
Error 20 169.33 ?

Total 29 1503.71

(a) Fill in the blanks. You may give bounds on the P-value.
(b) How many blocks were used in this experiment?
(¢) What conclusions can you draw?

4.2.  Consider the single-factor completely randomized sin-
gle factor experiment shown in Problem 3.4. Suppose that this
experiment had been conducted in a randomized complete
block design, and that the sum of squares for blocks was 80.00.
Modify the ANOVA for this experiment to show the correct
analysis for the randomized complete block experiment.

4.3. A chemist wishes to test the effect of four chemical
agents on the strength of a particular type of cloth. Because
there might be variability from one bolt to another, the
chemist decides to use a randomized block design, with the
bolts of cloth considered as blocks. She selects five bolts and
applies all four chemicals in random order to each bolt. The
resulting tensile strengths follow. Analyze the data from this
experiment (use & = 0.05) and draw appropriate conclusions.

Bolt

Chemical 1 2 3 4 5

73 68 74 71 67
73 67 75 72 70
75 68 78 73 68
73 71 75 75 69

B W N =

44. Three different washing solutions are being compared
to study their effectiveness in retarding bacteria growth in
5-gallon milk containers. The analysis is done in a laboratory,
and only three trials can be run on any day. Because days could
represent a potential source of variability, the experimenter
decides to use a randomized block design. Observations are
taken for four days, and the data are shown here. Analyze the
data from this experiment (use o = 0.05) and draw conclusions.

Days
Solution 1 2 3 4
1 13 22 18 39
2 16 24 17 44
3 5 4 1 22

4.5. Plot the mean tensile strengths observed for each
chemical type in Problem 4.3 and compare them to an appro-
priately scaled ¢ distribution. What conclusions would you
draw from this display?

4.6.  Plot the average bacteria counts for each solution in
Problem 4.4 and compare them to a scaled # distribution. What
conclusions can you draw?

4.7.  Consider the hardness testing experiment described in
Section 4.1. Suppose that the experiment was conducted as
described and that the following Rockwell C-scale data
(coded by subtracting 40 units) obtained:

Coupon
Tip 1 2 3 4
1 9.3 9.4 9.6 10.0
2 9.4 9.3 9.8 9.9
3 9.2 9.4 9.5 9.7
4 9.7 9.6 10.0 10.2

(a) Analyze the data from this experiment.

(b) Use the Fisher LSD method to make comparisons
among the four tips to determine specifically which
tips differ in mean hardness readings.

(¢) Analyze the residuals from this experiment.

4.8. A consumer products company relies on direct mail
marketing pieces as a major component of its advertising
campaigns. The company has three different designs for a
new brochure and wants to evaluate their effectiveness, as
there are substantial differences in costs between the three
designs. The company decides to test the three designs by
mailing 5000 samples of each to potential customers in four
different regions of the country. Since there are known
regional differences in the customer base, regions are consid-
ered as blocks. The number of responses to each mailing is as
follows.

Region
Design NE NW SE SW
1 250 350 219 375
2 400 525 390 580
3 275 340 200 310

(a) Analyze the data from this experiment.

(b) Use the Fisher LSD method to make comparisons
among the three designs to determine specifically
which designs differ in the mean response rate.

(¢) Analyze the residuals from this experiment.
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4.9.  The effect of three different lubricating oils on fuel
economy in diesel truck engines is being studied. Fuel econo-
my is measured using brake-specific fuel consumption after
the engine has been running for 15 minutes. Five different
truck engines are available for the study, and the experimenters
conduct the following randomized complete block design.

Truck
il 1 2 3 4 5

1 0.500 0.634 0.487 0.329 0.512
2 0.535 0.675 0.520 0.435 0.540
3 0.513 0.595 0.488 0.400 0.510

(a) Analyze the data from this experiment.

(b) Use the Fisher LSD method to make comparisons
among the three lubricating oils to determine specifical-
ly which oils differ in brake-specific fuel consumption.

(¢) Analyze the residuals from this experiment.

4.10. An article in the Fire Safety Journal (“The Effect of
Nozzle Design on the Stability and Performance of Turbulent
Water Jets,” Vol. 4, August 1981) describes an experiment in
which a shape factor was determined for several different
nozzle designs at six levels of jet efflux velocity. Interest
focused on potential differences between nozzle designs,
with velocity considered as a nuisance variable. The data are
shown below:

Jet Efflux Velocity (m/s)
Nozzle
Design 11.73 14.37 16.59 20.43 23.46 28.74

0.78 080 081 075 077 0.78
085 08 092 086 081 0.83
093 092 095 0.8 0.8 0.83
1.14 097 098 088 0.86 0.83
097 08 0.78 076 076  0.75

N AW N =

(a) Does nozzle design affect the shape factor? Compare
the nozzles with a scatter plot and with an analysis of
variance, using a = 0.05.

(b) Analyze the residuals from this experiment.

(¢) Which nozzle designs are different with respect to
shape factor? Draw a graph of the average shape factor
for each nozzle type and compare this to a scaled 7 dis-
tribution. Compare the conclusions that you draw from
this plot to those from Duncan’s multiple range test.

4.11. An article in Communications of the ACM (Vol. 30,
No. 5, 1987) studied different algorithms for estimating soft-
ware development costs. Six algorithms were applied to sev-
eral different software development projects and the percent
error in estimating the development cost was observed.

Some of the data from this experiment is shown in the table
below.

(a) Do the algorithms differ in their mean cost estimation
accuracy?

(b) Analyze the residuals from this experiment.
(c) Which algorithm would you recommend for use in

practice?
Project
Algorithm 1 2 3 4 5 6
1(SLIM 1244 21 82 2221 905 839

2(COCOMO-A) 281 129 396 1306 336 910
3(COCOMO-R) 220 84 458 543 300 794
4(COCONO-C) 225 83 425 552 291 826

S(FUNCTION
POINTS) 19 11 —-34 121 15 103

6(ESTIMALS) —20 35 —53 170 104 199

4.12. An article in Nature Genetics (2003, Vol. 34, pp.
85-90) “Treatment-Specific Changes in Gene Expression
Discriminate in vivo Drug Response in Human Leukemia
Cells” studied gene expression as a function of different treat-
ments for leukemia. Three treatment groups are: mercaptop-
urine (MP) only; low-dose methotrexate (LDMTX) and MP;
and high-dose methotrexate (HDMTX) and MP. Each group
contained ten subjects. The responses from a specific gene are
shown in the table below.

(a) Is there evidence to support the claim that the treat-
ment means differ?

(b) Check the normality assumption. Can we assume
these samples are from normal populations?

(c) Take the logarithm of the raw data. Is there evidence to
support the claim that the treatment means differ for
the transformed data?

(d) Analyze the residuals from the transformed data and
comment on model adequacy.

Treatments Observations

MP ONLY 3345 31.6 701 412 612 69.6 67.5 66.6 120.7 881.9
MP + HDMTX 919.4 404.2 1024.8 54.1 62.8 671.6 882.1 354.2 321.9 91.1

MP + LDMTX 108.4 26.1 240.8 191.1 69.7 242.8 62.7 396.9 23.6 290.4

4.13. Consider the ratio control algorithm experiment
described in Section 3.8. The experiment was actually con-
ducted as a randomized block design, where six time periods
were selected as the blocks, and all four ratio control algo-
rithms were tested in each time period. The average cell
voltage and the standard deviation of voltage (shown in
parentheses) for each cell are as follows:



Ratio Time Period

Control

Algorithm 1 2 3
1 4.93(0.05) 4.86(0.04) 4.75(0.05)
2 4.85(0.04) 4.91(0.02) 4.79 (0.03)
3 4.83(0.09) 4.88(0.13) 4.90(0.11)
4 4.89 (0.03) 4.77 (0.04)  4.94 (0.05)

Ratio Time Period

Control

Algorithm 4 5 6
1 4.95 (0.06) 4.79 (0.03) 4.88 (0.05)
2 4.85(0.05) 4.75(0.03) 4.85(0.02)
3 4.75(0.15)  4.82(0.08) 4.90 (0.12)
4 4.86 (0.05) 4.79 (0.03) 4.76 (0.02)

(a) Analyze the average cell voltage data. (Use
a = 0.05.) Does the choice of ratio control algorithm
affect the average cell voltage?

