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Preface

Audience

This is an introductory textbook dealing with the design and analysis of experiments. It is based
on college-level courses in design of experiments that I have taught over nearly 40 years at
Arizona State University, the University of Washington, and the Georgia Institute of Technology.
It also reflects the methods that I have found useful in my own professional practice as an engi-
neering and statistical consultant in many areas of science and engineering, including the research
and development activities required for successful technology commercialization and product
realization.

The book is intended for students who have completed a first course in statistical meth-
ods. This background course should include at least some techniques of descriptive statistics,
the standard sampling distributions, and an introduction to basic concepts of confidence
intervals and hypothesis testing for means and variances. Chapters 10, 11, and 12 require
some familiarity with matrix algebra.

Because the prerequisites are relatively modest, this book can be used in a second course
on statistics focusing on statistical design of experiments for undergraduate students in engi-
neering, the physical and chemical sciences, statistics, mathematics, and other fields of science.
For many years I have taught a course from the book at the first-year graduate level in engi-
neering. Students in this course come from all of the fields of engineering, materials science,
physics, chemistry, mathematics, operations research life sciences, and statistics. I have also
used this book as the basis of an industrial short course on design of experiments for practic-
ing technical professionals with a wide variety of backgrounds. There are numerous examples
illustrating all of the design and analysis techniques. These examples are based on real-world
applications of experimental design and are drawn from many different fields of engineering and
the sciences. This adds a strong applications flavor to an academic course for engineers
and scientists and makes the book useful as a reference tool for experimenters in a variety
of disciplines.
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About the Book

The eighth edition is a major revision of the book. I have tried to maintain the balance
between design and analysis topics of previous editions; however, there are many new topics
and examples, and I have reorganized much of the material. There is much more emphasis on
the computer in this edition.

Design-Expert, JMP, and Minitab Software

During the last few years a number of excellent software products to assist experimenters in
both the design and analysis phases of this subject have appeared. I have included output from
three of these products, Design-Expert, JMP, and Minitab at many points in the text. Minitab
and JMP are widely available general-purpose statistical software packages that have good
data analysis capabilities and that handles the analysis of experiments with both fixed and ran-
dom factors (including the mixed model). Design-Expert is a package focused exclusively on
experimental design. All three of these packages have many capabilities for construction and
evaluation of designs and extensive analysis features. Student versions of Design-Expert and
JMP are available as a packaging option with this book, and their use is highly recommend-
ed. I urge all instructors who use this book to incorporate computer software into your
course. (In my course, I bring a laptop computer and use a computer projector in every
lecture, and every design or analysis topic discussed in class is illustrated with the computer.)
To request this book with the student version of JMP or Design-Expert included, contact
your local Wiley representative. You can find your local Wiley representative by going to
www.wiley.com/college and clicking on the tab for “Who’s My Rep?”

Empirical Model

I have continued to focus on the connection between the experiment and the model that
the experimenter can develop from the results of the experiment. Engineers (and physical,
chemical and life scientists to a large extent) learn about physical mechanisms and their
underlying mechanistic models early in their academic training, and throughout much of
their professional careers they are involved with manipulation of these models.
Statistically designed experiments offer the engineer a valid basis for developing an
empirical model of the system being investigated. This empirical model can then be
manipulated (perhaps through a response surface or contour plot, or perhaps mathemati-
cally) just as any other engineering model. I have discovered through many years of teaching
that this viewpoint is very effective in creating enthusiasm in the engineering community
for statistically designed experiments. Therefore, the notion of an underlying empirical
model for the experiment and response surfaces appears early in the book and receives
much more emphasis.

Factorial Designs

I have expanded the material on factorial and fractional factorial designs (Chapters 5 – 9) in
an effort to make the material flow more effectively from both the reader’s and the instruc-
tor’s viewpoint and to place more emphasis on the empirical model. There is new material
on a number of important topics, including follow-up experimentation following a fractional
factorial, nonregular and nonorthogonal designs, and small, efficient resolution IV and V
designs. Nonregular fractions as alternatives to traditional minimum aberration fractions in
16 runs and analysis methods for these design are discussed and illustrated.
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Additional Important Changes

I have added a lot of material on optimal designs and their application. The chapter on response
surfaces (Chapter 11) has several new topics and problems. I have expanded Chapter 12 on
robust parameter design and process robustness experiments. Chapters 13 and 14 discuss
experiments involving random effects and some applications of these concepts to nested and
split-plot designs. The residual maximum likelihood method is now widely available in soft-
ware and I have emphasized this technique throughout the book. Because there is expanding
industrial interest in nested and split-plot designs, Chapters 13 and 14 have several new topics.
Chapter 15 is an overview of important design and analysis topics: nonnormality of the
response, the Box–Cox method for selecting the form of a transformation, and other alterna-
tives; unbalanced factorial experiments; the analysis of covariance, including covariates in a
factorial design, and repeated measures. I have also added new examples and problems from
various fields, including biochemistry and biotechnology.

Experimental Design

Throughout the book I have stressed the importance of experimental design as a tool for engi-
neers and scientists to use for product design and development as well as process develop-
ment and improvement. The use of experimental design in developing products that are robust
to environmental factors and other sources of variability is illustrated. I believe that the use of
experimental design early in the product cycle can substantially reduce development lead time
and cost, leading to processes and products that perform better in the field and have higher
reliability than those developed using other approaches.

The book contains more material than can be covered comfortably in one course, and I
hope that instructors will be able to either vary the content of each course offering or discuss
some topics in greater depth, depending on class interest. There are problem sets at the end
of each chapter. These problems vary in scope from computational exercises, designed to
reinforce the fundamentals, to extensions or elaboration of basic principles.

Course Suggestions

My own course focuses extensively on factorial and fractional factorial designs. Consequently,
I usually cover Chapter 1, Chapter 2 (very quickly), most of Chapter 3, Chapter 4 (excluding
the material on incomplete blocks and only mentioning Latin squares briefly), and I discuss
Chapters 5 through 8 on factorials and two-level factorial and fractional factorial designs in
detail. To conclude the course, I introduce response surface methodology (Chapter 11) and give
an overview of random effects models (Chapter 13) and nested and split-plot designs (Chapter
14). I always require the students to complete a term project that involves designing, conduct-
ing, and presenting the results of a statistically designed experiment. I require them to do this
in teams because this is the way that much industrial experimentation is conducted. They must
present the results of this project, both orally and in written form.

The Supplemental Text Material

For the eighth edition I have prepared supplemental text material for each chapter of the book.
Often, this supplemental material elaborates on topics that could not be discussed in greater detail
in the book. I have also presented some subjects that do not appear directly in the book, but an
introduction to them could prove useful to some students and professional practitioners. Some of
this material is at a higher mathematical level than the text. I realize that instructors use this book
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with a wide array of audiences, and some more advanced design courses could possibly benefit
from including several of the supplemental text material topics. This material is in electronic form
on the World Wide Website for this book, located at www.wiley.com/college/montgomery.

Website

Current supporting material for instructors and students is available at the website
www.wiley.com/college/montgomery. This site will be used to communicate information
about innovations and recommendations for effectively using this text. The supplemental text
material described above is available at the site, along with electronic versions of data sets
used for examples and homework problems, a course syllabus, and some representative stu-
dent term projects from the course at Arizona State University.

Student Companion Site

The student’s section of the textbook website contains the following:

1. The supplemental text material described above

2. Data sets from the book examples and homework problems, in electronic form

3. Sample Student Projects

Instructor Companion Site

The instructor’s section of the textbook website contains the following:

4. Solutions to the text problems

5. The supplemental text material described above

6. PowerPoint lecture slides

7. Figures from the text in electronic format, for easy inclusion in lecture slides

8. Data sets from the book examples and homework problems, in electronic form

9. Sample Syllabus

10. Sample Student Projects

The instructor’s section is for instructor use only, and is password-protected. Visit the
Instructor Companion Site portion of the website, located at www.wiley.com/college/
montgomery, to register for a password.

Student Solutions Manual

The purpose of the Student Solutions Manual is to provide the student with an in-depth under-
standing of how to apply the concepts presented in the textbook. Along with detailed instruc-
tions on how to solve the selected chapter exercises, insights from practical applications are
also shared.

Solutions have been provided for problems selected by the author of the text.
Occasionally a group of “continued exercises” is presented and provides the student with a
full solution for a specific data set. Problems that are included in the Student Solutions
Manual are indicated by an icon appearing in the text margin next to the problem statement.

This is an excellent study aid that many text users will find extremely helpful. The
Student Solutions Manual may be ordered in a set with the text, or purchased separately.
Contact your local Wiley representative to request the set for your bookstore, or purchase the
Student Solutions Manual from the Wiley website.
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1

C H A P T E R 1

I n t r o d u c t i o n

CHAPTER OUTLINE
1.1 STRATEGY OF EXPERIMENTATION

1.2 SOME TYPICAL APPLICATIONS 
OF EXPERIMENTAL DESIGN

1.3 BASIC PRINCIPLES

1.4 GUIDELINES FOR DESIGNING EXPERIMENTS

1.5 A BRIEF HISTORY OF STATISTICAL DESIGN

1.6 SUMMARY: USING STATISTICAL TECHNIQUES
IN EXPERIMENTATION

SUPPLEMENTAL MATERIAL FOR CHAPTER 1
S1.1 More about Planning Experiments
S1.2 Blank Guide Sheets to Assist in Pre-Experimental

Planning
S1.3 Montgomery’s Theorems on Designed Experiments

1.1 Strategy of Experimentation

Observing a system or process while it is in operation is an important part of the learning
process, and is an integral part of understanding and learning about how systems and
processes work. The great New York Yankees catcher Yogi Berra said that “. . . you can
observe a lot just by watching.” However, to understand what happens to a process when
you change certain input factors, you have to do more than just watch—you actually have
to change the factors. This means that to really understand cause-and-effect relationships in
a system you must deliberately change the input variables to the system and observe the
changes in the system output that these changes to the inputs produce. In other words, you
need to conduct experiments on the system. Observations on a system or process can lead
to theories or hypotheses about what makes the system work, but experiments of the type
described above are required to demonstrate that these theories are correct.

Investigators perform experiments in virtually all fields of inquiry, usually to discover
something about a particular process or system. Each experimental run is a test. More formally,
we can define an experiment as a test or series of runs in which purposeful changes are made
to the input variables of a process or system so that we may observe and identify the reasons
for changes that may be observed in the output response. We may want to determine which
input variables are responsible for the observed changes in the response, develop a model
relating the response to the important input variables and to use this model for process or system
improvement or other decision-making.

This book is about planning and conducting experiments and about analyzing the
resulting data so that valid and objective conclusions are obtained. Our focus is on experi-
ments in engineering and science. Experimentation plays an important role in technology

The supplemental material is on the textbook website www.wiley.com/college/montgomery.



commercialization and product realization activities, which consist of new product design
and formulation, manufacturing process development, and process improvement. The objec-
tive in many cases may be to develop a robust process, that is, a process affected minimally
by external sources of variability. There are also many applications of designed experiments
in a nonmanufacturing or non-product-development setting, such as marketing, service oper-
ations, and general business operations.

As an example of an experiment, suppose that a metallurgical engineer is interested in
studying the effect of two different hardening processes, oil quenching and saltwater
quenching, on an aluminum alloy. Here the objective of the experimenter (the engineer) is
to determine which quenching solution produces the maximum hardness for this particular
alloy. The engineer decides to subject a number of alloy specimens or test coupons to each
quenching medium and measure the hardness of the specimens after quenching. The aver-
age hardness of the specimens treated in each quenching solution will be used to determine
which solution is best.

As we consider this simple experiment, a number of important questions come to mind:

1. Are these two solutions the only quenching media of potential interest?

2. Are there any other factors that might affect hardness that should be investigated or
controlled in this experiment (such as, the temperature of the quenching media)?

3. How many coupons of alloy should be tested in each quenching solution?

4. How should the test coupons be assigned to the quenching solutions, and in what
order should the data be collected?

5. What method of data analysis should be used?

6. What difference in average observed hardness between the two quenching media
will be considered important?

All of these questions, and perhaps many others, will have to be answered satisfactorily
before the experiment is performed.

Experimentation is a vital part of the scientific (or engineering) method. Now there are
certainly situations where the scientific phenomena are so well understood that useful results
including mathematical models can be developed directly by applying these well-understood
principles. The models of such phenomena that follow directly from the physical mechanism
are usually called mechanistic models. A simple example is the familiar equation for current
flow in an electrical circuit, Ohm’s law, E � IR. However, most problems in science and engi-
neering require observation of the system at work and experimentation to elucidate infor-
mation about why and how it works. Well-designed experiments can often lead to a model of
system performance; such experimentally determined models are called empirical models.
Throughout this book, we will present techniques for turning the results of a designed exper-
iment into an empirical model of the system under study. These empirical models can be
manipulated by a scientist or an engineer just as a mechanistic model can.

A well-designed experiment is important because the results and conclusions that can
be drawn from the experiment depend to a large extent on the manner in which the data were
collected. To illustrate this point, suppose that the metallurgical engineer in the above exper-
iment used specimens from one heat in the oil quench and specimens from a second heat in
the saltwater quench. Now, when the mean hardness is compared, the engineer is unable to
say how much of the observed difference is the result of the quenching media and how much
is the result of inherent differences between the heats.1 Thus, the method of data collection
has adversely affected the conclusions that can be drawn from the experiment.

2 Chapter 1 ■ Introduction

1 A specialist in experimental design would say that the effect of quenching media and heat were confounded; that is, the effects of
these two factors cannot be separated.
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In general, experiments are used to study the performance of processes and systems.
The process or system can be represented by the model shown in Figure 1.1. We can usually
visualize the process as a combination of operations, machines, methods, people, and other
resources that transforms some input (often a material) into an output that has one or more
observable response variables. Some of the process variables and material properties x1,
x2, . . . , xp are controllable, whereas other variables z1, z2, . . . , zq are uncontrollable
(although they may be controllable for purposes of a test). The objectives of the experiment
may include the following:

1. Determining which variables are most influential on the response y

2. Determining where to set the influential x’s so that y is almost always near the
desired nominal value

3. Determining where to set the influential x’s so that variability in y is small

4. Determining where to set the influential x’s so that the effects of the uncontrollable
variables z1, z2, . . . , zq are minimized.

As you can see from the foregoing discussion, experiments often involve several factors.
Usually, an objective of the experimenter is to determine the influence that these factors have
on the output response of the system. The general approach to planning and conducting the
experiment is called the strategy of experimentation. An experimenter can use several strate-
gies. We will illustrate some of these with a very simple example.

I really like to play golf. Unfortunately, I do not enjoy practicing, so I am always look-
ing for a simpler solution to lowering my score. Some of the factors that I think may be impor-
tant, or that may influence my golf score, are as follows:

1. The type of driver used (oversized or regular sized)

2. The type of ball used (balata or three piece)

3. Walking and carrying the golf clubs or riding in a golf cart

4. Drinking water or drinking “something else” while playing

5. Playing in the morning or playing in the afternoon

6. Playing when it is cool or playing when it is hot

7. The type of golf shoe spike worn (metal or soft)

8. Playing on a windy day or playing on a calm day.

Obviously, many other factors could be considered, but let’s assume that these are the ones of pri-
mary interest. Furthermore, based on long experience with the game, I decide that factors 5
through 8 can be ignored; that is, these factors are not important because their effects are so small

Inputs

Controllable factors

Uncontrollable factors

Output
Process

y

xpx2x1

zqz2z1

■ F I G U R E  1 . 1 General model of a 
process or system



that they have no practical value. Engineers, scientists, and business analysts, often must make
these types of decisions about some of the factors they are considering in real experiments.

Now, let’s consider how factors 1 through 4 could be experimentally tested to determine
their effect on my golf score. Suppose that a maximum of eight rounds of golf can be played
over the course of the experiment. One approach would be to select an arbitrary combination
of these factors, test them, and see what happens. For example, suppose the oversized driver,
balata ball, golf cart, and water combination is selected, and the resulting score is 87. During
the round, however, I noticed several wayward shots with the big driver (long is not always
good in golf), and, as a result, I decide to play another round with the regular-sized driver,
holding the other factors at the same levels used previously. This approach could be contin-
ued almost indefinitely, switching the levels of one or two (or perhaps several) factors for the
next test, based on the outcome of the current test. This strategy of experimentation, which
we call the best-guess approach, is frequently used in practice by engineers and scientists. It
often works reasonably well, too, because the experimenters often have a great deal of tech-
nical or theoretical knowledge of the system they are studying, as well as considerable prac-
tical experience. The best-guess approach has at least two disadvantages. First, suppose the
initial best-guess does not produce the desired results. Now the experimenter has to take
another guess at the correct combination of factor levels. This could continue for a long time,
without any guarantee of success. Second, suppose the initial best-guess produces an accept-
able result. Now the experimenter is tempted to stop testing, although there is no guarantee
that the best solution has been found.

Another strategy of experimentation that is used extensively in practice is the one-
factor-at-a-time (OFAT) approach. The OFAT method consists of selecting a starting point,
or baseline set of levels, for each factor, and then successively varying each factor over its
range with the other factors held constant at the baseline level. After all tests are performed,
a series of graphs are usually constructed showing how the response variable is affected by
varying each factor with all other factors held constant. Figure 1.2 shows a set of these graphs
for the golf experiment, using the oversized driver, balata ball, walking, and drinking water
levels of the four factors as the baseline. The interpretation of this graph is straightforward;
for example, because the slope of the mode of travel curve is negative, we would conclude
that riding improves the score. Using these one-factor-at-a-time graphs, we would select the
optimal combination to be the regular-sized driver, riding, and drinking water. The type of
golf ball seems unimportant.

The major disadvantage of the OFAT strategy is that it fails to consider any possible
interaction between the factors. An interaction is the failure of one factor to produce the same
effect on the response at different levels of another factor. Figure 1.3 shows an interaction
between the type of driver and the beverage factors for the golf experiment. Notice that if I use
the regular-sized driver, the type of beverage consumed has virtually no effect on the score, but
if I use the oversized driver, much better results are obtained by drinking water instead of beer.
Interactions between factors are very common, and if they occur, the one-factor-at-a-time strat-
egy will usually produce poor results. Many people do not recognize this, and, consequently,
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OFAT experiments are run frequently in practice. (Some individuals actually think that this
strategy is related to the scientific method or that it is a “sound” engineering principle.) One-
factor-at-a-time experiments are always less efficient than other methods based on a statistical
approach to design. We will discuss this in more detail in Chapter 5.

The correct approach to dealing with several factors is to conduct a factorial experi-
ment. This is an experimental strategy in which factors are varied together, instead of one
at a time. The factorial experimental design concept is extremely important, and several
chapters in this book are devoted to presenting basic factorial experiments and a number of
useful variations and special cases.

To illustrate how a factorial experiment is conducted, consider the golf experiment and
suppose that only two factors, type of driver and type of ball, are of interest. Figure 1.4 shows
a two-factor factorial experiment for studying the joint effects of these two factors on my golf
score. Notice that this factorial experiment has both factors at two levels and that all possible
combinations of the two factors across their levels are used in the design. Geometrically, the
four runs form the corners of a square. This particular type of factorial experiment is called a
22 factorial design (two factors, each at two levels). Because I can reasonably expect to play
eight rounds of golf to investigate these factors, a reasonable plan would be to play two
rounds of golf at each combination of factor levels shown in Figure 1.4. An experimental
designer would say that we have replicated the design twice. This experimental design would
enable the experimenter to investigate the individual effects of each factor (or the main
effects) and to determine whether the factors interact.

Figure 1.5a shows the results of performing the factorial experiment in Figure 1.4. The
scores from each round of golf played at the four test combinations are shown at the corners
of the square. Notice that there are four rounds of golf that provide information about using
the regular-sized driver and four rounds that provide information about using the oversized
driver. By finding the average difference in the scores on the right- and left-hand sides of the
square (as in Figure 1.5b), we have a measure of the effect of switching from the oversized
driver to the regular-sized driver, or

That is, on average, switching from the oversized to the regular-sized driver increases the
score by 3.25 strokes per round. Similarly, the average difference in the four scores at the top

� 3.25

 Driver effect �
92 � 94 � 93 � 91

4
�

88 � 91 � 88 � 90
4
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of the square and the four scores at the bottom measures the effect of the type of ball used
(see Figure 1.5c):

Finally, a measure of the interaction effect between the type of ball and the type of driver can
be obtained by subtracting the average scores on the left-to-right diagonal in the square from
the average scores on the right-to-left diagonal (see Figure 1.5d), resulting in

The results of this factorial experiment indicate that driver effect is larger than either the
ball effect or the interaction. Statistical testing could be used to determine whether any of
these effects differ from zero. In fact, it turns out that there is reasonably strong statistical evi-
dence that the driver effect differs from zero and the other two effects do not. Therefore, this
experiment indicates that I should always play with the oversized driver.

One very important feature of the factorial experiment is evident from this simple
example; namely, factorials make the most efficient use of the experimental data. Notice that
this experiment included eight observations, and all eight observations are used to calculate
the driver, ball, and interaction effects. No other strategy of experimentation makes such an
efficient use of the data. This is an important and useful feature of factorials.

We can extend the factorial experiment concept to three factors. Suppose that I wish
to study the effects of type of driver, type of ball, and the type of beverage consumed on my
golf score. Assuming that all three factors have two levels, a factorial design can be set up

� 0.25
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4
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as shown in Figure 1.6. Notice that there are eight test combinations of these three factors
across the two levels of each and that these eight trials can be represented geometrically as
the corners of a cube. This is an example of a 23 factorial design. Because I only want to
play eight rounds of golf, this experiment would require that one round be played at each
combination of factors represented by the eight corners of the cube in Figure 1.6. However,
if we compare this to the two-factor factorial in Figure 1.4, the 23 factorial design would pro-
vide the same information about the factor effects. For example, there are four tests in both
designs that provide information about the regular-sized driver and four tests that provide
information about the oversized driver, assuming that each run in the two-factor design in
Figure 1.4 is replicated twice.

Figure 1.7 illustrates how all four factors—driver, ball, beverage, and mode of travel
(walking or riding)—could be investigated in a 24 factorial design. As in any factorial design,
all possible combinations of the levels of the factors are used. Because all four factors are at
two levels, this experimental design can still be represented geometrically as a cube (actually
a hypercube).

Generally, if there are k factors, each at two levels, the factorial design would require 2k

runs. For example, the experiment in Figure 1.7 requires 16 runs. Clearly, as the number of
factors of interest increases, the number of runs required increases rapidly; for instance, a
10-factor experiment with all factors at two levels would require 1024 runs. This quickly
becomes infeasible from a time and resource viewpoint. In the golf experiment, I can only
play eight rounds of golf, so even the experiment in Figure 1.7 is too large.

Fortunately, if there are four to five or more factors, it is usually unnecessary to run all
possible combinations of factor levels. A fractional factorial experiment is a variation of the
basic factorial design in which only a subset of the runs is used. Figure 1.8 shows a fractional
factorial design for the four-factor version of the golf experiment. This design requires only
8 runs instead of the original 16 and would be called a one-half fraction. If I can play only
eight rounds of golf, this is an excellent design in which to study all four factors. It will provide
good information about the main effects of the four factors as well as some information about
how these factors interact.
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Fractional factorial designs are used extensively in industrial research and development,
and for process improvement. These designs will be discussed in Chapters 8 and 9.

1.2 Some Typical Applications of Experimental Design

Experimental design methods have found broad application in many disciplines. As noted
previously, we may view experimentation as part of the scientific process and as one of the
ways by which we learn about how systems or processes work. Generally, we learn through
a series of activities in which we make conjectures about a process, perform experiments to
generate data from the process, and then use the information from the experiment to establish
new conjectures, which lead to new experiments, and so on.

Experimental design is a critically important tool in the scientific and engineering
world for improving the product realization process. Critical components of these activities
are in new manufacturing process design and development, and process management. The
application of experimental design techniques early in process development can result in

1. Improved process yields

2. Reduced variability and closer conformance to nominal or target requirements

3. Reduced development time

4. Reduced overall costs.

Experimental design methods are also of fundamental importance in engineering
design activities, where new products are developed and existing ones improved. Some appli-
cations of experimental design in engineering design include

1. Evaluation and comparison of basic design configurations

2. Evaluation of material alternatives

3. Selection of design parameters so that the product will work well under a wide vari-
ety of field conditions, that is, so that the product is robust

4. Determination of key product design parameters that impact product performance

5. Formulation of new products.

The use of experimental design in product realization can result in products that are easier
to manufacture and that have enhanced field performance and reliability, lower product
cost, and shorter product design and development time. Designed experiments also have
extensive applications in marketing, market research, transactional and service operations,
and general business operations. We now present several examples that illustrate some of
these ideas.
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E X A M P L E  1 . 2 Optimizing a Process

In a characterization experiment, we are usually interested
in determining which process variables affect the response.
A logical next step is to optimize, that is, to determine the
region in the important factors that leads to the best possi-
ble response. For example, if the response is yield, we
would look for a region of maximum yield, whereas if the
response is variability in a critical product dimension, we
would seek a region of minimum variability.

Suppose that we are interested in improving the yield
of a chemical process. We know from the results of a char-
acterization experiment that the two most important
process variables that influence the yield are operating
temperature and reaction time. The process currently runs

at 145°F and 2.1 hours of reaction time, producing yields
of around 80 percent. Figure 1.9 shows a view of the
time–temperature region from above. In this graph, the
lines of constant yield are connected to form response
contours, and we have shown the contour lines for yields
of 60, 70, 80, 90, and 95 percent. These contours are pro-
jections on the time–temperature region of cross sections
of the yield surface corresponding to the aforementioned
percent yields. This surface is sometimes called a
response surface. The true response surface in Figure 1.9
is unknown to the process personnel, so experimental
methods will be required to optimize the yield with
respect to time and temperature.

E X A M P L E  1 . 1 Characterizing a Process

A flow solder machine is used in the manufacturing process
for printed circuit boards. The machine cleans the boards in
a flux, preheats the boards, and then moves them along a
conveyor through a wave of molten solder. This solder
process makes the electrical and mechanical connections
for the leaded components on the board.

The process currently operates around the 1 percent defec-
tive level. That is, about 1 percent of the solder joints on a
board are defective and require manual retouching. However,
because the average printed circuit board contains over 2000
solder joints, even a 1 percent defective level results in far too
many solder joints requiring rework. The process engineer
responsible for this area would like to use a designed experi-
ment to determine which machine parameters are influential
in the occurrence of solder defects and which adjustments
should be made to those variables to reduce solder defects.

The flow solder machine has several variables that can
be controlled. They include

1. Solder temperature
2. Preheat temperature
3. Conveyor speed
4. Flux type
5. Flux specific gravity
6. Solder wave depth
7. Conveyor angle.

In addition to these controllable factors, several other factors
cannot be easily controlled during routine manufacturing,
although they could be controlled for the purposes of a test.
They are

1. Thickness of the printed circuit board
2. Types of components used on the board

3. Layout of the components on the board
4. Operator
5. Production rate.

In this situation, engineers are interested in character-
izing the flow solder machine; that is, they want to deter-
mine which factors (both controllable and uncontrollable)
affect the occurrence of defects on the printed circuit
boards. To accomplish this, they can design an experiment
that will enable them to estimate the magnitude and direc-
tion of the factor effects; that is, how much does the
response variable (defects per unit) change when each fac-
tor is changed, and does changing the factors together
produce different results than are obtained from individual
factor adjustments—that is, do the factors interact?
Sometimes we call an experiment such as this a screening
experiment. Typically, screening or characterization exper-
iments involve using fractional factorial designs, such as in
the golf example in Figure 1.8.

The information from this screening or characterization
experiment will be used to identify the critical process fac-
tors and to determine the direction of adjustment for these
factors to reduce further the number of defects per unit. The
experiment may also provide information about which fac-
tors should be more carefully controlled during routine man-
ufacturing to prevent high defect levels and erratic process
performance. Thus, one result of the experiment could be the
application of techniques such as control charts to one or
more process variables (such as solder temperature), in
addition to control charts on process output. Over time, if the
process is improved enough, it may be possible to base most
of the process control plan on controlling process input vari-
ables instead of control charting the output.
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E X A M P L E  1 . 3 Designing a Product—I

A biomedical engineer is designing a new pump for the
intravenous delivery of a drug. The pump should deliver a
constant quantity or dose of the drug over a specified peri-
od of time. She must specify a number of variables or
design parameters. Among these are the diameter and
length of the cylinder, the fit between the cylinder and the
plunger, the plunger length, the diameter and wall thickness
of the tube connecting the pump and the needle inserted
into the patient’s vein, the material to use for fabricating

both the cylinder and the tube, and the nominal pressure at
which the system must operate. The impact of some of
these parameters on the design can be evaluated by build-
ing prototypes in which these factors can be varied over
appropriate ranges. Experiments can then be designed and
the prototypes tested to investigate which design parame-
ters are most influential on pump performance. Analysis of
this information will assist the engineer in arriving at a
design that provides reliable and consistent drug delivery.

E X A M P L E  1 . 4 Designing a Product—II

An engineer is designing an aircraft engine. The engine is a
commercial turbofan, intended to operate in the cruise con-
figuration at 40,000 ft and 0.8 Mach. The design parameters
include inlet flow, fan pressure ratio, overall pressure, sta-
tor outlet temperature, and many other factors. The output
response variables in this system are specific fuel consump-
tion and engine thrust. In designing this system, it would be
prohibitive to build prototypes or actual test articles early in

the design process, so the engineers use a computer model
of the system that allows them to focus on the key design
parameters of the engine and to vary them in an effort to
optimize the performance of the engine. Designed experi-
ments can be employed with the computer model of the
engine to determine the most important design parameters
and their optimal settings.
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To locate the optimum, it is necessary to perform an
experiment that varies both time and temperature together,
that is, a factorial experiment. The results of an initial facto-
rial experiment with both time and temperature run at two
levels is shown in Figure 1.9. The responses observed at the
four corners of the square indicate that we should move in
the general direction of increased temperature and decreased
reaction time to increase yield. A few additional runs would
be performed in this direction, and this additional experimen-
tation would lead us to the region of maximum yield.

Once we have found the region of the optimum, a second
experiment would typically be performed. The objective of
this second experiment is to develop an empirical model of
the process and to obtain a more precise estimate of the opti-
mum operating conditions for time and temperature. This
approach to process optimization is called response surface
methodology, and it is explored in detail in Chapter 11. The
second design illustrated in Figure 1.9 is a central compos-
ite design, one of the most important experimental designs
used in process optimization studies.
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E X A M P L E  1 . 5 Formulating a Product

A biochemist is formulating a diagnostic product to detect
the presence of a certain disease. The product is a mixture
of biological materials, chemical reagents, and other mate-
rials that when combined with human blood react to pro-
vide a diagnostic indication. The type of experiment used
here is a mixture experiment, because various ingredients
that are combined to form the diagnostic make up 100 per-
cent of the mixture composition (on a volume, weight, or

mole ratio basis), and the response is a function of the mix-
ture proportions that are present in the product. Mixture
experiments are a special type of response surface experi-
ment that we will study in Chapter 11. They are very useful
in designing biotechnology products, pharmaceuticals,
foods and beverages, paints and coatings, consumer prod-
ucts such as detergents, soaps, and other personal care
products, and a wide variety of other products.

E X A M P L E  1 . 6 Designing a Web Page

A lot of business today is conducted via the World Wide
Web. Consequently, the design of a business’ web page has
potentially important economic impact. Suppose that the
Web site has the following components: (1) a photoflash
image, (2) a main headline, (3) a subheadline, (4) a main
text copy, (5) a main image on the right side, (6) a back-
ground design, and (7) a footer. We are interested in finding
the factors that influence the click-through rate; that is, the
number of visitors who click through into the site divided by
the total number of visitors to the site. Proper selection of
the important factors can lead to an optimal web page
design. Suppose that there are four choices for the photo-
flash image, eight choices for the main headline, six choic-
es for the subheadline, five choices for the main text copy,

four choices for the main image, three choices for the back-
ground design, and seven choices for the footer. If we use a
factorial design, web pages for all possible combinations of
these factor levels must be constructed and tested. This is a
total of 640 web
pages. Obviously, it is not feasible to design and test this
many combinations of web pages, so a complete factorial
experiment cannot be considered. However, a fractional fac-
torial experiment that uses a small number of the possible
web page designs would likely be successful. This experi-
ment would require a fractional factorial where the factors
have different numbers of levels. We will discuss how to
construct these designs in Chapter 9.

4 � 8 � 6 � 5 � 4 � 3 � 7 � 80,

Designers frequently use computer models to assist them in carrying out their activities.
Examples include finite element models for many aspects of structural and mechanical
design, electrical circuit simulators for integrated circuit design, factory or enterprise-level
models for scheduling and capacity planning or supply chain management, and computer
models of complex chemical processes. Statistically designed experiments can be applied to
these models just as easily and successfully as they can to actual physical systems and will
result in reduced development lead time and better designs.

1.3 Basic Principles

If an experiment such as the ones described in Examples 1.1 through 1.6 is to be performed
most efficiently, a scientific approach to planning the experiment must be employed.
Statistical design of experiments refers to the process of planning the experiment so that
appropriate data will be collected and analyzed by statistical methods, resulting in valid
and objective conclusions. The statistical approach to experimental design is necessary if we
wish to draw meaningful conclusions from the data. When the problem involves data that are
subject to experimental errors, statistical methods are the only objective approach to analysis.
Thus, there are two aspects to any experimental problem: the design of the experiment and
the statistical analysis of the data. These two subjects are closely related because the method



of analysis depends directly on the design employed. Both topics will be addressed in this
book.

The three basic principles of experimental design are randomization, replication, and
blocking. Sometimes we add the factorial principle to these three. Randomization is the cor-
nerstone underlying the use of statistical methods in experimental design. By randomization
we mean that both the allocation of the experimental material and the order in which the indi-
vidual runs of the experiment are to be performed are randomly determined. Statistical meth-
ods require that the observations (or errors) be independently distributed random variables.
Randomization usually makes this assumption valid. By properly randomizing the experi-
ment, we also assist in “averaging out” the effects of extraneous factors that may be present.
For example, suppose that the specimens in the hardness experiment are of slightly different
thicknesses and that the effectiveness of the quenching medium may be affected by specimen
thickness. If all the specimens subjected to the oil quench are thicker than those subjected to
the saltwater quench, we may be introducing systematic bias into the experimental results.
This bias handicaps one of the quenching media and consequently invalidates our results.
Randomly assigning the specimens to the quenching media alleviates this problem.

Computer software programs are widely used to assist experimenters in selecting and
constructing experimental designs. These programs often present the runs in the experimental
design in random order. This random order is created by using a random number generator.
Even with such a computer program, it is still often necessary to assign units of experimental
material (such as the specimens in the hardness example mentioned above), operators, gauges
or measurement devices, and so forth for use in the experiment.

Sometimes experimenters encounter situations where randomization of some aspect of
the experiment is difficult. For example, in a chemical process, temperature may be a very
hard-to-change variable as we may want to change it less often than we change the levels of
other factors. In an experiment of this type, complete randomization would be difficult
because it would add time and cost. There are statistical design methods for dealing with
restrictions on randomization. Some of these approaches will be discussed in subsequent
chapters (see in particular Chapter 14).

By replication we mean an independent repeat run of each factor combination. In the
metallurgical experiment discussed in Section 1.1, replication would consist of treating a
specimen by oil quenching and treating a specimen by saltwater quenching. Thus, if five
specimens are treated in each quenching medium, we say that five replicates have been
obtained. Each of the 10 observations should be run in random order. Replication has two
important properties. First, it allows the experimenter to obtain an estimate of the experi-
mental error. This estimate of error becomes a basic unit of measurement for determining
whether observed differences in the data are really statistically different. Second, if the sam-
ple mean ( ) is used to estimate the true mean response for one of the factor levels in the
experiment, replication permits the experimenter to obtain a more precise estimate of this
parameter. For example; if � 2 is the variance of an individual observation and there are 
n replicates, the variance of the sample mean is

The practical implication of this is that if we had n � 1 replicates and observed 
y1 � 145 (oil quench) and y2 � 147 (saltwater quench), we would probably be unable to
make satisfactory inferences about the effect of the quenching medium—that is, the
observed difference could be the result of experimental error. The point is that without
replication we have no way of knowing why the two observations are different. On the
other hand, if n was reasonably large and the experimental error was sufficiently small and
if we observed sample averages  , we would be reasonably safe in concluding thaty1 < y2

�y
2
� �

� 2

n

y
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saltwater quenching produces a higher hardness in this particular aluminum alloy than
does oil quenching.

Often when the runs in an experiment are randomized, two (or more) consecutive runs
will have exactly the same levels for some of the factors. For example, suppose we have three
factors in an experiment: pressure, temperature, and time. When the experimental runs are
randomized, we find the following:

Run number Pressure (psi) Temperature (�C) Time (min)

i 30 100 30

i � 1 30 125 45

i � 2 40 125 45

Notice that between runs i and i � 1, the levels of pressure are identical and between runs 
i � 1 and i � 2, the levels of both temperature and time are identical. To obtain a true repli-
cate, the experimenter needs to “twist the pressure knob” to an intermediate setting between
runs i and i � 1, and reset pressure to 30 psi for run i � 1. Similarly, temperature and time
should be reset to intermediate levels between runs i � 1 and i � 2 before being set to their
design levels for run i � 2. Part of the experimental error is the variability associated with hit-
ting and holding factor levels.

There is an important distinction between replication and repeated measurements.
For example, suppose that a silicon wafer is etched in a single-wafer plasma etching process,
and a critical dimension (CD) on this wafer is measured three times. These measurements are
not replicates; they are a form of repeated measurements, and in this case the observed vari-
ability in the three repeated measurements is a direct reflection of the inherent variability in
the measurement system or gauge and possibly the variability in this CD at different locations
on the wafer where the measurement were taken. As another illustration, suppose that as part
of an experiment in semiconductor manufacturing four wafers are processed simultaneously
in an oxidation furnace at a particular gas flow rate and time and then a measurement is taken
on the oxide thickness of each wafer. Once again, the measurements on the four wafers are
not replicates but repeated measurements. In this case, they reflect differences among the
wafers and other sources of variability within that particular furnace run. Replication reflects
sources of variability both between runs and (potentially) within runs.

Blocking is a design technique used to improve the precision with which comparisons
among the factors of interest are made. Often blocking is used to reduce or eliminate the vari-
ability transmitted from nuisance factors—that is, factors that may influence the experimen-
tal response but in which we are not directly interested. For example, an experiment in a
chemical process may require two batches of raw material to make all the required runs.
However, there could be differences between the batches due to supplier-to-supplier variabil-
ity, and if we are not specifically interested in this effect, we would think of the batches of
raw material as a nuisance factor. Generally, a block is a set of relatively homogeneous exper-
imental conditions. In the chemical process example, each batch of raw material would form
a block, because the variability within a batch would be expected to be smaller than the vari-
ability between batches. Typically, as in this example, each level of the nuisance factor
becomes a block. Then the experimenter divides the observations from the statistical design
into groups that are run in each block. We study blocking in detail in several places in the text,
including Chapters 4, 5, 7, 8, 9, 11, and 13. A simple example illustrating the blocking prin-
cipal is given in Section 2.5.1.

The three basic principles of experimental design, randomization, replication, and
blocking are part of every experiment. We will illustrate and emphasize them repeatedly
throughout this book.
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1.4 Guidelines for Designing Experiments

To use the statistical approach in designing and analyzing an experiment, it is necessary for
everyone involved in the experiment to have a clear idea in advance of exactly what is to be stud-
ied, how the data are to be collected, and at least a qualitative understanding of how these data
are to be analyzed. An outline of the recommended procedure is shown in Table 1.1. We now
give a brief discussion of this outline and elaborate on some of the key points. For more details,
see Coleman and Montgomery (1993), and the references therein. The supplemental text
material for this chapter is also useful.

1. Recognition of and statement of the problem. This may seem to be a rather obvi-
ous point, but in practice often neither it is simple to realize that a problem requiring
experimentation exists, nor is it simple to develop a clear and generally accepted state-
ment of this problem. It is necessary to develop all ideas about the objectives of the
experiment. Usually, it is important to solicit input from all concerned parties: engi-
neering, quality assurance, manufacturing, marketing, management, customer, and
operating personnel (who usually have much insight and who are too often ignored).
For this reason, a team approach to designing experiments is recommended.

It is usually helpful to prepare a list of specific problems or questions that are
to be addressed by the experiment. A clear statement of the problem often contributes
substantially to better understanding of the phenomenon being studied and the final
solution of the problem. 

It is also important to keep the overall objectives of the experiment in mind.
There are several broad reasons for running experiments and each type of experiment
will generate its own list of specific questions that need to be addressed. Some (but
by no means all) of the reasons for running experiments include:

a. Factor screening or characterization. When a system or process is new,
it is usually important to learn which factors have the most influence on
the response(s) of interest. Often there are a lot of factors. This usually
indicates that the experimenters do not know much about the system so
screening is essential if we are to efficiently get the desired performance
from the system. Screening experiments are extremely important when
working with new systems or technologies so that valuable resources will
not be wasted using best guess and OFAT approaches.

b. Optimization. After the system has been characterized and we are rea-
sonably certain that the important factors have been identified, the next
objective is usually optimization, that is, find the settings or levels of
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the important factors that result in desirable values of the response. For
example, if a screening experiment on a chemical process results in the
identification of time and temperature as the two most important fac-
tors, the optimization experiment may have as its objective finding the
levels of time and temperature that maximize yield, or perhaps maxi-
mize yield while keeping some product property that is critical to the
customer within specifications. An optimization experiment is usually
a follow-up to a screening experiment. It would be very unusual for a
screening experiment to produce the optimal settings of the important
factors.

c. Confirmation. In a confirmation experiment, the experimenter is usually
trying to verify that the system operates or behaves in a manner that is
consistent with some theory or past experience.  For example, if theory
or experience indicates that a particular new material is equivalent to the
one currently in use and the new material is desirable (perhaps less
expensive, or easier to work with in some way), then a confirmation
experiment would be conducted to verify that substituting the new mate-
rial results in no change in product characteristics that impact its use.
Moving a new manufacturing process to full-scale production based on
results found during experimentation at a pilot plant or development site
is another situation that often results in confirmation experiments—that
is, are the same factors and settings that were determined during devel-
opment work appropriate for the full-scale process?

d. Discovery. In discovery experiments, the experimenters are usually trying
to determine what happens when we explore new materials, or new fac-
tors, or new ranges for factors. In the pharmaceutical industry, scientists
are constantly conducting discovery experiments to find new materials or
combinations of materials that will be effective in treating disease.

e. Robustness. These experiments often address questions such as under
what conditions do the response variables of interest seriously degrade?
Or what conditions would lead to unacceptable variability in the response
variables? A variation of this is determining how we can set the factors in
the system that we can control to minimize the variability transmitted into
the response from factors that we cannot control very well. We will dis-
cuss some experiments of this type in Chapter 12.

Obviously, the specific questions to be addressed in the experiment relate
directly to the overall objectives. An important aspect of problem formulation is the
recognition that one large comprehensive experiment is unlikely to answer the key
questions satisfactorily. A single comprehensive experiment requires the experi-
menters to know the answers to a lot of questions, and if they are wrong, the results
will be disappointing. This leads to wasting time, materials, and other resources and
may result in never answering the original research questions satisfactorily. A
sequential approach employing a series of smaller experiments, each with a specific
objective, such as factor screening, is a better strategy.

2. Selection of the response variable. In selecting the response variable, the exper-
imenter should be certain that this variable really provides useful information about
the process under study. Most often, the average or standard deviation (or both) of
the measured characteristic will be the response variable. Multiple responses are
not unusual. The experimenters must decide how each response will be measured,
and address issues such as how will any measurement system be calibrated and
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how this calibration will be maintained during the experiment. The gauge or meas-
urement system capability (or measurement error) is also an important factor. If
gauge capability is inadequate, only relatively large factor effects will be detected
by the experiment or perhaps additional replication will be required. In some situ-
ations where gauge capability is poor, the experimenter may decide to measure
each experimental unit several times and use the average of the repeated measure-
ments as the observed response. It is usually critically important to identify issues
related to defining the responses of interest and how they are to be measured before
conducting the experiment. Sometimes designed experiments are employed to
study and improve the performance of measurement systems. For an example, see
Chapter 13.

3. Choice of factors, levels, and range. (As noted in Table 1.1, steps 2 and 3 are often
done simultaneously or in the reverse order.) When considering the factors that may
influence the performance of a process or system, the experimenter usually discov-
ers that these factors can be classified as either potential design factors or nuisance
factors. The potential design factors are those factors that the experimenter may wish
to vary in the experiment. Often we find that there are a lot of potential design fac-
tors, and some further classification of them is helpful. Some useful classifications
are design factors, held-constant factors, and allowed-to-vary factors. The design
factors are the factors actually selected for study in the experiment. Held-constant
factors are variables that may exert some effect on the response, but for purposes of
the present experiment these factors are not of interest, so they will be held at a spe-
cific level. For example, in an etching experiment in the semiconductor industry,
there may be an effect that is unique to the specific plasma etch tool used in the
experiment. However, this factor would be very difficult to vary in an experiment, so
the experimenter may decide to perform all experimental runs on one particular (ide-
ally “typical”) etcher. Thus, this factor has been held constant. As an example of
allowed-to-vary factors, the experimental units or the “materials” to which the design
factors are applied are usually nonhomogeneous, yet we often ignore this unit-to-unit
variability and rely on randomization to balance out any material or experimental
unit effect. We often assume that the effects of held-constant factors and allowed-to-
vary factors are relatively small.

Nuisance factors, on the other hand, may have large effects that must be
accounted for, yet we may not be interested in them in the context of the present experi-
ment. Nuisance factors are often classified as controllable, uncontrollable, or noise
factors. A controllable nuisance factor is one whose levels may be set by the exper-
imenter. For example, the experimenter can select different batches of raw material
or different days of the week when conducting the experiment. The blocking princi-
ple, discussed in the previous section, is often useful in dealing with controllable nui-
sance factors. If a nuisance factor is uncontrollable in the experiment, but it can be
measured, an analysis procedure called the analysis of covariance can often be used
to compensate for its effect. For example, the relative humidity in the process envi-
ronment may affect process performance, and if the humidity cannot be controlled,
it probably can be measured and treated as a covariate. When a factor that varies nat-
urally and uncontrollably in the process can be controlled for purposes of an experi-
ment, we often call it a noise factor. In such situations, our objective is usually to find
the settings of the controllable design factors that minimize the variability transmit-
ted from the noise factors. This is sometimes called a process robustness study or a
robust design problem. Blocking, analysis of covariance, and process robustness
studies are discussed later in the text.
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Once the experimenter has selected the design factors, he or she must choose
the ranges over which these factors will be varied and the specific levels at which runs
will be made. Thought must also be given to how these factors are to be controlled at
the desired values and how they are to be measured. For instance, in the flow solder
experiment, the engineer has defined 12 variables that may affect the occurrence of
solder defects. The experimenter will also have to decide on a region of interest for
each variable (that is, the range over which each factor will be varied) and on how
many levels of each variable to use. Process knowledge is required to do this. This
process knowledge is usually a combination of practical experience and theoretical
understanding. It is important to investigate all factors that may be of importance and
to be not overly influenced by past experience, particularly when we are in the early
stages of experimentation or when the process is not very mature.

When the objective of the experiment is factor screening or process charac-
terization, it is usually best to keep the number of factor levels low. Generally, two
levels work very well in factor screening studies. Choosing the region of interest is
also important. In factor screening, the region of interest should be relatively large—
that is, the range over which the factors are varied should be broad. As we learn more
about which variables are important and which levels produce the best results, the
region of interest in subsequent experiments will usually become narrower.

The cause-and-effect diagram can be a useful technique for organizing
some of the information generated in pre-experimental planning. Figure 1.10 is the
cause-and-effect diagram constructed while planning an experiment to resolve
problems with wafer charging (a charge accumulation on the wafers) encountered
in an etching tool used in semiconductor manufacturing. The cause-and-effect dia-
gram is also known as a fishbone diagram because the “effect” of interest or the
response variable is drawn along the spine of the diagram and the potential causes
or design factors are organized in a series of ribs. The cause-and-effect diagram
uses the traditional causes of measurement, materials, people, environment, meth-
ods, and machines to organize the information and potential design factors. Notice
that some of the individual causes will probably lead directly to a design factor that
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will be included in the experiment (such as wheel speed, gas flow, and vacuum),
while others represent potential areas that will need further study to turn them into
design factors (such as operators following improper procedures), and still others
will probably lead to either factors that will be held constant during the experiment
or blocked (such as temperature and relative humidity). Figure 1.11 is a cause-and-
effect diagram for an experiment to study the effect of several factors on the tur-
bine blades produced on a computer-numerical-controlled (CNC) machine. This
experiment has three response variables: blade profile, blade surface finish, and
surface finish defects in the finished blade. The causes are organized into groups
of controllable factors from which the design factors for the experiment may be
selected, uncontrollable factors whose effects will probably be balanced out by
randomization, nuisance factors that may be blocked, and factors that may be held
constant when the experiment is conducted. It is not unusual for experimenters to
construct several different cause-and-effect diagrams to assist and guide them dur-
ing preexperimental planning. For more information on the CNC machine experi-
ment and further discussion of graphical methods that are useful in preexperimental
planning, see the supplemental text material for this chapter.

We reiterate how crucial it is to bring out all points of view and process infor-
mation in steps 1 through 3. We refer to this as pre-experimental planning. Coleman
and Montgomery (1993) provide worksheets that can be useful in pre-experimental
planning. Also see the supplemental text material for more details and an example
of using these worksheets. It is unlikely that one person has all the knowledge required
to do this adequately in many situations. Therefore, we strongly argue for a team effort
in planning the experiment. Most of your success will hinge on how well the pre-
experimental planning is done.

4. Choice of experimental design. If the above pre-experimental planning activities are
done correctly, this step is relatively easy. Choice of design involves consideration of
sample size (number of replicates), selection of a suitable run order for the experi-
mental trials, and determination of whether or not blocking or other randomization
restrictions are involved. This book discusses some of the more important types of
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experimental designs, and it can ultimately be used as a guide for selecting an appro-
priate experimental design for a wide variety of problems.

There are also several interactive statistical software packages that support this
phase of experimental design. The experimenter can enter information about the num-
ber of factors, levels, and ranges, and these programs will either present a selection of
designs for consideration or recommend a particular design. (We usually prefer to see
several alternatives instead of relying entirely on a computer recommendation in most
cases.) Most software packages also provide some diagnostic information about how
each design will perform. This is useful in evaluation of different design alternatives for
the experiment. These programs will usually also provide a worksheet (with the order
of the runs randomized) for use in conducting the experiment.

Design selection also involves thinking about and selecting a tentative empirical
model to describe the results. The model is just a quantitative relationship (equation)
between the response and the important design factors. In many cases, a low-order
polynomial model will be appropriate. A first-order model in two variables is 

where y is the response, the x’s are the design factors, the 	’s are unknown parame-
ters that will be estimated from the data in the experiment, and is a random error
term that accounts for the experimental error in the system that is being studied. The
first-order model is also sometimes called a main effects model. First-order models
are used extensively in screening or characterization experiments. A common exten-
sion of the first-order model is to add an interaction term, say

where the cross-product term x1x2 represents the two-factor interaction between the
design factors. Because interactions between factors is relatively common, the first-
order model with interaction is widely used. Higher-order interactions can also be
included in experiments with more than two factors if necessary. Another widely used
model is the second-order model

Second-order models are often used in optimization experiments.
In selecting the design, it is important to keep the experimental objectives in

mind. In many engineering experiments, we already know at the outset that some of
the factor levels will result in different values for the response. Consequently, we are
interested in identifying which factors cause this difference and in estimating the mag-
nitude of the response change. In other situations, we may be more interested in ver-
ifying uniformity. For example, two production conditions A and B may be compared,
A being the standard and B being a more cost-effective alternative. The experimenter
will then be interested in demonstrating that, say, there is no difference in yield
between the two conditions.

5. Performing the experiment. When running the experiment, it is vital to monitor
the process carefully to ensure that everything is being done according to plan.
Errors in experimental procedure at this stage will usually destroy experimental
validity. One of the most common mistakes that I have encountered is that the peo-
ple conducting the experiment failed to set the variables to the proper levels on
some runs. Someone should be assigned to check factor settings before each run.
Up-front planning to prevent mistakes like this is crucial to success. It is easy to

y � �0 � �1x1 � �2x2 � �12x1x2 � �11x
2
11 � �22x

2
2 � �

y � �0 � �1x1 � �2x2 � �12x1x2 � �

�

y � �0 � �1x1 � �2x2 � �

1.4 Guidelines for Designing Experiments 19



underestimate the logistical and planning aspects of running a designed experiment
in a complex manufacturing or research and development environment.

Coleman and Montgomery (1993) suggest that prior to conducting the experi-
ment a few trial runs or pilot runs are often helpful. These runs provide information
about consistency of experimental material, a check on the measurement system, a
rough idea of experimental error, and a chance to practice the overall experimental
technique. This also provides an opportunity to revisit the decisions made in steps
1–4, if necessary.

6. Statistical analysis of the data. Statistical methods should be used to analyze the data
so that results and conclusions are objective rather than judgmental in nature. If the
experiment has been designed correctly and performed according to the design, the
statistical methods required are not elaborate. There are many excellent software
packages designed to assist in data analysis, and many of the programs used in step 4
to select the design provide a seamless, direct interface to the statistical analysis. Often
we find that simple graphical methods play an important role in data analysis and
interpretation. Because many of the questions that the experimenter wants to answer
can be cast into an hypothesis-testing framework, hypothesis testing and confidence
interval estimation procedures are very useful in analyzing data from a designed
experiment. It is also usually very helpful to present the results of many experiments
in terms of an empirical model, that is, an equation derived from the data that express
the relationship between the response and the important design factors. Residual
analysis and model adequacy checking are also important analysis techniques. We will
discuss these issues in detail later.

Remember that statistical methods cannot prove that a factor (or factors) has a
particular effect. They only provide guidelines as to the reliability and validity of
results. When properly applied, statistical methods do not allow anything to be proved
experimentally, but they do allow us to measure the likely error in a conclusion or to
attach a level of confidence to a statement. The primary advantage of statistical meth-
ods is that they add objectivity to the decision-making process. Statistical techniques
coupled with good engineering or process knowledge and common sense will usually
lead to sound conclusions.

7. Conclusions and recommendations. Once the data have been analyzed, the experi-
menter must draw practical conclusions about the results and recommend a course of
action. Graphical methods are often useful in this stage, particularly in presenting the
results to others. Follow-up runs and confirmation testing should also be performed
to validate the conclusions from the experiment.

Throughout this entire process, it is important to keep in mind that experimen-
tation is an important part of the learning process, where we tentatively formulate
hypotheses about a system, perform experiments to investigate these hypotheses,
and on the basis of the results formulate new hypotheses, and so on. This suggests
that experimentation is iterative. It is usually a major mistake to design a single,
large, comprehensive experiment at the start of a study. A successful experiment
requires knowledge of the important factors, the ranges over which these factors
should be varied, the appropriate number of levels to use, and the proper units of
measurement for these variables. Generally, we do not perfectly know the answers
to these questions, but we learn about them as we go along. As an experimental pro-
gram progresses, we often drop some input variables, add others, change the region
of exploration for some factors, or add new response variables. Consequently, we
usually experiment sequentially, and as a general rule, no more than about 25 percent
of the available resources should be invested in the first experiment. This will ensure
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that sufficient resources are available to perform confirmation runs and ultimately
accomplish the final objective of the experiment.

Finally, it is important to recognize that all experiments are designed exper-
iments. The important issue is whether they are well designed or not. Good pre-
experimental planning will usually lead to a good, successful experiment. Failure
to do such planning usually leads to wasted time, money, and other resources and
often poor or disappointing results.

1.5 A Brief History of Statistical Design

There have been four eras in the modern development of statistical experimental design. The
agricultural era was led by the pioneering work of Sir Ronald A. Fisher in the 1920s and early
1930s. During that time, Fisher was responsible for statistics and data analysis at the
Rothamsted Agricultural Experimental Station near London, England. Fisher recognized that
flaws in the way the experiment that generated the data had been performed often hampered
the analysis of data from systems (in this case, agricultural systems). By interacting with sci-
entists and researchers in many fields, he developed the insights that led to the three basic
principles of experimental design that we discussed in Section 1.3: randomization, replica-
tion, and blocking. Fisher systematically introduced statistical thinking and principles into
designing experimental investigations, including the factorial design concept and the analysis
of variance. His two books [the most recent editions are Fisher (1958, 1966)] had profound
influence on the use of statistics, particularly in agricultural and related life sciences. For an
excellent biography of Fisher, see Box (1978).

Although applications of statistical design in industrial settings certainly began in the
1930s, the second, or industrial, era was catalyzed by the development of response surface
methodology (RSM) by Box and Wilson (1951). They recognized and exploited the fact that
many industrial experiments are fundamentally different from their agricultural counterparts
in two ways: (1) the response variable can usually be observed (nearly) immediately, and 
(2) the experimenter can quickly learn crucial information from a small group of runs that can
be used to plan the next experiment. Box (1999) calls these two features of industrial exper-
iments immediacy and sequentiality. Over the next 30 years, RSM and other design
techniques spread throughout the chemical and the process industries, mostly in research and
development work. George Box was the intellectual leader of this movement. However, the
application of statistical design at the plant or manufacturing process level was still not
extremely widespread. Some of the reasons for this include an inadequate training in basic
statistical concepts and methods for engineers and other process specialists and the lack of
computing resources and user-friendly statistical software to support the application of statis-
tically designed experiments.

It was during this second or industrial era that work on optimal design of experi-
ments began. Kiefer (1959, 1961) and Kiefer and Wolfowitz (1959) proposed a formal
approach to selecting a design based on specific objective optimality criteria. Their initial
approach was to select a design that would result in the model parameters being estimat-
ed with the best possible precision. This approach did not find much application because
of the lack of computer tools for its implementation. However, there have been great
advances in both algorithms for generating optimal designs and computing capability over
the last 25 years. Optimal designs have great application and are discussed at several
places in the book.

The increasing interest of Western industry in quality improvement that began in the
late 1970s ushered in the third era of statistical design. The work of Genichi Taguchi [Taguchi
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and Wu (1980), Kackar (1985), and Taguchi (1987, 1991)] had a significant impact on
expanding the interest in and use of designed experiments. Taguchi advocated using designed
experiments for what he termed robust parameter design, or

1. Making processes insensitive to environmental factors or other factors that are dif-
ficult to control

2. Making products insensitive to variation transmitted from components

3. Finding levels of the process variables that force the mean to a desired value while
simultaneously reducing variability around this value.

Taguchi suggested highly fractionated factorial designs and other orthogonal arrays along
with some novel statistical methods to solve these problems. The resulting methodology
generated much discussion and controversy. Part of the controversy arose because Taguchi’s
methodology was advocated in the West initially (and primarily) by entrepreneurs, and the
underlying statistical science had not been adequately peer reviewed. By the late 1980s, the
results of peer review indicated that although Taguchi’s engineering concepts and objectives
were well founded, there were substantial problems with his experimental strategy and
methods of data analysis. For specific details of these issues, see Box (1988), Box, Bisgaard,
and Fung (1988), Hunter (1985, 1989), Myers, Montgomery and Anderson-Cook (2009), and
Pignatiello and Ramberg (1992). Many of these concerns are also summarized in the exten-
sive panel discussion in the May 1992 issue of Technometrics [see Nair et al. (1992)].

There were several positive outcomes of the Taguchi controversy. First, designed exper-
iments became more widely used in the discrete parts industries, including automotive and
aerospace manufacturing, electronics and semiconductors, and many other industries that had
previously made little use of the technique. Second, the fourth era of statistical design began.
This era has included a renewed general interest in statistical design by both researchers and
practitioners and the development of many new and useful approaches to experimental prob-
lems in the industrial world, including alternatives to Taguchi’s technical methods that allow
his engineering concepts to be carried into practice efficiently and effectively. Some of these
alternatives will be discussed and illustrated in subsequent chapters, particularly in Chapter 12.
Third, computer software for construction and evaluation of designs has improved greatly
with many new features and capability. Forth, formal education in statistical experimental
design is becoming part of many engineering programs in universities, at both undergraduate
and graduate levels. The successful integration of good experimental design practice into
engineering and science is a key factor in future industrial competitiveness.

Applications of designed experiments have grown far beyond the agricultural origins.
There is not a single area of science and engineering that has not successfully employed sta-
tistically designed experiments. In recent years, there has been a considerable utilization of
designed experiments in many other areas, including the service sector of business, financial
services, government operations, and many nonprofit business sectors. An article appeared in
Forbes magazine on March 11, 1996, entitled “The New Mantra: MVT,” where MVT stands
for “multivariable testing,” a term authors use to describe factorial designs. The article notes
the many successes that a diverse group of companies have had through their use of statisti-
cally designed experiments.

1.6 Summary: Using Statistical Techniques in Experimentation

Much of the research in engineering, science, and industry is empirical and makes exten-
sive use of experimentation. Statistical methods can greatly increase the efficiency of
these experiments and often strengthen the conclusions so obtained. The proper use of 



statistical techniques in experimentation requires that the experimenter keep the following
points in mind:

1. Use your nonstatistical knowledge of the problem. Experimenters are usually
highly knowledgeable in their fields. For example, a civil engineer working on a
problem in hydrology typically has considerable practical experience and formal
academic training in this area. In some fields, there is a large body of physical the-
ory on which to draw in explaining relationships between factors and responses.
This type of nonstatistical knowledge is invaluable in choosing factors, determining
factor levels, deciding how many replicates to run, interpreting the results of the
analysis, and so forth. Using a designed experiment is no substitute for thinking
about the problem.

2. Keep the design and analysis as simple as possible. Don’t be overzealous in the use
of complex, sophisticated statistical techniques. Relatively simple design and analysis
methods are almost always best. This is a good place to reemphasize steps 1–3 of the
procedure recommended in Section 1.4. If you do the pre-experiment planning care-
fully and select a reasonable design, the analysis will almost always be relatively
straightforward. In fact, a well-designed experiment will sometimes almost analyze
itself! However, if you botch the pre-experimental planning and execute the experi-
mental design badly, it is unlikely that even the most complex and elegant statistics
can save the situation.

3. Recognize the difference between practical and statistical significance. Just because
two experimental conditions produce mean responses that are statistically different,
there is no assurance that this difference is large enough to have any practical value.
For example, an engineer may determine that a modification to an automobile fuel
injection system may produce a true mean improvement in gasoline mileage of 
0.1 mi/gal and be able to determine that this is a statistically significant result.
However, if the cost of the modification is $1000, the 0.1 mi/gal difference is proba-
bly too small to be of any practical value.

4. Experiments are usually iterative. Remember that in most situations it is unwise to
design too comprehensive an experiment at the start of a study. Successful design
requires the knowledge of important factors, the ranges over which these factors are
varied, the appropriate number of levels for each factor, and the proper methods and
units of measurement for each factor and response. Generally, we are not well
equipped to answer these questions at the beginning of the experiment, but we learn
the answers as we go along. This argues in favor of the iterative, or sequential,
approach discussed previously. Of course, there are situations where comprehensive
experiments are entirely appropriate, but as a general rule most experiments should be
iterative. Consequently, we usually should not invest more than about 25 percent of
the resources of experimentation (runs, budget, time, etc.) in the initial experiment.
Often these first efforts are just learning experiences, and some resources must be
available to accomplish the final objectives of the experiment.
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1.7 Problems

1.1. Suppose that you want to design an experiment to
study the proportion of unpopped kernels of popcorn.
Complete steps 1–3 of the guidelines for designing experi-
ments in Section 1.4. Are there any major sources of variation
that would be difficult to control?

1.2. Suppose that you want to investigate the factors that
potentially affect cooking rice.

(a) What would you use as a response variable in this
experiment? How would you measure the response?



(b) List all of the potential sources of variability that could
impact the response.

(c) Complete the first three steps of the guidelines for
designing experiments in Section 1.4.

1.3. Suppose that you want to compare the growth of gar-
den flowers with different conditions of sunlight, water, fertil-
izer, and soil conditions. Complete steps 1–3 of the guidelines
for designing experiments in Section 1.4.

1.4. Select an experiment of interest to you. Complete
steps 1–3 of the guidelines for designing experiments in
Section 1.4.

1.5. Search the World Wide Web for information about
Sir Ronald A. Fisher and his work on experimental design
in agricultural science at the Rothamsted Experimental
Station.
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1.6. Find a Web Site for a business that you are interested
in. Develop a list of factors that you would use in an experi-
ment to improve the effectiveness of this Web Site.

1.7. Almost everyone is concerned about the rising price
of gasoline. Construct a cause and effect diagram identifying
the factors that potentially influence the gasoline mileage that
you get in your car. How would you go about conducting an
experiment to determine any of these factors actually affect
your gasoline mileage?

1.8. What is replication? Why do we need replication in an
experiment? Present an example that illustrates the difference
between replication and repeated measurements.

1.9. Why is randomization important in an experiment?

1.10. What are the potential risks of a single large, compre-
hensive experiment in contrast to a sequential approach?
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In this chapter, we consider experiments to compare two conditions (sometimes called
treatments). These are often called simple comparative experiments. We begin with an

example of an experiment performed to determine whether two different formulations of a
product give equivalent results. The discussion leads to a review of several basic statistical
concepts, such as random variables, probability distributions, random samples, sampling dis-
tributions, and tests of hypotheses.

2.1 Introduction

An engineer is studying the formulation of a Portland cement mortar. He has added a poly-
mer latex emulsion during mixing to determine if this impacts the curing time and tension
bond strength of the mortar. The experimenter prepared 10 samples of the original formula-
tion and 10 samples of the modified formulation. We will refer to the two different formula-
tions as two treatments or as two levels of the factor formulations. When the cure process
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was completed, the experimenter did find a very large reduction in the cure time for the
modified mortar formulation. Then he began to address the tension bond strength of
the mortar. If the new mortar formulation has an adverse effect on bond strength, this could
impact its usefulness.

The tension bond strength data from this experiment are shown in Table 2.1 and plot-
ted in Figure 2.1. The graph is called a dot diagram. Visual examination of these data gives
the impression that the strength of the unmodified mortar may be greater than the strength of
the modified mortar. This impression is supported by comparing the average tension bond
strengths, for the modified mortar and for the
unmodified mortar. The average tension bond strengths in these two samples differ by what
seems to be a modest amount. However, it is not obvious that this difference is large enough
to imply that the two formulations really are different. Perhaps this observed difference in
average strengths is the result of sampling fluctuation and the two formulations are really
identical. Possibly another two samples would give opposite results, with the strength of the
modified mortar exceeding that of the unmodified formulation.

A technique of statistical inference called hypothesis testing can be used to assist
the experimenter in comparing these two formulations. Hypothesis testing allows the com-
parison of the two formulations to be made on objective terms, with knowledge of the
risks associated with reaching the wrong conclusion. Before presenting procedures for
hypothesis testing in simple comparative experiments, we will briefly summarize some
elementary statistical concepts.

y2 � 17.04 kgf/cm2y1 � 16.76 kgf/cm2
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■ TA B L E  2 . 1
Tension Bond Strength Data for the Portland
Cement Formulation Experiment

Modified Unmodified
Mortar Mortar

j y1j y2j

1 16.85 16.62

2 16.40 16.75

3 17.21 17.37

4 16.35 17.12

5 16.52 16.98

6 17.04 16.87

7 16.96 17.34

8 17.15 17.02

9 16.59 17.08

10 16.57 17.27

17.0816.9416.80

y1 = 16.76

16.6616.5216.38 17.22 17.36

Strength (kgf/cm2)
y2 = 17.04

Modified

Unmodified

■ F I G U R E 2 . 1 Dot diagram for the tension bond strength data in Table 2.1



2.2 Basic Statistical Concepts

Each of the observations in the Portland cement experiment described above would be called
a run. Notice that the individual runs differ, so there is fluctuation, or noise, in the observed
bond strengths. This noise is usually called experimental error or simply error. It is a sta-
tistical error, meaning that it arises from variation that is uncontrolled and generally
unavoidable. The presence of error or noise implies that the response variable, tension bond
strength, is a random variable. A random variable may be either discrete or continuous. If
the set of all possible values of the random variable is either finite or countably infinite, then
the random variable is discrete, whereas if the set of all possible values of the random variable
is an interval, then the random variable is continuous.

Graphical Description of Variability. We often use simple graphical methods to
assist in analyzing the data from an experiment. The dot diagram, illustrated in Figure 2.1, is
a very useful device for displaying a small body of data (say up to about 20 observations). The
dot diagram enables the experimenter to see quickly the general location or central tendency
of the observations and their spread or variability. For example, in the Portland cement tension
bond experiment, the dot diagram reveals that the two formulations may differ in mean strength
but that both formulations produce about the same variability in strength.

If the data are fairly numerous, the dots in a dot diagram become difficult to distinguish
and a histogram may be preferable. Figure 2.2 presents a histogram for 200 observations on the
metal recovery, or yield, from a smelting process. The histogram shows the central tendency,
spread, and general shape of the distribution of the data. Recall that a histogram is constructed
by dividing the horizontal axis into bins (usually of equal length) and drawing a rectangle over
the jth bin with the area of the rectangle proportional to nj, the number of observations that fall
in that bin. The histogram is a large-sample tool. When the sample size is small the shape of the
histogram can be very sensitive to the number of bins, the width of the bins, and the starting
value for the first bin. Histograms should not be used with fewer than 75–100 observations.

The box plot (or box-and-whisker plot) is a very useful way to display data. A box
plot displays the minimum, the maximum, the lower and upper quartiles (the 25th percentile
and the 75th percentile, respectively), and the median (the 50th percentile) on a rectangular
box aligned either horizontally or vertically. The box extends from the lower quartile to the
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upper quartile, and a line is drawn through the box at the median. Lines (or whiskers) extend
from the ends of the box to (typically) the minimum and maximum values. [There are several
variations of box plots that have different rules for denoting the extreme sample points. See
Montgomery and Runger (2011) for more details.]

Figure 2.3 presents the box plots for the two samples of tension bond strength in the
Portland cement mortar experiment. This display indicates some difference in mean strength
between the two formulations. It also indicates that both formulations produce reasonably
symmetric distributions of strength with similar variability or spread.

Dot diagrams, histograms, and box plots are useful for summarizing the information in
a sample of data. To describe the observations that might occur in a sample more completely,
we use the concept of the probability distribution.

Probability Distributions. The probability structure of a random variable, say y, is
described by its probability distribution. If y is discrete, we often call the probability distri-
bution of y, say p(y), the probability mass function of y. If y is continuous, the probability dis-
tribution of y, say f(y), is often called the probability density function for y.

Figure 2.4 illustrates hypothetical discrete and continuous probability distributions.
Notice that in the discrete probability distribution Fig. 2.4a, it is the height of the function
p(yj) that represents probability, whereas in the continuous case Fig. 2.4b, it is the area under
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(a) A discrete distribution

p
(y

j)

f(
y)

y1 y3
y2 y4 y6 y8 y10 y12 y14
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P(y = yj ) = p(yj )

 yj

(b) A continuous distribution

a b

P(a  y  b)
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■ F I G U R E  2 . 4 Discrete and continuous probability distributions



the curve f(y) associated with a given interval that represents probability. The properties of
probability distributions may be summarized quantitatively as follows:

Mean, Variance, and Expected Values. The mean, �, of a probability distribution
is a measure of its central tendency or location. Mathematically, we define the mean as

(2.1)

We may also express the mean in terms of the expected value or the long-run average value
of the random variable y as

(2.2)

where E denotes the expected value operator.
The variability or dispersion of a probability distribution can be measured by the vari-

ance, defined as

(2.3)

Note that the variance can be expressed entirely in terms of expectation because

(2.4)

Finally, the variance is used so extensively that it is convenient to define a variance opera-
tor V such that

(2.5)

The concepts of expected value and variance are used extensively throughout this book,
and it may be helpful to review several elementary results concerning these operators. If y is
a random variable with mean � and variance �2 and c is a constant, then

1. E(c) � c

2. E(y) � �

V(y) � E[(y � �)2] � � 2

� 2 � E[(y � �)2]

� 2 � ��
�

��
 (y � �)2f (y) dy

�
all y

 (y � �)2p(y)

 y continuous

 y discrete

� � E(y) � ��
�

��
yf (y) dy

�
all y

yp(y)

 y continuous

 y discrete

� � ��
�

��
yf (y) dy

�
all y

yp(y)

 y continuous

 y discrete

��

��
f (y) dy � 1

P(a � y � b) � � b

a
f (y) dy

y continuous:         0 � f (y)

�
all values

of yj

p(yj) � 1

P(y � yj) � p(yj)    all values of yj

y discrete:   0 � p(yj) � 1             all values of yj
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3. E(cy) � cE(y) � c�

4. V(c) � 0

5. V(y) � �2

6. V(cy) � c2V(y) � c2�2

If there are two random variables, say, y1 with E(y1) � �1 and V(y1) � and y2 with
E(y2) � �2 and V(y2) � , we have

7. E(y1 � y2) � E(y1) � E(y2) � �1 � �2

It is possible to show that

8. V(y1 � y2) � V(y1) � V(y2) � 2 Cov(y1, y2)

where

(2.6)

is the covariance of the random variables y1 and y2. The covariance is a measure of the lin-
ear association between y1 and y2. More specifically, we may show that if y1 and y2 are inde-
pendent,1 then Cov(y1, y2) � 0. We may also show that

9. V(y1 � y2) � V(y1) � V(y2) � 2 Cov(y1, y2)

If y1 and y2 are independent, we have

10. V(y1 
 y2) � V(y1) � V(y2) �

and

11. E(y1
. y2) � E(y1) . E(y2) � �1

. �2

However, note that, in general

12.

regardless of whether or not y1 and y2 are independent.

2.3 Sampling and Sampling Distributions

Random Samples, Sample Mean, and Sample Variance. The objective of statistical
inference is to draw conclusions about a population using a sample from that population.
Most of the methods that we will study assume that random samples are used. A random
sample is a sample that has been selected from the population in such a way that every pos-
sible sample has an equal probability of being selected. In practice, it is sometimes difficult
to obtain random samples, and random numbers generated by a computer program may be
helpful.

Statistical inference makes considerable use of quantities computed from the observa-
tions in the sample. We define a statistic as any function of the observations in a sample that

E�y1

y2� Z
E(y1)
E(y2)

� 2
1 � � 2

2

Cov(y1, y2) � E [(y1 � �1)(y2 � �2)]

�2
2

�2
1
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1 Note that the converse of this is not necessarily so; that is, we may have Cov(y1, y2) � 0 and yet this does not imply independence.
For an example, see Hines et al. (2003).



does not contain unknown parameters. For example, suppose that y1, y2, . . . , yn represents a
sample. Then the sample mean

(2.7)

and the sample variance

(2.8)

are both statistics. These quantities are measures of the central tendency and dispersion of the
sample, respectively. Sometimes S � , called the sample standard deviation, is used as
a measure of dispersion. Experimenters often prefer to use the standard deviation to measure
dispersion because its units are the same as those for the variable of interest y.

Properties of the Sample Mean and Variance. The sample mean is a point
estimator of the population mean �, and the sample variance S2 is a point estimator of the
population variance �2. In general, an estimator of an unknown parameter is a statistic that
corresponds to that parameter. Note that a point estimator is a random variable. A particular
numerical value of an estimator, computed from sample data, is called an estimate. For example,
suppose we wish to estimate the mean and variance of the suspended solid material in the
water of a lake. A random sample of n � 25 observation is tested, and the mg/l of suspended
solid material is recorded for each. The sample mean and variance are computed according to
Equations 2.7 and 2.8, respectively, and are and S2 � 1.20. Therefore, the estimate
of � is , and the estimate of �2 is S2 � 1.20.

Several properties are required of good point estimators. Two of the most important are
the following:

1. The point estimator should be unbiased. That is, the long-run average or expected
value of the point estimator should be equal to the parameter that is being estimated.
Although unbiasedness is desirable, this property alone does not always make an
estimator a good one.

2. An unbiased estimator should have minimum variance. This property states that
the minimum variance point estimator has a variance that is smaller than the vari-
ance of any other estimator of that parameter.

We may easily show that and S2 are unbiased estimators of � and �2, respectively.
First consider . Using the properties of expectation, we have

because the expected value of each observation yi is �. Thus, is an unbiased estimator of �.y

� �

�
1
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n

i�1
�

�
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n �
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E(y ) � E��
n

i�1
yi
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�
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y � 18.6

y
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S2 �
�
n
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Now consider the sample variance S2. We have

where SS � is the corrected sum of squares of the observations yi. Now

(2.9)

(2.10)

Therefore,

and we see that S2 is an unbiased estimator of �2.

Degrees of Freedom. The quantity n � 1 in Equation 2.10 is called the number of
degrees of freedom of the sum of squares SS. This is a very general result; that is, if y is a
random variable with variance �2 and SS � �(yi � )2 has degrees of freedom, then

(2.11)

The number of degrees of freedom of a sum of squares is equal to the number of independ-
ent elements in that sum of squares. For example, SS � in Equation 2.9 consists
of the sum of squares of the n elements y1 � , y2 � , . . . , yn � . These elements are not
all independent because ; in fact, only n � 1 of them are independent,
implying that SS has n � 1 degrees of freedom.

The Normal and Other Sampling Distributions. Often we are able to determine
the probability distribution of a particular statistic if we know the probability distribution of
the population from which the sample was drawn. The probability distribution of a statistic
is called a sampling distribution. We will now briefly discuss several useful sampling
distributions.

One of the most important sampling distributions is the normal distribution. If y is a
normal random variable, the probability distribution of y is

(2.12)

where � � � � is the mean of the distribution and �2 
 0 is the variance. The normal
distribution is shown in Figure 2.5.
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Because sample runs that differ as a result of experimental error often are well
described by the normal distribution, the normal plays a central role in the analysis of data
from designed experiments. Many important sampling distributions may also be defined in
terms of normal random variables. We often use the notation y ~ N(�, �2) to denote that y is
distributed normally with mean � and variance �2.

An important special case of the normal distribution is the standard normal distribu-
tion; that is, � � 0 and �2 � 1. We see that if y ~ N(�, �2), the random variable

(2.13)

follows the standard normal distribution, denoted z ~ N(0, 1). The operation demonstrated in
Equation 2.13 is often called standardizing the normal random variable y. The cumulative
standard normal distribution is given in Table I of the Appendix.

Many statistical techniques assume that the random variable is normally distributed.
The central limit theorem is often a justification of approximate normality.

z �
y � �

�
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THEOREM 2-1
The Central Limit Theorem

If y1, y2, . . . , yn is a sequence of n independent and identically distributed random vari-
ables with E(yi) � � and V(yi) � �2 (both finite) and x � y1 � y2 � � yn, then the
limiting form of the distribution of

as n , is the standard normal distribution.�l
zn �

x � n�

�n� 2

Á

This result states essentially that the sum of n independent and identically distributed
random variables is approximately normally distributed. In many cases, this approximation is
good for very small n, say n � 10, whereas in other cases large n is required, say n 
 100.
Frequently, we think of the error in an experiment as arising in an additive manner from sev-
eral independent sources; consequently, the normal distribution becomes a plausible model
for the combined experimental error.

An important sampling distribution that can be defined in terms of normal random vari-
ables is the chi-square or 2 distribution. If z1, z2, . . . , zk are normally and independently
distributed random variables with mean 0 and variance 1, abbreviated NID(0, 1), then the ran-
dom variable

x � z2
1 � z2

2 � Á � z2
k

�



follows the chi-square distribution with k degrees of freedom. The density function of chi-
square is

(2.14)

Several chi-square distributions are shown in Figure 2.6. The distribution is asymmetric,
or skewed, with mean and variance

respectively. Percentage points of the chi-square distribution are given in Table III of the
Appendix.

As an example of a random variable that follows the chi-square distribution, suppose
that y1, y2, . . . , yn is a random sample from an N(�, �2) distribution. Then

(2.15)

That is, SS/�2 is distributed as chi-square with n � 1 degrees of freedom.
Many of the techniques used in this book involve the computation and manipulation of

sums of squares. The result given in Equation 2.15 is extremely important and occurs repeat-
edly; a sum of squares in normal random variables when divided by �2 follows the chi-square
distribution.

Examining Equation 2.8, we see that the sample variance can be written as

(2.16)

If the observations in the sample are NID(�, �2), then the distribution of S2 is [�2/(n � 1)] .
Thus, the sampling distribution of the sample variance is a constant times the chi-square dis-
tribution if the population is normally distributed.

If z and are independent standard normal and chi-square random variables, respec-
tively, the random variable

(2.17)tk �
z

�� 2
k/k

�2
k

� 2
n�1
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� 2
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follows the t distribution with k degrees of freedom, denoted tk. The density function of t is

(2.18)

and the mean and variance of t are � � 0 and �2 � k/(k � 2) for k 
 2, respectively. Several
t distributions are shown in Figure 2.7. Note that if k � , the t distribution becomes the stan-
dard normal distribution. The percentage points of the t distribution are given in Table II of
the Appendix. If y1, y2, . . . , yn is a random sample from the N(�, �2) distribution, then the
quantity

(2.19)

is distributed as t with n � 1 degrees of freedom.
The final sampling distribution that we will consider is the F distribution. If and 

are two independent chi-square random variables with u and degrees of freedom, respec-
tively, then the ratio

(2.20)

follows the F distribution with u numerator degrees of freedom and denominator
degrees of freedom. If x is an F random variable with u numerator and denominator
degrees of freedom, then the probability distribution of x is

(2.21)

Several F distributions are shown in Figure 2.8. This distribution is very important in the sta-
tistical analysis of designed experiments. Percentage points of the F distribution are given in
Table IV of the Appendix.