(b) Perform an appropriate analysis on the standard devi-
ation of voltage. (Recall that this is called “pot noise.”)
Does the choice of ratio control algorithm affect the
pot noise?

(c) Conduct any residual analyses that seem appropriate.

(d) Which ratio control algorithm would you select if your
objective is to reduce both the average cell voltage and
the pot noise?

[I] 4.14. An aluminum master alloy manufacturer produces
grain refiners in ingot form. The company produces the prod-
uct in four furnaces. Each furnace is known to have its own
unique operating characteristics, so any experiment run in the
foundry that involves more than one furnace will consider fur-
naces as a nuisance variable. The process engineers suspect
that stirring rate affects the grain size of the product. Each fur-
nace can be run at four different stirring rates. A randomized
block design is run for a particular refiner, and the resulting
grain size data is as follows.

Furnace
Stirring Rate (rpm) 1 2 3 4
5 8 4 5 6
10 14 5 6 9
15 14 6 9 2
20 17 9 3 6

(a) Is there any evidence that stirring rate affects grain size?

(b) Graph the residuals from this experiment on a normal
probability plot. Interpret this plot.

179

4.5 Problems

(c) Plot the residuals versus furnace and stirring rate.
Does this plot convey any useful information?

(d) What should the process engineers recommend con-
cerning the choice of stirring rate and furnace for
this particular grain refiner if small grain size is
desirable?

4.15. Analyze the data in Problem 4.4 using the general
regression significance test.

4.16. Assuming that chemical types and bolts are fixed,
estimate the model parameters 7; and 8; in Problem 4.3.

4.17. Draw an operating characteristic curve for the design
in Problem 4.4. Does the test seem to be sensitive to small dif-
ferences in the treatment effects?

4.18. Suppose that the observation for chemical type 2 and
bolt 3 is missing in Problem 4.3. Analyze the problem by esti-
mating the missing value. Perform the exact analysis and
compare the results.

4.19. Consider the hardness testing experiment in Problem
4.7. Suppose that the observation for tip 2 in coupon 3 is
missing. Analyze the problem by estimating the missing
value.

4.20. Two missing values in a randomized block. Suppose
that in Problem 4.3 the observations for chemical type 2 and
bolt 3 and chemical type 4 and bolt 4 are missing.

(a) Analyze the design by iteratively estimating the missing
values, as described in Section 4.1.3.

(b) Differentiate SS; with respect to the two missing val-
ues, equate the results to zero, and solve for estimates
of the missing values. Analyze the design using these
two estimates of the missing values.

(c) Derive general formulas for estimating two missing
values when the observations are in different blocks.

(d) Derive general formulas for estimating two missing
values when the observations are in the same block.

4.21. An industrial engineer is conducting an experiment on
eye focus time. He is interested in the effect of the distance of
the object from the eye on the focus time. Four different
distances are of interest. He has five subjects available for the
experiment. Because there may be differences among individu-
als, he decides to conduct the experiment in a randomized block
design. The data obtained follow. Analyze the data from this
experiment (use e = 0.05) and draw appropriate conclusions.

Subject
Distance (ft) 1 2 3 4 5
4 10 6 6 6 6
6 7 6 6 1 6
8 5 3 3 2 5
10 6 4 4 2 3
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4.22. The effect of five different ingredients (A, B, C, D, E)
on the reaction time of a chemical process is being studied.
Each batch of new material is only large enough to permit five
runs to be made. Furthermore, each run requires approximately
I%hours, so only five runs can be made in one day. The exper-
imenter decides to run the experiment as a Latin square so that
day and batch effects may be systematically controlled. She
obtains the data that follow. Analyze the data from this exper-
iment (use & = 0.05) and draw conclusions.

Day
Batch 1 2 3 4 5
1 A=8 B=7 D=1 C=7 E=3
2 c=11 E=2 A=7 D=3 B=
3 B=4 A=9 (C=10 E=1 D=
4 D=6 C=8 E=6 B=6 A=10
5 E=4 D=2 B=3 A=8 (C=8
4.23. An industrial engineer is investigating the effect of

four assembly methods (A, B, C, D) on the assembly time for
a color television component. Four operators are selected for
the study. Furthermore, the engineer knows that each assem-
bly method produces such fatigue that the time required for
the last assembly may be greater than the time required for the
first, regardless of the method. That is, a trend develops in the
required assembly time. To account for this source of variabil-
ity, the engineer uses the Latin square design shown below.
Analyze the data from this experiment (o = 0.05) and draw
appropriate conclusions.

Order of Operator
Assembly 1 2 3 4
1 C=10 D=14 A=7 B=238
2 B =1 C=18 D=11 A=8
3 A=5 B=10 C=11 D=9
4 D=10 A=10 B=12 C=14
4.24. Consider the randomized complete block design in

Problem 4.4. Assume that the days are random. Estimate the
block variance component.

4.25. Consider the randomized complete block design in
Problem 4.7. Assume that the coupons are random. Estimate
the block variance component.

4.26. Consider the randomized complete block design in
Problem 4.9. Assume that the trucks are random. Estimate the
block variance component.
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4.27. Consider the randomized complete block design in
Problem 4.11. Assume that the software projects that
were used as blocks are random. Estimate the block variance
component.

4.28. Consider the gene expression experiment in Problem
4.12. Assume that the subjects used in this experiment are ran-
dom. Estimate the block variance component.

4.29. Suppose that in Problem 4.20 the observation from
batch 3 on day 4 is missing. Estimate the missing value and
perform the analysis using the value.

4.30. Consider a p X p Latin square with rows («),),
columns (B,), and treatments (7;) fixed. Obtain least squares
estimates of the model parameters «;, By, and ;.

4.31. Derive the missing value formula (Equation 4.27) for
the Latin square design.

4.32. Designs involving several Latin squares. [See
Cochran and Cox (1957), John (1971).] The p X p Latin square
contains only p observations for each treatment. To obtain more
replications the experimenter may use several squares, say 7. It
is immaterial whether the squares used are the same or differ-
ent. The appropriate model is

i = 1,2,...,
mt oy o j:12...§
Vi = T 7 By k=12 ....p
+ (TP + € h 1’2, ,”l

where y;;,, is the observation on treatment j in row 7 and col-
umn k of the hth square. Note that «;, and B, are the row
and column effects in the Ath square, p, is the effect of the Ath
square, and (7p);, is the interaction between treatments and
squares.

(a) Set up the normal equations for this model, and solve
for estimates of the model parameters. Assume that
appropriate side conditions on the parameters are
205 = 0, 2y, = 0,and 3,8, = 0 for each i, 37, =
0, 3(7p)y, = 0 for each h, and 3,(7p);, = O for
each j.

(b) Write down the analysis of variance table for this
design.

4.33. Discuss how the operating characteristics curves in
the Appendix may be used with the Latin square design.

4.34. Suppose that in Problem 4.22 the data taken on day 5
were incorrectly analyzed and had to be discarded. Develop
an appropriate analysis for the remaining data.

4.35. The yield of a chemical process was measured using
five batches of raw material, five acid concentrations, five
standing times (A4, B, C, D, E), and five catalyst concentrations
(e, B, v, 8, €). The Graeco-Latin square that follows was used.
Analyze the data from this experiment (use @ = 0.05) and
draw conclusions.
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time constraint, he must use an incomplete block design. He
runs the balanced design with the five blocks that follow.