As an example of a statistic that is distributed as F, suppose we have two independent
normal populations with common variance �2. If y11, y12, . . . , is a random sample of n1

observations from the first population, and if y21, y22, . . . , is a random sample of n2 obser-
vations from the second, then

(2.22)
S 2

1

S 2
2


 Fn1�1, n2�1

y2n2

y1n1

h(x) �

��u � v
2 ��u

v�u/2

x(u/2)�1

��u
x���v

2���u
v�x � 1	(u�v)/2

  0 � x � �

v
v

Fu,v �
� 2

u /u

� 2
v /v

v
�2

v� 2
u

t �
y � �

S/�n

�

f (t) �
�[(k � 1)/2]

�k��(k/2)
1

[(t 2/k) � 1](k�1)/2
  �� � t � �
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where and are the two sample variances. This result follows directly from Equations 2.15
and 2.20.

2.4 Inferences About the Differences in 
Means, Randomized Designs

We are now ready to return to the Portland cement mortar problem posed in Section 2.1. Recall
that two different formulations of mortar were being investigated to determine if they differ in
tension bond strength. In this section we discuss how the data from this simple comparative
experiment can be analyzed using hypothesis testing and confidence interval procedures for
comparing two treatment means.

Throughout this section we assume that a completely randomized experimental
design is used. In such a design, the data are usually viewed as if they were a random sample
from a normal distribution.

2.4.1 Hypothesis Testing

We now reconsider the Portland cement experiment introduced in Section 2.1. Recall that we
are interested in comparing the strength of two different formulations: an unmodified mortar
and a modified mortar. In general, we can think of these two formulations as two levels of the
factor “formulations.” Let y11, y12, . . . , represent the n1 observations from the first factor
level and y21, y22, . . . , represent the n2 observations from the second factor level. We
assume that the samples are drawn at random from two independent normal populations.
Figure 2.9 illustrates the situation.

A Model for the Data. We often describe the results of an experiment with a model.
A simple statistical model that describes the data from an experiment such as we have just
described is

(2.23)

where yij is the jth observation from factor level i, �i is the mean of the response at the ith fac-
tor level, and ij is a normal random variable associated with the ijth observation. We assume�

yij � �i � �ij�i � 1, 2
j � 1, 2, . . . , ni

y2n2

y1n1

S2
2S2

1
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that ij are NID(0, ), i � 1, 2. It is customary to refer to ij as the random error compo-
nent of the model. Because the means �1 and �2 are constants, we see directly from the model
that yij are NID(�i, ), i � 1, 2, just as we previously assumed. For more information about
models for the data, refer to the supplemental text material.

Statistical Hypotheses. A statistical hypothesis is a statement either about the
parameters of a probability distribution or the parameters of a model. The hypothesis
reflects some conjecture about the problem situation. For example, in the Portland cement
experiment, we may think that the mean tension bond strengths of the two mortar formula-
tions are equal. This may be stated formally as

where �1 is the mean tension bond strength of the modified mortar and �2 is the mean ten-
sion bond strength of the unmodified mortar. The statement H0 :�1 � �2 is called the null
hypothesis and H1 :�1 � �2 is called the alternative hypothesis. The alternative hypothe-
sis specified here is called a two-sided alternative hypothesis because it would be true if
�1 � �2 or if �1 
 �2.

To test a hypothesis, we devise a procedure for taking a random sample, computing an
appropriate test statistic, and then rejecting or failing to reject the null hypothesis H0 based
on the computed value of the test statistic. Part of this procedure is specifying the set of val-
ues for the test statistic that leads to rejection of H0. This set of values is called the critical
region or rejection region for the test.

Two kinds of errors may be committed when testing hypotheses. If the null hypothesis
is rejected when it is true, a type I error has occurred. If the null hypothesis is not rejected
when it is false, a type II error has been made. The probabilities of these two errors are given
special symbols

Sometimes it is more convenient to work with the power of the test, where

The general procedure in hypothesis testing is to specify a value of the probability of type I
error 	, often called the significance level of the test, and then design the test procedure so
that the probability of type II error � has a suitably small value.

Power � 1 � � � P(reject H0�H0 is false)

� � P(type II error) � P(fail to reject H0 �H0 is false)

	 � P(type I error) � P(reject H0�H0 is true)

H1��1 Z �2

H0��1 � �2

� 2
i

�� 2
i�
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The Two-Sample t-Test. Suppose that we could assume that the variances of tension
bond strengths were identical for both mortar formulations. Then the appropriate test statistic
to use for comparing two treatment means in the completely randomized design is

(2.24)

where and are the sample means, n1 and n2 are the sample sizes, is an estimate of the
common variance computed from

(2.25)

and and are the two individual sample variances. The quality Sp in the denom-

inator of Equation 2.24 is often called the standard error of the difference in means in the

numerator, abbreviated To determine whether to reject H0 :�1 � �2, we would

compare t0 to the t distribution with n1 � n2 � 2 degrees of freedom. If �t0� 
 , where

is the upper 	/2 percentage point of the t distribution with n1 � n2 � 2 degrees of

freedom, we would reject H0 and conclude that the mean strengths of the two formulations of

Portland cement mortar differ. This test procedure is usually called the two-sample t-test.

This procedure may be justified as follows. If we are sampling from independent nor-
mal distributions, then the distribution of is N[�1 � �2, �2(1/n1 � 1/n2)]. Thus, if �2

were known, and if H0 : �1 � �2 were true, the distribution of

(2.26)

would be N(0, 1). However, in replacing � in Equation 2.26 by Sp, the distribution of Z0

changes from standard normal to t with n1 � n2 � 2 degrees of freedom. Now if H0 is true, t0

in Equation 2.24 is distributed as and, consequently, we would expect 100(1 � 	) per-
cent of the values of t0 to fall between and . A sample producing a value
of t0 outside these limits would be unusual if the null hypothesis were true and is evidence
that H0 should be rejected. Thus the t distribution with n1 � n2 � 2 degrees of freedom is the
appropriate reference distribution for the test statistic t0. That is, it describes the behavior of
t0 when the null hypothesis is true. Note that 	 is the probability of type I error for the test.
Sometimes 	 is called the significance level of the test.

In some problems, one may wish to reject H0 only if one mean is larger than the other.
Thus, one would specify a one-sided alternative hypothesis H1 : �1 
 �2 and would reject
H0 only if t0 
 . If one wants to reject H0 only if �1 is less than �2, then the alterna-
tive hypothesis is H1 :�1 � �2, and one would reject H0 if t0 �

To illustrate the procedure, consider the Portland cement data in Table 2.1. For these
data, we find that

Modified Mortar Unmodified Mortar

� 16.76 kgf/cm2 � 17.04 kgf/cm2

� 0.100 � 0.061

S1 � 0.316 S2 � 0.248

n1 � 10 n2 � 10

S2
2S2

1

y2y1

�t	,n1�n2�2.
t	,n1�n2�2

t	/2, n1�n2�2�t	/2, n1�n2�2

tn1�n2�2

Z0 �
y1 � y2

�� 1
n1

�
1
n2

y1 � y2

t	/2,n1�n2�2

t	/2,n1�n2�2

se (y1 � y2).

� 1
n1

�
1
n2

S2
2S2

1

S 2
p �

(n1 � 1)S 2
1 � (n2 � 1)S 2

2

n1 � n2 � 2

�2
1 � �2

2 � �2
S2

py2y1

t0 �
y1 � y2

Sp� 1
n1

�
1
n2
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Because the sample standard deviations are reasonably similar, it is not unreasonable to con-
clude that the population standard deviations (or variances) are equal. Therefore, we can use
Equation 2.24 to test the hypotheses

Furthermore, n1 � n2 � 2 � 10 � 10 � 2 � 18, and if we choose 	 � 0.05, then we would
reject H0 :�1 � �2 if the numerical value of the test statistic t0 
 t0.025,18 � 2.101, or if t0 �
�t0.025,18 � �2.101. These boundaries of the critical region are shown on the reference distri-
bution (t with 18 degrees of freedom) in Figure 2.10.

Using Equation 2.25 we find that

and the test statistic is

Because t0 � �2.20 � �t0.025,18 � �2.101, we would reject H0 and conclude that the mean
tension bond strengths of the two formulations of Portland cement mortar are different. This
is a potentially important engineering finding. The change in mortar formulation had the
desired effect of reducing the cure time, but there is evidence that the change also affected
the tension bond strength. One can conclude that the modified formulation reduces the bond
strength (just because we conducted a two-sided test, this does not preclude drawing a one-
sided conclusion when the null hypothesis is rejected). If the reduction in mean bond

�
�0.28
0.127

� �2.20

t0 �
y1 � y2

Sp� 1
n1

�
1
n2

�
16.76 � 17.04

0.284� 1
10

�
1

10

Sp � 0.284

�
9(0.100) � 9(0.061)

10 � 10 � 2
� 0.081

S2
p �

(n1 � 1)S2
1 � (n2 � 1)S2

2

n1 � n2 � 2

H1��1 Z �2

H0��1 � �2
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strength is of practical importance (or has engineering significance in addition to statistical
significance) then more development work and further experimentation will likely be
required.

The Use of P-Values in Hypothesis Testing. One way to report the results of
a hypothesis test is to state that the null hypothesis was or was not rejected at a specified
	-value or level of significance. This is often called fixed significance level testing. For
example, in the Portland cement mortar formulation above, we can say that H0 : �1 � �2 was
rejected at the 0.05 level of significance. This statement of conclusions is often inadequate
because it gives the decision maker no idea about whether the computed value of the test sta-
tistic was just barely in the rejection region or whether it was very far into this region.
Furthermore, stating the results this way imposes the predefined level of significance on other
users of the information. This approach may be unsatisfactory because some decision makers
might be uncomfortable with the risks implied by 	 � 0.05.

To avoid these difficulties, the P-value approach has been adopted widely in practice.
The P-value is the probability that the test statistic will take on a value that is at least as
extreme as the observed value of the statistic when the null hypothesis H0 is true. Thus, a P-
value conveys much information about the weight of evidence against H0, and so a decision
maker can draw a conclusion at any specified level of significance. More formally, we define
the P-value as the smallest level of significance that would lead to rejection of the null
hypothesis H0.

It is customary to call the test statistic (and the data) significant when the null hypoth-
esis H0 is rejected; therefore, we may think of the P-value as the smallest level 	 at which the
data are significant. Once the P-value is known, the decision maker can determine how
significant the data are without the data analyst formally imposing a preselected level of
significance.

It is not always easy to compute the exact P-value for a test. However, most modern
computer programs for statistical analysis report P-values, and they can be obtained on
some handheld calculators. We will show how to approximate the P-value for the Portland
cement mortar experiment. Because �t0� � 2.20 
 t0.025,18 � 2.101, we know that the P-
value is less than 0.05. From Appendix Table II, for a t distribution with 18 degrees of free-
dom, and tail area probability 0.01 we find t0.01,18 � 2.552. Now �t0� � 2.20 � 2.552, so
because the alternative hypothesis is two sided, we know that the P-value must be between
0.05 and 2(0.01) � 0.02. Some handheld calculators have the capability to calculate P-values.
One such calculator is the HP-48. From this calculator, we obtain the P-value for the value
t0 � �2.20 in the Portland cement mortar formulation experiment as P � 0.0411. Thus
the null hypothesis H0 : �1 � �2 would be rejected at any level of significance 	 

0.0411.

Computer Solution. Many statistical software packages have capability for statisti-
cal hypothesis testing. The output from both the Minitab and the JMP two-sample t-test pro-
cedure applied to the Portland cement mortar formulation experiment is shown in Table 2.2.
Notice that the output includes some summary statistics about the two samples (the abbrevi-
ation “SE mean” in the Minitab section of the table refers to the standard error of the mean,

) as well as some information about confidence intervals on the difference in the two
means (which we will discuss in the next section). The programs also test the hypothesis of
interest, allowing the analyst to specify the nature of the alternative hypothesis (“not �” in
the Minitab output implies H1 : �1 � �2).

The output includes the computed value of t0, the value of the test statistic t0 (JMP
reports a positive value of t0 because of how the sample means are subtracted in the numerator

s/�n
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of the test statistic), and the P-value. Notice that the computed value of the t statistic differs
slightly from our manually calculated value and that the P-value is reported to be P � 0.042.
JMP also reports the P-values for the one-sided alternative hypothesis. Many software pack-
ages will not report an actual P-value less than some predetermined value such as 0.0001 and
instead will return a “default” value such as “�0.001” or in some cases, zero.

Checking Assumptions in the t-Test. In using the t-test procedure we make the
assumptions that both samples are random samples that are drawn from independent popula-
tions that can be described by a normal distribution, and that the standard deviation or vari-
ances of both populations are equal. The assumption of independence is critical, and if the run
order is randomized (and, if appropriate, other experimental units and materials are selected
at random), this assumption will usually be satisfied. The equal variance and normality
assumptions are easy to check using a normal probability plot.

Generally, probability plotting is a graphical technique for determining whether sample
data conform to a hypothesized distribution based on a subjective visual examination of the
data. The general procedure is very simple and can be performed quickly with most statistics
software packages. The supplemental text material discusses manual construction of nor-
mal probability plots.

To construct a probability plot, the observations in the sample are first ranked from small-
est to largest. That is, the sample y1, y2, . . . , yn is arranged as y(1), y(2), . . . , y(n) where y(1) is the
smallest observation, y(2) is the second smallest observation, and so forth, with y(n) the largest. The
ordered observations y(j) are then plotted against their observed cumulative frequency (j � 0.5)/n.
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Computer Output for the Two-Sample t-Test

Minitab

Two-sample T for Modified vs Unmodified

N Mean Std. Dev. SE Mean

Modified 10 16.764 0.316 0.10

Unmodified 10 17.042 0.248 0.078

Difference � mu (Modified) � mu (Unmodified)

Estimate for difference: �0.278000

95% CI for difference: (�0.545073, �0.010927)

T-Test of difference � 0 (vs not � ): T-Value � �2.19 

P-Value � 0.042 DF � 18

Both use Pooled Std. Dev. � 0.2843

JMP t-test

Unmodified-Modified

Assuming equal variances

Difference 0.278000 t Ratio 2.186876

Std Err Dif 0.127122 DF 18

Upper CL Dif 0.545073 Prob |t| 0.0422

Lower CL Dif 0.010927 Prob t 0.0211

Confidence 0.95 Prob t 0.9789�

�

�

–0.4 –0.2 0.0 0.1 0.3



The cumulative frequency scale has been arranged so that if the hypothesized distribution ade-
quately describes the data, the plotted points will fall approximately along a straight line; if the
plotted points deviate significantly from a straight line, the hypothesized model is not appropri-
ate. Usually, the determination of whether or not the data plot as a straight line is subjective.

To illustrate the procedure, suppose that we wish to check the assumption that tension
bond strength in the Portland cement mortar formulation experiment is normally distributed.
We initially consider only the observations from the unmodified mortar formulation. A
computer-generated normal probability plot is shown in Figure 2.11. Most normal probability
plots present 100(j � 0.5)/n on the left vertical scale (and occasionally 100[1� (j � 0.5)/n] is
plotted on the right vertical scale), with the variable value plotted on the horizontal scale. Some
computer-generated normal probability plots convert the cumulative frequency to a standard
normal z score. A straight line, chosen subjectively, has been drawn through the plotted points.
In drawing the straight line, you should be influenced more by the points near the middle of
the plot than by the extreme points. A good rule of thumb is to draw the line approximately
between the 25th and 75th percentile points. This is how the lines in Figure 2.11 for each sample
were determined. In assessing the “closeness” of the points to the straight line, imagine a fat
pencil lying along the line. If all the points are covered by this imaginary pencil, a normal
distribution adequately describes the data. Because the points for each sample in Figure 2.11
would pass the fat pencil test, we conclude that the normal distribution is an appropriate model
for tension bond strength for both the modified and the unmodified mortar.

We can obtain an estimate of the mean and standard deviation directly from the normal
probability plot. The mean is estimated as the 50th percentile on the probability plot, and the
standard deviation is estimated as the difference between the 84th and 50th percentiles. This
means that we can verify the assumption of equal population variances in the Portland cement
experiment by simply comparing the slopes of the two straight lines in Figure 2.11. Both lines
have very similar slopes, and so the assumption of equal variances is a reasonable one. If this
assumption is violated, you should use the version of the t-test described in Section 2.4.4. The
supplemental text material has more information about checking assumptions on the t-test.

When assumptions are badly violated, the performance of the t-test will be affected.
Generally, small to moderate violations of assumptions are not a major concern, but any fail-
ure of the independence assumption and strong indications of nonnormality should not be
ignored. Both the significance level of the test and the ability to detect differences between
the means will be adversely affected by departures from assumptions. Transformations are
one approach to dealing with this problem. We will discuss this in more detail in Chapter 3.
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probability plots of tension bond
strength in the Portland cement
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Nonparametric hypothesis testing procedures can also be used if the observations come from
nonnormal populations. Refer to Montgomery and Runger (2011) for more details.

An Alternate Justification to the t-Test. The two-sample t-test we have just present-
ed depends in theory on the underlying assumption that the two populations from which the
samples were randomly selected are normal. Although the normality assumption is required to
develop the test procedure formally, as we discussed above, moderate departures from normal-
ity will not seriously affect the results. It can be argued that the use of a randomized design
enables one to test hypotheses without any assumptions regarding the form of the distribution.
Briefly, the reasoning is as follows. If the treatments have no effect, all [20!/(10!10!)] �
184,756 possible ways that the 20 observations could occur are equally likely. Corresponding
to each of these 184,756 possible arrangements is a value of t0. If the value of t0 actually
obtained from the data is unusually large or unusually small with reference to the set of
184,756 possible values, it is an indication that �1 � �2.

This type of procedure is called a randomization test. It can be shown that the t-test is
a good approximation of the randomization test. Thus, we will use t-tests (and other procedures
that can be regarded as approximations of randomization tests) without extensive concern
about the assumption of normality. This is one reason a simple procedure such as normal prob-
ability plotting is adequate to check the assumption of normality.

2.4.2 Confidence Intervals

Although hypothesis testing is a useful procedure, it sometimes does not tell the entire story. It is
often preferable to provide an interval within which the value of the parameter or parameters in
question would be expected to lie. These interval statements are called confidence intervals. In
many engineering and industrial experiments, the experimenter already knows that the means �1

and �2 differ; consequently, hypothesis testing on �1 � �2 is of little interest. The experimenter
would usually be more interested in knowing how much the means differ. A confidence interval
on the difference in means �1 � �2 is used in answering this question.

To define a confidence interval, suppose that 
 is an unknown parameter. To obtain an
interval estimate of 
, we need to find two statistics L and U such that the probability statement

(2.27)

is true. The interval

(2.28)

is called a 100(1 � �) percent confidence interval for the parameter . The interpretation
of this interval is that if, in repeated random samplings, a large number of such intervals are
constructed, 100(1 � 	) percent of them will contain the true value of . The statistics L and
U are called the lower and upper confidence limits, respectively, and 1 � 	 is called the
confidence coefficient. If 	 � 0.05, Equation 2.28 is called a 95 percent confidence interval
for . Note that confidence intervals have a frequency interpretation; that is, we do not know
if the statement is true for this specific sample, but we do know that the method used to
produce the confidence interval yields correct statements 100(1 � 	) percent of the time.

Suppose that we wish to find a 100(1 � 	) percent confidence interval on the true dif-
ference in means �1 � �2 for the Portland cement problem. The interval can be derived in the
following way. The statistic

is distributed as . Thus,tn1�n2�2

y1 � y2 � (�1 � �2)

Sp� 1
n1

�
1
n2










L � 
 � U

P(L � 
 � U) � 1 � 	
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or

(2.29)

Comparing Equations 2.29 and 2.27, we see that

(2.30)

is a 100(1 � 	) percent confidence interval for �1 � �2.
The actual 95 percent confidence interval estimate for the difference in mean tension

bond strength for the formulations of Portland cement mortar is found by substituting in
Equation 2.30 as follows:

Thus, the 95 percent confidence interval estimate on the difference in means extends from
�0.55 to �0.01 kgf/cm2. Put another way, the confidence interval is �1 � �2 � �0.28 

0.27 kgf/cm2, or the difference in mean strengths is �0.28 kgf/cm2, and the accuracy of this
estimate is 
 0.27 kgf/cm2. Note that because �1 � �2 � 0 is not included in this interval, the
data do not support the hypothesis that �1 � �2 at the 5 percent level of significance (recall
that the P-value for the two-sample t-test was 0.042, just slightly less than 0.05). It is likely
that the mean strength of the unmodified formulation exceeds the mean strength of the mod-
ified formulation. Notice from Table 2.2 that both Minitab and JMP reported this confidence
interval when the hypothesis testing procedure was conducted.

2.4.3 Choice of Sample Size

Selection of an appropriate sample size is one of the most important parts of any experimental
design problem. One way to do this is to consider the impact of sample size on the estimate of
the difference in two means. From Equation 2.30 we know that the 100(1 – 	)% confidence
interval on the difference in two means is a measure of the precision of estimation of the
difference in the two means. The length of this interval is determined by 

We consider the case where the sample sizes from the two populations are equal, so that n1 �
n2 � n. Then the length of the CI is determined by

t	/2, n1 �n2�2 Sp� 1
n1

�
1
n2

�0.55 � �1 � �2 � �0.01

�0.28 � 0.27 � �1 � �2 � �0.28 � 0.27

�  16.76 � 17.04 � (2.101)0.284� 1
10 �

1
10

 16.76 � 17.04 � (2.101)0.284� 1
10 �

1
10 � �1 � �2

� y1 � y2 � t	/2,n1�n2�2 Sp� 1
n1

�
1
n2

y1 � y2 � t	/2,n1�n2�2 Sp� 1
n1

�
1
n2

� �1 � �2

� y1 � y2 � t	/2,n1�n2�2 Sp� 1
n1

�
1
n2� � 1 � 	
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Consequently the precision with which the difference in the two means is estimated
depends on two quantities—Sp, over which we have no control, and , which
we can control by choosing the sample size n. Figure 2.12 is a plot of versus
n for 	 = 0.05. Notice that the curve descends rapidly as n increases up to about n = 10 and
less rapidly beyond that. Since Sp is relatively constant and isn’t going to
change much for sample sizes beyond n � 10 or 12, we can conclude that choosing a sample
size of n � 10 or 12 from each population in a two-sample 95% CI will result in a CI that
results in about the best precision of estimation for the difference in the two means that is
possible given the amount of inherent variability that is present in the two populations.

We can also use a hypothesis testing framework to determine sample size. The choice
of sample size and the probability of type II error � are closely connected. Suppose that we
are testing the hypotheses

and that the means are not equal so that � � �1 � �2. Because H0 : �1 � �2 is not true, we are
concerned about wrongly failing to reject H0. The probability of type II error depends on the
true difference in means �. A graph of � versus � for a particular sample size is called the oper-
ating characteristic curve, or O.C. curve for the test. The � error is also a function of sample
size. Generally, for a given value of �, the � error decreases as the sample size increases. That is, a
specified difference in means is easier to detect for larger sample sizes than for smaller ones.

An alternative to the OC curve is a power curve, which typically plots power or 1 � �‚
versus sample size for a specified difference in the means. Some software packages perform
power analysis and will plot power curves. A set of power curves constructed using JMP for
the hypotheses 

is shown in Figure 2.13 for the case where the two population variances and are
unknown but equal ( ) and for a level of significance of 	 � 0.05. These power�2

1 � �2
2 � �2

�2
2�2

1

H1��1 Z �2

H0��1 � �2

H1��1 Z �2

H0��1 � �2

t	/2, 2n � 2�2�n

t	/2, 2n � 2�2�n
t	/2, 2n � 2�2�n

t	/2, 2n � 2 Sp�2
n
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■ F I G U R E  2 . 1 2 Plot of versus sample size in each population n for 	 � 0.05�2�nt	/2, 2n � 2
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curves also assume that the sample sizes from the two populations are equal and that the sam-
ple size shown on the horizontal scale (say n) is the total sample size, so that the sample size
in each population is n/2.  Also notice that the difference in means is expressed as a ratio to
the common standard deviation; that is

From examining these curves we observe the following:

1. The greater the difference in means , the higher the power (smaller type
II error probability).  That is, for a specified sample size and significance level 	,
the test will detect large differences in means more easily than small ones.

2. As the sample size get larger, the power of the test gets larger (the type II error
probability gets smaller) for a given difference in means and significance level 	.
That is, to detect a specified difference in means we may make the test more pow-
erful by increasing the sample size.

Operating curves and power curves are often helpful in selecting a sample size to use in an
experiment.  For example, consider the Portland cement mortar problem discussed previously.
Suppose that a difference in mean strength of 0.5 kgf/cm2 has practical impact on the use of
the mortar, so if the difference in means is at least this large, we would like to detect it with a
high probability. Thus, because kgf/cm2 is the “critical” difference in means
that we wish to detect, we find that the power curve parameter would be .
Unfortunately, involves the unknown standard deviation . However, suppose on the basis of
past experience we think that it is very unlikely that the standard deviation will exceed 
0.25 kgf/cm2. Then substituting kgf/cm2 into the expression for results in . If
we wish to reject the null hypothesis when the difference in means with prob-
ability at least 0.95 (power = 0.95) with , then referring to Figure 2.13 we find that the
required sample size on the horizontal axis is 16, approximately.  This is the total sample size,
so the sample size in each population should be 

In our example, the experimenter actually used a sample size of 10. The experimenter could
have elected to increase the sample size slightly to guard against the possibility that the prior
estimate of the common standard deviation � was too conservative and was likely to be some-
what larger than 0.25.

Operating characteristic curves often play an important role in the choice of sample size
in experimental design problems. Their use in this respect is discussed in subsequent chap-
ters. For a discussion of the uses of operating characteristic curves for other simple compar-
ative experiments similar to the two-sample t-test, see Montgomery and Runger (2011).

Many statistics software packages can also assist the experimenter in performing power
and sample size calculations. The following boxed display illustrates several computations for
the Portland cement mortar problem from the power and sample size routine for the two-sample
t test in Minitab. The first section of output repeats the analysis performed with the OC
curves; find the sample size necessary for detecting the critical difference in means of
0.5 kgf/cm2, assuming that the standard deviation of strength is 0.25 kgf/cm2. Notice that the
answer obtained from Minitab, n1 � n2 � 8, is identical to the value obtained from the OC
curve analysis. The second section of the output computes the power for the case where the
critical difference in means is much smaller; only 0.25 kgf/cm2. The power has dropped con-
siderably, from over 0.95 to 0.562. The final section determines the sample sizes that would
be necessary to detect an actual difference in means of 0.25 kgf/cm2 with a power of at least
0.9. The required sample size turns out to be considerably larger, n1 � n2 � 23.

n � 16/2 � 8.

	 � 0.05
�1 � �2 � 0.5

� � 2�� � 0.25

��
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Power and Sample Size

2-Sample t-Test

Testing mean 1 � mean 2 (versus not � )

Calculating power for mean 1 � mean 2 � difference

Alpha � 0.05  Sigma � 0.25

Sample Target Actual

Difference Size Power Power

0.5 8 0.9500 0.9602

Power and Sample Size

2-Sample t-Test

Testing mean 1 � mean 2 (versus not �)

Calculating power for mean 1 � mean 2 � difference

Alpha � 0.05 Sigma � 0.25

Sample

Difference Size Power

0.25 10 0.5620

Power and Sample Size

2-Sample t-Test

Testing mean 1 � mean 2 (versus not �)

Calculating power for mean 1 � mean 2 � difference

Alpha � 0.05  Sigma � 0.25

Sample Target Actual

Difference Size Power Power

0.25 23 0.9000 0.9125

■ F I G U R E  2 . 1 3 Power Curves (from JMP) for the Two-Sample t-Test Assuming Equal
Varianes and � � 0.05. The Sample Size on the Horizontal Axis is the Total sample Size, so the
sample Size in Each population is n � sample size from graph/2.
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2.4.4 The Case Where 

If we are testing

and cannot reasonably assume that the variances and are equal, then the two-sample 
t-test must be modified slightly. The test statistic becomes

(2.31)

This statistic is not distributed exactly as t. However, the distribution of t0 is well approximat-
ed by t if we use

(2.32)

as the number of degrees of freedom. A strong indication of unequal variances on a normal
probability plot would be a situation calling for this version of the t-test. You should be able
to develop an equation for finding that confidence interval on the difference in mean for the
unequal variances case easily.

v �
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E X A M P L E  2 . 1

Nerve preservation is important in surgery because acci-
dental injury to the nerve can lead to post-surgical problems
such as numbness, pain, or paralysis. Nerves are usually
identified by their appearance and relationship to nearby
structures or detected by local electrical stimulation (elec-
tromyography), but it is relatively easy to overlook them.
An article in Nature Biotechnology (“Fluorescent Peptides

Highlight Peripheral Nerves During Surgery in Mice,” Vol.
29, 2011) describes the use of a fluorescently labeled pep-
tide that binds to nerves to assist in identification. Table 2.3
shows the normalized fluorescence after two hours for
nerve and muscle tissue for 12 mice (the data were read
from a graph in the paper).   

We would like to test the hypothesis that the mean normalized fluorescence after two hours is
greater for nerve tissue then for muscle tissue. That is, if is the mean normalized fluorescence
for nerve tissue and  is the mean normalized fluorescence for muscle tissue, we want to test

The descriptive statistics output from Minitab is shown below:

H1:�1 > �2

H0:�1 � �2

��

Variable    N Mean  StDev Minimum Median Maximum

Nerve      12  4228   1918      450  4825     6625

Non-nerve 12 2534    961     1130    2650     3900
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TA B L E  2 . 3
Normalized Fluorescence After Two Hours

Observation Nerve Muscle

1 6625 3900

2 6000 3500

3 5450 3450

4 5200 3200

5 5175 2980

6 4900 2800

7 4750 2500

8 4500 2400

9 3985 2200

10 900 1200

11 450 1150

12 2800 1130
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Notice that the two sample standard deviations are quite different, so the assumption of equal
variances in the pooled t-test may not be appropriate. Figure 2.14 is the normal probability
plot from Minitab for the two samples. This plot also indicates that the two population vari-
ances are probably not the same.

Because the equal variance assumption is not appropriate here, we will use the two-
sample t-test described in this section to test the hypothesis of equal means. The test statistic,
Equation 2.31, is 

�
4228 � 2534

�(1918)2

12
�

(961)2

12

� 2.7354t0 �
y1 � y2

�S2
1

n1
�

S2
2

n2

■ F I G U R E  2 . 1 4 Normalized Fluorescence Data from Table 2.3
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The number of degrees of freedom are calculated from Equation 2.32:

If we are going to find a P-value from a table of the t-distribution, we should round the degrees
of freedom down to 16. Most computer programs interpolate to determine the P-value. The
Minitab output for the two-sample t-test is shown below. Since the P-value reported is small
(0.015), we would reject the null hypothesis and conclude that the mean normalized fluores-
cence for nerve tissue is greater than the mean normalized fluorescence for muscle tissue.

� 16.1955v �
�S1

2

n1
�

S2
2

n2�
2

(S1
2

� n1)
2

n1 � 1
�

(S2
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� n2)
2

n2 � 1

�
�(1918)2

12
�

(961)2

12 �2

[(1918)2
� 12]2

11
�

[(961)2
� 12]2

11

Difference = mu (Nerve) - mu (Non-nerve)

Estimate for difference:  1694

95% lower bound for difference:  613

T-Test of difference = 0 (vs >): T-Value = 2.74  P-Value = 0.007  DF = 16

2.4.5 The Case Where and Are Known

If the variances of both populations are known, then the hypotheses

may be tested using the statistic

(2.33)

If both populations are normal, or if the sample sizes are large enough so that the central limit
theorem applies, the distribution of Z0 is N(0, 1) if the null hypothesis is true. Thus, the criti-
cal region would be found using the normal distribution rather than the t. Specifically, we
would reject H0 if �Z0� 
 Z	/2, where Z	/2 is the upper 	/2 percentage point of the standard nor-
mal distribution. This procedure is sometimes called the two-sample Z-test. A P-value
approach can also be used with this test. The P-value would be found as P �
where (x) is the cumulative standard normal distribution evaluated at the point x.

Unlike the t-test of the previous sections, the test on means with known variances does not
require the assumption of sampling from normal populations. One can use the central limit the-
orem to justify an approximate normal distribution for the difference in sample means 

The 100(1 � 	) percent confidence interval on �1 � �2 where the variances are known is

(2.34)

As noted previously, the confidence interval is often a useful supplement to the hypothesis test-
ing procedure.

2.4.6 Comparing a Single Mean to a Specified Value

Some experiments involve comparing only one population mean � to a specified value, say,
�0. The hypotheses are

H0�� � �0
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If the population is normal with known variance, or if the population is nonnormal but the sam-
ple size is large enough so that the central limit theorem applies, then the hypothesis may be
tested using a direct application of the normal distribution. The one-sample Z-test statistic is

(2.35)

If H0 : � � �0 is true, then the distribution of Z0 is N(0, 1). Therefore, the decision rule for 
H0 : � � �0 is to reject the null hypothesis if �Z0� 
 Z	/2. A P-value approach could also be used. 

The value of the mean �0 specified in the null hypothesis is usually determined in one
of three ways. It may result from past evidence, knowledge, or experimentation. It may be the
result of some theory or model describing the situation under study. Finally, it may be the
result of contractual specifications.

The 100(1 � 	) percent confidence interval on the true population mean is

(2.36)y � Z	/2�/�n � � � y � Z	/2�/�n

Z0 �
y � �0

�/�n
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E X A M P L E  2 . 2

A supplier submits lots of fabric to a textile manufacturer.
The customer wants to know if the lot average breaking
strength exceeds 200 psi. If so, she wants to accept the lot.
Past experience indicates that a reasonable value for the
variance of breaking strength is 100(psi)2. The hypotheses
to be tested are

Note that this is a one-sided alternative hypothesis. Thus,
we would accept the lot only if the null hypothesis H0 :� �
200 could be rejected (i.e., if Z0 
 Z	).

H1�� � 200

H0�� � 200

Four specimens are randomly selected, and the average
breaking strength observed is –y � 214 psi. The value of the
test statistic is

If a type I error of 	 � 0.05 is specified, we find Z	 � Z0.05 �
1.645 from Appendix Table I. The P-value would be
computed using only the area in the upper tail of the stan-
dard normal distribution, because the alternative hypothesis
is one-sided. The P-value is P � 1 � (2.80) � 1 �
0.99744 � 0.00256. Thus H0 is rejected, and we conclude
that the lot average breaking strength exceeds 200 psi.

�

Z0 �
y � �0

�/�n
�

214 � 200

10/�4
� 2.80

If the variance of the population is unknown, we must make the additional assumption
that the population is normally distributed, although moderate departures from normality will
not seriously affect the results.

To test H0 : � � �0 in the variance unknown case, the sample variance S2 is used to esti-
mate �2. Replacing � with S in Equation 2.35, we have the one-sample t-test statistic

(2.37)

The null hypothesis H0 : � � �0 would be rejected if �t0� 
 t	/2,n�1, where t	/2,n�1 denotes the
upper 	/2 percentage point of the t distribution with n � 1 degrees of freedom. A P-value
approach could also be used. The 100(1 � 	) percent confidence interval in this case is

(2.38)

2.4.7 Summary

Tables 2.4 and 2.5 summarize the t-test and z-test procedures discussed above for sample
means. Critical regions are shown for both two-sided and one-sided alternative hypotheses.

y � t	/2,n�1S/�n � � � y � t	/2,n�1S/�n

t0 �
y � �0

S/�n
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■ T A B L E 2 . 5
Tests on Means of Normal Distributions, Variance Unknown

Fixed Significance Level
Hypothesis Test Statistic Criteria for Rejection P-Value

H0 : � � �0 sum of the probability
H1 : � � �0 �t0� 
 t	/2,n�1 above t0 and below �t0

H0 : � � �0

H1 : � � �0 t0 � �t	,n�1 probability below t0

H0 : � � �0

H1 : � 
 �0 t0 
 t	,n�1 probability above t0

if

H0 : �1 � �2

H1 : �1 � �2 �t0� 
 t	/2,v sum of the probability

v � n1 � n2 � 2

above t0 and below �t0

if

H0 : �1 � �2

H1 : �1 � �2 t0 � �t	,v probability below t0
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�S2

1

n1
�

S2
2

n2�
2

(S2
1/n1)2

n1 � 1
�

(S2
2/n2)2

n2 � 1

t0 �
y1 � y2

�S2
1

n1
�

S2
2

n2

�2
1 Z �2

2

t0 �
y1 � y2

Sp� 1
n1

�
1
n2

�2
1 � �2

2

t0 �
y � �0

S/�n

■ T A B L E 2 . 4
Tests on Means with Variance Known

Fixed Significance Level
Hypothesis Test Statistic Criteria for Rejection P-Value

H0 : � � �0

H1 : � � �0 �Z0� 
 Z	/2

H0 : � � �0

H1 : � � �0 Z0 � �Z	

H0 : � � �0

H1 : � 
 �0 Z0 
 Z	

H0 : �1 � �2

H1 : �1 � �2 �Z0� 
 Z	/2

H0 : �1 � �2

H1 : �1 � �2 Z0 � �Z	
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 Z	 P � 1 � �(Z0)
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2.5 Inferences About the Differences in Means,
Paired Comparison Designs

2.5.1 The Paired Comparison Problem

In some simple comparative experiments, we can greatly improve the precision by making
comparisons within matched pairs of experimental material. For example, consider a hardness
testing machine that presses a rod with a pointed tip into a metal specimen with a known force.
By measuring the depth of the depression caused by the tip, the hardness of the specimen is
determined. Two different tips are available for this machine, and although the precision
(variability) of the measurements made by the two tips seems to be the same, it is suspected
that one tip produces different mean hardness readings than the other.

An experiment could be performed as follows. A number of metal specimens (e.g., 20)
could be randomly selected. Half of these specimens could be tested by tip 1 and the other
half by tip 2. The exact assignment of specimens to tips would be randomly determined.
Because this is a completely randomized design, the average hardness of the two samples
could be compared using the t-test described in Section 2.4.

A little reflection will reveal a serious disadvantage in the completely randomized
design for this problem. Suppose the metal specimens were cut from different bar stock that
were produced in different heats or that were not exactly homogeneous in some other way that
might affect the hardness. This lack of homogeneity between specimens will contribute to the
variability of the hardness measurements and will tend to inflate the experimental error, thus
making a true difference between tips harder to detect.

To protect against this possibility, consider an alternative experimental design. Assume
that each specimen is large enough so that two hardness determinations may be made on it.
This alternative design would consist of dividing each specimen into two parts, then randomly
assigning one tip to one-half of each specimen and the other tip to the remaining half. The
order in which the tips are tested for a particular specimen would also be randomly selected.
The experiment, when performed according to this design with 10 specimens, produced the
(coded) data shown in Table 2.6.

We may write a statistical model that describes the data from this experiment as

(2.39)yij � �i � �j � �i j�i � 1, 2
j � 1, 2, . . . , 10
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■ T A B L E 2 . 6
Data for the Hardness Testing Experiment

Specimen Tip 1 Tip 2

1 7 6

2 3 3

3 3 5

4 4 3

5 8 8

6 3 2

7 2 4

8 9 9

9 5 4

10 4 5 



where yij is the observation on hardness for tip i on specimen j, �i is the true mean hardness
of the ith tip, �j is an effect on hardness due to the jth specimen, and �ij is a random experi-
mental error with mean zero and variance . That is, is the variance of the hardness meas-
urements from tip 1, and is the variance of the hardness measurements from tip 2.

Note that if we compute the jth paired difference

(2.40)

the expected value of this difference is

That is, we may make inferences about the difference in the mean hardness readings of the two
tips �1 � �2 by making inferences about the mean of the differences �d. Notice that the addi-
tive effect of the specimens �j cancels out when the observations are paired in this manner.

Testing H0 : �1 � �2 is equivalent to testing

This is a single-sample t-test. The test statistic for this hypothesis is

(2.41)

where

(2.42)

is the sample mean of the differences and

(2.43)

is the sample standard deviation of the differences. H0 : �d � 0 would be rejected if �t0� 

t	/2,n�1. A P-value approach could also be used. Because the observations from the factor
levels are “paired” on each experimental unit, this procedure is usually called the paired
t-test.

For the data in Table 2.6, we find

d5 � 8 � 8 � 0 d10 � 4 � 5 � �1

d4 � 4 � 3 � 1 d9 � 5 � 4 � 1

d3 � 3 � 5 � �2   d8 � 9 � 9 � 0

d2 � 3 � 3 � 0 d7 � 2 � 4 � �2

d1 � 7 � 6 � 1 d6 � 3 � 2 � 1

Sd � ��
n

j�1
 (dj � d )2

n � 1
	

1/2

� ��
n

j�1
d 2

j �
1
n� �

n

j�1
dj�2

n � 1
	

1/2

d �
1
n �

n

j�1
dj

t0 �
d

Sd/�n

H1��d Z 0

H0��d � 0

� �1 � �2

� �1 � �j � (�2 � �j)
� E(y1j) � E(y2j)
� E(y1j � y2j)

�d � E(dj)

dj � y1j � y2j   j � 1, 2, . . . , 10

� 2
2

� 2
1� 2

i

54 Chapter 2 ■ Simple Comparative Experiments



Thus,

Suppose we choose 	 � 0.05. Now to make a decision, we would compute t0 and reject H0 if
�t0� 
 t0.025,9 � 2.262.

The computed value of the paired t-test statistic is

and because �t0� � 0.26 � t0.025,9 � 2.262, we cannot reject the hypothesis H0 : �d � 0. That
is, there is no evidence to indicate that the two tips produce different hardness readings.
Figure 2.15 shows the t0 distribution with 9 degrees of freedom, the reference distribution for
this test, with the value of t0 shown relative to the critical region.

Table 2.7 shows the computer output from the Minitab paired t-test procedure for this
problem. Notice that the P-value for this test is P 
 0.80, implying that we cannot reject the
null hypothesis at any reasonable level of significance.
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■ T A B L E 2 . 7
Minitab Paired t-Test Results for the Hardness Testing Example

Paired T for Tip 1�Tip 2

N Mean Std. Dev. SE Mean

Tip 1 10 4.800 2.394 0.757

Tip 2 10 4.900 2.234 0.706

Difference 10 �0.100 1.197 0.379

95% CI for mean difference: (�0.956, 0.756)

t-Test of mean difference � 0 (vs not � 0):

T-Value � �0.26 P-Value � 0.798

■ F I G U R E  2 . 1 5 The reference distribution (t with 9 degrees
of freedom) for the hardness testing problem
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2.5.2 Advantages of the Paired Comparison Design

The design actually used for this experiment is called the paired comparison design, and it
illustrates the blocking principle discussed in Section 1.3. Actually, it is a special case of a
more general type of design called the randomized block design. The term block refers to
a relatively homogeneous experimental unit (in our case, the metal specimens are the
blocks), and the block represents a restriction on complete randomization because the treat-
ment combinations are only randomized within the block. We look at designs of this type in
Chapter 4. In that chapter the mathematical model for the design, Equation 2.39, is written
in a slightly different form.

Before leaving this experiment, several points should be made. Note that, although 
2n � 2(10) � 20 observations have been taken, only n � 1 � 9 degrees of freedom are avail-
able for the t statistic. (We know that as the degrees of freedom for t increase, the test becomes
more sensitive.) By blocking or pairing we have effectively “lost” n - 1 degrees of freedom,
but we hope we have gained a better knowledge of the situation by eliminating an additional
source of variability (the difference between specimens).

We may obtain an indication of the quality of information produced from the paired
design by comparing the standard deviation of the differences Sd with the pooled standard
deviation Sp that would have resulted had the experiment been conducted in a completely
randomized manner and the data of Table 2.5 been obtained. Using the data in Table 2.5 as
two independent samples, we compute the pooled standard deviation from Equation 2.25 to
be Sp � 2.32. Comparing this value to Sd � 1.20, we see that blocking or pairing has reduced
the estimate of variability by nearly 50 percent.

Generally, when we don’t block (or pair the observations) when we really should have,
Sp will always be larger than Sd. It is easy to show this formally. If we pair the observations,
it is easy to show that is an unbiased estimator of the variance of the differences dj under
the model in Equation 2.39 because the block effects (the �j) cancel out when the differences
are computed. However, if we don’t block (or pair) and treat the observations as two
independent samples, then is not an unbiased estimator of �2 under the model in Equation
2.39. In fact, assuming that both population variances are equal,

That is, the block effects �j inflate the variance estimate. This is why blocking serves as a
noise reduction design technique.

We may also express the results of this experiment in terms of a confidence interval on
�1 � �2. Using the paired data, a 95 percent confidence interval on �1 � �2 is

Conversely, using the pooled or independent analysis, a 95 percent confidence interval on
�1 � �2 is

�0.10 
  2.18

 4.80 � 4.90 
  (2.101)(2.32)� 1
10 �

1
10

y1 � y2 
 t0.025,18 Sp� 1
n1

�
1
n2

�0.10 
  0.86

�0.10 
  (2.262)(1.20)/�10

d 
 t0.025,9 Sd/�n
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j
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d
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The confidence interval based on the paired analysis is much narrower than the confidence
interval from the independent analysis. This again illustrates the noise reduction property of
blocking.

Blocking is not always the best design strategy. If the within-block variability is the
same as the between-block variability, the variance of will be the same regardless of
which design is used. Actually, blocking in this situation would be a poor choice of design
because blocking results in the loss of n � 1 degrees of freedom and will actually lead to a
wider confidence interval on �1 � �2. A further discussion of blocking is given in Chapter 4.

2.6 Inferences About the Variances of Normal Distributions

In many experiments, we are interested in possible differences in the mean response for two
treatments. However, in some experiments it is the comparison of variability in the data that
is important. In the food and beverage industry, for example, it is important that the variabil-
ity of filling equipment be small so that all packages have close to the nominal net weight or
volume of content. In chemical laboratories, we may wish to compare the variability of two
analytical methods. We now briefly examine tests of hypotheses and confidence intervals for
variances of normal distributions. Unlike the tests on means, the procedures for tests on vari-
ances are rather sensitive to the normality assumption. A good discussion of the normality
assumption is in Appendix 2A of Davies (1956).

Suppose we wish to test the hypothesis that the variance of a normal population equals
a constant, for example, . Stated formally, we wish to test

(2.44)

The test statistic for Equation 2.44 is

(2.45)

where SS � (yi � )2 is the corrected sum of squares of the sample observations. The
appropriate reference distribution for is the chi-square distribution with n � 1 degrees of
freedom. The null hypothesis is rejected if or if , where 
and are the upper 	/2 and lower 1 � (	/2) percentage points of the chi-square
distribution with n � 1 degrees of freedom, respectively. Table 2.8 gives the critical regions
for the one-sided alternative hypotheses. The 100(1 � 	) percent confidence interval on �2 is

(2.46)

Now consider testing the equality of the variances of two normal populations. If inde-
pendent random samples of size n1 and n2 are taken from populations 1 and 2, respectively,
the test statistic for

(2.47)

is the ratio of the sample variances
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The appropriate reference distribution for F0 is the F distribution with n1 � 1 numerator
degrees of freedom and n2 � 1 denominator degrees of freedom. The null hypothesis would
be rejected if F0 
 or if F0 � , where  and

denote the upper 	/2 and lower 1 � (	/2) percentage points of the F distribu-
tion with n1 � 1 and n2 � 1 degrees of freedom. Table IV of the Appendix gives only upper-
tail percentage points of F; however, the upper- and lower-tail points are related by

(2.49)

Critical values for the one-sided alternative hypothesis are given in Table 2.8. Test procedures
for more than two variances are discussed in Section 3.4.3. We will also discuss the use of the
variance or standard deviation as a response variable in more general experimental settings.

F1�	,v1,v2
�

1
F	,v2,v1

F1�(	/2),n1�1,n2�1

F	/2,n1�1,n2�1F1�(	/2),n1�1,n2�1F	/2,n1�1,n2�1

E X A M P L E  2 . 3

A chemical engineer is investigating the inherent variability
of two types of test equipment that can be used to monitor
the output of a production process. He suspects that the old
equipment, type 1, has a larger variance than the new one.
Thus, he wishes to test the hypothesis

Two random samples of n1 � 12 and n2 � 10 observations
are taken, and the sample variances are � 14.5 and �S2

2S2
1

H1��2
1 � �2

2

H0��2
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2

10.8. The test statistic is

From Appendix Table IV we find that F0.05,11,9 � 3.10, so
the null hypothesis cannot be rejected. That is, we have
found insufficient statistical evidence to conclude that the
variance of the old equipment is greater than the variance of
the new equipment.
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■ T A B L E 2 . 8
Tests on Variances of Normal Distributions
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The 100(1 � 	) confidence interval for the ratio of the population variances is

(2.50)

To illustrate the use of Equation 2.50, the 95 percent confidence interval for the ratio of vari-
ances in Example 2.2 is, using F0.025,9,11 � 3.59 and F0.975,9,11 � 1/F0.025,11,9 � 1/3.92 �
0.255,

2.7 Problems
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2.1. Computer output for a random sample of data is
shown below. Some of the quantities are missing. Compute
the values of the missing quantities.

Variable N Mean SE Mean Std. Dev. Variance Minimum Maximum

Y 9 19.96 ? 3.12 ? 15.94 27.16

2.2. Computer output for a random sample of data is
shown below. Some of the quantities are missing. Compute
the values of the missing quantities.

Variable N Mean SE Mean Std. Dev. Sum

Y 16 ? 0.159 ? 399.851

2.3. Suppose that we are testing H0 : � � �0 versus 
H1 : � � �0. Calculate the P-value for the following observed
values of the test statistic:

(a) Z0 � 2.25 (b) Z0 � 1.55 (c) Z0 � 2.10

(d) Z0 � 1.95 (e) Z0 � �0.10

2.4. Suppose that we are testing H0 : � � �0 versus 
H1 : � 
 �0. Calculate the P-value for the following observed
values of the test statistic:

(a) Z0 � 2.45 (b) Z0 � �1.53 (c) Z0 � 2.15

(d) Z0 � 1.95 (e) Z0 � �0.25

2.5. Consider the computer output shown below.

One-Sample Z

Test of mu � 30 vs not � 30

The assumed standard deviation � 1.2

N Mean SE Mean 95% CI Z P

16 31.2000 0.3000 (30.6120, 31.7880) ? ?

(a) Fill in the missing values in the output. What conclu-
sion would you draw?

(b) Is this a one-sided or two-sided test?

(c) Use the output and the normal table to find a 99 percent
CI on the mean.

(d)What is the P-value if the alternative hypothesis is 
H1 : � 
 30?

2.6. Suppose that we are testing H0 : �1 � �2 versus  H0 :
�1 � �2 where the two sample sizes are n1 � n2 � 12. Both
sample variances are unknown but assumed equal. Find
bounds on the P-value for the following observed values of
the test statistic.

(a) t0 � 2.30 (b) t0 � 3.41 (c) t0 � 1.95 (d) t0 � �2.45

2.7. Suppose that we are testing H0 : �1 � �2 versus H0 :
�1 
 �2 where the two sample sizes are n1 � n2 � 10. Both
sample variances are unknown but assumed equal. Find
bounds on the P-value for the following observed values of
the test statistic.

(a) t0 � 2.31 (b) t0 � 3.60 (c) t0 � 1.95 (d) t0 � 2.19

2.8. Consider the following sample data: 9.37, 13.04,
11.69, 8.21, 11.18, 10.41, 13.15, 11.51, 13.21, and 7.75. Is it
reasonable to assume that this data is a sample from a normal
distribution? Is there evidence to support a claim that the
mean of the population is 10?

2.9. A computer program has produced the following out-
put for a hypothesis-testing problem:

Difference in sample means:  2.35

Degrees of freedom: 18

Standard error of the difference in sample means: ?

Test statistic:  t0 = 2.01

P-value: 0.0298

(a) What is the missing value for the standard error?

(b) Is this a two-sided or a one-sided test?

(c) If 	 � 0.05, what are your conclusions?

(d) Find a 90% two-sided CI on the difference in
means.
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2.10. A computer program has produced the following out-
put for a hypothesis-testing problem:

Difference in sample means:  11.5

Degrees of freedom: 24

Standard error of the difference in sample means: ?

Test statistic:  t0 = -1.88

P-value: 0.0723

(a) What is the missing value for the standard error?

(b) Is this a two-sided or a one-sided test?

(c) If 	 � 0.05, what are your conclusions?

(d) Find a 95% two-sided CI on the difference in means.

2.11. Suppose that we are testing H0 : � � �0 versus 
H1 : � 
 �0 with a sample size of n � 15. Calculate bounds
on the P-value for the following observed values of the test
statistic:

(a) t0 � 2.35 (b) t0 � 3.55 (c) t0 � 2.00 (d) t0 � 1.55

2.12. Suppose that we are testing H0 : � � �0 versus 
H1 : � � �0 with a sample size of n � 10. Calculate bounds
on the P-value for the following observed values of the test
statistic:

(a) t0 � 2.48 (b) t0 � �3.95 (c) t0 � 2.69

(d) t0 � 1.88 (e) t0 � �1.25

2.13. Consider the computer output shown below.

One-Sample T: Y

Test of mu � 91 vs. not � 91

Variable N Mean Std. Dev. SE Mean 95% CI T P

Y 25 92.5805 ? 0.4673 (91.6160, ?) 3.38 0.002

(a) Fill in the missing values in the output. Can the null
hypothesis be rejected at the 0.05 level? Why?

(b) Is this a one-sided or a two-sided test?

(c) If the hypotheses had been H0 : � � 90 versus 
H1 : � � 90 would you reject the null hypothesis at the
0.05 level?

(d) Use the output and the t table to find a 99 percent two-
sided CI on the mean.

(e) What is the P-value if the alternative hypothesis is 
H1 : � 
 91?

2.14. Consider the computer output shown below.

One-Sample T: Y

Test of mu � 25 vs 
 25

95% Lower 
Variable N Mean Std. Dev. SE Mean Bound T P
Y 12 25.6818 ? 0.3360 ? ? 0.034

(a) How many degrees of freedom are there on the t-test
statistic?

(b) Fill in the missing information.

2.15. Consider the computer output shown below.

Two-Sample T-Test and Cl: Y1, Y2

Two-sample T for Y1 vs Y2

N Mean Std. Dev. SE Mean
Y1 20 50.19 1.71 0.38
Y2 20 52.52 2.48 0.55

Difference � mu (X1) � mu (X2)
Estimate for difference: � 2.33341
95% CI for difference: (� 3.69547, � 0.97135)
T-Test of difference�0 (vs not �) : T-Value� �3.47 
P-Value�0.001 DF�38
Both use Pooled Std. Dev. � 2.1277

(a) Can the null hypothesis be rejected at the 0.05 level?
Why?

(b) Is this a one-sided or a two-sided test?

(c) If the hypotheses had been H0 : �1 � �2 � 2 versus 
H1 : �1 � �2 � 2 would you reject the null hypothesis
at the 0.05 level?

(d) If the hypotheses had been H0 : �1 � �2 � 2 versus 
H1 : �1 � �2 � 2 would you reject the null hypothesis
at the 0.05 level? Can you answer this question with-
out doing any additional calculations? Why?

(e) Use the output and the t table to find a 95 percent
upper confidence bound on the difference in means.

(f) What is the P-value if the hypotheses are  H0 : �1 �
�2 � 2 versus H1: �1 � �2 � 2?

2.16. The breaking strength of a fiber is required to be at
least 150 psi. Past experience has indicated that the standard
deviation of breaking strength is � � 3 psi. A random sample
of four specimens is tested, and the results are y1 � 145, y2 �
153, y3 � 150, and y4 � 147.

(a) State the hypotheses that you think should be tested in
this experiment.

(b) Test these hypotheses using 	 � 0.05. What are your
conclusions?

(c) Find the P-value for the test in part (b).

(d) Construct a 95 percent confidence interval on the mean
breaking strength.

2.17. The viscosity of a liquid detergent is supposed to
average 800 centistokes at 25°C. A random sample of 16
batches of detergent is collected, and the average viscosity is
812. Suppose we know that the standard deviation of viscosity
is � � 25 centistokes.

(a) State the hypotheses that should be tested.

(b) Test these hypotheses using 	 � 0.05. What are your
conclusions?

(c) What is the P-value for the test?

(d) Find a 95 percent confidence interval on the mean.

2.18. The diameters of steel shafts produced by a certain
manufacturing process should have a mean diameter of 0.255
inches. The diameter is known to have a standard deviation of
� = 0.0001 inch. A random sample of 10 shafts has an aver-
age diameter of 0.2545 inch.
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(a) Set up appropriate hypotheses on the mean �.

(b) Test these hypotheses using 	 � 0.05. What are your
conclusions?

(c) Find the P-value for this test.

(d) Construct a 95 percent confidence interval on the mean
shaft diameter.

2.19. A normally distributed random variable has an
unknown mean � and a known variance �2 � 9. Find the sam-
ple size required to construct a 95 percent confidence interval
on the mean that has total length of 1.0.

2.20. The shelf life of a carbonated beverage is of interest.
Ten bottles are randomly selected and tested, and the follow-
ing results are obtained:

Days

108 138
124 163
124 159
106 134
115 139

(a) We would like to demonstrate that the mean shelf life
exceeds 120 days. Set up appropriate hypotheses for
investigating this claim.

(b) Test these hypotheses using 	 � 0.01. What are your
conclusions?

(c) Find the P-value for the test in part (b).

(d) Construct a 99 percent confidence interval on the mean
shelf life.

2.21. Consider the shelf life data in Problem 2.20. Can shelf
life be described or modeled adequately by a normal distribu-
tion? What effect would the violation of this assumption have
on the test procedure you used in solving Problem 2.15?

2.22. The time to repair an electronic instrument is a normal-
ly distributed random variable measured in hours. The repair
times for 16 such instruments chosen at random are as follows:

Hours

159 280 101 212
224 379 179 264
222 362 168 250
149 260 485 170

(a) You wish to know if the mean repair time exceeds 225
hours. Set up appropriate hypotheses for investigating
this issue.

(b) Test the hypotheses you formulated in part (a). What
are your conclusions? Use 	 � 0.05.

(c) Find the P-value for the test.

(d) Construct a 95 percent confidence interval on mean
repair time.

2.23. Reconsider the repair time data in Problem 2.22. Can
repair time, in your opinion, be adequately modeled by a nor-
mal distribution?

2.24. Two machines are used for filling plastic bottles with
a net volume of 16.0 ounces. The filling processes can be
assumed to be normal, with standard deviations of �1 � 0.015
and �2 � 0.018. The quality engineering department suspects
that both machines fill to the same net volume, whether or not
this volume is 16.0 ounces. An experiment is performed by
taking a random sample from the output of each machine.

Machine 1 Machine 2

16.03 16.01 16.02 16.03
16.04 15.96 15.97 16.04
16.05 15.98 15.96 16.02
16.05 16.02 16.01 16.01
16.02 15.99 15.99 16.00

(a) State the hypotheses that should be tested in this
experiment.

(b) Test these hypotheses using 	 � 0.05. What are your
conclusions?

(c) Find the P-value for this test.

(d) Find a 95 percent confidence interval on the difference
in mean fill volume for the two machines.

2.25. Two types of plastic are suitable for use by an elec-
tronic calculator manufacturer. The breaking strength of this
plastic is important. It is known that �1 � �2 � 1.0 psi. From
random samples of n1 � 10 and n2 � 12 we obtain � 162.5
and � 155.0. The company will not adopt plastic 1 unless
its breaking strength exceeds that of plastic 2 by at least 10
psi. Based on the sample information, should they use plastic
1? In answering this question, set up and test appropriate
hypotheses using 	 � 0.01. Construct a 99 percent confidence
interval on the true mean difference in breaking strength.

2.26. The following are the burning times (in minutes) of
chemical flares of two different formulations. The design
engineers are interested in both the mean and variance of the
burning times.

Type 1 Type 2

65 82 64 56
81 67 71 69
57 59 83 74
66 75 59 82
82 70 65 79

(a) Test the hypothesis that the two variances are equal.
Use 	 � 0.05.

(b) Using the results of (a), test the hypothesis that the
mean burning times are equal. Use 	 � 0.05. What is
the P-value for this test?

y2

y1



(c) Discuss the role of the normality assumption in this
problem. Check the assumption of normality for both
types of flares.

2.27. An article in Solid State Technology, “Orthogonal
Design for Process Optimization and Its Application to
Plasma Etching” by G. Z. Yin and D. W. Jillie (May 1987)
describes an experiment to determine the effect of the C2F6

flow rate on the uniformity of the etch on a silicon wafer
used in integrated circuit manufacturing. All of the runs
were made in random order. Data for two flow rates are as
follows:

C2F6 Flow Uniformity Observation

(SCCM) 1 2 3 4 5 6

125 2.7 4.6 2.6 3.0 3.2 3.8
200 4.6 3.4 2.9 3.5 4.1 5.1

(a) Does the C2F6 flow rate affect average etch uniformi-
ty? Use 	 � 0.05.

(b) What is the P-value for the test in part (a)?

(c) Does the C2F6 flow rate affect the wafer-to-wafer vari-
ability in etch uniformity? Use 	 � 0.05.

(d) Draw box plots to assist in the interpretation of the
data from this experiment.

2.28. A new filtering device is installed in a chemical unit.
Before its installation, a random sample yielded the follow-
ing information about the percentage of impurity: � 12.5,

� 101.17, and n1 � 8. After installation, a random sample
yielded � 10.2, � 94.73, n2 � 9.

(a) Can you conclude that the two variances are equal?
Use 	 � 0.05.

(b) Has the filtering device reduced the percentage of
impurity significantly? Use 	 � 0.05.

2.29. Photoresist is a light-sensitive material applied to
semiconductor wafers so that the circuit pattern can be
imaged on to the wafer. After application, the coated wafers
are baked to remove the solvent in the photoresist mixture
and to harden the resist. Here are measurements of photore-
sist thickness (in kA) for eight wafers baked at two differ-
ent temperatures. Assume that all of the runs were made in
random order.

95 �C 100 �C

11.176 5.263
7.089 6.748
8.097 7.461

11.739 7.015
11.291 8.133
10.759 7.418
6.467 3.772
8.315 8.963

S2
2y2

S2
1

y1
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(a) Is there evidence to support the claim that the high-
er baking temperature results in wafers with a lower
mean photoresist thickness? Use 	 � 0.05.

(b) What is the P-value for the test conducted in part (a)?

(c) Find a 95 percent confidence interval on the difference in
means. Provide a practical interpretation of this interval.

(d) Draw dot diagrams to assist in interpreting the results
from this experiment.

(e) Check the assumption of normality of the photoresist
thickness.

(f) Find the power of this test for detecting an actual dif-
ference in means of 2.5 kA.

(g) What sample size would be necessary to detect an
actual difference in means of 1.5 kA with a power of
at least 0.9?

2.30. Front housings for cell phones are manufactured in
an injection molding process. The time the part is allowed
to cool in the mold before removal is thought to influence
the occurrence of a particularly troublesome cosmetic
defect, flow lines, in the finished housing. After manufac-
turing, the housings are inspected visually and assigned a
score between 1 and 10 based on their appearance, with 10
corresponding to a perfect part and 1 corresponding to a
completely defective part. An experiment was conducted
using two cool-down times, 10 and 20 seconds, and 20
housings were evaluated at each level of cool-down time.
All 40 observations in this experiment were run in random
order. The data are as follows.

10 seconds 20 seconds

1 3 7 6
2 6 8 9
1 5 5 5
3 3 9 7
5 2 5 4
1 1 8 6
5 6 6 8
2 8 4 5
3 2 6 8
5 3 7 7

(a) Is there evidence to support the claim that the longer
cool-down time results in fewer appearance defects?
Use 	 � 0.05.

(b) What is the P-value for the test conducted in part (a)?

(c) Find a 95 percent confidence interval on the difference
in means. Provide a practical interpretation of this
interval.

(d) Draw dot diagrams to assist in interpreting the results
from this experiment.

(e) Check the assumption of normality for the data from
this experiment.



2.31. Twenty observations on etch uniformity on silicon
wafers are taken during a qualification experiment for a plas-
ma etcher. The data are as follows:

5.34 6.65 4.76 5.98 7.25

6.00 7.55 5.54 5.62 6.21

5.97 7.35 5.44 4.39 4.98

5.25 6.35 4.61 6.00 5.32

(a) Construct a 95 percent confidence interval estimate
of �2.

(b) Test the hypothesis that �2 � 1.0. Use 	 � 0.05. What
are your conclusions?

(c) Discuss the normality assumption and its role in this
problem.

(d) Check normality by constructing a normal probability
plot. What are your conclusions?

2.32. The diameter of a ball bearing was measured by 12
inspectors, each using two different kinds of calipers. The
results were

Inspector Caliper 1 Caliper 2

1 0.265 0.264
2 0.265 0.265
3 0.266 0.264
4 0.267 0.266
5 0.267 0.267
6 0.265 0.268
7 0.267 0.264
8 0.267 0.265
9 0.265 0.265

10 0.268 0.267
11 0.268 0.268
12 0.265 0.269

(a) Is there a significant difference between the means of
the population of measurements from which the two
samples were selected? Use 	 � 0.05.

(b) Find the P-value for the test in part (a).

(c) Construct a 95 percent confidence interval on the dif-
ference in mean diameter measurements for the two
types of calipers.

2.33. An article in the journal Neurology (1998, Vol. 50, pp.
1246–1252) observed that monozygotic twins share numerous
physical, psychological, and pathological traits. The investi-
gators measured an intelligence score of 10 pairs of twins.
The data obtained are as follows:

Pair Birth Order: 1 Birth Order: 2

1 6.08 5.73
2 6.22 5.80
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3 7.99 8.42
4 7.44 6.84
5 6.48 6.43
6 7.99 8.76
7 6.32 6.32
8 7.60 7.62
9 6.03 6.59

10 7.52 7.67

(a) Is the assumption that the difference in score is nor-
mally distributed reasonable?  

(b) Find a 95% confidence interval on the difference in
mean score. Is there any evidence that mean score
depends on birth order?

(c) Test an appropriate set of hypotheses indicating that
the mean score does not depend on birth order. 

2.34. An article in the Journal of Strain Analysis (vol. 18,
no. 2, 1983) compares several procedures for predicting the
shear strength for steel plate girders. Data for nine girders in
the form of the ratio of predicted to observed load for two of
these procedures, the Karlsruhe and Lehigh methods, are as
follows:

Girder Karlsruhe Method Lehigh Method

S1/1 1.186 1.061
S2/1 1.151 0.992
S3/1 1.322 1.063
S4/1 1.339 1.062
S5/1 1.200 1.065
S2/1 1.402 1.178
S2/2 1.365 1.037
S2/3 1.537 1.086
S2/4 1.559 1.052

(a) Is there any evidence to support a claim that there is a
difference in mean performance between the two
methods? Use 	 � 0.05.

(b) What is the P-value for the test in part (a)?

(c) Construct a 95 percent confidence interval for the dif-
ference in mean predicted to observed load.

(d) Investigate the normality assumption for both samples.

(e) Investigate the normality assumption for the difference
in ratios for the two methods.

(f) Discuss the role of the normality assumption in the
paired t-test.

2.35. The deflection temperature under load for two differ-
ent formulations of ABS plastic pipe is being studied. Two
samples of 12 observations each are prepared using each for-
mulation and the deflection temperatures (in °F) are reported
below:



Formulation 1 Formulation 2

206 193 192 177 176 198
188 207 210 197 185 188
205 185 194 206 200 189
187 189 178 201 197 203

(a) Construct normal probability plots for both samples.
Do these plots support assumptions of normality and
equal variance for both samples?

(b) Do the data support the claim that the mean deflection
temperature under load for formulation 1 exceeds that
of formulation 2? Use 	 � 0.05.

(c) What is the P-value for the test in part (a)?

2.36. Refer to the data in Problem 2.35. Do the data support
a claim that the mean deflection temperature under load for
formulation 1 exceeds that of formulation 2 by at least 3°F?

2.37. In semiconductor manufacturing wet chemical
etching is often used to remove silicon from the backs of
wafers prior to metalization. The etch rate is an important
characteristic of this process. Two different etching solutions
are being evaluated. Eight randomly selected wafers have
been etched in each solution, and the observed etch rates (in
mils/min) are as follows.

Solution 1 Solution 2

9.9 10.6 10.2 10.6
9.4 10.3 10.0 10.2

10.0 9.3 10.7 10.4
10.3 9.8 10.5 10.3

(a) Do the data indicate that the claim that both solutions
have the same mean etch rate is valid? Use 	 � 0.05
and assume equal variances.

(b) Find a 95 percent confidence interval on the difference
in mean etch rates.

(c) Use normal probability plots to investigate the adequa-
cy of the assumptions of normality and equal variances.

2.38. Two popular pain medications are being compared
on the basis of the speed of absorption by the body.
Specifically, tablet 1 is claimed to be absorbed twice as fast
as tablet 2. Assume that and are known. Develop a test
statistic for

2.39. Continuation of Problem 2.38. An article in Nature
(1972, pp. 225–226) reported on the levels of monoamine oxi-
dase in blood platelets for a sample of 43 schizophrenic

H1�2�1 Z �2

H0�2�1 � �2

�2
2�2

1
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patients resulting in � 2.69 and s1 � 2.30 while for a sam-
ple of 45 normal patients the results were � 6.35 and s2 �
4.03. The units are nm/mg protein/h. Use the results of the
previous problem to test the claim that the mean monoamine
oxidase level for normal patients is at last twice the mean level
for schizophrenic patients. Assume that the sample sizes are
large enough to use the sample standard deviations as the true
parameter values.

2.40. Suppose we are testing

where > are known. Our sampling resources are con-
strained such that n1 � n2 � N. Show that an allocation of the
observation n1 n2 to the two samp that lead the most powerful
test is in the ratio n1/n2 � �1/�2.

2.41. Continuation of Problem 2.40. Suppose that we
want to construct a 95% two-sided confidence interval on the
difference in two means where the two sample standard devi-
ations are known to be �1 � 4 and �2 � 8. The total sample
size is restricted to N � 30. What is the length of the 95% CI
if the sample sizes used by the experimenter are n1 � n2 � 15?
How much shorter would the 95% CI have been if the exper-
imenter had used an optimal sample size allocation?

2.42. Develop Equation 2.46 for a 100(1 � 	) percent con-
fidence interval for the variance of a normal distribution.

2.43. Develop Equation 2.50 for a 100(1 � 	) percent con-
fidence interval for the ratio , where and are the
variances of two normal distributions.

2.44. Develop an equation for finding a 100 (1 � 	) percent
confidence interval on the difference in the means of two nor-
mal distributions where . Apply your equation to the
Portland cement experiment data, and find a 95 percent confi-
dence interval.

2.45. Construct a data set for which the paired t-test statis-
tic is very large, but for which the usual two-sample or pooled
t-test statistic is small. In general, describe how you created
the data. Does this give you any insight regarding how the
paired t-test works?

2.46. Consider the experiment described in Problem 2.26.
If the mean burning times of the two flares differ by as much
as 2 minutes, find the power of the test. What sample size
would be required to detect an actual difference in mean burn-
ing time of 1 minute with a power of at least 0.90?

2.47. Reconsider the bottle filling experiment described in
Problem 2.24. Rework this problem assuming that the two
population variances are unknown but equal.

2.48. Consider the data from Problem 2.24. If the mean fill
volume of the two machines differ by as much as 0.25 ounces,
what is the power of the test used in Problem 2.19? What sam-
ple size would result in a power of at least 0.9 if the actual dif-
ference in mean fill volume is 0.25 ounces?

�2
1 Z �2

2

�2
2�2

1�2
1/�2

2

�2
2�2

1
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In Chapter 2, we discussed methods for comparing two conditions or treatments. For
example, the Portland cement tension bond experiment involved two different mortar for-

mulations. Another way to describe this experiment is as a single-factor experiment with
two levels of the factor, where the factor is mortar formulation and the two levels are the
two different formulation methods. Many experiments of this type involve more than two
levels of the factor. This chapter focuses on methods for the design and analysis of single-
factor experiments with an arbitrary number a levels of the factor (or a treatments). We will
assume that the experiment has been completely randomized.

3.1 An Example

In many integrated circuit manufacturing steps, wafers are completely coated with a layer of
material such as silicon dioxide or a metal. The unwanted material is then selectively removed
by etching through a mask, thereby creating circuit patterns, electrical interconnects, and
areas in which diffusions or metal depositions are to be made. A plasma etching process is
widely used for this operation, particularly in small geometry applications. Figure 3.1  shows
the important features of a typical single-wafer etching tool. Energy is supplied by a radio-
frequency (RF) generator causing plasma to be generated in the gap between the electrodes.
The chemical species in the plasma are determined by the particular gases used.
Fluorocarbons, such as CF4 (tetrafluoromethane) or C2F6 (hexafluoroethane), are often used
in plasma etching, but other gases and mixtures of gases are relatively common, depending
on the application.

An engineer is interested in investigating the relationship between the RF power setting
and the etch rate for this tool. The objective of an experiment like this is to model the rela-
tionship between etch rate and RF power, and to specify the power setting that will give a
desired target etch rate. She is interested in a particular gas (C2F6) and gap (0.80 cm) and
wants to test four levels of RF power: 160, 180, 200, and 220 W. She decided to test five
wafers at each level of RF power.

This is an example of a single-factor experiment with a � 4 levels of the factor and 
n � 5 replicates. The 20 runs should be made in random order. A very efficient way to gen-
erate the run order is to enter the 20 runs in a spreadsheet (Excel), generate a column of 
random numbers using the RAND ( ) function, and then sort by that column.

Gas supply

Gas control panel

RF
generator

Anode

Wafer
Cathode

Valve

Vacuum pump

■ F I G U R E 3 . 1 A single-wafer plasma etching tool



Suppose that the test sequence obtained from this process is given as below:

Excel Random 
Test Sequence Number (Sorted) Power

1 12417 200

2 18369 220

3 21238 220

4 24621 160

5 29337 160

6 32318 180

7 36481 200

8 40062 160

9 43289 180

10 49271 200

11 49813 220

12 52286 220

13 57102 160

14 63548 160

15 67710 220

16 71834 180

17 77216 180

18 84675 180

19 89323 200

20 94037 200

This randomized test sequence is necessary to prevent the effects of unknown nuisance vari-
ables, perhaps varying out of control during the experiment, from contaminating the results.
To illustrate this, suppose that we were to run the 20 test wafers in the original nonrandom-
ized order (that is, all five 160 W power runs are made first, all five 180 W power runs are
made next, and so on). If the etching tool exhibits a warm-up effect such that the longer it is
on, the lower the observed etch rate readings will be, the warm-up effect will potentially con-
taminate the data and destroy the validity of the experiment.

Suppose that the engineer runs the experiment that we have designed in the random
order. The observations that she obtains on etch rate are shown in Table 3.1.

It is always a good idea to examine experimental data graphically. Figure 3.2a presents box
plots for etch rate at each level of RF power, and Figure 3.2b a scatter diagram of etch rate ver-
sus RF power. Both graphs indicate that etch rate increases as the power setting increases. There
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■ TA B L E  3 . 1
Etch Rate Data (in Å/min) from the Plasma Etching Experiment

Observations
Power
(W) 1 2 3 4 5 Totals Averages

160 575 542 530 539 570 2756 551.2

180 565 593 590 579 610 2937 587.4

200 600 651 610 637 629 3127 625.4

220 725 700 715 685 710 3535 707.0



68 Chapter 3 ■ Experiments with a Single Factor: The Analysis of Variance

is no strong evidence to suggest that the variability in etch rate around the average depends on the
power setting. On the basis of this simple graphical analysis, we strongly suspect that (1) RF power
setting affects the etch rate and (2) higher power settings result in increased etch rate.

Suppose that we wish to be more objective in our analysis of the data. Specifically,
suppose that we wish to test for differences between the mean etch rates at all a � 4 levels
of RF power. Thus, we are interested in testing the equality of all four means. It might seem
that this problem could be solved by performing a t-test for all six possible pairs of means.
However, this is not the best solution to this problem. First of all, performing all six pairwise
t-tests is inefficient. It takes a lot of effort. Second, conducting all these pairwise compar-
isons inflates the type I error. Suppose that all four means are equal, so if we select 	 � 0.05,
the probability of reaching the correct decision on any single comparison is 0.95. However,
the probability of reaching the correct conclusion on all six comparisons is considerably less
than 0.95, so the type I error is inflated.

The appropriate procedure for testing the equality of several means is the analysis of
variance. However, the analysis of variance has a much wider application than the problem
above. It is probably the most useful technique in the field of statistical inference.

3.2 The Analysis of Variance

Suppose we have a treatments or different levels of a single factor that we wish to compare.
The observed response from each of the a treatments is a random variable. The data would appear
as in Table 3.2. An entry in Table 3.2 (e.g., yij) represents the jth observation taken under factor
level or treatment i. There will be, in general, n observations under the ith treatment. Notice that
Table 3.2 is the general case of the data from the plasma etching experiment in Table 3.1.
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■ F I G U R E 3 . 2 Box plots and scatter diagram of the etch rate data

■ TA B L E  3 . 2
Typical Data for a Single-Factor Experiment

Treatment
(Level) Observations Totals Averages

1 y11 y12 . . . y1n y1.

2 y21 y22 . . . y2n y2.

. . .

. . .

a ya1 ya2 . . . yan

y.. y..

ya.ya.

oooooo
y2.

y1.



Models for the Data. We will find it useful to describe the observations from an
experiment with a model. One way to write this model is

(3.1)

where yij is the ijth observation, �i is the mean of the ith factor level or treatment, and �ij is a
random error component that incorporates all other sources of variability in the experiment
including measurement, variability arising from uncontrolled factors, differences between the
experimental units (such as test material, etc.) to which the treatments are applied, and the
general background noise in the process (such as variability over time, effects of environmen-
tal variables, and so forth). It is convenient to think of the errors as having mean zero, so that
E(yij) � �i.

Equation 3.1 is called the means model. An alternative way to write a model for the
data is to define

so that Equation 3.1 becomes

(3.2)

In this form of the model, � is a parameter common to all treatments called the overall mean,
and �i is a parameter unique to the ith treatment called the ith treatment effect. Equation 3.2
is usually called the effects model.

Both the means model and the effects model are linear statistical models; that is, the
response variable yij is a linear function of the model parameters. Although both forms of the
model are useful, the effects model is more widely encountered in the experimental design lit-
erature. It has some intuitive appeal in that � is a constant and the treatment effects �i repre-
sent deviations from this constant when the specific treatments are applied.

Equation 3.2 (or 3.1) is also called the one-way or single-factor analysis of variance
(ANOVA) model because only one factor is investigated. Furthermore, we will require that
the experiment be performed in random order so that the environment in which the treatments
are applied (often called the experimental units) is as uniform as possible. Thus, the exper-
imental design is a completely randomized design. Our objectives will be to test appropri-
ate hypotheses about the treatment means and to estimate them. For hypothesis testing, the
model errors are assumed to be normally and independently distributed random variables with
mean zero and variance �2. The variance �2 is assumed to be constant for all levels of the fac-
tor. This implies that the observations

and that the observations are mutually independent.

Fixed or Random Factor? The statistical model, Equation 3.2, describes two differ-
ent situations with respect to the treatment effects. First, the a treatments could have been
specifically chosen by the experimenter. In this situation, we wish to test hypotheses about the
treatment means, and our conclusions will apply only to the factor levels considered in the
analysis. The conclusions cannot be extended to similar treatments that were not explicitly
considered. We may also wish to estimate the model parameters (�, �i, �2). This is called the
fixed effects model. Alternatively, the a treatments could be a random sample from a larg-
er population of treatments. In this situation, we should like to be able to extend the conclu-
sions (which are based on the sample of treatments) to all treatments in the population,

yij 
 N(� � �i, � 2)

yij � � � �i � �ij�i � 1, 2, . . . , a
j � 1, 2, . . . , n

�i � � � �i,   i � 1, 2, . . . , a

yij � �i � �ij�i � 1, 2, . . . , a
j � 1, 2, . . . , n
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70 Chapter 3 ■ Experiments with a Single Factor: The Analysis of Variance

whether or not they were explicitly considered in the analysis. Here, the �i are random vari-
ables, and knowledge about the particular ones investigated is relatively useless. Instead, we
test hypotheses about the variability of the �i and try to estimate this variability. This is called
the random effects model or components of variance model. We discuss the single-factor
random effects model in Section 3.9. However, we will defer a more complete discussion of
experiments with random factors to Chapter 13.

3.3 Analysis of the Fixed Effects Model

In this section, we develop the single-factor analysis of variance for the fixed effects model.
Recall that yi. represents the total of the observations under the ith treatment. Let represent
the average of the observations under the ith treatment. Similarly, let y.. represent the grand
total of all the observations and represent the grand average of all the observations.
Expressed symbolically,

(3.3)

where N � an is the total number of observations. We see that the “dot” subscript notation
implies summation over the subscript that it replaces.

We are interested in testing the equality of the a treatment means; that is, E(yij) � � �
�i � �i, i � 1, 2, . . . , a. The appropriate hypotheses are

(3.4)

In the effects model, we break the ith treatment mean �i into two components such that 
�i � � � �i. We usually think of � as an overall mean so that

This definition implies that

That is, the treatment or factor effects can be thought of as deviations from the overall mean.1

Consequently, an equivalent way to write the above hypotheses is in terms of the treatment
effects �i, say

Thus, we speak of testing the equality of treatment means or testing that the treatment effects
(the �i) are zero. The appropriate procedure for testing the equality of a treatment means is
the analysis of variance.

H1��i Z 0   for at least one i

H0��1 � �2 � Á �a � 0

�
a

i�1
�i � 0

�
a

i�1
�i

a � �

H1��i Z �j   for at least one pair (i, j)

H0��1 � �2 � Á � �a
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a

i�1
�
n

j�1
yij  y.. � y../N
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j�1
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1 For more information on this subject, refer to the supplemental text material for Chapter 3.



3.3.1 Decomposition of the Total Sum of Squares

The name analysis of variance is derived from a partitioning of total variability into its com-
ponent parts. The total corrected sum of squares

is used as a measure of overall variability in the data. Intuitively, this is reasonable because if
we were to divide SST by the appropriate number of degrees of freedom (in this case, an � 1 �
N � 1), we would have the sample variance of the y’s. The sample variance is, of course, a
standard measure of variability.