Acid Concentration

Batch 1 2 3 Analyze the data from this experiment (use @ = 0.05) and
1 Aa = 26 BB = 16 Cy =19 draw conclusions.
2 By =18 Cé =21 De = 18
3 Ce =20 Da =12 EB =16 Car
4 DB=15 Ey =15 Ad =22 .
S Eg e iy o — 19 Additive 1 2 3 4 5
1 17 14 13 12
2 14 14 13 10
Acid Concentration 3 12 13 12 9
Batch 4 5 4 13 11 11 12
5 11 12 10 8
1 Dé = 16 Ee =13
2 Ea =11 AB =121
3 Ay =125 B =13 4.41. Construct a set of orthogonal contrasts for the data in [
4 Be = 14 Ca=17 Problem 4.33. Compute the sum of squares for each contrast.
5 CcB =17 Dy=14 4.42. Seven different hardwood concentrations are being []]
studied to determine their effect on the strength of the paper
produced. However, the pilot plant can only produce three
4.36.  Suppose that in Problem 4.23 the engineer suspects runs each day. As days may differ, the analyst uses the bal-
that the workplaces used by the four operators may represent anced incomplete block design that follows. Analyze the data
an additional source of variation. A fourth factor, workplace from this experiment (use a = 0.05) and draw conclusions.
(a, B, v, 6) may be introduced and another experiment con-
ducted, yielding the Graeco-Latin square that follows. Days
Analyze the data from this experiment (use a = 0.05) and Hardwood
draw conclusions. Concentration (%) 1 2 3 4
2 114
4 126 120
Order of Operator 6 137 117
1 CB=11 By=10 D5§=14 Aa =38 10 145 150
2 Ba=8 C5=12 Ay=10 DB =12 12 120
3 AS =9 Da=11 BB=7 Cy=15 14 136
4 Dy=9 AB =8 Ca=18 BS =6
Hardwood Days
4.37. Construct a 5 X 5 hypersquare for studying the Concentration (%) 5 6 7
effects of five factors. Exhibit the analysis of variance table 2 120 117
for this design. 4 119
4.38. Consider the data in Problems 4.23 and 4.36. 6 134
Suppressing the Greek letters in problem 4.36, analyze the 3
data using the method developed in Problem 4.32. 10 143
4.39. Consider the randomized block design with one miss-
ing value in Problem 4.19. Analyze this data by using the 12 18 123
exact analysis of the missing value problem discussed in 14 130 127
Section 4.1.4. Compare your results to the approximate analy-
sis of these data given from Problem 4.19. 4.43. Analyze the data in Example 4.5 using the general [[]
4.40. An engineer is studying the mileage performance regression significance test.
characteristics of five types of gasoline additives. In the road 4.44. Prove that k (“_;0¥(\a) is the adjusted sum of squares [

test he wishes to use cars as blocks; however, because of a for treatments in a BIBD.
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4.45. An experimenter wishes to compare four treatments
in blocks of two runs. Find a BIBD for this experiment with
six blocks.

4.46. An experimenter wishes to compare eight treat-
ments in blocks of four runs. Find a BIBD with 14 blocks
and A = 3.

4.47. Perform the interblock analysis for the design in
Problem 4.40.

4.48. Perform the interblock analysis for the design in
Problem 4.42.

4.49. Verify that a BIBD with the parameters a = 8, r = 8§,
k =4, and b = 16 does not exist.

4.50. Show that the variance of the intrablock estimators 7]
is k(a — Do*/(\d®).

4.51. Extended incomplete block designs. Occasionally,
the block size obeys the relationship a < k < 2a. An
extended incomplete block design consists of a single
replicate of each treatment in each block along with an
incomplete block design with k* = k — a. In the balanced
case, the incomplete block design will have parameters
k* =k —a, r* =r — b, and A*. Write out the statistical
analysis. (Hint: In the extended incomplete block design,
we have A = 2r — b + A*))

4.52. Suppose that a single-factor experiment with five lev-
els of the factor has been conducted. There are three replicates
and the experiment has been conducted as a complete ran-
domized design. If the experiment had been conducted in
blocks, the pure error degrees of freedom would be reduced
by (choose the correct answer):

(@3
(b) 5
(© 2
d 4
(e) None of the above

4.53. Physics graduate student Laura Van Ertia has con-
ducted a complete randomized design with a single factor,
hoping to solve the mystery of the unified theory and
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complete her dissertation. The results of this experiment
are summarized in the following ANOVA display:

Source DF SS MS F
Factor - - 14.18 -
Error - 37.75 -

Total 23 108.63

Answer the following questions about this experiment.
(a) The sum of squares for the factor is

(b). The number of degrees of freedom for the single fac-
tor in the experiment is

(c) The number of degrees of freedom for error is

(d) The mean square for error is

(e) The value of the test statistic is

(f) If the significance level is 0.05, your conclusions are
not to reject the null hypothesis. (Yes or No)

(g) An upper bound on the P-value for the test statistic
is

(h) A lower bound on the P-value for the test statistic
is

(i) Laura used
ment.

levels of the factor in this experi-

(j) Laura replicated this experiment times.

(k) Suppose that Laura had actually conducted this exper-
iment as a randomized complete block design and the
sum of squares for blocks was 12. Reconstruct the
ANOVA display above to reflect this new situation.
How much has blocking reduced the estimate of
experimental error?

4.54. Consider the direct mail marketing experiment in
Problem 4.8. Suppose that this experiment had been run as a
complete randomized design, ignoring potential regional differ-
ences, but that exactly the same data was obtained. Reanalyze
the experiment under this new assumption. What difference
would ignoring blocking have on the results and conclusions?
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5.1 Basic Definitions and Principles

Many experiments involve the study of the effects of two or more factors. In general,
factorial designs are most efficient for this type of experiment. By a factorial design, we
mean that in each complete trial or replicate of the experiment all possible combinations of
the levels of the factors are investigated. For example, if there are a levels of factor A and
b levels of factor B, each replicate contains all ab treatment combinations. When factors are
arranged in a factorial design, they are often said to be crossed.

The effect of a factor is defined to be the change in response produced by a change
in the level of the factor. This is frequently called a main effect because it refers to the pri-
mary factors of interest in the experiment. For example, consider the simple experiment in
Figure 5.1. This is a two-factor factorial experiment with both design factors at two levels.
We have called these levels “low” and “high” and denoted them “—"" and “+,” respectively.
The main effect of factor A in this two-level design can be thought of as the difference
between the average response at the low level of A and the average response at the high
level of A. Numerically, this is

_40+52 20430 _

A
2 2

21
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That is, increasing factor A from the low level to the high level causes an average response
increase of 21 units. Similarly, the main effect of B is

~30+52 20+40_

2 2
If the factors appear at more than two levels, the above procedure must be modified because there
are other ways to define the effect of a factor. This point is discussed more completely later.

In some experiments, we may find that the difference in response between the levels of
one factor is not the same at all levels of the other factors. When this occurs, there is an
interaction between the factors. For example, consider the two-factor factorial experiment
shown in Figure 5.2. At the low level of factor B (or B™), the A effect is

A =50—-20=30
and at the high level of factor B (or B), the A effect is
A=12—40= —28
Because the effect of A depends on the level chosen for factor B, we see that there is interaction
between A and B. The magnitude of the interaction effect is the average difference in these two
A effects, or AB = (—28 — 30)/2 = —29. Clearly, the interaction is large in this experiment.
These ideas may be illustrated graphically. Figure 5.3 plots the response data in Fig-

ure 5.1 against factor A for both levels of factor B. Note that the B~ and B lines are approxi-
mately parallel, indicating a lack of interaction between factors A and B. Similarly, Figure 5.4

B
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plots the response data in Figure 5.2. Here we see that the B~ and B™ lines are not parallel.
This indicates an interaction between factors A and B. Two-factor interaction graphs such as
these are frequently very useful in interpreting significant interactions and in reporting results
to nonstatistically trained personnel. However, they should not be utilized as the sole tech-
nique of data analysis because their interpretation is subjective and their appearance is often
misleading.

There is another way to illustrate the concept of interaction. Suppose that both of our
design factors are quantitative (such as temperature, pressure, time, etc.). Then a regression
model representation of the two-factor factorial experiment could be written as

y =Bt Bixi + Boxy + Boxix, + €

where y is the response, the 8’s are parameters whose values are to be determined, x, is a vari-
able that represents factor A, x, is a variable that represents factor B, and € is a random error
term. The variables x, and x, are defined on a coded scale from —1 to +1 (the low and high
levels of A and B), and x,x, represents the interaction between x; and x,.