Note that the total corrected sum of squares SST may be written as

(3.5)

or

However, the cross-product term in this last equation is zero, because

Therefore, we have

(3.6)

Equation 3.6 is the fundamental ANOVA identity. It states that the total variability in the data,
as measured by the total corrected sum of squares, can be partitioned into a sum of squares
of the differences between the treatment averages and the grand average plus a sum of
squares of the differences of observations within treatments from the treatment average. Now,
the difference between the observed treatment averages and the grand average is a measure of
the differences between treatment means, whereas the differences of observations within a
treatment from the treatment average can be due to only random error. Thus, we may write
Equation 3.6 symbolically as

where SSTreatments is called the sum of squares due to treatments (i.e., between treatments), and
SSE is called the sum of squares due to error (i.e., within treatments). There are an � N total
observations; thus, SST has N � 1 degrees of freedom. There are a levels of the factor (and a
treatment means), so SSTreatments has a � 1 degrees of freedom. Finally, there are n replicates
within any treatment providing n � 1 degrees of freedom with which to estimate the experi-
mental error. Because there are a treatments, we have a(n � 1) � an � a � N � a degrees of
freedom for error.

It is instructive to examine explicitly the two terms on the right-hand side of the funda-
mental ANOVA identity. Consider the error sum of squares
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In this form, it is easy to see that the term within square brackets, if divided by n � 1, is the
sample variance in the ith treatment, or

Now a sample variances may be combined to give a single estimate of the common popula-
tion variance as follows:

Thus, SSE /(N � a) is a pooled estimate of the common variance within each of the a treatments.
Similarly, if there were no differences between the a treatment means, we could use the

variation of the treatment averages from the grand average to estimate �2. Specifically,

is an estimate of �2 if the treatment means are equal. The reason for this may be intuitively seen
as follows: The quantity estimates �2/n, the variance of the treatment
averages, so must estimate �2 if there are no differences in treatment
means.

We see that the ANOVA identity (Equation 3.6) provides us with two estimates of
�2—one based on the inherent variability within treatments and the other based on the
variability between treatments. If there are no differences in the treatment means, these
two estimates should be very similar, and if they are not, we suspect that the observed
difference must be caused by differences in the treatment means. Although we have used
an intuitive argument to develop this result, a somewhat more formal approach can be
taken.

The quantities

and

are called mean squares. We now examine the expected values of these mean squares.
Consider
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Substituting the model (Equation 3.1) into this equation, we obtain

Now when squaring and taking expectation of the quantity within the brackets, we see that
terms involving and are replaced by �2 and n�2, respectively, because E(�ij) � 0.
Furthermore, all cross products involving �ij have zero expectation. Therefore, after squaring
and taking expectation, the last equation becomes

or

By a similar approach, we may also show that2

Thus, as we argued heuristically, MSE � SSE/(N � a) estimates �2, and, if there are no differ-
ences in treatment means (which implies that �i � 0), MSTreatments � SSTreatments/(a � 1) also
estimates �2. However, note that if treatment means do differ, the expected value of the treat-
ment mean square is greater than � 2.

It seems clear that a test of the hypothesis of no difference in treatment means can be
performed by comparing MSTreatments and MSE. We now consider how this comparison may be
made.

3.3.2 Statistical Analysis

We now investigate how a formal test of the hypothesis of no differences in treatment means
(H0 :�1 � �2 � . . . � �a, or equivalently, H0:�1 � �2 � . . . � �a � 0) can be performed.
Because we have assumed that the errors �ij are normally and independently distributed with
mean zero and variance �2, the observations yij are normally and independently distributed
with mean � � �i and variance �2. Thus, SST is a sum of squares in normally distributed
random variables; consequently, it can be shown that SST /�2 is distributed as chi-square with
N � 1 degrees of freedom. Furthermore, we can show that SSE /�2 is chi-square with N � a
degrees of freedom and that SSTreatments/�

2 is chi-square with a � 1 degrees of freedom if the
null hypothesis H0 :�i � 0 is true. However, all three sums of squares are not necessarily
independent because SSTreatments and SSE add to SST. The following theorem, which is a spe-
cial form of one attributed to William G. Cochran, is useful in establishing the independence
of SSE and SSTreatments.
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Because the degrees of freedom for SSTreatments and SSE add to N � 1, the total number
of degrees of freedom, Cochran’s theorem implies that SSTreatments/�

2 and SSE /�2 are independ-
ently distributed chi-square random variables. Therefore, if the null hypothesis of no differ-
ence in treatment means is true, the ratio

(3.7)

is distributed as F with a � 1 and N � a degrees of freedom. Equation 3.7 is the test statis-
tic for the hypothesis of no differences in treatment means.

From the expected mean squares we see that, in general, MSE is an unbiased estimator of
�2. Also, under the null hypothesis, MSTreatments is an unbiased estimator of �2. However, if the
null hypothesis is false, the expected value of MSTreatments is greater than �2. Therefore, under the
alternative hypothesis, the expected value of the numerator of the test statistic (Equation 3.7) is
greater than the expected value of the denominator, and we should reject H0 on values of the test
statistic that are too large. This implies an upper-tail, one-tail critical region. Therefore, we
should reject H0 and conclude that there are differences in the treatment means if

where F0 is computed from Equation 3.7. Alternatively, we could use the P-value approach
for decision making. The table of F percentages in the Appendix (Table IV) can be used to
find bounds on the P-value.

The sums of squares may be computed in several ways. One direct approach is to make
use of the definition

Use a spreadsheet to compute these three terms for each observation. Then, sum up the
squares to obtain SST, SSTreatments, and SSE. Another approach is to rewrite and simplify the def-
initions of SSTreatments and SST in Equation 3.6, which results in

(3.8)

(3.9)

and

(3.10)SSE � SST � SSTreatments
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1
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N
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�
n

j�1
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..

N

yij � y.. � (yi. � y..) � (yij � yi.)

F0 � F	,a�1,N�a

F0 �
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SSE/(N � a)
�

MSTreatments

MSE

THEOREM 3-1
Cochran’s Theorem

Let Zi be NID(0, 1) for i � 1, 2, . . . , � and

where s � v, and Qi has vi degrees of freedom (i � 1, 2, . . . , s). Then Q1, Q2, . . . , Qs

are independent chi-square random variables with v1, v2, . . . , vs degrees of freedom,
respectively, if and only if

� � �1 � �2 � Á � �s

�
�

i�1
Z 2

i � Q1 � Q2 � Á � Qs



This approach is nice because some calculators are designed to accumulate the sum of entered
numbers in one register and the sum of the squares of those numbers in another, so each num-
ber only has to be entered once. In practice, we use computer software to do this.

The test procedure is summarized in Table 3.3. This is called an analysis of variance
(or ANOVA) table.
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■ TA B L E  3 . 3
The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F0

SSTreatments

Between treatments � a � 1 MSTreatments F0 �

Error (within treatments) SSE � SST � SSTreatments N � a MSE

Total SST � N�1�
a

i�1
�
n

j�1
(yij � y. . )2

MSTreatments

MSE
n �

a

i�1
 ( yi. � y..)

2

E X A M P L E  3 . 1 The Plasma Etching Experiment

To illustrate the analysis of variance, return to the first exam-
ple discussed in Section 3.1. Recall that the engineer is
interested in determining if the RF power setting affects the
etch rate, and she has run a completely randomized experi-
ment with four levels of RF power and five replicates. For
convenience, we repeat here the data from Table 3.1:

We will use the analysis of variance to test H0 :�1 �
�2 � �3 � �4 against the alternative H1: some means are
different. The sums of squares required are computed using
Equations 3.8, 3.9, and 3.10 as follows:

Observed Etch Rate (Å/min)
RF Power Totals Averages

(W) 1 2 3 4 5 yi.

160 575 542 530 539 570 2756 551.2

180 565 593 590 579 610 2937 587.4

200 600 651 610 637 629 3127 625.4

220 725 700 715 685 710 3535 707.0

y.. � 12,355 y.. � 617.75

yi.

� 66,870.55

�
1
5

 [(2756)2 � Á � (3535)2] �
(12,355)2

20

SSTreatments �
1
n �

4

i�1
y2

i. �
y2

..

N

� 72,209.75

� (575)2 � (542)2 � Á � (710)2 �
(12,355)2

20

SST � �
4

i�1
�
5

j�1
y2

ij �
y2

..

N

Usually, these calculations would be performed on a
computer, using a software package with the capability to
analyze data from designed experiments.

The ANOVA is summarized in Table 3.4. Note that the
RF power or between-treatment mean square (22,290.18)
is many times larger than the within-treatment or error
mean square (333.70). This indicates that it is unlikely
that the treatment means are equal. More formally, we

� 72,209.75 � 66,870.55 � 5339.20
SSE � SST � SSTreatments
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can compute the F ratio F0 � 22,290.18/333.70 � 66.80
and compare this to an appropriate upper-tail percentage
point of the F3,16 distribution. To use a fixed significance
level approach, suppose that the experimenter has select-
ed 	 � 0.05. From Appendix Table IV we find that
F0.05,3,16 � 3.24. Because F0 � 66.80 
 3.24, we reject
H0 and conclude that the treatment means differ; that is,
the RF power setting significantly affects the mean etch

■ TA B L E  3 . 4
ANOVA for the Plasma Etching Experiment

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F0 P-Value

RF Power 66,870.55 3 22,290.18 F0 � 66.80 �0.01

Error 5339.20 16 333.70

Total 72,209.75 19 

rate. We could also compute a P-value for this test statis-
tic. Figure 3.3 shows the reference distribution (F3,16) for
the test statistic F0. Clearly, the P-value is very small in
this case. From Appendix Table A-4, we find that F0.01,3,16

� 5.29 and because F0 
 5.29, we can conclude that an
upper bound for the P-value is 0.01; that is, P � 0.01 (the
exact P-value is P � 2.88 � 10�9).
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F0 = 66.80F0F0.01,3,16
F0.05,3,16

■ F I G U R E  3 . 3 The reference distribution (F3,16) for
the test statistic F0 in Example 3.1

Coding the Data. Generally, we need not be too concerned with computing because
there are many widely available computer programs for performing the calculations. These
computer programs are also helpful in performing many other analyses associated with exper-
imental design (such as residual analysis and model adequacy checking). In many cases, these
programs will also assist the experimenter in setting up the design.

However, when hand calculations are necessary, it is sometimes helpful to code the
observations. This is illustrated in the next example.
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E X A M P L E  3 . 2 Coding the Observations

The ANOVA calculations may often be made more easily
or accurately by coding the observations. For example,
consider the plasma etching data in Example 3.1. Suppose
we subtract 600 from each observation. The coded data
are shown in Table 3.5. It is easy to verify that

and

SSE � 5339.20

�
(355)2

20
� 66,870.55

SSTreatments �
(�244)2 � (�63)2 � (127)2 � (535)2

5

� (110)2 �
(355)2

20
� 72,209.75

SST � (�25)2 � (�58)2 � Á

Comparing these sums of squares to those obtained in
Example 3.1, we see that subtracting a constant from the
original data does not change the sums of squares.

Now suppose that we multiply each observation in
Example 3.1 by 2. It is easy to verify that the sums of
squares for the transformed data are SST � 288,839.00,
SSTreatments � 267,482.20, and SSE � 21,356.80. These
sums of squares appear to differ considerably from those
obtained in Example 3.1. However, if they are divided
by 4 (i.e., 22), the results are identical. For example,
for the treatment sum of squares 267,482.20/4 �
66,870.55. Also, for the coded data, the F ratio is F �
(267,482.20/3)/(21,356.80/16) � 66.80, which is identi-
cal to the F ratio for the original data. Thus, the ANOVAs
are equivalent.

Randomization Tests and Analysis of Variance. In our development of the ANOVA
F test, we have used the assumption that the random errors �ij are normally and independently
distributed random variables. The F test can also be justified as an approximation to a random-
ization test. To illustrate this, suppose that we have five observations on each of two treatments
and that we wish to test the equality of treatment means. The data would look like this:

Treatment 1 Treatment 2

y11 y21

y12 y22

y13 y23

y14 y24

y15 y25

■ TA B L E  3 . 5
Coded Etch Rate Data for Example 3.2

Observations
RF Power Totals 

(W) 1 2 3 4 5 yi.

160 �25 �58 �70 �61 �30 �244

180 �35 �7 �10 �21 10 �63

200 0 51 10 37 29 127

220 125 100 115 85 110 535 
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We could use the ANOVA F test to test H0 : �1 � �2. Alternatively, we could use a somewhat
different approach. Suppose we consider all the possible ways of allocating the 10 numbers
in the above sample to the two treatments. There are 10!/5!5! � 252 possible arrangements
of the 10 observations. If there is no difference in treatment means, all 252 arrangements are
equally likely. For each of the 252 arrangements, we calculate the value of the F statistic using
Equation 3.7. The distribution of these F values is called a randomization distribution, and
a large value of F indicates that the data are not consistent with the hypothesis H0 : �1 � �2.
For example, if the value of F actually observed was exceeded by only five of the values of
the randomization distribution, this would correspond to rejection of H0 : �1 � �2 at a signif-
icance level of 	 � 5/252 � 0.0198 (or 1.98 percent). Notice that no normality assumption is
required in this approach.

The difficulty with this approach is that, even for relatively small problems, it is
computationally prohibitive to enumerate the exact randomization distribution. However,
numerous studies have shown that the exact randomization distribution is well approxi-
mated by the usual normal-theory F distribution. Thus, even without the normality
assumption, the ANOVA F test can be viewed as an approximation to the randomization
test. For further reading on randomization tests in the analysis of variance, see Box,
Hunter, and Hunter (2005).

3.3.3 Estimation of the Model Parameters

We now present estimators for the parameters in the single-factor model

and confidence intervals on the treatment means. We will prove later that reasonable estimates
of the overall mean and the treatment effects are given by

(3.11)

These estimators have considerable intuitive appeal; note that the overall mean is estimated
by the grand average of the observations and that any treatment effect is just the difference
between the treatment average and the grand average.

A confidence interval estimate of the ith treatment mean may be easily determined.
The mean of the ith treatment is

A point estimator of �i would be . Now, if we assume that the errors
are normally distributed, each treatment average is distributed NID(�i, �2/n). Thus, if �2

were known, we could use the normal distribution to define the confidence interval. Using the
MSE as an estimator of � 2, we would base the confidence interval on the t distribution.
Therefore, a 100(1 � 	) percent confidence interval on the ith treatment mean �i is

(3.12)

Differences in treatments are frequently of great practical interest. A 100(1 � 	) percent con-
fidence interval on the difference in any two treatments means, say �i � �j, would be

(3.13)yi. � yj. � t	/2,N�a�2MSE

n � �i � �j � yi. � yj. � t	/2,N�a�2MSE

n

yi. � t	/2,N�a�MSE

n � �i � yi. � t	/2,N�a�MSE

n

yi.

�̂i � �̂ � �̂i � yi.

�i � � � �i

�î � yi. � y..,   i � 1, 2, . . . , a

�̂ � y..

yij � � � �i � �ij
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E X A M P L E  3 . 3

Using the data in Example 3.1, we may find the estimates
of the overall mean and the treatment effects as �
12,355/20 � 617.75 and

A 95 percent confidence interval on the mean of
treatment 4 (220W of RF power) is computed from
Equation 3.12 as

�4̂ � y4. � y.. � 707.00 � 617.75 � 89.25
�3̂ � y3. � y.. � 625.40 � 617.75 � 7.65
�2̂ � y2. � y.. � 587.40 � 617.75 � �30.35
�1̂ � y1. � y.. � 551.20 � 617.75 � �66.55

�̂

or

Thus, the desired 95 percent confidence interval is
689.68 � �4 � 724.32.

707.00 � 17.32 � �4 � 707.00 � 17.32

Simultaneous Confidence Intervals. The confidence interval expressions given
in Equations 3.12 and 3.13 are one-at-a-time confidence intervals. That is, the confidence
level 1 � 	 applies to only one particular estimate. However, in many problems, the exper-
imenter may wish to calculate several confidence intervals, one for each of a number of
means or differences between means. If there are r such 100(1 � 	) percent confidence
intervals of interest, the probability that the r intervals will simultaneously be correct is at
least 1 � r	. The probability r	 is often called the experimentwise error rate or overall
confidence coefficient. The number of intervals r does not have to be large before the set of
confidence intervals becomes relatively uninformative. For example, if there are r � 5
intervals and 	 � 0.05 (a typical choice), the simultaneous confidence level for the set of
five confidence intervals is at least 0.75, and if r � 10 and 	 � 0.05, the simultaneous con-
fidence level is at least 0.50.

One approach to ensuring that the simultaneous confidence level is not too small is to
replace 	/2 in the one-at-a-time confidence interval Equations 3.12 and 3.13 with 	/(2r). This
is called the Bonferroni method, and it allows the experimenter to construct a set of r simul-
taneous confidence intervals on treatment means or differences in treatment means for which
the overall confidence level is at least 100(1 � 	) percent. When r is not too large, this is a
very nice method that leads to reasonably short confidence intervals. For more information,
refer to the supplemental text material for Chapter 3.

3.3.4 Unbalanced Data

In some single-factor experiments, the number of observations taken within each treatment
may be different. We then say that the design is unbalanced. The analysis of variance
described above may still be used, but slight modifications must be made in the sum of
squares formulas. Let ni observations be taken under treatment i (i � 1, 2, . . . , a) and N �

ni. The manual computational formulas for SST and SSTreatments become

(3.14)

and

(3.15)

No other changes are required in the analysis of variance.

SSTreatments � �
a

i�1

y2
i.

ni
�

y2
..

N

SST � �
a

i�1
�
ni

j�1
y2

ij �
y2

..

N

�a
i�1

707.00 � 2.120�333.70
5

� �4 � 707.00 � 2.120�333.70
5
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There are two advantages in choosing a balanced design. First, the test statistic is rela-
tively insensitive to small departures from the assumption of equal variances for the a treat-
ments if the sample sizes are equal. This is not the case for unequal sample sizes. Second, the
power of the test is maximized if the samples are of equal size.

3.4 Model Adequacy Checking

The decomposition of the variability in the observations through an analysis of variance identity
(Equation 3.6) is a purely algebraic relationship. However, the use of the partitioning to test for-
mally for no differences in treatment means requires that certain assumptions be satisfied.
Specifically, these assumptions are that the observations are adequately described by the model

and that the errors are normally and independently distributed with mean zero and constant
but unknown variance �2. If these assumptions are valid, the analysis of variance procedure
is an exact test of the hypothesis of no difference in treatment means.

In practice, however, these assumptions will usually not hold exactly. Consequently, it is
usually unwise to rely on the analysis of variance until the validity of these assumptions has
been checked. Violations of the basic assumptions and model adequacy can be easily investigated
by the examination of residuals. We define the residual for observation j in treatment i as

(3.16)

where is an estimate of the corresponding observation yij obtained as follows:

(3.17)

Equation 3.17 gives the intuitively appealing result that the estimate of any observation in the
ith treatment is just the corresponding treatment average.

Examination of the residuals should be an automatic part of any analysis of variance. If
the model is adequate, the residuals should be structureless; that is, they should contain no
obvious patterns. Through analysis of residuals, many types of model inadequacies and vio-
lations of the underlying assumptions can be discovered. In this section, we show how model
diagnostic checking can be done easily by graphical analysis of residuals and how to deal
with several commonly occurring abnormalities.

3.4.1 The Normality Assumption

A check of the normality assumption could be made by plotting a histogram of the residuals.
If the NID(0, �2) assumption on the errors is satisfied, this plot should look like a sample from
a normal distribution centered at zero. Unfortunately, with small samples, considerable fluc-
tuation in the shape of a histogram often occurs, so the appearance of a moderate departure
from normality does not necessarily imply a serious violation of the assumptions. Gross devi-
ations from normality are potentially serious and require further analysis.

An extremely useful procedure is to construct a normal probability plot of the resid-
uals. Recall from Chapter 2 that we used a normal probability plot of the raw data to check
the assumption of normality when using the t-test. In the analysis of variance, it is usually
more effective (and straightforward) to do this with the residuals. If the underlying error dis-
tribution is normal, this plot will resemble a straight line. In visualizing the straight line, place
more emphasis on the central values of the plot than on the extremes.

� yi.

� y.. � (yi. � y..)

ŷij � �̂ � �̂i

ŷij

eij � yij � ŷij

yij � � � �i � �ij



Table 3.6 shows the original data and the residuals for the etch rate data in Example 3.1.
The normal probability plot is shown in Figure 3.4. The general impression from examining
this display is that the error distribution is approximately normal. The tendency of the normal
probability plot to bend down slightly on the left side and upward slightly on the right side
implies that the tails of the error distribution are somewhat thinner than would be anticipated
in a normal distribution; that is, the largest residuals are not quite as large (in absolute value)
as expected. This plot is not grossly nonnormal, however.

In general, moderate departures from normality are of little concern in the fixed effects
analysis of variance (recall our discussion of randomization tests in Section 3.3.2). An error dis-
tribution that has considerably thicker or thinner tails than the normal is of more concern than a
skewed distribution. Because the F test is only slightly affected, we say that the analysis of
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■ TA B L E  3 . 6
Etch Rate Data and Residuals from Example 3.1a

Observations ( j)

Power (w) 1 2 3 4 5 � 

23.8 –9.2 –21.2 –12.2 18.8

160 575 (13) 542 (14) 530 (8) 539 (5) 570 (4) 551.2

–22.4 5.6 2.6 –8.4 22.6

180 565 (18) 593 (9) 590 (6) 579 (16) 610 (17) 587.4

–25.4 25.6 –15.4 11.6 3.6

200 600 (7) 651 (19) 610 (10) 637 (20) 629 (1) 625.4

18.0 –7.0 8.0 –22.0 3.0

220 725 (2) 700 (3) 715 (15) 685 (11) 710 (12) 707.0

aThe residuals are shown in the box in each cell. The numbers in parentheses indicate the order in which each experimental run was made. 
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■ F I G U R E  3 . 4
Normal probability
plot of residuals for
Example 3.1
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variance (and related procedures such as multiple comparisons) is robust to the normality
assumption. Departures from normality usually cause both the true significance level and the
power to differ slightly from the advertised values, with the power generally being lower. The ran-
dom effects model that we will discuss in Section 3.9 and Chapter 13 is more severely affected by
nonnormality.

A very common defect that often shows up on normal probability plots is one residual
that is very much larger than any of the others. Such a residual is often called an outlier. The
presence of one or more outliers can seriously distort the analysis of variance, so when a
potential outlier is located, careful investigation is called for. Frequently, the cause of the
outlier is a mistake in calculations or a data coding or copying error. If this is not the cause,
the experimental circumstances surrounding this run must be carefully studied. If the outly-
ing response is a particularly desirable value (high strength, low cost, etc.), the outlier may
be more informative than the rest of the data. We should be careful not to reject or discard
an outlying observation unless we have reasonably nonstatistical grounds for doing so. At
worst, you may end up with two analyses; one with the outlier and one without.

Several formal statistical procedures may be used for detecting outliers [e.g., see Stefansky
(1972), John and Prescott (1975), and Barnett and Lewis (1994)]. Some statistical software pack-
ages report the results of a statistical test for normality (such as the Anderson-Darling test) on the
normal probability plot of residuals. This should be viewed with caution as those tests usually
assume that the data to which they are applied are independent and residuals are not independent.

A rough check for outliers may be made by examining the standardized residuals

(3.18)

If the errors �ij are N(0, �2), the standardized residuals should be approximately normal with mean
zero and unit variance. Thus, about 68 percent of the standardized residuals should fall within the
limits 
1, about 95 percent of them should fall within 
2, and virtually all of them should fall
within 
3. A residual bigger than 3 or 4 standard deviations from zero is a potential outlier.

For the tensile strength data of Example 3.1, the normal probability plot gives no indi-
cation of outliers. Furthermore, the largest standardized residual is

which should cause no concern.

3.4.2 Plot of Residuals in Time Sequence

Plotting the residuals in time order of data collection is helpful in detecting strong correlation
between the residuals. A tendency to have runs of positive and negative residuals indicates pos-
itive correlation. This would imply that the independence assumption on the errors has been
violated. This is a potentially serious problem and one that is difficult to correct, so it is impor-
tant to prevent the problem if possible when the data are collected. Proper randomization of the
experiment is an important step in obtaining independence.

Sometimes the skill of the experimenter (or the subjects) may change as the experiment
progresses, or the process being studied may “drift” or become more erratic. This will often result
in a change in the error variance over time. This condition often leads to a plot of residuals ver-
sus time that exhibits more spread at one end than at the other. Nonconstant variance is a poten-
tially serious problem. We will have more to say on the subject in Sections 3.4.3 and 3.4.4.

Table 3.6 displays the residuals and the time sequence of data collection for the tensile
strength data. A plot of these residuals versus run order or time is shown in Figure 3.5. There
is no reason to suspect any violation of the independence or constant variance assumptions.

d1 �
e1

�MSE

�
25.6

�333.70
�

25.6
18.27

� 1.40

dij �
eij

�MSE



3.4.3 Plot of Residuals Versus Fitted Values

If the model is correct and the assumptions are satisfied, the residuals should be structureless;
in particular, they should be unrelated to any other variable including the predicted response.
A simple check is to plot the residuals versus the fitted values . (For the single-factor exper-
iment model, remember that , the ith treatment average.) This plot should not reveal
any obvious pattern. Figure 3.6 plots the residuals versus the fitted values for the tensile
strength data of Example 3.1. No unusual structure is apparent.

A defect that occasionally shows up on this plot is nonconstant variance. Sometimes the
variance of the observations increases as the magnitude of the observation increases. This would
be the case if the error or background noise in the experiment was a constant percentage of the
size of the observation. (This commonly happens with many measuring instruments—error is a
percentage of the scale reading.) If this were the case, the residuals would get larger as yij gets
larger, and the plot of residuals versus would look like an outward-opening funnel or mega-
phone. Nonconstant variance also arises in cases where the data follow a nonnormal, skewed dis-
tribution because in skewed distributions the variance tends to be a function of the mean.

If the assumption of homogeneity of variances is violated, the F test is only slightly affect-
ed in the balanced (equal sample sizes in all treatments) fixed effects model. However, in unbal-
anced designs or in cases where one variance is very much larger than the others, the problem
is more serious. Specifically, if the factor levels having the larger variances also have the small-
er sample sizes, the actual type I error rate is larger than anticipated (or confidence intervals have
lower actual confidence levels than were specified). Conversely, if the factor levels with larger
variances also have the larger sample sizes, the significance levels are smaller than anticipated
(confidence levels are higher). This is a good reason for choosing equal sample sizes whenev-
er possible. For random effects models, unequal error variances can significantly disturb infer-
ences on variance components even if balanced designs are used.

Inequality of variance also shows up occasionally on the plot of residuals versus run
order. An outward-opening funnel pattern indicates that variability is increasing over time.
This could result from operator/subject fatigue, accumulated stress on equipment, changes in
material properties such as catalyst degradation, or tool wear, or any of a number of causes.

ŷij

ŷij � yi.

ŷij
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The usual approach to dealing with nonconstant variance when it occurs for the above
reasons is to apply a variance-stabilizing transformation and then to run the analysis of
variance on the transformed data. In this approach, one should note that the conclusions of
the analysis of variance apply to the transformed populations.

Considerable research has been devoted to the selection of an appropriate transformation.
If experimenters know the theoretical distribution of the observations, they may utilize this
information in choosing a transformation. For example, if the observations follow the Poisson
distribution, the square root transformation or would be used. If 
the data follow the lognormal distribution, the logarithmic transformation is
appropriate. For binomial data expressed as fractions, the arcsin transformation

is useful. When there is no obvious transformation, the experimenter usually
empirically seeks a transformation that equalizes the variance regardless of the value of the mean.
We offer some guidance on this at the conclusion of this section. In factorial experiments, which
we introduce in Chapter 5, another approach is to select a transformation that minimizes the inter-
action mean square, resulting in an experiment that is easier to interpret. In Chapter 15, we discuss
in more detail methods for analytically selecting the form of the transformation. Transformations
made for inequality of variance also affect the form of the error distribution. In most cases, the
transformation brings the error distribution closer to normal. For more discussion of transforma-
tions, refer to Bartlett (1947), Dolby (1963), Box and Cox (1964), and Draper and Hunter (1969).

Statistical Tests for Equality of Variance. Although residual plots are frequently
used to diagnose inequality of variance, several statistical tests have also been proposed. These
tests may be viewed as formal tests of the hypotheses

A widely used procedure is Bartlett’s test. The procedure involves computing a statis-
tic whose sampling distribution is closely approximated by the chi-square distribution with 
a � 1 degrees of freedom when the a random samples are from independent normal popula-
tions. The test statistic is

(3.19)

where

and is the sample variance of the ith population.
The quantity q is large when the sample variances differ greatly and is equal to zero

when all are equal. Therefore, we should reject H0 on values of that are too large; that
is, we reject H0 only when

where is the upper 	 percentage point of the chi-square distribution with a � 1 degrees
of freedom. The P-value approach to decision making could also be used.

Bartlett’s test is very sensitive to the normality assumption. Consequently, when the
validity of this assumption is doubtful, Bartlett’s test should not be used.
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E X A M P L E  3 . 4

In the plasma etch experiment, the normality assumption is
not in question, so we can apply Bartlett’s test to the etch
rate data. We first compute the sample variances in each
treatment and find that � 400.7, � 280.3, � 421.3,
and � 232.5. ThenS 2

4

S 2
3S 2

2S 2
1

and the test statistic is

From Appendix Table III, we find that � 7.81 (the
P-value is P � 0.934), so we cannot reject the null hypoth-
esis. There is no evidence to counter the claim that all five
variances are the same. This is the same conclusion reached
by analyzing the plot of residuals versus fitted values.

� 2
0.05,3

� 2
0 � 2.3026

(0.21)
(1.10)

� 0.43

S 2
p �

4(400.7) � 4(280.3) � 4(421.3) � 4(232.5)
16

� 333.7

Because Bartlett’s test is sensitive to the normality assumption, there may be situations where
an alternative procedure would be useful. Anderson and McLean (1974) present a useful dis-
cussion of statistical tests for equality of variance. The modified Levene test [see Levene
(1960) and Conover, Johnson, and Johnson (1981)] is a very nice procedure that is robust to
departures from normality. To test the hypothesis of equal variances in all treatments, the
modified Levene test uses the absolute deviation of the observations yij in each treatment from
the treatment median, say, . Denote these deviations by

The modified Levene test then evaluates whether or not the means of these deviations are
equal for all treatments. It turns out that if the mean deviations are equal, the variances of the
observations in all treatments will be the same. The test statistic for Levene’s test is simply
the usual ANOVA F statistic for testing equality of means applied to the absolute deviations.

dij � �yij � ỹi ��i � 1, 2, . . . , a
j � 1, 2, . . . , ni

ỹi

E X A M P L E  3 . 5

A civil engineer is interested in determining whether four
different methods of estimating flood flow frequency pro-
duce equivalent estimates of peak discharge when applied to
the same watershed. Each procedure is used six times on the
watershed, and the resulting discharge data (in cubic feet per
second) are shown in the upper panel of Table 3.7. The
analysis of variance for the data, summarized in Table 3.8,
implies that there is a difference in mean peak discharge
estimates given by the four procedures. The plot of residu-
als versus fitted values, shown in Figure 3.7, is disturbing
because the outward-opening funnel shape indicates that the
constant variance assumption is not satisfied.

We will apply the modified Levene test to the peak dis-
charge data. The upper panel of Table 3.7 contains the treat-
ment medians and the lower panel contains the deviations
dij around the medians. Levene’s test consists of conducting
a standard analysis of variance on the dij. The F test statistic
that results from this is F0 � 4.55, for which the P-value is 
P � 0.0137. Therefore, Levene’s test rejects the null
hypothesis of equal variances, essentially confirming the
diagnosis we made from visual examination of Figure 3.7.
The peak discharge data are a good candidate for data trans-
formation.

ỹi

c � 1 �
1

3(3) �4
4

�
1
16� � 1.10

� log10421.3 � log10232.5] � 0.21
q � 16 log10(333.7) � 4[log10400.7 � log10280.3
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■ TA B L E  3 . 7
Peak Discharge Data

Estimation
Method Observations Si

1 0.34 0.12 1.23 0.70 1.75 0.12 0.71 0.520 0.66

2 0.91 2.94 2.14 2.36 2.86 4.55 2.63 2.610 1.09

3 6.31 8.37 9.75 6.09 9.82 7.24 7.93 7.805 1.66

4 17.15 11.82 10.95 17.20 14.35 16.82 14.72 15.59 2.77

Estimation
Method Deviations dij for the Modified Levene Test

1 0.18 0.40 0.71 0.18 1.23 0.40

2 1.70 0.33 0.47 0.25 0.25 1.94

3 1.495 0.565 1.945 1.715 2.015 0.565

4 1.56 3.77 4.64 1.61 1.24 1.23 

 ỹiyi.

■ TA B L E  3 . 8
Analysis of Variance for Peak Discharge Data

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0 P-Value

Methods 708.3471 3 236.1157 76.07 �0.001

Error 62.0811 20 3.1041

Total 770.4282 23 
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■ TA B L E  3 . 9
Variance-Stabilizing Transformations

Relationship
Between �y and � � � � 1 � � Transformation Comment

�y � constant 0 1 No transformation

�y � �1/2 1/2 1/2 Square root Poisson (count) data

�y � � 1 0 Log

�y � �3/2 3/2 �1/2 Reciprocal square root

�y � �2 2 �1 Reciprocal 

Empirical Selection of a Transformation. We observed above that if experi-
menters knew the relationship between the variance of the observations and the mean, they
could use this information to guide them in selecting the form of the transformation. We now
elaborate on this point and show one method for empirically selecting the form of the required
transformation from the data.

Let E(y) � � be the mean of y, and suppose that the standard deviation of y is propor-
tional to a power of the mean of y such that

We want to find a transformation on y that yields a constant variance. Suppose that the trans-
formation is a power of the original data, say

(3.20)

Then it can be shown that

(3.21)

Clearly, if we set � � 1 � 	, the variance of the transformed data y* is constant.
Several of the common transformations discussed previously are summarized in Table

3.9. Note that � � 0 implies the log transformation. These transformations are arranged in
order of increasing strength. By the strength of a transformation, we mean the amount of
curvature it induces. A mild transformation applied to data spanning a narrow range has lit-
tle effect on the analysis, whereas a strong transformation applied over a large range may
have dramatic results. Transformations often have little effect unless the ratio ymax/ymin is
larger than 2 or 3.

In many experimental design situations where there is replication, we can empirically
estimate 	 from the data. Because in the ith treatment combination where 

is a constant of proportionality, we may take logs to obtain

(3.22)

Therefore, a plot of log versus log �i would be a straight line with slope �. Because we
don’t know and �i, we may substitute reasonable estimates of them in Equation 3.22 and
use the slope of the resulting straight line fit as an estimate of 	. Typically, we would use the
standard deviation Si and the average of the ith treatment (or, more generally, the ith treat-
ment combination or set of experimental conditions) to estimate and �i.

To investigate the possibility of using a variance-stabilizing transformation on the
peak discharge data from Example 3.5, we plot log Si versus log in Figure 3.8. The slope
of a straight line passing through these four points is close to 1/2 and from Table 3.9 this
implies that the square root transformation may be appropriate. The analysis of variance for
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the transformed data y* � is presented in Table 3.10, and a plot of residuals versus the
predicted response is shown in Figure 3.9. This residual plot is much improved in compar-
ison to Figure 3.7, so we conclude that the square root transformation has been helpful.
Note that in Table 3.10 we have reduced the degrees of freedom for error and total by 1 to
account for the use of the data to estimate the transformation parameter 	.

In practice, many experimenters select the form of the transformation by simply trying
several alternatives and observing the effect of each transformation on the plot of residuals
versus the predicted response. The transformation that produced the most satisfactory resid-
ual plot is then selected. Alternatively, there is a formal method called the Box-Cox Method
for selecting a variance-stability transformation. In chapter 15 we discuss and illustrate this
procedure. It is widely used and implemented in many software packages.

3.4.4 Plots of Residuals Versus Other Variables

If data have been collected on any other variables that might possibly affect the response, the
residuals should be plotted against these variables. For example, in the tensile strength exper-
iment of Example 3.1, strength may be significantly affected by the thickness of the fiber, so
the residuals should be plotted versus fiber thickness. If different testing machines were used
to collect the data, the residuals should be plotted against machines. Patterns in such residual
plots imply that the variable affects the response. This suggests that the variable should be
either controlled more carefully in future experiments or included in the analysis.
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■ F I G U R E  3 . 8 Plot of log Si versus log
for the peak discharge data from Example 3.5yi.
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Example 3.5
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■ TA B L E  3 . 1 0
Analysis of Variance for Transformed Peak Discharge Data, y* �

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0 P-Value

Methods 32.6842 3 10.8947 76.99 �0.001

Error 2.6884 19 0.1415

Total 35.3726 22 

�y



3.5 Practical Interpretation of Results

After conducting the experiment, performing the statistical analysis, and investigating the
underlying assumptions, the experimenter is ready to draw practical conclusions about the
problem he or she is studying. Often this is relatively easy, and certainly in the simple exper-
iments we have considered so far, this might be done somewhat informally, perhaps by
inspection of graphical displays such as the box plots and scatter diagram in Figures 3.1 and
3.2. However, in some cases, more formal techniques need to be applied. We will present
some of these techniques in this section.

3.5.1 A Regression Model

The factors involved in an experiment can be either quantitative or qualitative. A quantitative
factor is one whose levels can be associated with points on a numerical scale, such as tempera-
ture, pressure, or time. Qualitative factors, on the other hand, are factors for which the levels
cannot be arranged in order of magnitude. Operators, batches of raw material, and shifts are typ-
ical qualitative factors because there is no reason to rank them in any particular numerical order.

Insofar as the initial design and analysis of the experiment are concerned, both types of
factors are treated identically. The experimenter is interested in determining the differences,
if any, between the levels of the factors. In fact, the analysis of variance treat the design fac-
tor as if it were qualitative or categorical. If the factor is really qualitative, such as operators,
it is meaningless to consider the response for a subsequent run at an intermediate level of the
factor. However, with a quantitative factor such as time, the experimenter is usually interest-
ed in the entire range of values used, particularly the response from a subsequent run at an
intermediate factor level. That is, if the levels 1.0, 2.0, and 3.0 hours are used in the experi-
ment, we may wish to predict the response at 2.5 hours. Thus, the experimenter is frequently
interested in developing an interpolation equation for the response variable in the experiment.
This equation is an empirical model of the process that has been studied.

The general approach to fitting empirical models is called regression analysis, which
is discussed extensively in Chapter 10. See also the supplemental text material for this
chapter. This section briefly illustrates the technique using the etch rate data of Example 3.1.

Figure 3.10 presents scatter diagrams of etch rate y versus the power x for the experi-
ment in Example 3.1. From examining the scatter diagram, it is clear that there is a strong
relationship between etch rate and power. As a first approximation, we could try fitting a lin-
ear model to the data, say

where �0 and �1 are unknown parameters to be estimated and � is a random error term. The
method often used to estimate the parameters in a model such as this is the method of least
squares. This consists of choosing estimates of the �’s such that the sum of the squares of the
errors (the �’s) is minimized. The least squares fit in our example is

(If you are unfamiliar with regression methods, see Chapter 10 and the supplemental text
material for this chapter.)

This linear model is shown in Figure 3.10a. It does not appear to be very satisfactory at
the higher power settings. Perhaps an improvement can be obtained by adding a quadratic
term in x. The resulting quadratic model fit is

ŷ � 1147.77 � 8.2555 x � 0.028375 x2

ŷ � 137.62 � 2.527x

y � �0 � �1x � �

3.5 Practical Interpretation of Results 89
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This quadratic fit is shown in Figure 3.10b. The quadratic model appears to be superior to the
linear model because it provides a better fit at the higher power settings.

In general, we would like to fit the lowest order polynomial that adequately describes
the system or process. In this example, the quadratic polynomial seems to fit better than the
linear model, so the extra complexity of the quadratic model is justified. Selecting the order
of the approximating polynomial is not always easy, however, and it is relatively easy to over-
fit, that is, to add high-order polynomial terms that do not really improve the fit but increase
the complexity of the model and often damage its usefulness as a predictor or interpolation
equation.

In this example, the empirical model could be used to predict etch rate at power settings
within the region of experimentation. In other cases, the empirical model could be used for
process optimization, that is, finding the levels of the design variables that result in the best
values of the response. We will discuss and illustrate these problems extensively later in the
book.

3.5.2 Comparisons Among Treatment Means

Suppose that in conducting an analysis of variance for the fixed effects model the null hypoth-
esis is rejected. Thus, there are differences between the treatment means but exactly which
means differ is not specified. Sometimes in this situation, further comparisons and analysis
among groups of treatment means may be useful. The ith treatment mean is defined as �i �
� � �i, and �i is estimated by . Comparisons between treatment means are made in terms
of either the treatment totals {yi.} or the treatment averages . The procedures for making
these comparisons are usually called multiple comparison methods. In the next several sec-
tions, we discuss methods for making comparisons among individual treatment means or
groups of these means.
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■ F I G U R E  3 . 1 0 Scatter diagrams and regression models for the etch rate data of Example 3.1



3.5.3 Graphical Comparisons of Means

It is very easy to develop a graphical procedure for the comparison of means following an
analysis of variance. Suppose that the factor of interest has a levels and that are
the treatment averages. If we know �, any treatment average would have a standard deviation
�/ . Consequently, if all factor level means are identical, the observed sample means 
would behave as if they were a set of observations drawn at random from a normal distribu-
tion with mean and standard deviation �/ . Visualize a normal distribution capable of
being slid along an axis below which the are plotted. If the treatment means are
all equal, there should be some position for this distribution that makes it obvious that the 
values were drawn from the same distribution. If this is not the case, the values that appear
not to have been drawn from this distribution are associated with factor levels that produce
different mean responses.

The only flaw in this logic is that � is unknown. Box, Hunter, and Hunter (2005)
point out that we can replace � with from the analysis of variance and use a t dis-
tribution with a scale factor instead of the normal. Such an arrangement for the
etch rate data of Example 3.1 is shown in Figure 3.11. Focus on the t distribution shown
as a solid line curve in the middle of the display.

To sketch the t distribution in Figure 3.11, simply multiply the abscissa t value by the
scale factor

and plot this against the ordinate of t at that point. Because the t distribution looks much like
the normal, except that it is a little flatter near the center and has longer tails, this sketch is
usually easily constructed by eye. If you wish to be more precise, there is a table of abscissa
t values and the corresponding ordinates in Box, Hunter, and Hunter (2005). The distribution
can have an arbitrary origin, although it is usually best to choose one in the region of the .
values to be compared. In Figure 3.11, the origin is 615 Å/min.

Now visualize sliding the t distribution in Figure 3.11 along the horizontal axis as indi-
cated by the dashed lines and examine the four means plotted in the figure. Notice that there
is no location for the distribution such that all four averages could be thought of as typical,
randomly selected observations from the distribution. This implies that all four means are not
equal; thus, the figure is a graphical display of the ANOVA results. Furthermore, the figure
indicates that all four levels of power (160, 180, 200, 220 W) produce mean etch rates that
differ from each other. In other words, �1 � �2 ��3 � �4.

This simple procedure is a rough but effective technique for many multiple comparison
problems. However, there are more formal methods. We now give a brief discussion of some
of these procedures.

yi

�MSE/n � �330.70/5 � 8.13

�MSE/n
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■ F I G U R E  3 . 1 1 Etch rate averages from Example 3.1 in relation to a t distribution
with scale factor � � 8.13�330.70/5�MSE/n
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3.5.4 Contrasts

Many multiple comparison methods use the idea of a contrast. Consider the plasma etching
experiment of Example 3.1. Because the null hypothesis was rejected, we know that some
power settings produce different etch rates than others, but which ones actually cause this dif-
ference? We might suspect at the outset of the experiment that 200 W and 220 W produce the
same etch rate, implying that we would like to test the hypothesis

or equivalently

(3.23)

If we had suspected at the start of the experiment that the average of the lowest levels of
power did not differ from the average of the highest levels of power, then the hypothesis
would have been

or

(3.24)

In general, a contrast is a linear combination of parameters of the form

where the contrast constants c1, c2, . . . , ca sum to zero; that is, ci � 0. Both of the above
hypotheses can be expressed in terms of contrasts:

(3.25)

The contrast constants for the hypotheses in Equation 3.23 are c1 � c2 � 0, c3 � �1, and 
c4 � �1, whereas for the hypotheses in Equation 3.24, they are c1 � c2 � �1 and c3 �
c4 � �1.

Testing hypotheses involving contrasts can be done in two basic ways. The first method
uses a t-test. Write the contrast of interest in terms of the treatment averages, giving

The variance of C is

(3.26)

when the sample sizes in each treatment are equal. If the null hypothesis in Equation 3.25 is
true, the ratio
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has the N(0, 1) distribution. Now we would replace the unknown variance �2 by its estimate,
the mean square error MSE and use the statistic

(3.27)

to test the hypotheses in Equation 3.25. The null hypothesis would be rejected if | t0 | in
Equation 3.27 exceeds t	/2,N�a.

The second approach uses an F test. Now the square of a t random variable with �
degrees of freedom is an F random variable with 1 numerator and v denominator degrees of
freedom. Therefore, we can obtain

(3.28)

as an F statistic for testing Equation 3.25. The null hypothesis would be rejected if F0 

F	,1,N�a. We can write the test statistic of Equation 3.28 as

where the single degree of freedom contrast sum of squares is

(3.29)

Confidence Interval for a Contrast. Instead of testing hypotheses about a contrast,
it may be more useful to construct a confidence interval. Suppose that the contrast of interest
is

Replacing the treatment means with the treatment averages yields

Because

the 100(1 � 	) percent confidence interval on the contrast is

(3.30)�
a

i�1
ci yi. � t	/2,N�a�MSE

n �
a

i�1
c2

i � �
a

i�1
ci �i � �

a

i�1
ci yi. � t	/2,N�a�MSE

n �
a

i�1
c2

i

� a
i�1ci�i

E��
a

i�1
ci yi.� � �

a

i�1
ci�i   and   V(C) � � 2/n �

a

i�1
c2

i

C � �
a

i�1
ci yi.

� � �
a

i�1
ci�i

SSC �
��

a

i�1
ci yi.�2

1
n �

a

i�1
c2

i

F0 �
MSC

MSE
�

SSC/1
MSE

F0 � t 2
0 �

��
a

i�1
ci yi.�2

MSE

n �
a

i�1
c2

i

t0 �
�
a

i�1
ci yi.

�MSE

n �
a

i�1
c2

i
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Note that we have used MSE to estimate �2. Clearly, if the confidence interval in Equation 3.30
includes zero, we would be unable to reject the null hypothesis in Equation 3.25.

Standardized Contrast. When more than one contrast is of interest, it is often useful to
evaluate them on the same scale. One way to do this is to standardize the contrast so that it has
variance �2. If the contrast is written in terms of treatment averages as , divid-
ing it by will produce a standardized contrast with variance �2. Effectively, then,
the standardized contrast is

where

Unequal Sample Sizes. When the sample sizes in each treatment are different, minor
modifications are made in the above results. First, note that the definition of a contrast now
requires that

Other required changes are straightforward. For example, the t statistic in Equation 3.27
becomes

and the contrast sum of squares from Equation 3.29 becomes

3.5.5 Orthogonal Contrasts

A useful special case of the procedure in Section 3.5.4 is that of orthogonal contrasts. Two
contrasts with coefficients {ci} and {di} are orthogonal if

or, for an unbalanced design, if

For a treatments, the set of a � 1 orthogonal contrasts partition the sum of squares due to
treatments into a � 1 independent single-degree-of-freedom components. Thus, tests per-
formed on orthogonal contrasts are independent.

�
a

i�1
nicidi � 0

�
a

i�1
cidi � 0

SSC �
��

a

i�1
ci yi.�2

�
a

i�1

c2
i

ni

t0 �
�
a

i�1
ci yi.

�MSE �
a

i�1

c2
i

ni

�
a

i�1
nici � 0

c*i �
ci

�1
n �

a

i�1
c2

i

�
a

i�1
c*i yi.

�(1/n)�a
i�1c

2
i

�a
i�1ci yi.�a

i�1ci�i



There are many ways to choose the orthogonal contrast coefficients for a set of treat-
ments. Usually, something in the nature of the experiment should suggest which comparisons
will be of interest. For example, if there are a � 3 treatments, with treatment 1 a control and
treatments 2 and 3 actual levels of the factor of interest to the experimenter, appropriate
orthogonal contrasts might be as follows:

Coefficients for 
Treatment Orthogonal Contrasts

1 (control) �2 0

2 (level 1) 1 �1

3 (level 2) 1 1

Note that contrast 1 with ci � �2, 1, 1 compares the average effect of the factor with the con-
trol, whereas contrast 2 with di � 0, �1, 1 compares the two levels of the factor of interest.

Generally, the method of contrasts (or orthogonal contrasts) is useful for what are called
preplanned comparisons. That is, the contrasts are specified prior to running the experiment
and examining the data. The reason for this is that if comparisons are selected after examin-
ing the data, most experimenters would construct tests that correspond to large observed dif-
ferences in means. These large differences could be the result of the presence of real effects,
or they could be the result of random error. If experimenters consistently pick the largest dif-
ferences to compare, they will inflate the type I error of the test because it is likely that, in an
unusually high percentage of the comparisons selected, the observed differences will be the
result of error. Examining the data to select comparisons of potential interest is often called
data snooping. The Scheffé method for all comparisons, discussed in the next section, per-
mits data snooping.
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Consider the plasma etching experiment in Example 3.1.
There are four treatment means and three degrees of free-
dom between these treatments. Suppose that prior to run-
ning the experiment the following set of comparisons
among the treatment means (and their associated contrasts)
were specified:

Hypothesis Contrast

H0 : �1 � �2 C1 �

H0 : �1 � �2 � �3 � �4 C2 �

H0 : �3 � �4 C3 �

Notice that the contrast coefficients are orthogonal. Using
the data in Table 3.4, we find the numerical values of the
contrasts and the sums of squares to be as follows:

SSC1
�

(�36.2)2

1
5

 (2)
� 3276.10

C1 � �1(551.2) � 1(587.4)  � �36.2

y3. � y4.

y1. � y2. � y3. � y4.

y1. � y2.

These contrast sums of squares completely partition the
treatment sum of squares. The tests on such orthogonal
contrasts are usually incorporated in the ANOVA, as
shown in Table 3.11. We conclude from the P-values that
there are significant differences in mean etch rates between
levels 1 and 2 and between levels 3 and 4 of the power set-
tings, and that the average of levels 1 and 2 does differ sig-
nificantly from the average of levels 3 and 4 at the 	 �
0.05 level.

SSC3
�

(�81.6)2

1
5

 (2)
� 16,646.40

C3 � �1(625.4) � 1(707.6)  � �81.6

SSC2
�

(�193.8)2

1
5

 (4)
� 46,948.05

C2 �
�1(551.2) � 1(587.4)
�1(625.4) � 1(707.0)

� �193.8
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■ TA B L E  3 . 1 1
Analysis of Variance for the Plasma Etching Experiment

Sum of Degrees of Mean 
Source of Variation Squares Freedom Square F0 P-Value

Power setting 66,870.55 3 22,290.18 66.80 �0.001
Orthogonal contrasts

C1 : �1 � �2 (3276.10) 1 3276.10 9.82 �0.01

C2 : �1 � �3 � �3 � �4 (46,948.05) 1 46,948.05 140.69 �0.001

C3 : �3 � �4 (16,646.40) 1 16,646.40 49.88 �0.001

Error 5,339.20 16 333.70

Total 72,209.75 19

3.5.6 Scheffé’s Method for Comparing All Contrasts

In many situations, experimenters may not know in advance which contrasts they wish to
compare, or they may be interested in more than a � 1 possible comparisons. In many
exploratory experiments, the comparisons of interest are discovered only after preliminary
examination of the data. Scheffé (1953) has proposed a method for comparing any and all
possible contrasts between treatment means. In the Scheffé method, the type I error is at most
	 for any of the possible comparisons.

Suppose that a set of m contrasts in the treatment means

(3.31)

of interest have been determined. The corresponding contrast in the treatment averages is

(3.32)

and the standard error of this contrast is

(3.33)

where ni is the number of observations in the ith treatment. It can be shown that the critical
value against which Cu should be compared is

(3.34)

To test the hypothesis that the contrast �u differs significantly from zero, refer Cu to the critical
value. If �Cu � 
 S	,u, the hypothesis that the contrast �u equals zero is rejected.

The Scheffé procedure can also be used to form confidence intervals for all possible
contrasts among treatment means. The resulting intervals, say Cu � S	,u � �u � Cu � S	,u, are
simultaneous confidence intervals in that the probability that all of them are simultaneously
true is at least 1 � 	.

S	,u � SCu
�(a � 1)F	,a�1,N�a

SCu
� �MSE �

a

i�1
 (c2

iu/ni)

Cu � c1uy1. � c2uy2. � Á � cauya.  u � 1, 2, . . . , m

yi.

�u � c1u�1 � c2u�2 � Á � cau�a  u � 1, 2, . . . , m



To illustrate the procedure, consider the data in Example 3.1 and suppose that the con-
trasts of interests are

and

The numerical values of these contrasts are

and

The standard errors are found from Equation 3.33 as

and

From Equation 3.34, the 1 percent critical values are

and

Because �C1� 
 S0.01,1, we conclude that the contrast �1 � �1 � �2 � �3 � �4 does not equal
zero; that is, we conclude that the mean etch rates of power settings 1 and 2 as a group differ
from the means of power settings 3 and 4 as a group. Furthermore, because �C2� 
 S0.01,2, we
conclude that the contrast �2 � �1 � �4 does not equal zero; that is, the mean etch rates of
treatments 1 and 4 differ significantly.

3.5.7 Comparing Pairs of Treatment Means

In many practical situations, we will wish to compare only pairs of means. Frequently, we
can determine which means differ by testing the differences between all pairs of treatment
means. Thus, we are interested in contrasts of the form � � �i � �j for all i � j. Although
the Scheffé method described in the previous section could be easily applied to this problem,
it is not the most sensitive procedure for such comparisons. We now turn to a consideration
of methods specifically designed for pairwise comparisons between all a population means.

Suppose that we are interested in comparing all pairs of a treatment means and that the null
hypotheses that we wish to test are H0 : �i � �j for all i � j. There are numerous procedures
available for this problem. We now present two popular methods for making such comparisons.

S0.01,2 � SC2
�(a � 1)F0.01,a�1,N�a � 11.55�3(5.29) � 45.97

S0.01,1 � SC1
�(a � 1)F0.01,a�1,N�a � 16.34�3(5.29) � 65.09

SC2
� �MSE �

5

i�1
 (c2

i2/ni) � �333.70(1 � 1)/5 � 11.55

SC1
� �MSE �

5

i�1
 (c2

i1/ni) � �333.70(1 � 1 � 1 � 1)/5 � 16.34

� 551.2 � 707.0 � �155.8

C2 � y1. � y4.

� 551.2 � 587.4 � 625.4 � 707.0 � �193.80

C1 � y1. � y2. � y3. � y4.

�2 � �1 � �4

�1 � �1 � �2 � �3 � �4
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Tukey’s Test. Suppose that, following an ANOVA in which we have rejected the null
hypothesis of equal treatment means, we wish to test all pairwise mean comparisons:

for all i � j. Tukey (1953) proposed a procedure for testing hypotheses for which the over-
all significance level is exactly 	 when the sample sizes are equal and at most 	 when the
sample sizes are unequal. His procedure can also be used to construct confidence intervals on
the differences in all pairs of means. For these intervals, the simultaneous confidence level is
100(1 � 	) percent when the sample sizes are equal and at least 100(1 � 	) percent when
sample sizes are unequal. In other words, the Tukey procedure controls the experimentwise
or “family” error rate at the selected level 	. This is an excellent data snooping procedure
when interest focuses on pairs of means.

Tukey’s procedure makes use of the distribution of the studentized range statistic

where and are the largest and smallest sample means, respectively, out of a group of
p sample means. Appendix Table VII contains values of q	( p, f ), the upper 	 percentage
points of q, where f is the number of degrees of freedom associated with the MSE. For equal
sample sizes, Tukey’s test declares two means significantly different if the absolute value of
their sample differences exceeds

(3.35)

Equivalently, we could construct a set of 100(1 � 	) percent confidence intervals for all pairs
of means as follows:

(3.36)

When sample sizes are not equal, Equations 3.35 and 3.36 become

(3.37)

and

(3.38)

respectively. The unequal sample size version is sometimes called the Tukey–Kramer
procedure.

� yi. � yj. �
q	(a, f )

�2 �MSE�1
ni

�
1
nj�, i � j

yi. � yj. �
q	(a, f )

�2 �MSE�1
ni

�
1
nj� � �i � �j

T	 �
q	(a, f )

�2 �MSE�1
ni

�
1
nj�

� yi. � yj. � q	(a, f )�MSE

n ,  i � j.

yi. � yj. � q	(a, f )�MSE

n � �i � �j

T	 � q	(a, f )�MSE

n

yminymax

q �
ymax � ymin

�MSE/n

H1��i � �j

H0��i � �j



When using any procedure for pairwise testing of means, we occasionally find that the
overall F test from the ANOVA is significant, but the pairwise comparison of means fails to
reveal any significant differences. This situation occurs because the F test is simultaneously
considering all possible contrasts involving the treatment means, not just pairwise compar-
isons. That is, in the data at hand, the significant contrasts may not be of the form �i � �j.

The derivation of the Tukey confidence interval of Equation 3.36 for equal sample sizes
is straightforward. For the studentized range statistic q, we have

If is less than or equal to q�(a, f ) , it must be true that
for every pair of means. Therefore

Rearranging this expression to isolate �i � �j between the inequalities will lead to the set of
100(1 � 	) percent simultaneous confidence intervals given in Equation 3.38.

The Fisher Least Significant Difference (LSD) Method. The Fisher method for
comparing all pairs of means controls the error rate 	 for each individual pairwise compari-
son but does not control the experimentwise or family error rate. This procedure uses the t sta-
tistic for testing H0 : �i � �j

(3.39)t0 �
yi. � yj.

�MSE�1
ni

�
1
nj�

P��q	(a, f )�MSE

n � yi. � yj. � (�i � �j) � q	(a, f )�MSE

n � � 1 � 	

� ( yi. � �i) � ( yj. � �j) � � q	(a, f )�MSE/n
�MSE/nmax( yi. � �i) � min( yi. � �i)

P�max( yi. � �i) � min(yi. � �i)

�MSE/n
� q	(a, f )� � 1 � 	
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To illustrate Tukey’s test, we use the data from the plasma
etching experiment in Example 3.1. With 	 � 0.05 and f �
16 degrees of freedom for error, Appendix Table VII gives
q0.05(4, 16) � 4.05. Therefore, from Equation 3.35,

Thus, any pairs of treatment averages that differ in absolute
value by more than 33.09 would imply that the correspon-
ding pair of population means are significantly different.
The four treatment averages are

y3. � 625.4  y4. � 707.0

y1. � 551.2  y2. � 587.4

T0.05 � q0.05(4, 16)�MSE

n � 4.05�333.70
5

� 33.09

and the differences in averages are

The starred values indicate the pairs of means that are sig-
nificantly different. Note that the Tukey procedure indicates
that all pairs of means differ. Therefore, each power setting
results in a mean etch rate that differs from the mean etch
rate at any other power setting.

y3. � y4. � 625.4 � 707.0 � �81.60*
y2. � y4. � 587.4 � 707.0 � �119.6*
y2. � y3. � 587.4 � 625.4 � �38.0*
y1. � y4. � 551.2 � 707.0 � �155.8*
y1. � y3. � 551.2 � 625.4 � �74.20*
y1. � y2. � 551.2 � 587.4 � �36.20*
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Note that the overall 	 risk may be considerably inflated using this method. Specifically,
as the number of treatments a gets larger, the experimentwise or family type I error rate (the
ratio of the number of experiments in which at least one type I error is made to the total num-
ber of experiments) becomes large.

Which Pairwise Comparison Method Do I Use? Certainly, a logical question at
this point is, Which one of these procedures should I use? Unfortunately, there is no clear-
cut answer to this question, and professional statisticians often disagree over the utility of
the various procedures. Carmer and Swanson (1973) have conducted Monte Carlo simula-
tion studies of a number of multiple comparison procedures, including others not discussed
here. They report that the least significant difference method is a very effective test for
detecting true differences in means if it is applied only after the F test in the ANOVA is sig-
nificant at 5 percent. However, this method does not contain the experimentwise error rate.
Because the Tukey method does control the overall error rate, many statisticians prefer to
use it.

As indicated above, there are several other multiple comparison procedures. For articles
describing these methods, see O’Neill and Wetherill (1971), Miller (1977), and Nelson
(1989). The books by Miller (1991) and Hsu (1996) are also recommended.

E X A M P L E  3 . 8

To illustrate the procedure, if we use the data from the
experiment in Example 3.1, the LSD at 	 � 0.05 is

LSD � t.025,16�2MSE

n � 2.120�2(333.70)
5

� 24.49

Assuming a two-sided alternative, the pair of means �i and �j would be declared significant-
ly different if . The quantity

(3.40)

is called the least significant difference. If the design is balanced, n1 � n2 � . . . � na � n,
and

(3.41)

To use the Fisher LSD procedure, we simply compare the observed difference between
each pair of averages to the corresponding LSD. If 
 LSD, we conclude that the
population means �i and �j differ. The t statistic in Equation 3.39 could also be used.

�yi. � yj. �

LSD � t	/2,N�a�2MSE

n

LSD � t	/2,N�a�MSE�1
ni

�
1
nj�

�yi. � yj. � � t	/2,N�a�MSE(1/ni � 1/nj)

Thus, any pair of treatment averages that differ in absolute
value by more than 24.49 would imply that the correspon-
ding pair of population means are significantly different.
The differences in averages are

y1. � y2. � 551.2 � 587.4 � �36.2*

The starred values indicate pairs of means that are signifi-
cantly different. Clearly, all pairs of means differ signifi-
cantly.

y3. � y4. � 625.4 � 707.0 � �81.6*

y2. � y4. � 587.4 � 707.0 � �119.6*

y2. � y3. � 587.4 � 625.4 � �38.0*

y1. � y4. � 551.2 � 707.0 � �155.8*

y1. � y3. � 551.2 � 625.4 � �74.2*



When comparing treatments with a control, it is a good idea to use more observations
for the control treatment (say na) than for the other treatments (say n), assuming equal num-
bers of observations for the remaining a � 1 treatments. The ratio na/n should be chosen to
be approximately equal to the square root of the total number of treatments. That is, choose
na/n � .�a

E X A M P L E  3 . 9

To illustrate Dunnett’s test, consider the experiment from
Example 3.1 with treatment 4 considered as the control. In
this example, a � 4, a � 1 � 3, f � 16, and ni � n � 5. At
the 5 percent level, we find from Appendix Table VIII that
d0.05(3, 16) � 2.59. Thus, the critical difference becomes

(Note that this is a simplification of Equation 3.42 resulting
from a balanced design.) Thus, any treatment mean that dif-

d0.05(3, 16)�2MSE

n � 2.59�2(333.70)
5

� 29.92

3.5.8 Comparing Treatment Means with a Control

In many experiments, one of the treatments is a control, and the analyst is interested in
comparing each of the other a � 1 treatment means with the control. Thus, only a � 1
comparisons are to be made. A procedure for making these comparisons has been devel-
oped by Dunnett (1964). Suppose that treatment a is the control and we wish to test the
hypotheses

for i � 1, 2, . . . , a � 1. Dunnett’s procedure is a modification of the usual t-test. For each
hypothesis, we compute the observed differences in the sample means

The null hypothesis H0 : �i � �a is rejected using a type I error rate 	 if

(3.42)

where the constant d	(a � 1, f ) is given in Appendix Table VIII. (Both two- and one-sided
tests are possible.) Note that 	 is the joint significance level associated with all a � 1 tests.

�yi. � ya. � � d	(a � 1, f )�MSE�1
ni

�
1
na�

�yi. � ya. �   i � 1, 2, . . . , a � 1

H1��i � �a

H0��i � �a
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fers in absolute value from the control by more than 29.92
would be declared significantly different. The observed dif-
ferences are

Note that all differences are significant. Thus, we
would conclude that all power settings are different from
the control.

3 vs. 4: y3. � y4. � 625.4 � 707.0 � �81.6

2 vs. 4: y2. � y4. � 587.4 � 707.0 � �119.6

1 vs. 4: y1. � y4. � 551.2 � 707.0 � �155.8
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3.6 Sample Computer Output

Computer programs for supporting experimental design and performing the analysis of variance
are widely available. The output from one such program, Design-Expert, is shown in Figure
3.12, using the data from the plasma etching experiment in Example 3.1. The sum of squares
corresponding to the “Model” is the usual SSTreatments for a single-factor design. That source is
further identified as “A.” When there is more than one factor in the experiment, the model sum
of squares will be decomposed into several sources (A, B, etc.). Notice that the analysis of vari-
ance summary at the top of the computer output contains the usual sums of squares, degrees of
freedom, mean squares, and test statistic F0. The column “Prob 
 F” is the P-value (actually,
the upper bound on the P-value because probabilities less than 0.0001 are defaulted to 0.0001).

In addition to the basic analysis of variance, the program displays some other useful
information. The quantity “R-squared” is defined as

and is loosely interpreted as the proportion of the variability in the data “explained” by the
ANOVA model. Thus, in the plasma etching experiment, the factor “power” explains about
92.61 percent of the variability in etch rate. Clearly, we must have 0 � R2 � 1, with larg-
er values being more desirable. There are also some other R2-like statistics displayed in
the output. The “adjusted” R2 is a variation of the ordinary R2 statistic that reflects the
number of factors in the model. It can be a useful statistic for more complex experiments
with several design factors when we wish to evaluate the impact of increasing or decreas-
ing the number of model terms. “Std. Dev.” is the square root of the error mean square,

, and “C.V.” is the coefficient of variation, defined as . The
coefficient of variation measures the unexplained or residual variability in the data as a per-
centage of the mean of the response variable. “PRESS” stands for “prediction error sum of
squares,” and it is a measure of how well the model for the experiment is likely to predict
the responses in a new experiment. Small values of PRESS are desirable. Alternatively, one
can calculate an R2 for prediction based on PRESS (we will show how to do this later). This

in our problem is 0.8845, which is not unreasonable, considering that the model
accounts for about 93 percent of the variability in the current experiment. The “adequate
precision” statistic is computed by dividing the difference between the maximum predict-
ed response and the minimum predicted response by the average standard deviation of all
predicted responses. Large values of this quantity are desirable, and values that exceed four
usually indicate that the model will give reasonable performance in prediction.

Treatment means are estimated, and the standard error (or sample standard deviation of
each treatment mean, ) is displayed. Differences between pairs of treatment means
are investigated by using a hypothesis testing version of the Fisher LSD method described in
Section 3.5.7.

The computer program also calculates and displays the residuals, as defined in Equation
3.16. The program will also produce all of the residual plots that we discussed in Section 3.4.
There are also several other residual diagnostics displayed in the output. Some of these will be
discussed later. Design-Expert also displays the studentized residual (called “Student Residual”
in the output), calculate as 

where Leverageij is a measure of the influence of the ijth observation on the model. We will dis-
cuss leverage in more detail and show how it is calculated in chapter 10. Studentized residuals

rij �
eij

�MSE (1 � Leverageij)

�MSE/n

R2
Pred

(�MSE/y )100�333.70 � 18.27

R2 �
SSModel

SSTotal
�

66,870.55
72,209.75

� 0.9261
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■ F I G U R E  3 . 1 2 Design-Expert computer output for Example 3.1
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One-way ANOVA: Etch Rate versus Power

Source
Power
Error
Total

DF
3

16
19

SS
66871

5339
72210

MS
22290

334

Level
160
180
200
220

N
5
5
5
5

Mean
551.20
587.40
625.40
707.00

Std.Dev.
20.02
16.74
20.53
15.25

Power
180
200
220

Lower
3.11

41.11
122.71

Center
36.20
74.20

155.80

Upper
69.29

107.29
188.89

Power
200
220

Lower
4.91

86.51

Center
38.00

119.60

Upper
71.09

152.69

( (

F
66.80

P
0.000

S = 18.27 R–Sq = 92.61% R–Sq (adj) = 91.22%

Individual 95% CIs For Mean Based on
Pooled StDev

*
( (*

( (*
( (*

( (*
( (*

( (*

550 600 700650

–100 0 200100

( (*
( (*

–100 0 200100

Pooled Std. Dev. = 18.27

Individual confidence level = 98.87%

Power = 160 subtracted from

Power = 180 subtracted from

Turkey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Power

Power
220

Lower
48.51

Center
81.60

Upper
114.69 ( (*

–100 0 200100

Power = 200 subtracted from

■ F I G U R E  3 . 1 3 Minitab computer output for Example 3.1

are considered to be more effective in identifying potential rather than either the ordinary resid-
uals or standardized residuals.

Finally, notice that the computer program also has some interpretative guidance embed-
ded in the output. This “advisory” information is fairly standard in many PC-based statistics
packages. Remember in reading such guidance that it is written in very general terms and may
not exactly suit the report writing requirements of any specific experimenter. This advisory
output may be hidden upon request by the user.

Figure 3.13 presents the output from Minitab for the plasma etching experiment. The out-
put is very similar to the Design-Expert output in Figure 3.12. Note that confidence intervals on
each individual treatment mean are provided and that the pairs of means are compared using
Tukey’s method. However, the Tukey method is presented using the confidence interval format
instead of the hypothesis-testing format that we used in Section 3.5.7. None of the Tukey con-
fidence intervals includes zero, so we would conclude that all of the means are different.
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Figure 3.14 is the output from JMP for the plasma etch experiment in Example 3.1.
The output information is very similar to that from Design-Expert and Minitab. The plots
of actual observations versus the predicted values and residuals versus the predicted values
are default output. There is an option in JMP to provide the Fisher LSD procedure or
Tukey’s method to compare all pairs of means.

3.7 Determining Sample Size

In any experimental design problem, a critical decision is the choice of sample size—that is,
determining the number of replicates to run. Generally, if the experimenter is interested 
in detecting small effects, more replicates are required than if the experimenter is interested in
detecting large effects. In this section, we discuss several approaches to determining sample
size. Although our discussion focuses on a single-factor design, most of the methods can be
used in more complex experimental situations.

3.7.1 Operating Characteristic Curves

Recall that an operating characteristic (OC) curve is a plot of the type II error probability
of a statistical test for a particular sample size versus a parameter that reflects the extent to
which the null hypothesis is false. These curves can be used to guide the experimenter in
selecting the number of replicates so that the design will be sensitive to important potential
differences in the treatments.

We consider the probability of type II error of the fixed effects model for the case of
equal sample sizes per treatment, say

(3.43)

To evaluate the probability statement in Equation 3.43, we need to know the distribution of
the test statistic F0 if the null hypothesis is false. It can be shown that, if H0 is false, the statistic
F0 � MSTreatments/MSE is distributed as a noncentral F random variable with a � 1 and N � a
degrees of freedom and the noncentrality parameter �. If � � 0, the noncentral F distribution
becomes the usual (central) F distribution.

Operating characteristic curves given in Chart V of the Appendix are used to evaluate
the probability statement in Equation 3.43. These curves plot the probability of type II error
(�) against a parameter �, where

(3.44)

The quantity �2 is related to the noncentrality parameter �. Curves are available for 	 � 0.05
and 	 � 0.01 and a range of degrees of freedom for numerator and denominator.

In using the OC curves, the experimenter must specify the parameter � and the value of
�2. This is often difficult to do in practice. One way to determine � is to choose the actual val-
ues of the treatment means for which we would like to reject the null hypothesis with high
probability. Thus, if �1, �2, . . . , �a are the specified treatment means, we find the �i in Equation
3.48 as �i � �i � , where � (1/a) �i is the average of the individual treatment means.
The estimate of �2 may be available from prior experience, a previous experiment or a prelim-
inary test (as suggested in Chapter 1), or a judgment estimate. When we are uncertain about
the value of �2, sample sizes could be determined for a range of likely values of �2 to study the
effect of this parameter on the required sample size before a final choice is made.

�a
i�1��

�2 �

n �
a

i�1
� 2

i

a� 2

� 1 � P{F0 � F	,a�1,N�a �H0 is false}

� � 1 � P{Reject H0�H0 is false}
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■ F I G U R E  3 . 1 4 JMP output from Example 3.1

Response Etch rate
Whole Model

RF power

Least Squares Means Table

Level Least Sq Mean Std Error Mean

160 551.20000 8.1694553 551.200
180 587.40000 8.1694553 587.400
200 625.40000 8.1694553 625.400
220 707.00000 8.1694553 707.000

Residual by Predicted Plot
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Summary of Fit
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691219.0jdAerauqSR
64762.81rorrEerauqSnaeMtooR
57.716esnopseRfonaeM
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Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 3 66870.550 22290.2 66.7971
Error 16 5339.200 333.7 Prob F
C. Total 19 72209.750 .0001

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F

RF power 3 3 66870.550 66.7971 .0001

Actual by Predicted Plot

750

700

650

600

550

550
Etch rate Predicted P < .0001
RSq = 0.93 RMSE = 18.267

E
tc

h
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A significant problem with this approach to using OC curves is that it is usually difficult to
select a set of treatment means on which the sample size decision should be based. An alternate
approach is to select a sample size such that if the difference between any two treatment means
exceeds a specified value, the null hypothesis should be rejected. If the difference between any
two treatment means is as large as D, it can be shown that the minimum value of �2 is

(3.45)

Because this is a minimum value of �2, the corresponding sample size obtained from the
operating characteristic curve is a conservative value; that is, it provides a power at least as
great as that specified by the experimenter.

To illustrate this approach, suppose that in the plasma etching experiment from Example
3.1, the experimenter wished to reject the null hypothesis with probability at least 0.90 if 
any two treatment means differed by as much as 75 Å/min and 	 � 0.01. Then, assuming that
� � 25 psi, we find the minimum value of �2 to be

�2 �
n(75)2

2(4)(252)
� 1.125n

�2 �
nD2

2a� 2
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E X A M P L E  3 . 1 0

Consider the plasma etching experiment described in
Example 3.1. Suppose that the experimenter is interested in
rejecting the null hypothesis with a probability of at least
0.90 if the four treatment means are

She plans to use 	 � 0.01. In this case, because 
2500, we have � (1/4)2500 � 625 and

Thus, � 6250. Suppose the experimenter feels that
the standard deviation of etch rate at any particular level of

�4
i�1�

2
i

�4 � �4 � � � 675 � 625 � 50

�3 � �3 � � � 650 � 625 � 25

�2 � �2 � � � 600 � 625 � �25

�1 � �1 � � � 575 � 625 � �50

�
�4

i�1�i �

�1 � 575  �2 � 600  �3 � 650  and  �4 � 675

power will be no larger than � � 25 Å/min. Then, by using
Equation 3.44, we have

We use the OC curve for a � 1 � 4 � 1 � 3 with N � a �
a(n � 1) � 4(n � 1) error degrees of freedom and 	 �
0.01 (see Appendix Chart V). As a first guess at the required
sample size, try n � 3 replicates. This yields �2 � 2.5n �
2.5(3) � 7.5, � � 2.74, and 4(2) � 8 error degrees of free-
dom. Consequently, from Chart V, we find that � 
 0.25.
Therefore, the power of the test is approximately 1 � � �
1 � 0.25 � 0.75, which is less than the required 0.90, and
so we conclude that n � 3 replicates are not sufficient.
Proceeding in a similar manner, we can construct the fol-
lowing display:

�2 �

n �
4

i�1
� 2

i

a� 2
�

n(6,250)

4(25)2
� 2.5n

n �2 � a(n � 1) � Power (1 � �)

3 7.5 2.74 8 0.25 0.75

4 10.0 3.16 12 0.04 0.96

5 12.5 3.54 16 �0.01 
0.99

Thus, 4 or 5 replicates are sufficient to obtain a test with the
required power.
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Now we can use the OC curves exactly as in Example 3.10. Suppose we try n � 4 repli-
cates. This results in �2 � 1.125(4) � 4.5, � � 2.12, and 4(3) � 12 degrees of freedom for
error. From the OC curve, we find that the power is approximately 0.65. For n � 5 replicates,
we have �2 � 5.625, � � 2.37, and 4(4) � 16 degrees of freedom for error. From the OC
curve, the power is approximately 0.8. For n � 6 replicates, we have �2 � 6.75, � � 2.60,
and 4(5) � 20 degrees of freedom for error. From the OC curve, the power exceeds 0.90, so
n � 6 replicates are required.

Minitab uses this approach to perform power calculations and find sample sizes for
single-factor ANOVAs. Consider the following display:

In the upper portion of the display, we asked Minitab to calculate the power for n � 5 repli-
cates when the maximum difference in treatment means is 75. Notice that the results closely
match those obtained from the OC curves. The bottom portion of the display the output when
the experimenter requests the sample size to obtain a target power of at least 0.90. Once again,
the results agree with those obtained from the OC curve.

3.7.2 Specifying a Standard Deviation Increase

This approach is occasionally helpful in choosing the sample size. If the treatment means do
not differ, the standard deviation of an observation chosen at random is �. If the treatment
means are different, however, the standard deviation of a randomly chosen observation is

If we choose a percentage P for the increase in the standard deviation of an observation
beyond which we wish to reject the hypothesis that all treatment means are equal, this is

�� 2 � ��
a

i�1
� 2

i /a�

Power and Sample Size

One-way ANOVA

Alpha � 0.01 Assumed standard deviation � 25 

Number of Levels � 4

Sample Maximum

SS Means Size Power Difference

 2812.5 5 0.804838 75

The sample size is for each level.

Power and Sample Size

One-way ANOVA

Alpha � 0.01 Assumed standard deviation � 25 

Number of Levels 5 4

Sample Target Maximum

SS Means Size Power Actual Power Difference

 2812.5 6 0.9 0.915384 75

The sample size is for each level.



equivalent to choosing

or

so that

(3.46)

Thus, for a specified value of P, we may compute � from Equation 3.46 and then use the
operating characteristic curves in Appendix Chart V to determine the required sample size.

For example, in the plasma etching experiment from Example 3.1, suppose that we wish
to detect a standard deviation increase of 20 percent with a probability of at least 0.90 and 
	 � 0.05. Then

Reference to the operating characteristic curves shows that n � 10 replicates would be
required to give the desired sensitivity.

3.7.3 Confidence Interval Estimation Method

This approach assumes that the experimenter wishes to express the final results in terms of
confidence intervals and is willing to specify in advance how wide he or she wants these con-
fidence intervals to be. For example, suppose that in the plasma etching experiment from
Example 3.1, we wanted a 95 percent confidence interval on the difference in mean etch rate
for any two power settings to be 
30 Å/min and a prior estimate of � is 25. Then, using
Equation 3.13, we find that the accuracy of the confidence interval is

Suppose that we try n � 5 replicates. Then, using �2 � (25)2 � 625 as an estimate of MSE ,
the accuracy of the confidence interval becomes

which does not meet the requirement. Trying n � 6 gives

Trying n � 7 gives

Clearly, n � 7 is the smallest sample size that will lead to the desired accuracy.

�2.064�2(625)
7

� �27.58

�2.086�2(625)
6

� �30.11

�2.120�2(625)
5

� �33.52

�t	/2,N�a�2MSE

n

� � �(1.2)2 � 1(�n) � 0.66�n

� �
��

a

i�1
� 2

i /a

�/�n
� �(1 � 0.01P)2 � 1(�n)

��
a

i�1
� 2

i /a

� � �(1 � 0.01P)2 � 1

�� 2 � ��
a

i�1
� 2

i /a�
� � 1 � 0.01P  (P � percent)
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The quoted level of significance in the above illustration applies only to one confi-
dence interval. However, the same general approach can be used if the experimenter wishes
to prespecify a set of confidence intervals about which a joint or simultaneous confidence
statement is made (see the comments about simultaneous confidence intervals in Section
3.3.3). Furthermore, the confidence intervals could be constructed about more general con-
trasts in the treatment means than the pairwise comparison illustrated above.

3.8 Other Examples of Single-Factor Experiments

3.8.1 Chocolate and Cardiovascular Health

An article in Nature describes an experiment to investigate the effect of consuming chocolate
on cardiovascular health (“Plasma Antioxidants from Chocolate,” Nature, Vol. 424, 2003,
pp. 1013). The experiment consisted of using three different types of chocolates: 100 g of dark
chocolate, 100 g of dark chocolate with 200 mL of full-fat milk, and 200 g of milk chocolate.
Twelve subjects were used, 7 women and 5 men, with an average age range of 32.2 
 1 years,
an average weight of 65.8 
 3.1 kg, and body-mass index of 21.9 
 0.4 kg m�2. On different
days a subject consumed one of the chocolate-factor levels and one hour later the total antiox-
idant capacity of their blood plasma was measured in an assay. Data similar to that summarized
in the article are shown in Table 3.12.

Figure 3.15 presents box plots for the data from this experiment. The result is an indication
that the blood antioxidant capacity one hour after eating the dark chocolate is higher than for the
other two treatments. The variability in the sample data from all three treatments seems very sim-
ilar. Table 3.13 is the Minitab ANOVA output. The test statistic is highly significant (Minitab
reports a P-value of 0.000, which is clearly wrong because P-values cannot be zero; this means
that the P-value is less than 0.001), indicating that some of the treatment means are different. The
output also contains the Fisher LSD analysis for this experiment. This indicates that the mean
antioxidant capacity after consuming dark chocolate is higher than after consuming dark choco-
late plus milk or milk chocolate alone, and the mean antioxidant capacity after consuming dark
chocolate plus milk or milk chocolate alone are equal. Figure 3.16 is the normal probability plot
of the residual and Figure 3.17 is the plot of residuals versus predicted values. These plots do not
suggest any problems with model assumptions. We conclude that consuming dark chocolate
results in higher mean blood antioxidant capacity after one hour than consuming either dark
chocolate plus milk or milk chocolate alone.