The parameter estimates in this regression model turn out to be related to the effect
estimates. For the experiment shown in Figure 5.1 we found the main effects of A and B to be
A = 21 and B = 11. The estimates of 8, and 3, are one-half the value of the corresponding
main effect; therefore, B8, = 21/2 = 10.5 and B, = 11/2 = 5.5. The interaction effect in
Figure 5.1 is AB = 1, so the value of interaction coefficient in the regression model is
B, = 1/2 = 0.5. The parameter B, is estimated by the average of all four responses, or
Bo = (20 + 40 + 30 + 52)/4 = 35.5. Therefore, the fitted regression model is

vy =35.5 + 10.5x, + 5.5x, + 0.5x,x,

The parameter estimates obtained in the manner for the factorial design with all factors at two
levels (— and +) turn out to be least squares estimates (more on this later). )

_The interaction coefficient (8, = 0.5) is small relative to the main effect coefficients 3,
and 3,. We will take this to mean that interaction is small and can be ignored. Therefore, drop-
ping the term 0.5x,x, gives us the model

vy =355+ 10.5x, + 5.5x,

Figure 5.5 presents graphical representations of this model. In Figure 5.5a we have a plot
of the plane of y-values generated by the various combinations of x; and x,. This three-
dimensional graph is called a response surface plot. Figure 5.5b shows the contour lines
of constant response y in the x;, x, plane. Notice that because the response surface is a
plane, the contour plot contains parallel straight lines.

==

(a) The response surface (b) The contour plot

m FIGURE 5.5 Response surface and contour plot for the model y = 35.5 + 10.5x; + 5.5x,
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Now suppose that the interaction contribution to this experiment was not negligible;
that is, the coefficient 3, was not small. Figure 5.6 presents the response surface and contour
plot for the model

y = 35.5 + 10.5x; + 5.5x, + 8xx,

(We have let the interaction effect be the average of the two main effects.) Notice that the sig-
nificant interaction effect “twists” the plane in Figure 5.6a. This twisting of the response
surface results in curved contour lines of constant response in the x;, x, plane, as shown in
Figure 5.6b. Thus, interaction is a form of curvature in the underlying response surface
model for the experiment.

The response surface model for an experiment is extremely important and useful. We
will say more about it in Section 5.5 and in subsequent chapters.

Generally, when an interaction is large, the corresponding main effects have little prac-
tical meaning. For the experiment in Figure 5.2, we would estimate the main effect of A to be

_50+12 20+40 _

A 2 2

1

which is very small, and we are tempted to conclude that there is no effect due to A. However,
when we examine the effects of A at different levels of factor B, we see that this is not the
case. Factor A has an effect, but it depends on the level of factor B. That is, knowledge of the
AB interaction is more useful than knowledge of the main effect. A significant interaction will
often mask the significance of main effects. These points are clearly indicated by the inter-
action plot in Figure 5.4. In the presence of significant interaction, the experimenter must
usually examine the levels of one factor, say A, with levels of the other factors fixed to draw
conclusions about the main effect of A.

5.2 The Advantage of Factorials

The advantage of factorial designs can be easily illustrated. Suppose we have two factors A
and B, each at two levels. We denote the levels of the factors by A~, A*, B™, and B".
Information on both factors could be obtained by varying the factors one at a time, as shown
in Figure 5.7. The effect of changing factor A is given by A*B~ — A”B~, and the effect of
changing factor B is given by A"B* — A"B™. Because experimental error is present, it is
desirable to take two observations, say, at each treatment combination and estimate the effects
of the factors using average responses. Thus, a total of six observations are required.
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If a factorial experiment had been performed, an additional treatment combination,
A" B*, would have been taken. Now, using just four observations, two estimates of the A
effect can be made: A*B~ — A"B™ and A" B* — A"B”. Similarly, two estimates of the B
effect can be made. These two estimates of each main effect could be averaged to produce
average main effects that are just as precise as those from the single-factor experiment, but
only four total observations are required and we would say that the relative efficiency of the
factorial design to the one-factor-at-a-time experiment is (6/4) = 1.5. Generally, this relative
efficiency will increase as the number of factors increases, as shown in Figure 5.8.

Now suppose interaction is present. If the one-factor-at-a-time design indicated that
A™B" and A* B~ gave better responses than A”B~, a logical conclusion would be that A* B*
would be even better. However, if interaction is present, this conclusion may be seriously in
error. For an example, refer to the experiment in Figure 5.2.

In summary, note that factorial designs have several advantages. They are more efficient
than one-factor-at-a-time experiments. Furthermore, a factorial design is necessary when
interactions may be present to avoid misleading conclusions. Finally, factorial designs allow
the effects of a factor to be estimated at several levels of the other factors, yielding conclu-
sions that are valid over a range of experimental conditions.

5.3 The Two-Factor Factorial Design

5.3.1 An Example

The simplest types of factorial designs involve only two factors or sets of treatments. There
are a levels of factor A and b levels of factor B, and these are arranged in a factorial design;
that is, each replicate of the experiment contains all ab treatment combinations. In general,
there are n replicates.

As an example of a factorial design involving two factors, an engineer is designing a bat-
tery for use in a device that will be subjected to some extreme variations in temperature. The
only design parameter that he can select at this point is the plate material for the battery, and he
has three possible choices. When the device is manufactured and is shipped to the field, the engi-
neer has no control over the temperature extremes that the device will encounter, and he knows
from experience that temperature will probably affect the effective battery life. However, tem-
perature can be controlled in the product development laboratory for the purposes of a test.
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s TABLE 5.1
Life (in hours) Data for the Battery Design Example

Material Temperature (°F)

Type 15 70 125
1 130 155 34 40 20 70
74 180 80 75 82 58
2 150 188 136 122 25 70
159 126 106 115 58 45
3 138 110 174 120 96 104
168 160 150 139 82 60

The engineer decides to test all three plate materials at three temperature levels—15,
70, and 125°F—because these temperature levels are consistent with the product end-use
environment. Because there are two factors at three levels, this design is sometimes called a
3’ factorial design. Four batteries are tested at each combination of plate material and tem-
perature, and all 36 tests are run in random order. The experiment and the resulting observed
battery life data are given in Table 5.1.

In this problem the engineer wants to answer the following questions:

1. What effects do material type and temperature have on the life of the battery?

2. Is there a choice of material that would give uniformly long life regardless of
temperature?

This last question is particularly important. It may be possible to find a material alternative
that is not greatly affected by temperature. If this is so, the engineer can make the battery
robust to temperature variation in the field. This is an example of using statistical experimen-
tal design for robust product design, a very important engineering problem.

This design is a specific example of the general case of a two-factor factorial. To pass
to the general case, let y;; be the observed response when factor A is at the ith level (i = 1,
2,...,a)and factor B is at the jth level (j = 1, 2, .. ., b) for the kth replicate (k = 1,2, ..., n).
In general, a two-factor factorial experiment will appear as in Table 5.2. The order in which
the abn observations are taken is selected at random so that this design is a completely
randomized design.

The observations in a factorial experiment can be described by a model. There are sev-
eral ways to write the model for a factorial experiment. The effects model is

i=1,2,...,a
Vig = M+ 1+ B+ (1B); + € Jj=12,...,b 5.1
k=1,2 ,n

where u is the overall mean effect, 7; is the effect of the ith level of the row factor A, B; is
the effect of the jth level of column factor B, (18); is the effect of the interaction between
7; and B;, and € is a random error component. Both factors are assumed to be fixed, and
the treatment effects are defined as deviations from the overall mean, so 2{_,;7; = 0 and
E/l-’: 1B; = 0. Similarly, the interaction effects are fixed and are defined such that 2{_,(78); =
E/l-’:l(TB),:, = (0. Because there are n replicates of the experiment, there are abn total
observations.
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m TABLE 5.2
General Arrangement for a Two-Factor Factorial Design

Factor B
1 2 R b
| Vit Yii2 Yi21s Y122 Yibis> Yibos
<5 Viin s Vi < Vi
Y2115 Y2125 Y2215 Y222 Yabis Yabos
2
Factor A <o V2In s Yoo < Yoin
u Yatts Yai2s Ya21> Ya22s Yab1> Yab2s
"yaln ""yaln ""yalm

Another possible model for a factorial experiment is the means model

i=1,2,...,a
Vi = My T € J=L2...,b
k=1,2 N

where the mean of the ijth cell is

Mij:I-L+7i+Bj+(TB)ij

We could also use a regression model as in Section 5.1. Regression models are particularly
useful when one or more of the factors in the experiment are quantitative. Throughout most
of this chapter we will use the effects model (Equation 5.1) with an illustration of the regres-
sion model in Section 5.5.