3.8.2 A Real Economy Application of a Designed Experiment

Designed experiments have had tremendous impact on manufacturing industries, including
the design of new products and the improvement of existing ones, development of new 

■ TA B L E  3 . 1 2
Blood Plasma Levels One Hour Following Chocolate Consumption

Subjects (Observations)

Factor 1 2 3 4 5 6 7 8 9 10 11 12

DC 118.8 122.6 115.6 113.6 119.5 115.9 115.8 115.1 116.9 115.4 115.6 107.9

DC+MK 105.4 101.1 102.7 97.1 101.9 98.9 100.0 99.8 102.6 100.9 104.5 93.5

MC 102.1 105.8 99.6 102.7 98.8 100.9 102.8 98.7 94.7 97.8 99.7 98.6
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■ F I G U R E  3 . 1 5 Box plots of the blood antioxidant
capacity data from the chocolate consumption experiment

■ TA B L E  3 . 1 3
Minitab ANOVA Output, Chocolate Consumption Experiment

One-way ANOVA: DC, DC+MK, MC 

Source  DF      SS     MS      F      P
Factor   2  1952.6  976.3  93.58  0.000
Error   33   344.3   10.4
Total   35  2296.9

S = 3.230   R-Sq = 85.01%   R-Sq(adj) = 84.10%

Individual 95% CIs For Mean Based on
Pooled StDev

Level   N    Mean  StDev   ---+---------+---------+---------+------
DC     12  116.06   3.53                                  (---*---)
DC+MK  12  100.70   3.24    (--*---)
MC     12  100.18   2.89   (--*---)

---+---------+---------+---------+------
100.0     105.0     110.0     115.0

Pooled StDev = 3.23

Fisher 95% Individual Confidence Intervals
All Pairwise Comparisons
Simultaneous confidence level = 88.02
DC subtracted from:

Lower   Center    Upper     -+---------+---------+---------+---
DC+MK  -18.041  -15.358  -12.675      (---*----)
MC     -18.558  -15.875  -13.192     (----*---)

-+---------+---------+---------+---
-18.0     -12.0      -6.0       0.0

DC+MK subtracted from:

Lower  Center  Upper     -+---------+---------+---------+--------
MC  -3.200  -0.517  2.166                               (---*----)

-+---------+---------+---------+--------
-18.0     -12.0      -6.0       0.0
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manufacturing processes, and process improvement. In the last 15 years, designed experi-
ments have begun to be widely used outside of this traditional environment. These applications
are in financial services, telecommunications, health care, e-commerce, legal services, market-
ing, logistics and transporation, and many of the nonmanufacturing components of manufac-
turing businesses. These types of businesses are sometimes referred to as the real economy. It
has been estimated that manufacturing accounts for only about 20 percent of the total US
economy, so applications of experimental design in the real economy are of growing impor-
tance. In this section, we present an example of a designed experiment in marketing.

A soft drink distributor knows that end-aisle displays are an effective way to increase
sales of the product. However, there are several ways to design these displays: by varying the
text displayed, the colors used, and the visual images. The marketing group has designed
three new end-aisle displays and wants to test their effectiveness. They have identified 15
stores of similar size and type to participate in the study. Each store will test one of the dis-
plays for a period of one month. The displays are assigned at random to the stores, and each
display is tested in five stores. The response variable is the percentage increase in sales activ-
ity over the typical sales for that store when the end-aisle display is not in use. The data from
this experiment are shown in Table 3.13.

Table 3.14 shows the analysis of the end-asile display experiment. This analysis was con-
ducted using JMP. The P-value for the model F statistic in the ANOVA indicates that there is a 
difference in the mean percentage increase in sales between the three display types. In this appli-
cation, we had JMP use the Fisher LSD procedure to compare the pairs of treatment means (JMP
labels these as the least squares means). The results of this comparison are presented as confidence
intervals on the difference in pairs of means. For pairs of means where the confidence interval
includes zero, we would not declare that pair of means are different. The JMP output indicates that
display designs 1 and 2 are similar in that they result in the same mean increase in sales, but that
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■ F I G U R E  3 . 1 6 Normal probability plot of the residu-
als from the chocolate consumption experiment
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■ F I G U R E  3 . 1 7 Plot of residuals versus the 
predicted values from the chocolate consumption 
experiment

■ TA B L E  3 . 1 3
The End-Aisle Display Experimental Design

Display
Design Sample Observations, Percent Increase in Sales

1 5.43 5.71 6.22 6.01 5.29

2 6.24 6.71 5.98 5.66 6.60

3 8.79 9.20 7.90 8.15 7.55



display design 3 is different from both designs 1 and 2 and that the mean increase in sales for dis-
play 3 exceeds that of both designs 1 and 2. Notice that JMP automatically includes some useful
graphics in the output, a plot of the actual observations versus the predicted values from the model,
and a plot of the residuals versus the predicted values. There is some mild indication that display
design 3 may exhibit more variability in sales increase than the other two designs.

■ TA B L E  3 . 1 4
JMP Output for the End-Aisle Display Experiment

Response Sales Increase
Whole Model

Summary of Fit

RSquare 0.856364
RSquare Adj 0.832425
Root Mean Square Error 0.512383
Mean of Response 6.762667
Observations (or Sum Wgts) 15

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio

Model 2 18.783053 9.39153 35.7722
Error 12 3.150440 0.26254 Prob
F
C.Total 14 21.933493 �.0001

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob � F

Display 2 2 18.783053 35.7722 �.001

Residual by Predicted Plot
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■ T A B L E  3 . 1 4 (Continued)

Least Squares Means Table
Level Least Sq Mean Std Error Mean
1 5.7320000 0.22914479 5.73200
2 6.2380000 0.22914479 6.23800
3 8.3180000 0.22914479 8.31800

LSMeans Differences Student’s t
a � 0.050 t � 2.17881
LSMean[i] By LSMean [i]

Level Least Sq Mean
3 A 8.3180000
2 B 6.2380000
1 B 5.7320000

Levels not connected by same letter are significantly different.

3.8.3 Discovering Dispersion Effects

We have focused on using the analysis of variance and related methods to determine which
factor levels result in differences among treatment or factor level means. It is customary to
refer to these effects as location effects. If there was inequality of variance at the different
factor levels, we used transformations to stabilize the variance to improve our inference on
the location effects. In some problems, however, we are interested in discovering whether the
different factor levels affect variability; that is, we are interested in discovering potential dis-
persion effects. This will occur whenever the standard deviation, variance, or some other
measure of variability is used as a response variable.

To illustrate these ideas, consider the data in Table 3.15, which resulted from a designed
experiment in an aluminum smelter. Aluminum is produced by combining alumina with other
ingredients in a reaction cell and applying heat by passing electric current through the cell.
Alumina is added continuously to the cell to maintain the proper ratio of alumina to other ingre-
dients. Four different ratio control algorithms were investigated in this experiment. The response
variables studied were related to cell voltage. Specifically, a sensor scans cell voltage several
times each second, producing thousands of voltage measurements during each run of the exper-
iment. The process engineers decided to use the average voltage and the standard deviation of

Mean[i]-Mean [i] 1 2 3
Std Err Dif
Lower CL Dif
Upper CL Dif
1 0 �0.506 �2.586

0 0.32406 0.32406
0 �1.2121 �3.2921
0 0.20007 �1.8799

2 0.506 0 �2.08
0.32406 0 0.32406

�0.2001 0 �2.7861
1.21207 0 �1.3739

3 2.586 2.08 0
0.32406 0.32406 0
1.87993 1.37393 0
3.29207 2.78607 0



cell voltage (shown in parentheses) over the run as the response variables. The average voltage
is important because it affects cell temperature, and the standard deviation of voltage (called
“pot noise” by the process engineers) is important because it affects the overall cell efficiency.

An analysis of variance was performed to determine whether the different ratio control
algorithms affect average cell voltage. This revealed that the ratio control algorithm had no
location effect; that is, changing the ratio control algorithms does not change the average cell
voltage. (Refer to Problem 3.38.)

To investigate dispersion effects, it is usually best to use

as a response variable since the log transformation is effective in stabilizing variability in the
distribution of the sample standard deviation. Because all sample standard deviations of pot
voltage are less than unity, we will use

as the response variable. Table 3.16 presents the analysis of variance for this response, the nat-
ural logarithm of “pot noise.” Notice that the choice of a ratio control algorithm affects pot
noise; that is, the ratio control algorithm has a dispersion effect. Standard tests of model ade-
quacy, including normal probability plots of the residuals, indicate that there are no problems
with experimental validity. (Refer to Problem 3.39.)

Figure 3.18 plots the average log pot noise for each ratio control algorithm and also
presents a scaled t distribution for use as a reference distribution in discriminating between
ratio control algorithms. This plot clearly reveals that ratio control algorithm 3 produces

y � �ln(s)

log(s)  or  log(s 2)
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3 1 4 2

Average log pot noise [–ln (s)]

4.003.002.00

■ F I G U R E  3 . 1 8 Average
log pot noise [�ln (s)] for 
four ratio control algorithms 
relative to a scaled t distribution
with scale factor 
�0.094/6 � 0.125

�MSE/n �

■ TA B L E  3 . 1 5
Data for the Smelting Experiment

Ratio
Control Observations
Algorithm 1 2 3 4 5 6

1 4.93(0.05) 4.86(0.04) 4.75(0.05) 4.95(0.06) 4.79(0.03) 4.88(0.05)
2 4.85(0.04) 4.91(0.02) 4.79(0.03) 4.85(0.05) 4.75(0.03) 4.85(0.02)
3 4.83(0.09) 4.88(0.13) 4.90(0.11) 4.75(0.15) 4.82(0.08) 4.90(0.12)
4 4.89(0.03) 4.77(0.04) 4.94(0.05) 4.86(0.05) 4.79(0.03) 4.76(0.02)

■ TA B L E  3 . 1 6
Analysis of Variance for the Natural Logarithm of Pot Noise

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0 P-Value

Ratio control algorithm 6.166 3 2.055 21.96 �0.001

Error 1.872 20 0.094

Total 8.038 23
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greater pot noise or greater cell voltage standard deviation than the other algorithms. There
does not seem to be much difference between algorithms 1, 2, and 4.

3.9 The Random Effects Model

3.9.1 A Single Random Factor

An experimenter is frequently interested in a factor that has a large number of possible levels.
If the experimenter randomly selects a of these levels from the population of factor levels, then
we say that the factor is random. Because the levels of the factor actually used in the experi-
ment were chosen randomly, inferences are made about the entire population of factor levels.
We assume that the population of factor levels is either of infinite size or is large enough to be
considered infinite. Situations in which the population of factor levels is small enough to employ
a finite population approach are not encountered frequently. Refer to Bennett and Franklin
(1954) and Searle and Fawcett (1970) for a discussion of the finite population case.

The linear statistical model is

(3.47)

where both the treatment effects �i and �ij are random variables. We will assume that the treat-
ment effects �i are NID (0, ) random variables1 and that the errors are NID (0, �2), random
variables, and that the �i and are independent. Because �i is independent of �ij, the variance
of any observation is

The variances and �2 are called variance components, and the model (Equation 3.47) is
called the components of variance or random effects model. The observations in the random
effects model are normally distributed because they are linear combinations of the two normally
and independently distributed random variables and . However, unlike the fixed effects
case in which all of the observations yij are independent, in the random model the observations
yij are only independent if they come from different factor levels. Specifically, we can show that
the covariance of any two observations is

Note that the observations within a specific factor level all have the same covariance, because
before the experiment is conducted, we expect the observations at that factor level to be sim-
ilar because they all have the same random component. Once the experiment has been con-
ducted, we can assume that all observations can be assumed to be independent, because the
parameter has been determined and the observations in that treatment differ only because
of random error.

We can express the covariance structure of the observations in the single-factor random
effects model through the covariance matrix of the observations. To illustrate, suppose that
we have treatments and replicates. There are observations, which we can
write as a vector 

N � 6n � 2a � 3

�i

Cov �yij, yi�j�� � 0   i Z i�

Cov �yij, yij�� � �2
�   j Z j�

�ij�i

� 2
�

V(yij) � � 2
� � � 2

�ij

� 2
�

yij � � � �i � �ij  �i � 1, 2, . . . , a
j � 1, 2, . . . , n

1 The as assumption that the [�i] are independent random variables implies that the usual assumption of �a
i�1 �i � 0 from the fixed

effects model does not apply to the random effects model.



and the 6 � 6 covariance matrix of these observations is

The main diagonals of this matrix are the variances of each individual observation and every
off-diagonal element is the covariance of a pair of observations.

3.9.2 Analysis of Variance for the Random Model

The basic ANOVA sum of squares identity

(3.48)

is still valid. That is, we partition the total variability in the observations into a component
that measures the variation between treatments (SSTreatments) and a component that measures
the variation within treatments (SSE). Testing hypotheses about individual treatment effects is
not very meaningful because they were selected randomly, we are more interested in the pop-
ulation of treatments, so we test hypotheses about the variance component .

(3.49)

If , all treatments are identical; but if , variability exists between treatments.
As before, SSE/�2 is distributed as chi-square with N � a degrees of freedom and, under the
null hypothesis, SSTreatments/�

2 is distributed as chi-square with a � 1 degrees of freedom. Both
random variables are independent. Thus, under the null hypothesis , the ratio

(3.50)

is distributed as F with a � 1 and N � a degrees of freedom. However, we need to examine
the expected mean squares to fully describe the test procedure.

Consider
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When squaring and taking expectation of the quantities in brackets, we see that terms involv-
ing are replaced by as E (�i) � 0. Also, terms involving , and are
replaced by n� 2, an� 2, and an2, respectively. Furthermore, all cross-product terms involving
�i and �ij have zero expectation. This leads to

or

(3.51)

Similarly, we may show that

(3.52)

From the expected mean squares, we see that under H0 both the numerator and denom-
inator of the test statistic (Equation 3.50) are unbiased estimators of �2, whereas under H1 the
expected value of the numerator is greater than the expected value of the denominator.
Therefore, we should reject H0 for values of F0 that are too large. This implies an upper-tail,
one-tail critical region, so we reject H0 if F0 > F	,a�1, N�a.

The computational procedure and ANOVA for the random effects model are identical
to those for the fixed effects case. The conclusions, however, are quite different because they
apply to the entire population of treatments.

3.9.3 Estimating the Model Parameters

We are usually interested in estimating the variance components (�2 and ) in the model.
One very simple procedure that we can use to estimate �2 and is called the analysis of
variance method because it makes use of the lines in the analysis of variance table. The pro-
cedure consists of equating the expected mean squares to their observed values in the ANOVA
table and solving for the variance components. In equating observed and expected mean
squares in the single-factor random effects model, we obtain

and

Therefore, the estimators of the variance components are

(3.53)

and

(3.54)

For unequal sample sizes, replace n in Equation 13.8 by

(3.55)n0 �
1

a � 1��
a

i�1
ni �

�
a

i�1
n2

i

�
a

i�1
ni
	

�̂ 2
� �

MSTreatments � MSE

n

�̂ 2 � MSE

MSE � � 2

MSTreatments � � 2 � n� 2
�

� 2
�

� 2
�

E(MSE) � � 2

E(MSTreatments) � �2 � n� 2
�

E(MSTreatments) �
1

a � 1
 [N�2 � N� 2

� � a� 2 � N�2 � n� 2
� � � 2]

�a
i�1�

n
j�1�

2
i�2

i., �2
..� 2

�� 2
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The analysis of variance method of variance component estimation is a method of
moments procedure. It does not require the normality assumption. It does yield estimators of �2

and that are best quadratic unbiased (i.e., of all unbiased quadratic functions of the observa-
tions, these estimators have minimum variance). There is a different method based on maximum
likelihood that can be used to estimate the variance components that will be introduced later.

Occasionally, the analysis of variance method produces a negative estimate of a variance
component. Clearly, variance components are by definition nonnegative, so a negative estimate
of a variance component is viewed with some concern. One course of action is to accept the esti-
mate and use it as evidence that the true value of the variance component is zero, assuming that
sampling variation led to the negative estimate. This has intuitive appeal, but it suffers from some
theoretical difficulties. For instance, using zero in place of the negative estimate can disturb 
the statistical properties of other estimates. Another alternative is to reestimate the negative vari-
ance component using a method that always yields nonnegative estimates. Still another alterna-
tive is to consider the negative estimate as evidence that the assumed linear model is incorrect and
reexamine the problem. Comprehensive treatment of variance component estimation is given by
Searle (1971a, 1971b), Searle, Casella, and McCullogh (1992), and Burdick and Graybill (1992).

� 2
�
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E X A M P L E  3 . 1 1

A textile company weaves a fabric on a large number of
looms. It would like the looms to be homogeneous so that it
obtains a fabric of uniform strength. The process engineer
suspects that, in addition to the usual variation in strength
within samples of fabric from the same loom, there may also

be significant variations in strength between looms. To
investigate this, she selects four looms at random and makes
four strength determinations on the fabric manufactured on
each loom. This experiment is run in random order, and the
data obtained are shown in Table 3.17. The ANOVA is con-

■ TA B L E  3 . 1 7
Strength Data for Example 3.11

Observations

Looms 1 2 3 4 yi.

1 98 97 99 96 390

2 91 90 93 92 366

3 96 95 97 95 383

4 95 96 99 98 388

1527 � y..

ducted and is shown in Table 3.18. From the ANOVA, we
conclude that the looms in the plant differ significantly.

The variance components are estimated by � 1.90 and

�̂ 2
� �

29.73 � 1.90
4

� 6.96

�̂ 2

Therefore, the variance of any observation on strength is
estimated by

Most of this variability is attributable to differences
between looms.

�̂y � �̂ 2 � �̂ 2
� � 1.90 � 6.96 � 8.86.

■ TA B L E  3 . 1 8
Analysis of Variance for the Strength Data

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0 P-Value

Looms 89.19 3 29.73 15.68 <0.001

Error 22.75 12 1.90

Total 111.94 15 
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This example illustrates an important use of variance components—isolating different
sources of variability that affect a product or system. The problem of product variability fre-
quently arises in quality assurance, and it is often difficult to isolate the sources of variabili-
ty. For example, this study may have been motivated by an observation that there is too much
variability in the strength of the fabric, as illustrated in Figure 3.19a. This graph displays the
process output (fiber strength) modeled as a normal distribution with variance � 8.86.
(This is the estimate of the variance of any observation on strength from Example 3.11.)
Upper and lower specifications on strength are also shown in Figure 3.19a, and it is relative-
ly easy to see that a fairly large proportion of the process output is outside the specifications
(the shaded tail areas in Figure 3.19a). The process engineer has asked why so much fabric is
defective and must be scrapped, reworked, or downgraded to a lower quality product. The
answer is that most of the product strength variability is the result of differences between
looms. Different loom performance could be the result of faulty setup, poor maintenance,
ineffective supervision, poorly trained operators, defective input fiber, and so forth.

The process engineer must now try to isolate the specific causes of the differences in
loom performance. If she could identify and eliminate these sources of between-loom variabili-
ty, the variance of the process output could be reduced considerably, perhaps to as low as �
1.90, the estimate of the within-loom (error) variance component in Example 3.11. Figure
3.19b shows a normal distribution of fiber strength with � 1.90. Note that the proportion
of defective product in the output has been dramatically reduced. Although it is unlikely that
all of the between-loom variability can be eliminated, it is clear that a significant reduction in
this variance component would greatly increase the quality of the fiber produced.

We may easily find a confidence interval for the variance component �2. If the observations
are normally and independently distributed, then (N � a)MSE/�2 is distributed as . Thus,

and a 100(1 � 	) percent confidence interval for �2 is

(3.56)

Since and the 95% CI
on is 

Now consider the variance component . The point estimator of is

The random variable (a � 1)MSTreatments/(�
2 � n ) is distributed as , and (N � a)MSE/�2

is distributed as . Thus, the probability distribution of is a linear combination of two
chi-square random variables, say

�̂ 2
�� 2
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� 2
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� 2
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(a) Variability of process output.
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(b) Variability of process output if 2 = 0.

LSL USL

y = 1.90
  2

σ

μμ

σ τ

›

›

■ F I G U R E  3 . 1 9 Process output in the fiber strength problem



where

Unfortunately, a closed-form expression for the distribution of this linear combination of chi-
square random variables cannot be obtained. Thus, an exact confidence interval for cannot
be constructed. Approximate procedures are given in Graybill (1961) and Searle (1971a).
Also see Section 13.6 of Chapter 13.

It is easy to find an exact expression for a confidence interval on the ratio .
This ratio is called the intraclass correlation coefficient, and it reflects the proportion of the
variance of an observation [recall that V(yij) � � �2] that is the result of differences between
treatments. To develop this confidence interval for the case of a balanced design, note that
MSTreatments and MSE are independent random variables and, furthermore, it can be shown that

Thus,

(3.57)

By rearranging Equation 13.11, we may obtain the following:

(3.58)

where

(3.59a)

and

(3.59b)

Note that L and U are 100(1 � 	) percent lower and upper confidence limits, respective-
ly, for the ratio . Therefore, a 100(1 � 	) percent confidence interval for

is

(3.60)

To illustrate this procedure, we find a 95 percent confidence interval on 
for the strength data in Example 3.11. Recall that MSTreatments � 29.73, MSE � 1.90, a � 4,
n � 4, F0.025,3,12 � 4.47, and F0.975,3,12 � 1/F0.025,12,3 � 1/14.34 � 0.070. Therefore, from
Equation 3.59a and b,
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and from Equation 3.60, the 95 percent confidence interval on is

or

We conclude that variability between looms accounts for between 38 and 98 percent of the
variability in the observed strength of the fabric produced. This confidence interval is relative-
ly wide because of the small number of looms used in the experiment. Clearly, however, the
variability between looms is not negligible.

Estimation of the Overall Mean �. In many random effects experiments the exper-
imenter is interested in estimating the overall mean . From the basic model assumptions it
is easy to see that the expected value of any observation is just the overall mean.
Consequently, an unbiased estimator of the overall mean is

So for Example 3.11 the estimate of the overall mean strength is 

It is also possible to find a 100(1 – )% confidence interval on the overall mean. The
variance of is

The numerator of this ratio is estimated by the treatment mean square, so an unbiased estima-
tor of is 

Therefore, the 100(1 – )% CI on the overall mean is 

(3.61)

To find a 95% CI on the overall mean in the fabric strength experiment from Example 3.11,
we need and . The CI is computed from Equation 3.61 as
follows:
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So, at 95 percent confidence the mean strength of the fabric produced by the looms in
this facility is between 92.78 and 98.10. This is a relatively wide confidence interval because
a small number of looms were sampled and there is a large difference between looms as
reflected by the large portion of total variability that is accounted for by the differences
between looms.

Maximum Likelihood Estimation of the Variance Components. Earlier in this
section we presented the  analysis of variance method of variance component estimation.
This method is relatively straightforward to apply and makes use of familiar quantities—
the mean squares in the analysis of variance table. However, the method has some disad-
vantages. As we pointed out previously, it is a method of moments estimator, a technique
that mathematical statisticians generally do not prefer to use for parameter estimation
because it often results in parameter estimates that do not have good statistical properties.
One obvious problem is that it does not always lead to an easy way to construct confidence
intervals on the variance components of interest. For example, in the single-factor random
model there is not a simple way to construct confidence intervals on , which is certainly
a parameter of primary interest to the experimenter. The preferred parameter estimation
technique is called the method of maximum likelihood. The implementation of this
method can be somewhat involved, particularly for an experimental design model, but it has
been incorporated in some modern computer software packages that support designed
experiments, including JMP.

A complete presentation of the method of maximum likelihood is beyond the scope of
this book, but the general idea can be illustrated very easily. Suppose that x is a random vari-
able with probability distribution f(x, ), where is an unknown parameter. Let x1, x2, . . . , xn

be a random sample of n observations. The joint probability distribution of the sample is

. The likelihood function is just this joint probability distribution with the sample

observations consider fixed and the parameter unknown. Note that the likelihood function,

say

is now a function of only the unknown parameter . The maximum likelihood estimator of is
the value of that maximizes the likelihood function L(x1, x2, ..., xn; ). To illustrate how this
applies to an experimental design model with random effects, let y be the an 1 vector of obser-
vations for a single-factor random effects model with a treatments and n replicates and let be
the an an covariance matrix of the observations. Refer to Section 3.9.1 where we developed
this covariance matrix for the special case where and . The likelihood function is 

where an is the total number of observations, jN is an vector of 1s, and is the
overall mean in the model. The maximum likelihood estimates of the parameters and

are the values of these quantities that maximize the likelihood function.
Maximum likelihood estimators (MLEs) have some very useful properties. For large sam-

ples, they are unbiased, and they have a normal distribution. Furthermore, the inverse of the matrix
of second derivatives of the likelihood function (multiplied by �1) is the covariance matrix of the
MLEs. This makes it relatively easy to obtain approximate confidence intervals on the MLEs.

The standard variant of maximum likelihood estimation that is used for estimating vari-
ance components is known as the residual maximum likelihood (REML) method. It is pop-
ular because it produces unbiased estimators and like all MLEs, it is easy to find CIs. The basic
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characteristic of REML is that it takes the location parameters in the model into account when
estimating the random effects. As a simple example, suppose that we want to estimate the mean
and variance of a normal distribution using the method of maximum likelihood. It is easy to
show that the MLEs are

Notice that the MLE is not the familiar sample standard deviation. It does not take the esti-
mation of the location parameter into account. The REML estimator would be 

The REML estimator is unbiased.
To illustrate the REML method, Table 3.19 presents the JMP output for the loom exper-

iment in Example 3.11. The REML estimates of the model parameters and are
shown in the output. Note that the REML estimates of the variance components are identical
to those found earlier by the ANOVA method. These two methods will agree for balanced
designs. However, the REML output also contains the covariance matrix of the variance
components. The square roots of the main diagonal elements of this matrix are the standard
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�,
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�̂ 2 �
�
n

i�1
(yi � y)2
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■ T A B L E  3 . 1 9
JMP Output for the Loom Experiment in Example 3.11

Response Y

Summary of Fit

RSquare 0.793521

RSquare Adj 0.793521

Root Mean Square Error 1.376893

Mean of Response 95.4375

Observations (or Sum Wgts) 16

Parameter Estimates
Term Estimate Std Error DFDen t Ratio Prob>|t|

Intercept 95.4375 1.363111 3 70.01 <.0001*

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total

X1 3.6703297 6.9583333 6.0715247 �4.941636 18.858303 78.588

Residual 1.8958333 0.7739707 0.9748608 5.1660065 21.412

Total 8.8541667 100.000

Covariance Matrix of Variance Component Estimates

Random Effect X1 Residual

X1 36.863412 �0.149758

Residual �0.149758 0.5990307



errors of the variance components. If is the MLE of and is its estimated standard
error, then the approximate 100(1 – )% CI on is 

JMP uses this approach to find the approximate CIs and shown in the output. The 
95 percent CI from REML for is very similar to the chi-square based interval computed
earlier in Section 3.9.

3.10 The Regression Approach to the Analysis of Variance

We have given an intuitive or heuristic development of the analysis of variance. However, it
is possible to give a more formal development. The method will be useful later in understand-
ing the basis for the statistical analysis of more complex designs. Called the general regres-
sion significance test, the procedure essentially consists of finding the reduction in the total
sum of squares for fitting the model with all parameters included and the reduction in sum of
squares when the model is restricted to the null hypotheses. The difference between these two
sums of squares is the treatment sum of squares with which a test of the null hypothesis can
be conducted. The procedure requires the least squares estimators of the parameters in the
analysis of variance model. We have given these parameter estimates previously (in Section
3.3.3); however, we now give a formal development.

3.10.1 Least Squares Estimation of the Model Parameters

We now develop estimators for the parameter in the single-factor ANOVA fixed-effects model

using the method of least squares. To find the least squares estimators of � and �i, we first
form the sum of squares of the errors

(3.61)

and then choose values of � and �i, say and , that minimize L. The appropriate values
would be the solutions to the a � 1 simultaneous equations

Differentiating Equation 3.61 with respect to � and �i and equating to zero, we obtain

and

which, after simplification, yield
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(3.62)

The a � 1 equations (Equation 3.62) in a � 1 unknowns are called the least squares
normal equations. Notice that if we add the last a normal equations, we obtain the first normal
equation. Therefore, the normal equations are not linearly independent, and no unique solution
for �, �1, . . . , �a exists. This has happened because the effects model is overparameterized.
This difficulty can be overcome by several methods. Because we have defined the treatment
effects as deviations from the overall mean, it seems reasonable to apply the constraint

(3.63)

Using this constraint, we obtain as the solution to the normal equations

(3.64)

This solution is obviously not unique and depends on the constraint (Equation 3.63) that
we have chosen. At first this may seem unfortunate because two different experimenters could
analyze the same data and obtain different results if they apply different constraints. However,
certain functions of the model parameters are uniquely estimated, regardless of the con-
straint. Some examples are �i � �j, which would be estimated by , and the
ith treatment mean �i � � � �i, which would be estimated by .

Because we are usually interested in differences among the treatment effects rather than
their actual values, it causes no concern that the �i cannot be uniquely estimated. In general,
any function of the model parameters that is a linear combination of the left-hand side of the
normal equations (Equations 3.48) can be uniquely estimated. Functions that are uniquely
estimated regardless of which constraint is used are called estimable functions. For more
information, see the supplemental material for this chapter. We are now ready to use these
parameter estimates in a general development of the analysis of variance.

3.10.2 The General Regression Significance Test

A fundamental part of this procedure is writing the normal equations for the model. These
equations may always be obtained by forming the least squares function and differentiating it
with respect to each unknown parameter, as we did in Section 3.9.1. However, an easier
method is available. The following rules allow the normal equations for any experimental
design model to be written directly:

RULE 1. There is one normal equation for each parameter in the model to be estimated.

RULE 2. The right-hand side of any normal equation is just the sum of all observations
that contain the parameter associated with that particular normal equation.

To illustrate this rule, consider the single-factor model. The first normal equation is for
the parameter �; therefore, the right-hand side is because all observations contain �.

RULE 3. The left-hand side of any normal equation is the sum of all model parameters,
where each parameter is multiplied by the number of times it appears in the total on
the right-hand side. The parameters are written with a circumflex to indicate that
they are estimators and not the true parameter values.

For example, consider the first normal equation in a single-factor experiment. According
to the above rules, it would be

N�̂ � n�̂1 � n�̂2 � Á � n�̂a � y..

(ˆ)

y..
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because � appears in all N observations, �1 appears only in the n observations taken under the
first treatment, �2 appears only in the n observations taken under the second treatment, and so
on. From Equation 3.62, we verify that the equation shown above is correct. The second nor-
mal equation would correspond to �1 and is

because only the observations in the first treatment contain �1 (this gives y1. as the right-hand
side), � and �1 appear exactly n times in y1., and all other �i appear zero times. In general, the
left-hand side of any normal equation is the expected value of the right-hand side.

Now, consider finding the reduction in the sum of squares by fitting a particular model
to the data. By fitting a model to the data, we “explain” some of the variability; that is, we
reduce the unexplained variability by some amount. The reduction in the unexplained vari-
ability is always the sum of the parameter estimates, each multiplied by the right-hand side
of the normal equation that corresponds to that parameter. For example, in a single-factor
experiment, the reduction due to fitting the full model yij � � � �i � �ij is

(3.65)

The notation R(�, �) means that reduction in the sum of squares from fitting the model con-
taining � and {�i}. R(�, �) is also sometimes called the “regression” sum of squares for the full
model yij � � � �i � �ij. The number of degrees of freedom associated with a reduction in
the sum of squares, such as R(�, �), is always equal to the number of linearly independent nor-
mal equations. The remaining variability unaccounted for by the model is found from

(3.66)

This quantity is used in the denominator of the test statistic for H0 :�1 � �2 � ... � �a � 0.
We now illustrate the general regression significance test for a single-factor experiment and

show that it yields the usual one-way analysis of variance. The model is yij � � � �i � �ij, and
the normal equations are found from the above rules as

Compare these normal equations with those obtained in Equation 3.62.
Applying the constraint , we find that the estimators for � and �i are

The reduction in the sum of squares due to fitting this full model is found from Equation 3.51 as
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which has a degrees of freedom because there are a linearly independent normal equations.
The error sum of squares is, from Equation 3.66,

and has N � a degrees of freedom.
To find the sum of squares resulting from the treatment effects (the {�i}), we consider

a reduced model; that is, the model to be restricted to the null hypothesis (�i � 0 for all i).
The reduced model is yij � � � �ij. There is only one normal equation for this model:

and the estimator of � is . Thus, the reduction in the sum of squares that results from
fitting the reduced model containing only � is

Because there is only one normal equation for this reduced model, R(�) has one degree of
freedom. The sum of squares due to the {�i}, given that � is already in the model, is the dif-
ference between R(�, �) and R(�), which is

with a � 1 degrees of freedom, which we recognize from Equation 3.9 as SSTreatments. Making the
usual normality assumption, we obtain appropriate statistic for testing H0:�1 � �2 � � �a � 0

which is distributed as Fa�1, N�a under the null hypothesis. This is, of course, the test statistic
for the single-factor analysis of variance.

3.11 Nonparametric Methods in the Analysis of Variance

3.11.1 The Kruskal–Wallis Test

In situations where the normality assumption is unjustified, the experimenter may wish to use
an alternative procedure to the F test analysis of variance that does not depend on this assump-
tion. Such a procedure has been developed by Kruskal and Wallis (1952). The Kruskal–Wallis
test is used to test the null hypothesis that the a treatments are identical against the alternative
hypothesis that some of the treatments generate observations that are larger than others. Because
the procedure is designed to be sensitive for testing differences in means, it is sometimes con-
venient to think of the Kruskal–Wallis test as a test for equality of treatment means. The
Kruskal–Wallis test is a nonparametric alternative to the usual analysis of variance.

To perform a Kruskal–Wallis test, first rank the observations yij in ascending order and
replace each observation by its rank, say Rij, with the smallest observation having rank 1. In
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the case of ties (observations having the same value), assign the average rank to each of the
tied observations. Let Ri. be the sum of the ranks in the ith treatment. The test statistic is

(3.67)

where ni is the number of observations in the ith treatment, N is the total number of observa-
tions, and

(3.68)

Note that S2 is just the variance of the ranks. If there are no ties, S2 � N(N � 1)/12 and the
test statistic simplifies to

(3.69)

When the number of ties is moderate, there will be little difference between Equations 3.68
and 3.69, and the simpler form (Equation 3.69) may be used. If the ni are reasonably large,
say ni � 5, H is distributed approximately as under the null hypothesis. Therefore, if

the null hypothesis is rejected. The P-value approach could also be used.
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E X A M P L E  3 . 1 2

The data from Example 3.1 and their corresponding ranks
are shown in Table 3.20. There are ties, so we use Equation
3.67 as the test statistic. From Equation 3.67

S 2 �
1

19�2869.50 �
20(21)2

4 	 � 34.97

■ TA B L E  3 . 2 0
Data and Ranks for the Plasma Etching Experiment in Example 3.1

Power

160 180 200 220

y1j R1j y2j R2j y3j R3j y4 j R4j

575 6 565 4 600 10 725 20

542 3 593 9 651 15 700 17

530 1 590 8 610 11.5 715 19

539 2 579 7 637 14 685 16

570 5 610 11.5 629 13 710 18

Ri. 17 39.5 63.5 90

and the test statistic is

� 16.91

�
1

34.97
 [2796.30 � 2205]

H �
1
S 2��

a

i�1

R2
i.

ni
�

N(N � 1)2

4 	

Because H 
 � 11.34, we would reject the null
hypothesis and conclude that the treatments differ. (The P-

� 2
0.01,3 value for H � 16.91 is P � 7.38 � 10�4.) This is the same

conclusion as given by the usual analysis of variance F test.
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3.11.2 General Comments on the Rank Transformation

The procedure used in the previous section of replacing the observations by their ranks is
called the rank transformation. It is a very powerful and widely useful technique. If we
were to apply the ordinary F test to the ranks rather than to the original data, we would
obtain

(3.70)

as the test statistic [see Conover (1980), p. 337]. Note that as the Kruskal–Wallis statistic H
increases or decreases, F0 also increases or decreases, so the Kruskal–Wallis test is equivalent
to applying the usual analysis of variance to the ranks.

The rank transformation has wide applicability in experimental design problems for
which no nonparametric alternative to the analysis of variance exists. This includes many of
the designs in subsequent chapters of this book. If the data are ranked and the ordinary F test
is applied, an approximate procedure that has good statistical properties results [see Conover
and Iman (1976, 1981)]. When we are concerned about the normality assumption or the effect
of outliers or “wild” values, we recommend that the usual analysis of variance be performed
on both the original data and the ranks. When both procedures give similar results, the analy-
sis of variance assumptions are probably satisfied reasonably well, and the standard analysis
is satisfactory. When the two procedures differ, the rank transformation should be preferred
because it is less likely to be distorted by nonnormality and unusual observations. In such
cases, the experimenter may want to investigate the use of transformations for nonnormality
and examine the data and the experimental procedure to determine whether outliers are pres-
ent and why they have occurred.

3.12 Problems

F0 �
H/(a � 1)

(N � 1 � H)/(N � a)

3.1. An experimenter has conducted a single-factor exper-
iment with four levels of the factor, and each factor level has
been replicated six times. The computed value of the F-statis-
tic is F0 � 3.26. Find bounds on the P-value.

3.2. An experimenter has conducted a single-factor
experiment with six levels of the factor, and each factor level
has been replicated three times. The computed value of the 
F- statistic is F0 � 5.81. Find bounds on the P-value.

3.3. A computer ANOVA output is shown below. Fill in
the blanks. You may give bounds on the P-value.

One-way ANOVA

Source DF SS MS F P

Factor 3 36.15 ? ? ?

Error ? ? ?

Total 19 196.04

3.4. A computer ANOVA output is shown below. Fill in
the blanks. You may give bounds on the P-value.

One-way ANOVA

Source DF SS MS F P

Factor ? ? 246.93 ? ?

Error 25 186.53 ?

Total 29 1174.24

3.5. An article appeared in The Wall Street Journal on
Tuesday, April 27, 2010, with the title “Eating Chocolate Is
Linked to Depression.” The article reported on a study funded
by the National Heart, Lung and Blood Institute (part of the
National Institutes of Health) and conducted by faculty at the
University of California, San Diego, and the University of
California, Davis. The research was also published in the
Archives of Internal Medicine (2010, pp. 699–703). The study
examined 931 adults who were not taking antidepressants and
did not have known cardiovascular disease or diabetes. The
group was about 70% men and the average age of the group
was reported to be about 58. The participants were asked
about chocolate consumption and then screened for depres-
sion using a questionnaire. People who score less than 16 on
the questionnaire are not considered depressed, while those
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with scores above 16 and less than or equal to 22 are consid-
ered possibly depressed, while those with scores above 22 are
considered likely to be depressed. The survey found that peo-
ple who were not depressed ate an average 5.4 servings of
chocolate per month, possibly depressed individuals ate an
average of 8.4 servings of chocolate per month, while those
individuals who scored above 22 and were likely to be
depressed ate the most chocolate, an average of 11.8 servings
per month. No differentiation was made between dark and
milk chocolate. Other foods were also examined, but no pat-
tern emerged between other foods and depression. Is this
study really a designed experiment? Does it establish a cause-
and-effect link between chocolate consumption and depres-
sion? How would the study have to be conducted to establish
such a cause-and effect link?

3.6. An article in Bioelectromagnetics (“Electromagnetic
Effects on Forearm Disuse Osteopenia: A Randomized,
Double-Blind, Sham-Controlled Study,” Vol. 32, 2011, pp.
273–282) described a randomized, double-blind, sham-con-
trolled, feasibility and dosing study to determine if a com-
mon pulsing electromagnetic field (PEMF) treatment could
moderate the substantial osteopenia that occurs after fore-
arm disuse. Subjects were randomized into four groups after
a distal radius fracture, or carpal surgery requiring immobi-
lization in a cast. Active or identical sham PEMF transduc-
ers were worn on the distal forearm for 1, 2, or 4h/day for 
8 weeks starting after cast removal (“baseline”) when bone
density continues to decline. Bone mineral density (BMD)
and bone geometry were measured in the distal forearm by
dual energy X-ray absorptiometry (DXA) and peripheral
quantitative computed tomography (pQCT). The data below
are the percent losses in BMD measurements on the radius
after 16 weeks for patients wearing the active or sham PEMF
transducers for 1, 2, or 4h/day (data were constructed to
match the means and standard deviations read from a graph
in the paper).

(a) Is there evidence to support a claim that PEMF usage
affects BMD loss? If so, analyze the data to determine
which specific treatments produce the differences.

(b) Analyze the residuals from this experiment and comment
on the underlying assumptions and model adequacy.

PEMF PEMF PEMF 
Sham 1 h/day 2 h/day 4 h/day

4.51 5.32 4.73 7.03

7.95 6.00 5.81 4.65

4.97 5.12 5.69 6.65

3.00 7.08 3.86 5.49

7.97 5.48 4.06 6.98

2.23 6.52 6.56 4.85

3.95 4.09 8.34 7.26

5.64 6.28 3.01 5.92

9.35 7.77 6.71 5.58

6.52 5.68 6.51 7.91

4.96 8.47 1.70 4.90

6.10 4.58 5.89 4.54

7.19 4.11 6.55 8.18

4.03 5.72 5.34 5.42

2.72 5.91 5.88 6.03

9.19 6.89 7.50 7.04

5.17 6.99 3.28 5.17

5.70 4.98 5.38 7.60

5.85 9.94 7.30 7.90
6.45 6.38 5.46 7.91

3.7. The tensile strength of Portland cement is being stud-
ied. Four different mixing techniques can be used economi-
cally. A completely randomized experiment was conducted
and the following data were collected:

Mixing
Technique Tensile Strength (lb/in2)

1 3129 3000 2865 2890

2 3200 3300 2975 3150

3 2800 2900 2985 3050

4 2600 2700 2600 2765

(a) Test the hypothesis that mixing techniques affect the
strength of the cement. Use 	 � 0.05.