In the two-factor factorial, both row and column factors (or treatments), A and B, are of
equal interest. Specifically, we are interested in testing hypotheses about the equality of row
treatment effects, say

Hyrn=mn="=7,=0
H,:at least one 7; # 0 (5.2a)

and the equality of column treatment effects, say

Hy:By=B,=""=B,=0
H, :at least one 3; # 0 (5.2b)

We are also interested in determining whether row and column treatments interact. Thus, we
also wish to test
Hy:(78); = 0 for all i, j

H, :at least one (78); # 0 (5.2¢)

We now discuss how these hypotheses are tested using a two-factor analysis of variance.

5.3.2 Statistical Analysis of the Fixed Effects Model

Let y; , denote the total of all observations under the ith level of factor A, y; denote the total
of all observations under the jth level of factor B, y; denote the total of all observations in the
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ijthcell, and y . denote the grand total of all the observations. Define y; , y,, y;., and y_ as the
corresponding row, column, cell, and grand averages. Expressed mathematically,

b n Vi
.= .. V., = 2 ':1’2"."
Yi.. /;1 & yuk Yi.. bn l a
a n B yj )
y.j.zzlkzlyijk Yi = an Jj=1L2...,b
2 _ Yij. i=1,2, ,a
Yii. = kgl Yijk Yi. = i=1,2, b
a b n
— I
= .. = 5.3
.. ; 2 kgl Y V.= (5.3)

The total corrected sum of squares may be written as

a b n a b n
222 p =y = 22 200 —y)+ G5

i
<
i
=
i
i
i
.
i

a b n
+ 22X e — ¥ (5.4)

because the six cross products on the right-hand side are zero. Notice that the total sum of
squares has been partitioned into a sum of squares due to “rows,” or factor A, (SS,); a sum of
squares due to “columns,” or factor B, (SS3); a sum of squares due to the interaction between
A and B, (SS,5); and a sum of squares due to error, (SSg). This is the fundamental ANOVA
equation for the two-factor factorial. From the last component on the right-hand side of
Equation 5.4, we see that there must be at least two replicates (n = 2) to obtain an error sum
of squares.
We may write Equation 5.4 symbolically as

SS; = SS, + SSy + SS,s + SSu (5.5)

The number of degrees of freedom associated with each sum of squares is

Effect Degrees of Freedom
A a—1
B b—1
AB interaction (a— Db -1
Error ab(n — 1)
Total abn — 1

We may justify this allocation of the abn — 1 total degrees of freedom to the sums of squares
as follows: The main effects A and B have a and b levels, respectively; therefore they have
a — 1 and b — 1 degrees of freedom as shown. The interaction degrees of freedom are sim-
ply the number of degrees of freedom for cells (which is ab — 1) minus the number of degrees
of freedom for the two main effects A and B; that is, ab—1—(a—1)— (b —1) =
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(a — 1)(b — 1). Within each of the ab cells, there are n — 1 degrees of freedom between the
n replicates; thus there are ab(n — 1) degrees of freedom for error. Note that the number of
degrees of freedom on the right-hand side of Equation 5.5 adds to the total number of degrees
of freedom.

Each sum of squares divided by its degrees of freedom is a mean square. The expected
values of the mean squares are

- sy bn 1:21 77
E(MSA)—Ea_1 —o-+a_1
S
B SSp , ,; B
EMSy) = E -1 + P
a b
n2 > @B
EMS,,) = E SSaz S o
e (a—DOG-1 (a—DOG-1

and

EMS,) = E VR
MS) =E\ o —=1)) = ¢

Notice that if the null hypotheses of no row treatment effects, no column treatment effects,
and no interaction are true, then MS,, MS,, MS,,, and MS; all estimate 2. However, if there
are differences between row treatment effects, say, then MS, will be larger than MS;.
Similarly, if there are column treatment effects or interaction present, then the corresponding
mean squares will be larger than MS;. Therefore, to test the significance of both main effects
and their interaction, simply divide the corresponding mean square by the error mean square.
Large values of this ratio imply that the data do not support the null hypothesis.

If we assume that the model (Equation 5.1) is adequate and that the error terms €
are normally and independently distributed with constant variance o, then each of the
ratios of mean squares MS,/MSy, MSg/MSg, and MS,z/MS; is distributed as F with a — 1,
b —1, and (a — 1)(b — 1) numerator degrees of freedom, respectively, and ab(n — 1)
denominator degrees of freedom,' and the critical region would be the upper tail of the F
distribution. The test procedure is usually summarized in an analysis of variance table, as
shown in Table 5.3.

Computationally, we almost always employ a statistical software package to conduct an
ANOVA. However, manual computing of the sums of squares in Equation 5.5 is straightfor-
ward. One could write out the individual elements of the ANOVA identity

Yijk — y. = —y)+ (y._/. —y.) T @,j/. - Vi~ i_/. +y)+ (yljk - yij.)
and calculate them in the columns of a spreadsheet. Then each column could be squared
and summed to produce the ANOVA sums of squares. Computing formulas in terms of
row, column, and cell totals can also be used. The total sum of squares is computed as

usual by
2

PR (5.6)

1j=1k=1 abn

VA

SS, =

1

'The F test may be viewed as an approximation to a randomization test, as noted previously.
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s TABLE 5.3
The Analysis of Variance Table for the Two-Factor Factorial, Fixed Effects Model

Source of Sum of Degrees of
Variation Squares Freedom Mean Square F,
A SS -1 M, = Fy = M5
treatments " a = 0= Ms,
B SS, b—1 Ms, = o8 Fy =%
treatments B 5= 0= Ms,
. _ SSap _ MSup
Interaction SSAB (a 1)(b 1) MSAR = m FO = MSE
E Ss b(n — 1 Msy = — %
ITor z ab(n ) E_ab(n— )
Total SS; abn — 1
The sums of squares for the main effects are
2
1 < 2 Y.
SSy = — ;= 5.7
A bn 1:21 Yi.. abn ( )
and
b 2
Y
SSp = — 2 o 5.8
B n et Yy oo ab n ( )

J
It is convenient to obtain the SS,; in two stages. First we compute the sum of squares between
the ab cell totals, which is called the sum of squares due to “subtotals”:

b 2

1 Y.
SSSubmtals = n - ‘ E] yi - abn
i=1 j=

Q

This sum of squares also contains SS, and SS;. Therefore, the second step is to compute SS,5
as

SSi5 = SSsubiors — S84 — SSz (5.9)
We may compute SS by subtraction as

SSg =SS — SSup — SS, — SS; (5.10)
or

SSE = SST - SSSublotalS

EXAMPLE 5.1

Table 5.4 presents the effective life (in hours) observed in row and column totals are shown in the margins of the
the battery design example described in Section 5.3.1. The table, and the circled numbers are the cell totals.
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Life Data (in hours) for the Battery Design Experiment
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Temperature (°F)

Material
Type 15 70 125 Y;
130 155 34 40 20 70
230
1 74 180 80 75 82 58 998
150 188 136 122 25 70
479
2 159 126 106 115 Q 58 45 1300
138 110 174 120 96 104
576
3 168 160 150 139 82 60 1501
Vi 1738 1291 770 3799 =y
Using Equations 5.6 through 5.10, the sums of squares are 1 & ¢ 2
computed as follows: SStteraction — 7 - E E — SSMuteria

2

a b n
SSy = 222 ik

i=1j=1k abn

= (130 + (155)* + (74)* +

(3799)

2 _
+ (60) 36

= 77,646.97

SSMalerial = big

= [(998)* + (1300)* + (1501)*]

(3)(4)
(37997
== 10,683.72
1 < Y.
SSTemperature = af g bn
- 1738)* + (1291)* + (770)
@ 1739 + (217 + 7707
(37997
= 39,118.72

- SSTcmpcmlurc
= TI(5397 + Q29 + -+ + (342

(37997
36

— 10,683.72

— 39,118.72 = 9613.78

and

SSE = SST - SSMalerial - SSTemperaIure - SSInIeraclion

77,646.97 — 10,683.72 — 39,118.72

— 9613.78 = 18,230.75

The ANOVA is shown in Table 5.5. Because Fyps427 =
2.73, we conclude that there is a significant interaction
between material types and temperature. Furthermore,
Fo05007 = 3.35, so the main effects of material type and
temperature are also significant. Table 5.5 also shows the P-
values for the test statistics.

To assist in interpreting the results of this experiment, it
is helpful to construct a graph of the average responses at
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m TABLE 5.5
Analysis of Variance for Battery Life Data

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F, P-Value
Material types 10,683.72 2 5,341.86 7.91 0.0020
Temperature 39,118.72 2 19,559.36 28.97 < 0.0001
Interaction 9,613.78 4 2,403.44 3.56 0.0186
Error 18,230.75 27 675.21

Total 77,646.97 35

each treatment combination. This graph is shown in Figure
5.9. The significant interaction is indicated by the lack of
parallelism of the lines. In general, longer life is attained at
low temperature, regardless of material type. Changing
from low to intermediate temperature, battery life with
material type 3 may actually increase, whereas it decreases

for types 1 and 2. From intermediate to high temperature,
battery life decreases for material types 2 and 3 and is
essentially unchanged for type 1. Material type 3 seems to
give the best results if we want less loss of effective life as
the temperature changes.

175 —

155125 —

100 —

Material type 3
75

Average life

Material type 1
50 — Material type 2

25 =

0 | | |
15 70 125

Temperature (°F)

m FIGURE 5.9
Example 5.1

Material type-temperature plot for

Multiple Comparisons. When the ANOVA indicates that row or column means differ,
it is usually of interest to make comparisons between the individual row or column means to
discover the specific differences. The multiple comparison methods discussed in Chapter 3
are useful in this regard.

We now illustrate the use of Tukey’s test on the battery life data in Example 5.1. Note
that in this experiment, interaction is significant. When interaction is significant, compar-
isons between the means of one factor (e.g., A) may be obscured by the AB interaction. One
approach to this situation is to fix factor B at a specific level and apply Tukey’s test to the
means of factor A at that level. To illustrate, suppose that in Example 5.1 we are interested
in detecting differences among the means of the three material types. Because interaction
is significant, we make this comparison at just one level of temperature, say level 2 (70°F).
We assume that the best estimate of the error variance is the MS; from the ANOVA table,
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utilizing the assumption that the experimental error variance is the same over all treatment
combinations.
The three material type averages at 70°F arranged in ascending order are

Yo, = 57.25 (material type 1)
Yo, = 119.75 (material type 2)
V3, = 145.75 (material type 3)

and

MS
To0s = 90053, 27) | —, 2

675.21

= 3.50 4

= 45.47

where we obtained g, 5(3, 27) = 3.50 by interpolation in Appendix Table VII. The pairwise
comparisons yield

3vs. 1: 14575 — 57.25 = 88.50 > T, 5 = 45.47
3vs. 20 145.75 — 119.75 = 26.00 < T, = 45.47
2vs. i 11975 — 57.25 = 62.50 > T, = 45.47

This analysis indicates that at the temperature level 70°F, the mean battery life is the same for
material types 2 and 3, and that the mean battery life for material type 1 is significantly lower
in comparison to both types 2 and 3.

If interaction is significant, the experimenter could compare all ab cell means to deter-
mine which ones differ significantly. In this analysis, differences between cell means include
interaction effects as well as both main effects. In Example 5.1, this would give 36 compar-
isons between all possible pairs of the nine cell means.

Computer Output. Figure 5.10 presents condensed computer output for the battery life
data in Example 5.1. Figure 5.10a contains Design-Expert output and Figure 5.10b contains
JMP output. Note that

SSMocbl = SSMaterial + SSTemperature + SSInteractinn
= 10,683.72 + 39,118.72 + 9613.78
= 59,416.22

with 8 degrees of freedom. An F test is displayed for the model source of variation. The
P-value is small (< 0.0001), so the interpretation of this test is that at least one of the three terms
in the model is significant. The tests on the individual model terms (A, B, AB) follow. Also,

 SSyew _ 59,416.22

R? = =
SStow  77,646.97

= 0.7652

That is, about 77 percent of the variability in the battery life is explained by the plate material
in the battery, the temperature, and the material type—temperature interaction. The residuals
from the fitted model are displayed on the Design-Expert computer output and
the JMP output contains a plot of the residuals versus the predicted response. We now discuss
the use of these residuals and residual plots in model adequacy checking.
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Response: Life InH
ANOVA for Selected Factorial Model
Analysis of Variance Table [Partial Sum of Squares]

Source
Model
A
B
AB
Residual
Lack of Fit
Pure Error
Cor Total

Std. Dev.
Mean
C.V.
PRESS

Sum of
Squares
59416.22
10683.72
39118.72
9613.78
18230.75
0.000
18230.75
77646.97

25.98
105.53
24.62
32410.22

Diagnostics Case Statistics
Actual Predicted

Standard
Order

m FIGURE 5.10

Value
130.00
74.00
155.00
180.00
150.00
159.00
188.00
126.00
138.00
168.00
110.00
160.00
34.00
80.00
40.00
75.00
136.00
106.00
122.00
115.00
174.00
150.00
120.00
139.00
20.00
82.00
70.00
58.00
25.00
58.00
70.00
45.00
96.00
82.00
104.00
60.00

ours

Value
134.75
134.75
134.75
134.75
155.75
155.75
155.75
155.75
144.00
144.00
144.00
144.00
57.25
57.25
57.25
57.25
119.75
119.75
119.75
119.75
145.75
145.75
145.75
145.75
57.50
57.50
57.50
57.50
49.50
49.50
49.50
49.50
85.50
85.50
85.50
85.50

Mean F Prob
Square Value >F
7427.03 11.00 <0.0001
5341.86 7.91 0.0020

19559.36 28.97 <0.0001
2403.44 3.56 0.0186
675.21
675.21
R-Squared 0.7652
Adj R-Squared 0.6956
Pred R-Squared 0.5826
Adeq Precision 8.178
Student
Residual Leverage Residual
—4.75 0.250 -0.211
—60.75 0.250 —2.700
20.25 0.250 0.900
45.25 0.250 2.011
-5.75 0.250 —0.256
3.25 0.250 0.144
32.25 0.250 1.433
—29.75 0.250 -1.322
26.00 0.250 —-0.267
24.00 0.250 1.066
—34.00 0.250 -1.511
16.00 0.250 0.711
—23.25 0.250 —1.033
22.75 0.250 1.011
-17.25 0.250 —0.767
17.75 0.250 0.789
16.25 0.250 0.722
-13.75 0.250 -0.611
2.25 0.250 0.100
-4.75 0.250 -0.211
28.25 0.250 1.255
4.25 0.250 0.189
—25.75 0.250 —1.144
—6.75 0.250 —0.300
—37.50 0.250 —1.666
24.50 0.250 1.089
12.50 0.250 0.555
0.50 0.250 0.022
—24.50 0.250 —1.089
8.50 0.250 0.378
20.50 0.250 0.911
—4.50 0.250 —0.200
10.50 0.250 0.467
-3.50 0.250 —0.156
18.50 0.250 0.822
—25.50 0.250 —1.133
(a)

significant

Cook’s
Distance

0.002
0.270
0.030
0.150
0.002
0.001
0.076
0.065
0.003
0.042
0.085
0.019
0.040
0.038
0.022
0.023
0.019
0.014
0.000
0.002
0.058
0.001
0.048
0.003
0.103
0.044
0.011
0.000
0.044
0.005
0.031
0.001
0.008
0.001
0.025
0.048

Computer output for Example 5.1. (a) Design-Expert output; (b) JMP output

Outlier
t
—0.207
—3.100

0.897
2.140
—0.251
0.142
1.463
—1.341
—0.262
1.069
—1.550
0.704
—1.035
1.011
—0.761
0.783
0.716
—0.604
0.098
—-0.207
1.269
0.185
—-1.151
—0.295
—1.726
1.093
0.548
0.022
—1.093
0.372
0.908
—0.196
0.460
—0.153
0.817
—-1.139
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Whole Model

Actual by Predicted Plot

200

Life actual
)
S
|

0 50 100
Life predicted P<.0001
RSq = 0.77 RMSE = 25.985

150

200

Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance

0.76521
0.695642
25.98486
105.5278

36

Source DF  Sum of Squares
Model 8 59416.222
Error 27 18230.750
C.Total 35 77646.972
Effect Tests
Source Nparm DF
Material Type 2 2
Temperature 2 2
Material Type Temperature 4 4
Residual by Predicted Plot

60

40| "
= 20— ORI
> ¢ . LN}
= —
o . *
s 207 A o
= 40 )

-60 | .

-80 —_— :

0 50 100 150 200
Life predicted
(b)

m FIGURE 5.10 (Continued)

Mean Square
7427.03
675.21

Sum of Squares
10683.722
39118.722

9613.778

5.3 The Two-Factor Factorial Design

F Ratio
10.9995

Prob > F
<.001

F Ratio
79114
28.9677
3.5595

Prob > F
0.0020
<.0001
0.0186

197
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m TABLE 5.6
Residuals for Example 5.1

Temperature (°F)

Material

Type 15 70 125
1 —4.75 20.25 —23.25 —17.25 —37.50 12.50
—60.75 45.25 22.75 17.75 24.50 0.50
2 —5.75 32.25 16.25 2.25 —24.50 20.50
3.25 —29.75 —13.75 —4.75 8.50 —4.50
3 —6.00 —34.00 28.25 —25.75 10.50 18.50
24.00 16.00 4.25 —6.75 —-3.50 —25.50

533 Model Adequacy Checking

Before the conclusions from the ANOVA are adopted, the adequacy of the underlying model
should be checked. As before, the primary diagnostic tool is residual analysis. The residuals
for the two-factor factorial model with interaction are

Ciik = Yijk — )A)zj/k (5.11)

and because the fitted value y,; = y; (the average of the observations in the ijth cell),
Equation 5.11 becomes

€k = Yix ~ Vi (5.12)

The residuals from the battery life data in Example 5.1 are shown in the Design-Expert
computer output (Figure 5.10a) and in Table 5.6. The normal probability plot of these resid-
uals (Figure 5.11) does not reveal anything particularly troublesome, although the largest neg-
ative residual (—60.75 at 15°F for material type 1) does stand out somewhat from the others.
The standardized value of this residual is—60.75/V675.21 = —2.34, and this is the only
residual whose absolute value is larger than 2.

Figure 5.12 plots the residuals versus the fitted values y;;. This plot was also shown in
the JMP computer output in Figure 5.105. There is some mild tendency for the variance of the
residuals to increase as the battery life increases. Figures 5.13 and 5.14 plot the residuals ver-
sus material types and temperature, respectively. Both plots indicate mild inequality of vari-
ance, with the treatment combination of 15°F and material type 1 possibly having larger vari-
ance than the others.

From Table 5.6 we see that the 15°F-material type 1 cell contains both extreme residu-
als (—60.75 and 45.25). These two residuals are primarily responsible for the inequality of
variance detected in Figures 5.12, 5.13, and 5.14. Reexamination of the data does not reveal
any obvious problem, such as an error in recording, so we accept these responses as legiti-
mate. It is possible that this particular treatment combination produces slightly more erratic
battery life than the others. The problem, however, is not severe enough to have a dramatic
impact on the analysis and conclusions.

534 Estimating the Model Parameters
The parameters in the effects model for two-factor factorial

Vg = T T B+ (B + o€ (5.13)
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s FIGURE 5.11 m FIGURE 5.12
Normal probability plot of residuals for Example 5.1 Plot of residuals versus y;; for Example 5.1

may be estimated by least squares. Because the model has 1 + a + b + ab parameters to be
estimated, there are 1 + a + b + ab normal equations. Using the method of Section 3.9, we
find that it is not difficult to show that the normal equations are

a b . a b __
wiabnp + bn E T, +an D B+ n 2 E (B = .. (5.14a)
=1 j=1 =1 j=1
b, b
T:bnfu + bnt; + n Y, B; + n Y, (TB); = y. i=1,2,...,a (514b)
=1 j=1
60 60
o [}
40 |~ 40 |-
o o o
O
2 B =] H 20 = E B
g = B = H
8 o 0 - g g
() = [} Q [0} ol [}
5 = = = % B 8 B
Y D V) H
20|~ g 20
5] B m 5| B B
5| 8 |
-40 - O 40 |
60 o -60 — ]
-80 | | | _80 | | |
1 2 3 15 70 125
Material type Temperature (°F)
m FIGURE 5.13 m FIGURE 5.14

Plot of residuals versus material type for Example 5.1 Plot of residuals versus temperature for Example 5.1
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Bianf +n Y %+ anB+nY @By =y, j=12....b (5140
i=1 ’ i=1 )
N A A ~ i=1,2,...,a
(TB);:npu + nt; + nB; + n(7B); =y i=1.2 b (5.14d)

For convenience, we have shown the parameter corresponding to each normal equation on the
left in Equations 5.14.

The effects model (Equation 5.13) is an overparameterized model. Notice that the a
equations in Equation 5.14b sum to Equation 5.14a and that the b equations of Equation 5.14c
sum to Equation 5.14a. Also summing Equation 5.14d over j for a particular i will give
Equation 5.14b, and summing Equation 5.14d over i for a particular j will give Equation
5.14c. Therefore, there are a + b + 1 linear dependencies in this system of equations, and
no unique solution will exist. In order to obtain a solution, we impose the constraints

—0 (5.15a)

e

Il
—

>

M=
I
=]

(5.15b)
j=1
Sy =0  j=1,2...,b (5.15¢)
=1

and

b —~
DBy =0  i=1,2...,a (5.15d)
j=1

Equations 5.15a and 5.15b constitute two constraints, whereas Equations 5.15¢ and 5.15d
form a + b — 1 independent constraints. Therefore, we have a + b + 1 total constraints, the
number needed.

Applying these constraints, the normal equations (Equations 5.14) simplify consider-
ably, and we obtain the solution

po= .
T, = Vi~ . i=1,2,...,a
szy.j._y... j=12...,b
~ _ _ _ _ i=1,2,...,a
(TB)ij = Vi T Vi T Y. T {]z 1.2.....b (5.16)

Notice the considerable intuitive appeal of this solution to the normal equations. Row treatment

effects are estimated by the row average minus the grand average; column treatments are esti-

mated by the column average minus the grand average; and the ijth interaction is estimated by

the 7jth cell average minus the grand average, the ith row effect, and the jth column effect.
Using Equation 5.16, we may find the fitted value y,; as

Vi = o T B; + B);
=Y.t O —y)+ 0 =)
+ Oy =y~ vty
= Vi
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That is, the kth observation in the ijth cell is estimated by the average of the n observations in
that cell. This result was used in Equation 5.12 to obtain the residuals for the two-factor fac-
torial model.

Because constraints (Equations 5.15) have been used to solve the normal equations, the
model parameters are not uniquely estimated. However, certain important functions of the
model parameters are estimable, that is, uniquely estimated regardless of the constraint cho-
sen. An example is 7, — 7, + (78),, — (78),., which might be thought of as the “true” differ-
ence between the ith and the uth levels of factor A. Notice that the true difference between the
levels of any main effect includes an “average” interaction effect. It is this result that disturbs
the tests on main effects in the presence of interaction, as noted earlier. In general, any func-
tion of the model parameters that is a linear combination of the left-hand side of the normal
equations is estimable. This property was also noted in Chapter 3 when we were discussing
the single-factor model. For more information, see the supplemental text material for this
chapter.

5.3.5 Choice of Sample Size

The operating characteristic curves in Appendix Chart V can be used to assist the experi-
menter in determining an appropriate sample size (number of replicates, n) for a two-factor
factorial design. The appropriate value of the parameter ®? and the numerator and denomina-
tor degrees of freedom are shown in Table 5.7.

A very effective way to use these curves is to find the smallest value of ®? correspon-
ding to a specified difference between any two treatment means. For example, if the differ-
ence in any two row means is D, then the minimum value of P?is

2_l’lbD2
7 = 2

(5.17)
2a0

whereas if the difference in any two column means is D, then the minimum value of P?is

2
P? = ”"D2 (5.18)
2bo
m TABLE 5.7
Operating Characteristic Curve Parameters for Chart V of the
Appendix for the Two-Factor Factorial, Fixed Effects Model
Numerator Denominator
Factor P2 Degrees of Freedom Degrees of Freedom
bn E 72
A =l a—1 ab(n — 1
ac? =
b
an 21 B;
=
B R b—1 ab(n — 1
bo? =D
b
n2 3 (1B
AB S (a—1)b—1) ab(n — 1)

Ala— Db —1)+1]
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Finally, the minimum value of ®* corresponding to a difference of D between any two inter-
action effects is

(I)2 — I’ZD2
20%(a— DB — 1) + 1]

To illustrate the use of these equations, consider the battery life data in Example 5.1.
Suppose that before running the experiment we decide that the null hypothesis should be
rejected with a high probability if the difference in mean battery life between any two tem-
peratures is as great as 40 hours. Thus a difference of D = 40 has engineering significance,
and if we assume that the standard deviation of battery life is approximately 25, then Equation
5.18 gives

(5.19)

P> naD?
2bo?
n(3)(40y’
2(3)25)°
1.28n

as the minimum value of ®* Assuming that & = 0.05, we can now use Appendix Table V to
construct the following display:

v; = Numerator v, = Error Degrees
n P’ L] Degrees of Freedom of Freedom B
2 2.56 1.60 2 9 0.45
3 3.84 1.96 2 18 0.18
4 5.12 2.26 2 27 0.06

Note that n = 4 replicates give a (3 risk of about 0.06, or approximately a 94 percent
chance of rejecting the null hypothesis if the difference in mean battery life at any two tem-
perature levels is as large as 40 hours. Thus, we conclude that four replicates are enough to
provide the desired sensitivity as long as our estimate of the standard deviation of battery life
is not seriously in error. If in doubt, the experimenter could repeat the above procedure with
other values of o to determine the effect of misestimating this parameter on the sensitivity of
the design.

5.3.6 The Assumption of No Interaction in a
Two-Factor Model

Occasionally, an experimenter feels that a two-factor model without interaction is appro-
priate, say

U
,..., b (5.20)

R 7]

>

>

yz'jk:M"‘Ti"'Bj"'Efjk

T~ o~
—
[N RN\ )

>

We should be very careful in dispensing with the interaction terms, however, because the
presence of significant interaction can have a dramatic impact on the interpretation of the
data.

The statistical analysis of a two-factor factorial model without interaction is straightfor-
ward. Table 5.8 presents the analysis of the battery life data from Example 5.1, assuming that
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s TABLE 5.8
Analysis of Variance for Battery Life Data Assuming No Interaction

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F,
Material types 10,683.72 2 5,341.86 5.95
Temperature 39,118.72 2 19,559.36 21.78
Error 27,844.52 31 898.21

Total 77,646.96 35

the no-interaction model (Equation 5.20) applies. As noted previously, both main effects are
significant. However, as soon as a residual analysis is performed for these data, it becomes
clear that the no-interaction model is inadequate. For the two-factor model without interac-
tion, the fitted values are )A)l:/-k =y. ty, —y.Aplotofy; — )Az,jk (the cell averages minus the
fitted value for that cell) versus the fitted value y;; is shown in Figure 5.15. Now the quanti-
ties y; — j}uk may be viewed as the differences between the observed cell means and the esti-
mated cell means assuming no interaction. Any pattern in these quantities is suggestive of the
presence of interaction. Figure 5.15 shows a distinct pattern as the quantities y;, — y;; move
from positive to negative to positive to negative again. This structure is the result of interac-
tion between material types and temperature.

5.3.7 One Observation per Cell

Occasionally, one encounters a two-factor experiment with only a single replicate, that is,

only one observation per cell. If there are two factors and only one observation per cell, the
effects model is

i=1,2,...,a

Vi = R T T B+ (@B t gy {j=1,2,...,b (5.21)

The analysis of variance for this situation is shown in Table 5.9, assuming that both factors

are fixed.

From examining the expected mean squares, we see that the error variance o> is not

estimable; that is, the two-factor interaction effect (B); and the experimental error cannot be

separated in any obvious manner. Consequently, there are no tests on main effects unless the

30— m FIGURE 5.15
Plot of y; — y;; versus y;,
30— ° battery life data

50 100 150 200
-0 Yijh
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s TABLE 5.9
Analysis of Variance for a Two-Factor Model, One Observation per Cell

Source of Sum of Degrees of Mean Expected
Variation Squares Freedom Square Mean Square
2 2 2
SRS b E Ti
Rows (A o -1 M. o’ +
ows (A) Z b ab a Sa a1
2 2
by y2 a E Bj
Columns (B) /; e b—1 MS, o’ —
Residual or AB Subtracti Db — 1 MS, 2 + 22, (B
esidual or ubtraction (a I¢ ) Residual o @-Db-1
a b 2
Y.
Total Z— -1
ota 2 Vi ab ab

i=1j

interaction effect is zero. If there is no interaction present, then (78); = 0 for all i and j, and
a plausible model is

Vi=u Tt Tt B te {;:i;z (5.22)
If the model (Equation 5.22) is appropriate, then the residual mean square in Table 5.9 is an
unbiased estimator of 0%, and the main effects may be tested by comparing MS, and MSj, to
MSResidual'
A test developed by Tukey (1949a) is helpful in determining whether interaction is
present. The procedure assumes that the interaction term is of a particularly simple form,
namely,

(TB)ij = y7,8 j

where vy is an unknown constant. By defining the interaction term this way, we may use a
regression approach to test the significance of the interaction term. The test partitions the
residual sum of squares into a single-degree-of-freedom component due to nonadditivity
(interaction) and a component for error with (¢ — 1)(b — 1) — 1 degrees of freedom.
Computationally, we have

a b y2 2

21 21 YiYiVj — )’..<SSA + 885 + ;};
=1 j=

SSy = abSS,SS, (5.23)

with one degree of freedom, and
SSError = SSResidual - SSN (5.24)

with (@ — 1)(b — 1) — 1 degrees of freedom. To test for the presence of interaction, we
compute

SSy

R TPy Y

(5.25)

If Fo > F, | (4—1»-1)-1> the hypothesis of no interaction must be rejected.



205

5.3 The Two-Factor Factorial Design

exavpLE 5.2 [

The impurity present in a chemical product is affected by
two factors—pressure and temperature. The data from a
single replicate of a factorial experiment are shown in
Table 5.10. The sums of squares are

2

_ls o Y
SSA - bz:Elyl ab
= —[23° + 13 + 8] — —=—= = 23.33
5! =5
1%, Y
SSB - a];]y/ ab
_ 1 2 2 2 2 2 442 _
= —[9°4+6-"+13°+6-+10°] — ————=11.60
3! TS
a b y2
= 2 =
SST [:21/;)}1] ab
= 166 — 129.07 = 36.93
and

SSresiawa = SS9 — S84 — SSi

36.93 —23.33 — 11.60 = 2.00

m TABLE 5.10
Impurity Data for Example 5.2

The sum of squares for nonadditivity is computed from
Equation 5.23 as follows:

a b

21 20 ViV = (5)(23)(9) + 4)(23)(6) + -~

i=1 j=

+ (2)(8)(10) = 7236
a b y2 2
E E YiiYi Vi — )7..<SSA + 885 + b)
i=1j=1 a
SSy =

abSS,SS,

_[7236 — (44)(23.33 + 11.60 + 129.07)]?
B (3)(5)(23.33)(11.60)

_ [20.007?

and the error sum of squares is, from Equation 5.24,
SSError = SSResidual - SSN
= 2.00 — 0.0985 = 1.9015

The complete ANOVA is summarized in Table 5.11. The
test statistic for nonadditivity is F, = 0.0985/0.2716 =
0.36, so we conclude that there is no evidence of
interaction in these data. The main effects of temper-
ature and pressure are significant.

Temperature Pressure
(°F) 25 30 35 40 45 Yi.

100 5 4 6 3 23

125 3 1 4 2 13

150 1 1 3 1 8

v, 9 6 13 6 10 44 =y
m TABLE 5.11
Analysis of Variance for Example 5.2
Source of Sum of Degrees of Mean
Variation Squares Freedom Square F, P-Value
Temperature 23.33 2 11.67 42.97 0.0001
Pressure 11.60 4 2.90 10.68 0.0042
Nonadditivity 0.0985 1 0.0985 0.36 0.5674
Error 1.9015 7 0.2716
Total 36.93 14
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In concluding this section, we note that the two-factor factorial model with one obser-
vation per cell (Equation 5.22) looks exactly like the randomized complete block model
(Equation 4.1). In fact, the Tukey single-degree-of-freedo