(b) Construct a graphical display as described in Section
3.5.3 to compare the mean tensile strengths for the
four mixing techniques. What are your conclusions?

(c) Use the Fisher LSD method with 	 � 0.05 to make
comparisons between pairs of means.

(d) Construct a normal probability plot of the residuals.
What conclusion would you draw about the validity of
the normality assumption?

(e) Plot the residuals versus the predicted tensile strength.
Comment on the plot.

(f ) Prepare a scatter plot of the results to aid the interpre-
tation of the results of this experiment.

3.8(a) Rework part (c) of Problem 3.7 using Tukey’s test
with 	 � 0.05. Do you get the same conclusions from
Tukey’s test that you did from the graphical procedure
and/or the Fisher LSD method?

(b) Explain the difference between the Tukey and Fisher
procedures.

3.9. Reconsider the experiment in Problem 3.7. Find a 95
percent confidence interval on the mean tensile strength of the
Portland cement produced by each of the four mixing techniques.
Also find a 95 percent confidence interval on the difference in
means for techniques 1 and 3. Does this aid you in interpreting
the results of the experiment?
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3.10. A product developer is investigating the tensile strength
of a new synthetic fiber that will be used to make cloth for
men’s shirts. Strength is usually affected by the percentage of
cotton used in the blend of materials for the fiber. The engineer
conducts a completely randomized experiment with five levels
of cotton content and replicates the experiment five times. The
data are shown in the following table.

Cotton
Weight 
Percent Observations

15 7 7 15 11 9

20 12 17 12 18 18

25 14 19 19 18 18

30 19 25 22 19 23

35 7 10 11 15 11

(a) Is there evidence to support the claim that cotton con-
tent affects the mean tensile strength? Use 
	 � 0.05.

(b) Use the Fisher LSD method to make comparisons
between the pairs of means. What conclusions can you
draw?

(c) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.11. Reconsider the experiment described in Problem
3.10. Suppose that 30 percent cotton content is a control. Use
Dunnett’s test with 	 � 0.05 to compare all of the other
means with the control.

3.12. A pharmaceutical manufacturer wants to investigate
the bioactivity of a new drug. A completely randomized
single-factor experiment was conducted with three dosage
levels, and the following results were obtained.

Dosage Observations

20 g 24 28 37 30

30 g 37 44 31 35

40 g 42 47 52 38

(a) Is there evidence to indicate that dosage level affects
bioactivity? Use 	 � 0.05.

(b) If it is appropriate to do so, make comparisons
between the pairs of means. What conclusions can you
draw?

(c) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.13. A rental car company wants to investigate whether the
type of car rented affects the length of the rental period. An
experiment is run for one week at a particular location, and 

10 rental contracts are selected at random for each car type.
The results are shown in the following table.

Type of Car Observations

Subcompact 3 5 3 7 6 5 3 2 1 6

Compact 1 3 4 7 5 6 3 2 1 7

Midsize 4 1 3 5 7 1 2 4 2 7

Full size 3 5 7 5 10 3 4 7 2 7

(a) Is there evidence to support a claim that the type of car
rented affects the length of the rental contract? Use 	
� 0.05. If so, which types of cars are responsible for
the difference?

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

(c) Notice that the response variable in this experiment is
a count. Should this cause any potential concerns
about the validity of the analysis of variance?

3.14. I belong to a golf club in my neighborhood. I divide the
year into three golf seasons: summer (June–September), winter
(November–March), and shoulder (October, April, and May). 
I believe that I play my best golf during the summer (because I
have more time and the course isn’t crowded) and shoulder
(because the course isn’t crowded) seasons, and my worst golf
is during the winter (because when all of the part-year residents
show up, the course is crowded, play is slow, and I get frustrat-
ed). Data from the last year are shown in the following table.

Season Observations

Summer 83 85 85 87 90 88 88 84 91 90

Shoulder 91 87 84 87 85 86 83

Winter 94 91 87 85 87 91 92 86

(a) Do the data indicate that my opinion is correct? Use 	
� 0.05.

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.15. A regional opera company has tried three approaches
to solicit donations from 24 potential sponsors. The 24 poten-
tial sponsors were randomly divided into three groups of
eight, and one approach was used for each group. The dollar
amounts of the resulting contributions are shown in the fol-
lowing table.

Approach Contributions (in $)

1 1000 1500 1200 1800 1600 1100 1000 1250

2 1500 1800 2000 1200 2000 1700 1800 1900

3 900 1000 1200 1500 1200 1550 1000 1100
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(a) Do the data indicate that there is a difference in
results obtained from the three different approaches?
Use 	 � 0.05.

(b) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.16. An experiment was run to determine whether four
specific firing temperatures affect the density of a certain type
of brick. A completely randomized experiment led to the fol-
lowing data:

Temperature Density

100 21.8 21.9 21.7 21.6 21.7

125 21.7 21.4 21.5 21.4

150 21.9 21.8 21.8 21.6 21.5

175 21.9 21.7 21.8 21.4

(a) Does the firing temperature affect the density of the
bricks? Use 	 � 0.05.

(b) Is it appropriate to compare the means using the Fisher
LSD method (for example) in this experiment?

(c) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(d) Construct a graphical display of the treatment as
described in Section 3.5.3. Does this graph adequately
summarize the results of the analysis of variance in
part (a)?

3.17. Rework part (d) of Problem 3.16 using the Tukey
method. What conclusions can you draw? Explain carefully
how you modified the technique to account for unequal
sample sizes.

3.18. A manufacturer of television sets is interested in the
effect on tube conductivity of four different types of coating
for color picture tubes. A completely randomized experiment
is conducted and the following conductivity data are
obtained:

Coating Type Conductivity

1 143 141 150 146

2 152 149 137 143

3 134 136 132 127

4 129 127 132 129

(a) Is there a difference in conductivity due to coating
type? Use 	 � 0.05.

(b) Estimate the overall mean and the treatment effects.

(c) Compute a 95 percent confidence interval estimate
of the mean of coating type 4. Compute a 99 percent
confidence interval estimate of the mean difference
between coating types 1 and 4.

(d) Test all pairs of means using the Fisher LSD method
with 	 � 0.05.

(e) Use the graphical method discussed in Section 3.5.3 to
compare the means. Which coating type produces the
highest conductivity?

(f) Assuming that coating type 4 is currently in use, what
are your recommendations to the manufacturer? We
wish to minimize conductivity.

3.19. Reconsider the experiment from Problem 3.18.
Analyze the residuals and draw conclusions about model
adequacy.

3.20. An article in the ACI Materials Journal (Vol. 84,
1987, pp. 213–216) describes several experiments investi-
gating the rodding of concrete to remove entrapped air. 
A 3-inch � 6-inch cylinder was used, and the number of
times this rod was used is the design variable. The resulting
compressive strength of the concrete specimen is the
response. The data are shown in the following table:

Rodding
Level Compressive Strength

10 1530 1530 1440

15 1610 1650 1500

20 1560 1730 1530

25 1500 1490 1510

(a) Is there any difference in compressive strength due to
the rodding level? Use 	 � 0.05.

(b) Find the P-value for the F statistic in part (a).

(c) Analyze the residuals from this experiment. What con-
clusions can you draw about the underlying model
assumptions?

(d) Construct a graphical display to compare the treatment
means as described in Section 3.5.3.

3.21. An article in Environment International (Vol. 18, No. 4,
1992) describes an experiment in which the amount of radon
released in showers was investigated. Radon-enriched water
was used in the experiment, and six different orifice diameters
were tested in shower heads. The data from the experiment are
shown in the following table:

Orifice
Diameter Radon Released (%)

0.37 80 83 83 85

0.51 75 75 79 79

0.71 74 73 76 77

1.02 67 72 74 74

1.40 62 62 67 69

1.99 60 61 64 66

(a) Does the size of the orifice affect the mean percentage
of radon released? Use 	 � 0.05.
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(b) Find the P-value for the F statistic in part (a).

(c) Analyze the residuals from this experiment.

(d) Find a 95 percent confidence interval on the mean per-
cent of radon released when the orifice diameter is 1.40.

(e) Construct a graphical display to compare the treatment
means as described in Section 3.5.3 What conclusions
can you draw?

3.22. The response time in milliseconds was determined for
three different types of circuits that could be used in an auto-
matic valve shutoff mechanism. The results from a complete-
ly randomized experiment are shown in the following table:

Circuit Type Response Time

1 9 12 10 8 15

2 20 21 23 17 30

3 6 5 8 16 7

(a) Test the hypothesis that the three circuit types have the
same response time. Use 	 � 0.01.

(b) Use Tukey’s test to compare pairs of treatment means.
Use 	 � 0.01.

(c) Use the graphical procedure in Section 3.5.3 to com-
pare the treatment means. What conclusions can you
draw? How do they compare with the conclusions
from part (b)?

(d) Construct a set of orthogonal contrasts, assuming that
at the outset of the experiment you suspected the
response time of circuit type 2 to be different from the
other two.

(e) If you were the design engineer and you wished to
minimize the response time, which circuit type would
you select?

(f ) Analyze the residuals from this experiment. Are the
basic analysis of variance assumptions satisfied?

3.23. The effective life of insulating fluids at an accelerated
load of 35 kV is being studied. Test data have been obtained
for four types of fluids. The results from a completely ran-
domized experiment were as follows:

Fluid Type Life (in h) at 35 kV Load

1 17.6 18.9 16.3 17.4 20.1 21.6

2 16.9 15.3 18.6 17.1 19.5 20.3

3 21.4 23.6 19.4 18.5 20.5 22.3

4 19.3 21.1 16.9 17.5 18.3 19.8

(a) Is there any indication that the fluids differ? Use 	 �
0.05.

(b) Which fluid would you select, given that the objective
is long life?

(c) Analyze the residuals from this experiment. Are the
basic analysis of variance assumptions satisfied?

3.24. Four different designs for a digital computer circuit
are being studied to compare the amount of noise present. The
following data have been obtained:

Circuit 
Design Noise Observed

1 19 20 19 30 8

2 80 61 73 56 80

3 47 26 25 35 50

4 95 46 83 78 97

(a) Is the same amount of noise present for all four
designs? Use 	 � 0.05.

(b) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(c) Which circuit design would you select for use? Low
noise is best.

3.25. Four chemists are asked to determine the percentage
of methyl alcohol in a certain chemical compound. Each
chemist makes three determinations, and the results are the
following:

Percentage of  
Chemist Methyl Alcohol

1 84.99 84.04 84.38

2 85.15 85.13 84.88

3 84.72 84.48 85.16

4 84.20 84.10 84.55

(a) Do chemists differ significantly? Use 	 � 0.05.

(b) Analyze the residuals from this experiment.

(c) If chemist 2 is a new employee, construct a meaning-
ful set of orthogonal contrasts that might have been
useful at the start of the experiment.

3.26. Three brands of batteries are under study. It is suspect-
ed that the lives (in weeks) of the three brands are different.
Five randomly selected batteries of each brand are tested with
the following results:

Weeks of Life

Brand 1 Brand 2 Brand 3

100 76 108

96 80 100

92 75 96

96 84 98

92 82 100
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(a) Are the lives of these brands of batteries different?

(b) Analyze the residuals from this experiment.

(c) Construct a 95 percent confidence interval estimate on
the mean life of battery brand 2. Construct a 99 per-
cent confidence interval estimate on the mean differ-
ence between the lives of battery brands 2 and 3.

(d) Which brand would you select for use? If the manu-
facturer will replace without charge any battery that
fails in less than 85 weeks, what percentage would
the company expect to replace?

3.27. Four catalysts that may affect the concentration of one
component in a three-component liquid mixture are being
investigated. The following concentrations are obtained from
a completely randomized experiment:

Catalyst

1 2 3 4

58.2 56.3 50.1 52.9

57.2 54.5 54.2 49.9

58.4 57.0 55.4 50.0

55.8 55.3 51.7

54.9

(a) Do the four catalysts have the same effect on the con-
centration?

(b) Analyze the residuals from this experiment.

(c) Construct a 99 percent confidence interval estimate of
the mean response for catalyst 1.

3.28. An experiment was performed to investigate the
effectiveness of five insulating materials. Four samples of
each material were tested at an elevated voltage level to accel-
erate the time to failure. The failure times (in minutes) are
shown below:

Material Failure Time (minutes)

1 110 157 194 178

2 1 2 4 18

3 880 1256 5276 4355

4 495 7040 5307 10,050

5 7 5 29 2

(a) Do all five materials have the same effect on mean fail-
ure time?

(b) Plot the residuals versus the predicted response.
Construct a normal probability plot of the residuals.
What information is conveyed by these plots?

(c) Based on your answer to part (b) conduct another
analysis of the failure time data and draw appropriate
conclusions.

3.29. A semiconductor manufacturer has developed three
different methods for reducing particle counts on wafers. All
three methods are tested on five different wafers and the after
treatment particle count obtained. The data are shown below:

Method Count

1 31 10 21 4 1

2 62 40 24 30 35

3 53 27 120 97 68

(a) Do all methods have the same effect on mean particle
count?

(b) Plot the residuals versus the predicted response.
Construct a normal probability plot of the residuals.
Are there potential concerns about the validity of the
assumptions?

(c) Based on your answer to part (b) conduct another
analysis of the particle count data and draw appropri-
ate conclusions.

3.30. A manufacturer suspects that the batches of raw mate-
rial furnished by his supplier differ significantly in calcium
content. There are a large number of batches currently in the
warehouse. Five of these are randomly selected for study. A
chemist makes five determinations on each batch and obtains
the following data:

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

23.46 23.59 23.51 23.28 23.29

23.48 23.46 23.64 23.40 23.46

23.56 23.42 23.46 23.37 23.37
23.39 23.49 23.52 23.46 23.32
23.40 23.50 23.49 23.39 23.38

(a) Is there significant variation in calcium content from
batch to batch? Use 	 = 0.05.

(b) Estimate the components of variance.

(c) Find a 95 percent confidence interval for .

(d) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

3.31. Several ovens in a metal working shop are used to
heat metal specimens. All the ovens are supposed to operate at
the same temperature, although it is suspected that this may
not be true. Three ovens are selected at random, and their tem-
peratures on successive heats are noted. The data collected are
as follows:

Oven Temperature

1 491.50 498.30 498.10 493.50 493.60

2 488.50 484.65 479.90 477.35

3 490.10 484.80 488.25 473.00 471.85 478.65

�2
� � (�2

� � �2)
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(a) Is there significant variation in temperature between
ovens? Use 	 = 0.05.

(b) Estimate the components of variance for this model.

(c) Analyze the residuals from this experiment and draw
conclusions about model adequacy.

3.32. An article in the Journal of the Electrochemical
Society (Vol. 139, No. 2, 1992, pp. 524–532) describes an
experiment to investigate the low-pressure vapor deposition of
polysilicon. The experiment was carried out in a large-capaci-
ty reactor at Sematech in Austin, Texas. The reactor has sever-
al wafer positions, and four of these positions are selected at
random. The response variable is film thickness uniformity.
Three replicates of the experiment were run, and the data are
as follows:

Wafer Position Uniformity

1 2.76 5.67 4.49

2 1.43 1.70 2.19

3 2.34 1.97 1.47

4 0.94 1.36 1.65

(a) Is there a difference in the wafer positions? Use 	 =
0.05.

(b) Estimate the variability due to wafer positions.

(c) Estimate the rendom error component.

(d) Analyze the residuals from this experiment and com-
ment on model adequacy.

3.33. Consider the vapor-deposition experiment described
in Problem 3.32. 

(a) Estimate the total variability in the uniformity response. 

(b) How much of the total variability in the uniformity
response is due to the difference between positions in
the reactor?

(c) To what level could the variability in the uniformity
response be reduced if the position-to-position vari-
ability in the reactor could be eliminated? Do you
believe this is a significant reduction?

3.34. An article in the Journal of Quality Technology (Vol.
13, No. 2, 1981, pp. 111–114) describes an experiment that
investigates the effects of four bleaching chemicals on pulp
brightness. These four chemicals were selected at random
from a large population of potential bleaching agents. The
data are as follows:

Oven Temperature

1 77.199 74.466 92.746 76.208 82.876

2 80.522 79.306 81.914 80.346 73.385

3 79.417 78.017 91.596 80.802 80.626

4 78.001 78.358 77.544 77.364 77.386

(a) Is there a difference in the chemical types? Use � =
0.05.

(b) Estimate the variability due to chemical types.

(c) Estimate the variability due to random error.

(d) Analyze the residuals from this experimental and com-
ment on model adequacy.

3.35. Consider the single-factor random effects model dis-
cussed in this chapter. Develop a procedure for finding a
100(1 – 	)% confidence interval on the ratio �2�(�2

� � �2).
Assume that the experiment is balanced.

3.36. Consider testing the equality of the means of two nor-
mal populations, where the variances are unknown but are
assumed to be equal. The appropriate test procedure is 
the pooled t-test. Show that the pooled t-test is equivalent to
the single-factor analysis of variance.

3.37. Show that the variance of the linear combination
ciyi. is �2 .

3.38. In a fixed effects experiment, suppose that there are n
observations for each of the four treatments. Let be
single-degree-of-freedom components for the orthogonal con-
trasts. Prove that SSTreatments � .

3.39. Use Bartlett’s test to determine if the assumption of
equal variances is satisfied in Problem 3.24. Use 	 � 0.05.
Did you reach the same conclusion regarding equality of vari-
ances by examining residual plots?

3.40. Use the modified Levene test to determine if the
assumption of equal variances is satisfied in Problem 3.26.
Use 	 � 0.05. Did you reach the same conclusion regarding
the equality of variances by examining residual plots?

3.41. Refer to Problem 3.22. If we wish to detect a maximum
difference in mean response times of 10 milliseconds with a
probability of at least 0.90, what sample size should be used?
How would you obtain a preliminary estimate of �2?

3.42. Refer to Problem 3.26.

(a) If we wish to detect a maximum difference in battery life
of 10 hours with a probability of at least 0.90, what sam-
ple size should be used? Discuss how you would obtain
a preliminary estimate of �2 for answering this question.

(b) If the difference between brands is great enough so that
the standard deviation of an observation is increased by
25 percent, what sample size should be used if we wish
to detect this with a probability of at least 0.90?

3.43. Consider the experiment in Problem 3.26. If we wish
to construct a 95 percent confidence interval on the difference
in two mean battery lives that has an accuracy of 
2 weeks,
how many batteries of each brand must be tested?

3.44. Suppose that four normal populations have means of
�1 � 50, �2 � 60, �3 � 50, and �4 � 60. How many obser-
vations should be taken from each population so that the
probability of rejecting the null hypothesis of equal popula-
tion means is at least 0.90? Assume that 	 � 0.05 and that a
reasonable estimate of the error variance is �2 � 25.

Q2
1 � Q2

2 � Q2
3

Q2
1, Q2

2, Q2
3

�a
i�1nic

2
i�a

i�1
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3.45. Refer to Problem 3.44.

(a) How would your answer change if a reasonable esti-
mate of the experimental error variance were �2 � 36?

(b) How would your answer change if a reasonable esti-
mate of the experimental error variance were �2 � 49?

(c) Can you draw any conclusions about the sensitivity of
your answer in this particular situation about how your
estimate of � affects the decision about sample size?

(d) Can you make any recommendations about how we
should use this general approach to choosing n in
practice?

3.46. Refer to the aluminum smelting experiment described
in Section 3.8.3. Verify that ratio control methods do not affect
average cell voltage. Construct a normal probability plot of the
residuals. Plot the residuals versus the predicted values. Is there
an indication that any underlying assumptions are violated?

3.47. Refer to the aluminum smelting experiment in
Section 3.8.3. Verify the ANOVA for pot noise summarized in
Table 3.16. Examine the usual residual plots and comment on
the experimental validity.

3.48. Four different feed rates were investigated in an
experiment on a CNC machine producing a component part
used in an aircraft auxiliary power unit. The manufacturing
engineer in charge of the experiment knows that a critical
part dimension of interest may be affected by the feed rate.
However, prior experience has indicated that only disper-
sion effects are likely to be present. That is, changing the
feed rate does not affect the average dimension, but it could
affect dimensional variability. The engineer makes five pro-
duction runs at each feed rate and obtains the standard devi-
ation of the critical dimension (in 10�3 mm). The data are
shown below. Assume that all runs were made in random
order.

Production Run

Feed Rate 
(in/min) 1 2 3 4 5

10 0.09 0.10 0.13 0.08 0.07

12 0.06 0.09 0.12 0.07 0.12

14 0.11 0.08 0.08 0.05 0.06

16 0.19 0.13 0.15 0.20 0.11

(a) Does feed rate have any effect on the standard devia-
tion of this critical dimension?

(b) Use the residuals from this experiment to investigate
model adequacy. Are there any problems with experi-
mental validity?

3.49. Consider the data shown in Problem 3.22.

(a) Write out the least squares normal equations for this
problem and solve them for and , using the usual
constraint ( ). Estimate �1 � �2.�3

i�1�̂i � 0
�̂i�̂

(b) Solve the equations in (a) using the constraint .
Are the estimators and the same as you found in
(a)? Why? Now estimate�1 � �2 and compare your
answer with that for (a). What statement can you make
about estimating contrasts in the �i?

(c) Estimate � � �1, 2�1 � �2 � �3, and � � �1 � �2

using the two solutions to the normal equations. Compare
the results obtained in each case.

3.50. Apply the general regression significance test to the
experiment in Example 3.5. Show that the procedure yields
the same results as the usual analysis of variance.

3.51. Use the Kruskal–Wallis test for the experiment in
Problem 3.23. Compare the conclusions obtained with those
from the usual analysis of variance.

3.52. Use the Kruskal–Wallis test for the experiment in
Problem 3.23. Are the results comparable to those found by
the usual analysis of variance?

3.53. Consider the experiment in Example 3.5. Suppose
that the largest observation on etch rate is incorrectly record-
ed as 250 Å/min. What effect does this have on the usual
analysis of variance? What effect does it have on the
Kruskal–Wallis test?

3.54. A textile mill has a large number of looms. Each loom
is supposed to provide the same output of cloth per minute. To
investigate this assumption, five looms are chosen at random,
and their output is noted at different times. The following data
are obtained:

Loom Output (lb/min)

1 14.0 14.1 14.2 14.0 14.1

2 13.9 13.8 13.9 14.0 14.0

3 14.1 14.2 14.1 14.0 13.9
4 13.6 13.8 14.0 13.9 13.7
5 13.8 13.6 13.9 13.8 14.0

(a) Explain why this is a random effects experiment. Are
the looms equal in output? Use 	 = 0.05.

(b) Estimate the variability between looms.

(c) Estimate the experimental error variance.

(d) Find a 95 percent confidence interval for .

(e) Analyze the residuals from this experiment. Do you think
that the analysis of variance assumptions are satisfied?

(f) Use the REML method to analyze this data. Compare
the 95 percent confidence interval on the error vari-
ance from REML with the exact chi-square confidence
interval.

3.55. A manufacturer suspects that the batches of raw mate-
rial furnished by his supplier differ significantly in calcium
content. There are a large number of batches currently in the
warehouse. Five of these are randomly selected for study. 

�2
� � (�2
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�̂�̂i
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A chemist makes five determinations on each batch and
obtains the following data:

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

23.46 23.59 23.51 23.28 23.29

23.48 23.46 23.64 23.40 23.46

23.56 23.42 23.46 23.37 23.37
23.39 23.49 23.52 23.46 23.32
23.40 23.50 23.49 23.39 23.38

(a) Is there significant variation in calcium content from
batch to batch? Use 	 = 0.05.

(b) Estimate the components of variance.

(c) Find a 95 percent confidence interval for .

(d) Analyze the residuals from this experiment. Are the
analysis of variance assumptions satisfied?

(e) Use the REML method to analyze this data. Compare
the 95 percent confidence interval on the error vari-
ance from REML with the exact chi-square confidence
interval.

�2
� � (�2

� � �2)
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C H A P T E R  4

R a n d o m i z e d  B l o c k s ,
L a t i n  S q u a r e s ,  a n d
R e l a t e d  D e s i g n s

4.1 The Randomized Complete Block Design

In any experiment, variability arising from a nuisance factor can affect the results. Generally,
we define a nuisance factor as a design factor that probably has an effect on the response,
but we are not interested in that effect. Sometimes a nuisance factor is unknown and uncon-
trolled; that is, we don’t know that the factor exists, and it may even be changing levels while
we are conducting the experiment. Randomization is the design technique used to guard
against such a “lurking” nuisance factor. In other cases, the nuisance factor is known but
uncontrollable. If we can at least observe the value that the nuisance factor takes on at each
run of the experiment, we can compensate for it in the statistical analysis by using the analy-
sis of covariance, a technique we will discuss in Chapter 14. When the nuisance source of
variability is known and controllable, a design technique called blocking can be used to sys-
tematically eliminate its effect on the statistical comparisons among treatments. Blocking is
an extremely important design technique used extensively in industrial experimentation and
is the subject of this chapter.

To illustrate the general idea, reconsider the hardness testing experiment first described in
Section 2.5.1. Suppose now that we wish to determine whether or not four different tips produce
different readings on a hardness testing machine. An experiment such as this might be part of a
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gauge capability study. The machine operates by pressing the tip into a metal test coupon, and
from the depth of the resulting depression, the hardness of the coupon can be determined. The
experimenter has decided to obtain four observations on Rockwell C-scale hardness for each tip.
There is only one factor—tip type—and a completely randomized single-factor design would
consist of randomly assigning each one of the 4 � 4 � 16 runs to an experimental unit, that
is, a metal coupon, and observing the hardness reading that results. Thus, 16 different metal test
coupons would be required in this experiment, one for each run in the design.

There is a potentially serious problem with a completely randomized experiment in this
design situation. If the metal coupons differ slightly in their hardness, as might happen if they
are taken from ingots that are produced in different heats, the experimental units (the
coupons) will contribute to the variability observed in the hardness data. As a result, the
experimental error will reflect both random error and variability between coupons.

We would like to make the experimental error as small as possible; that is, we would
like to remove the variability between coupons from the experimental error. A design that
would accomplish this requires the experimenter to test each tip once on each of four
coupons. This design, shown in Table 4.1, is called a randomized complete block design
(RCBD). The word “complete” indicates that each block (coupon) contains all the treatments
(tips). By using this design, the blocks, or coupons, form a more homogeneous experimental
unit on which to compare the tips. Effectively, this design strategy improves the accuracy of
the comparisons among tips by eliminating the variability among the coupons. Within a
block, the order in which the four tips are tested is randomly determined. Notice the similar-
ity of this design problem to the paired t-test of Section 2.5.1. The randomized complete block
design is a generalization of that concept.

The RCBD is one of the most widely used experimental designs. Situations for which
the RCBD is appropriate are numerous. Units of test equipment or machinery are often dif-
ferent in their operating characteristics and would be a typical blocking factor. Batches of raw
material, people, and time are also common nuisance sources of variability in an experiment
that can be systematically controlled through blocking.1

Blocking may also be useful in situations that do not necessarily involve nuisance fac-
tors. For example, suppose that a chemical engineer is interested in the effect of catalyst feed
rate on the viscosity of a polymer. She knows that there are several factors, such as raw mate-
rial source, temperature, operator, and raw material purity that are very difficult to control in
the full-scale process. Therefore she decides to test the catalyst feed rate factor in blocks,
where each block consists of some combination of these uncontrollable factors. In effect, she
is using the blocks to test the robustness of her process variable (feed rate) to conditions she
cannot easily control. For more discussion of this, see Coleman and Montgomery (1993).
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■ T A B L E 4 . 1
Randomized Complete Block Design for the Hardness Testing Experiment

Test Coupon (Block)

1 2 3 4

Tip 3 Tip 3 Tip 2 Tip 1

Tip 1 Tip 4 Tip 1 Tip 4

Tip 4 Tip 2 Tip 3 Tip 2

Tip 2 Tip 1 Tip 4 Tip 3

1 A special case of blocking occurs where the blocks are experimental units such as people, and each block receives the treatments own time
or the treatment effects are measured at different times. These are called repeated measures designs. They are discussed in chapter 15.



4.1.1 Statistical Analysis of the RCBD

Suppose we have, in general, a treatments that are to be compared and b blocks. The random-
ized complete block design is shown in Figure 4.1. There is one observation per treatment in
each block, and the order in which the treatments are run within each block is determined ran-
domly. Because the only randomization of treatments is within the blocks, we often say that
the blocks represent a restriction on randomization.

The statistical model for the RCBD can be written in several ways. The traditional
model is an effects model:

(4.1)

where � is an overall mean, �i is the effect of the ith treatment, �j is the effect of the jth block,
and �ij is the usual NID (0, �2) random error term. We will initially consider treatments and
blocks to be fixed factors. The case of random blocks, which is very important, is considerd in
Section 4.1.3. Just as in the single-factor experimental design model in Chapter 3, the effects
model for the RCBD is an overspecified model. Consequently, we usually think of the treat-
ment and block effects as deviations from the overall mean so that

It is also possible to use a means model for the RCBD, say

where �ij � � � �i � �j. However, we will use the effects model in Equation 4.1 throughout
this chapter.

In an experiment involving the RCBD, we are interested in testing the equality of the
treatment means. Thus, the hypotheses of interest are

Because the ith treatment mean �i � (1/b) (� � �i � �j) � � � �i, an equivalent way to
write the above hypotheses is in terms of the treatment effects, say

The analysis of variance can be easily extended to the RCBD. Let yi. be the total of all
observations taken under treatment i, y.j be the total of all observations in block j, y.. be the

H1��i Z 0 at least one i

H0��1 � �2 � Á � �a � 0

�b
j�1

H1�at least one �i Z �j

H0��1 � �2 � Á � �a

yij � �ij � �ij   �i � 1, 2, . . . , a
j � 1, 2, . . . , b

�
a

i�1
�i � 0  and  �

b

j�1
�j � 0

yij � � � �i � �j � �ij   �i � 1, 2, . . . , a
j � 1, 2, . . . , b
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grand total of all observations, and N � ab be the total number of observations. Expressed
mathematically,

(4.2)

(4.3)

and

(4.4)

Similarly, is the average of the observations taken under treatment i, is the average of the
observations in block j, and is the grand average of all observations. That is,

(4.5)

We may express the total corrected sum of squares as

(4.6)

By expanding the right-hand side of Equation 4.6, we obtain

Simple but tedious algebra proves that the three cross products are zero. Therefore,

(4.7)

represents a partition of the total sum of squares. This is the fundamental ANOVA equation
for the RCBD. Expressing the sums of squares in Equation 4.7 symbolically, we have

(4.8)

Because there are N observations, SST has N � 1 degrees of freedom. There are a treat-
ments and b blocks, so SSTreatments and SSBlocks have a � 1 and b � 1 degrees of freedom, respec-
tively. The error sum of squares is just a sum of squares between cells minus the sum of squares
for treatments and blocks. There are ab cells with ab � 1 degrees of freedom between them,
so SSE has ab � 1 � (a � 1) � (b � 1) � (a � 1)(b � 1) degrees of freedom. Furthermore,
the degrees of freedom on the right-hand side of Equation 4.8 add to the total on the left; there-
fore, making the usual normality assumptions on the errors, one may use Theorem 3-1 to show

SST � SSTreatments � SSBlocks � SSE
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a
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that SSTreatments/�
2, SSBlocks/�

2, and SSE/�2 are independently distributed chi-square random vari-
ables. Each sum of squares divided by its degrees of freedom is a mean square. The expected
value of the mean squares, if treatments and blocks are fixed, can be shown to be

Therefore, to test the equality of treatment means, we would use the test statistic

which is distributed as Fa�1,(a�1)(b�1) if the null hypothesis is true. The critical region is the
upper tail of the F distribution, and we would reject H0 if F0 
 F	,a�1,(a�1)(b�1). A P-value
approach can also be used.

We may also be interested in comparing block means because, if these means do not
differ greatly, blocking may not be necessary in future experiments. From the expected mean
squares, it seems that the hypothesis H0 :�j � 0 may be tested by comparing the statistic 
F0 � MSBlocks/MSE to F�,b�1,(a�1)(b�1). However, recall that randomization has been applied
only to treatments within blocks; that is, the blocks represent a restriction on randomiza-
tion. What effect does this have on the statistic F0 � MSBlocks/MSE? Some differences in treat-
ment of this question exist. For example, Box, Hunter, and Hunter (2005) point out that the
usual analysis of variance F test can be justified on the basis of randomization only,2 without
direct use of the normality assumption. They further observe that the test to compare block
means cannot appeal to such a justification because of the randomization restriction; but if the
errors are NID(0, �2), the statistic F0 � MSBlocks/MSE can be used to compare block means.
On the other hand, Anderson and McLean (1974) argue that the randomization restriction pre-
vents this statistic from being a meaningful test for comparing block means and that this 
F ratio really is a test for the equality of the block means plus the randomization restriction
[which they call a restriction error; see Anderson and McLean (1974) for further details].

In practice, then, what do we do? Because the normality assumption is often question-
able, to view F0 � MSBlocks/MSE as an exact F test on the equality of block means is not a good
general practice. For that reason, we exclude this F test from the analysis of variance table.
However, as an approximate procedure to investigate the effect of the blocking variable,
examining the ratio of MSBlocks to MSE is certainly reasonable. If this ratio is large, it implies
that the blocking factor has a large effect and that the noise reduction obtained by blocking
was probably helpful in improving the precision of the comparison of treatment means.

The procedure is usually summarized in an ANOVA table, such as the one shown in
Table 4.2. The computing would usually be done with a statistical software package.
However, computing formulas for the sums of squares may be obtained for the elements in
Equation 4.7 by working directly with the identity

yij � y.. � (yi. � y..) � (y.j � y..) � (yij � yi. � y.j � y..)

F0 �
MSTreatments

MSE

E(MSE) � � 2

E(MSBlocks) � � 2 �

a �
b

j�1
�2

j

b � 1

E(MSTreatments) � � 2 �

b �
a

i�1
� 2

i

a � 1

4.1 The Randomized Complete Block Design 143

2 Actually, the normal-theory F distribution is an approximation to the randomization distribution generated by calculating F0 from
every possible assignment of the responses to the treatments.



These quantities can be computed in the columns of a spreadsheet (Excel). Then each column
can be squared and summed to produce the sum of squares. Alternatively, computing formu-
las can be expressed in terms of treatment and block totals. These formulas are

(4.9)

(4.10)

(4.11)

and the error sum of squares is obtained by subtraction as

(4.12)SSE � SST � SSTreatments � SSBlocks
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N
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■ T A B L E  4 . 2
Analysis of Variance for a Randomized Complete Block Design

Source Degrees
of Variation Sum of Squares of Freedom Mean Square F0

Treatments SSTreatments a � 1

Blocks SSBlocks b � 1

Error SSE (a � 1)(b � 1)

Total SST N � 1

SSE

(a � 1)(b � 1)

SSBlocks

b � 1

MSTreatments

MSE

SSTreatments

a � 1

E X A M P L E  4 . 1

A medical device manufacturer produces vascular grafts
(artificial veins). These grafts are produced by extruding
billets of polytetrafluoroethylene (PTFE) resin combined
with a lubricant into tubes. Frequently, some of the tubes in
a production run contain small, hard protrusions on the
external surface. These defects are known as “flicks.” The
defect is cause for rejection of the unit.

The product developer responsible for the vascular
grafts suspects that the extrusion pressure affects the occur-
rence of flicks and therefore intends to conduct an experi-
ment to investigate this hypothesis. However, the resin is
manufactured by an external supplier and is delivered to the
medical device manufacturer in batches. The engineer also
suspects that there may be significant batch-to-batch varia-

tion, because while the material should be consistent with
respect to parameters such as molecular weight, mean par-
ticle size, retention, and peak height ratio, it probably isn’t
due to manufacturing variation at the resin supplier and nat-
ural variation in the material. Therefore, the product devel-
oper decides to investigate the effect of four different levels
of extrusion pressure on flicks using a randomized com-
plete block design considering batches of resin as blocks.
The RCBD is shown in Table 4.3. Note that there are four
levels of extrusion pressure (treatments) and six batches of
resin (blocks). Remember that the order in which the extru-
sion pressures are tested within each block is random. The
response variable is yield, or the percentage of tubes in the
production run that did not contain any flicks.
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To perform the analysis of variance, we need the follow-
ing sums of squares:

� (514.6)2] �
(2155.1)2

24
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�
1
6

 [(556.9)2 � (550.1)2 � (533.5)2
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4

i�1
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i. �
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..

N

� 193,999.31 �
(2155.1)2
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4

i�1
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6

j�1
y2

ij �
y2

..

N

The ANOVA is shown in Table 4.4. Using 	 � 0.05, the
critical value of F is F0.05, 3,15 � 3.29. Because 8.11 
 3.29,
we conclude that extrusion pressure affects the mean yield.
The P-value for the test is also quite small. Also, the resin
batches (blocks) seem to differ significantly, because the
mean square for blocks is large relative to error.

� 480.31 � 178.17 � 192.25 � 109.89

SSE � SST � SSTreatments � SSBlocks

�
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..
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■ T A B L E  4 . 3
Randomized Complete Block Design for the Vascular Graft Experiment

Batch of Resin (Block)
Extrusion Treatment
Pressure (PSI) 1 2 3 4 5 6 Total

8500 90.3 89.2 98.2 93.9 87.4 97.9 556.9

8700 92.5 89.5 90.6 94.7 87.0 95.8 550.1

8900 85.5 90.8 89.6 86.2 88.0 93.4 533.5

9100 82.5 89.5 85.6 87.4 78.9 90.7 514.6

Block Totals 350.8 359.0 364.0 362.2 341.3 377.8 y.. � 2155.1

It is interesting to observe the results we would have obtained from this experiment had
we not been aware of randomized block designs. Suppose that this experiment had been run
as a completely randomized design, and (by chance) the same design resulted as in Table 4.3.
The incorrect analysis of these data as a completely randomized single-factor design is shown
in Table 4.5.

Because the P-value is less than 0.05, we would still reject the null hypothesis and con-
clude that extrusion pressure significantly affects the mean yield. However, note that the mean

■ T A B L E  4 . 4
Analysis of Variance for the Vascular Graft Experiment

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Treatments (extrusion pressure) 178.17 3 59.39 8.11 0.0019

Blocks (batches) 192.25 5 38.45

Error 109.89 15 7.33

Total 480.31 23



square for error has more than doubled, increasing from 7.33 in the RCBD to 15.11. All of
the variability due to blocks is now in the error term. This makes it easy to see why we some-
times call the RCBD a noise-reducing design technique; it effectively increases the signal-to-
noise ratio in the data, or it improves the precision with which treatment means are compared.
This example also illustrates an important point. If an experimenter fails to block when he or
she should have, the effect may be to inflate the experimental error, and it would be possible
to inflate the error so much that important differences among the treatment means could not
be identified.

Sample Computer Output. Condensed computer output for the vascular graft exper-
iment in Example 4.1, obtained from Design-Expert and JMP is shown in Figure 4.2. The
Design-Expert output is in Figure 4.2a and the JMP output is in Figure 4.2b. Both outputs are
very similar, and match the manual computation given earlier. Note that JMP computes an 
F-statistic for blocks (the batches). The sample means for each treatment are shown in the out-
put. At 8500 psi, the mean yield is , at 8700 psi the mean yield is , at
8900 psi the mean yield is , and at 9100 psi the mean yield is .
Remember that these sample mean yields estimate the treatment means �1, �2, �3, and �4.
The model residuals are shown at the bottom of the Design-Expert output. The residuals are
calculated from

and, as we will later show, the fitted values are , so

(4.13)

In the next section, we will show how the residuals are used in model adequacy checking.

Multiple Comparisons. If the treatments in an RCBD are fixed, and the analysis
indicates a significant difference in treatment means, the experimenter is usually interested in
multiple comparisons to discover which treatment means differ. Any of the multiple compar-
ison procedures discussed in Section 3.5 may be used for this purpose. In the formulas of
Section 3.5, simply replace the number of replicates in the single-factor completely random-
ized design (n) by the number of blocks (b). Also, remember to use the number of error
degrees of freedom for the randomized block [(a � 1)(b � 1)] instead of those for the com-
pletely randomized design [a(n � 1)].

The Design-Expert output in Figure 4.2 illustrates the Fisher LSD procedure. Notice
that we would conclude that �1 � �2, because the P-value is very large. Furthermore,
�1 differs from all other means. Now the P-value for H0:�2 � �3 is 0.097, so there is some
evidence to conclude that �2 �3, and �2 �4 because the P-value is 0.0018. Overall,
we would conclude that lower extrusion pressures (8500 psi and 8700 psi) lead to fewer
defects.

ZZ

eij � yij � yi. � y.j � y..

ŷij � yi. � y.j � y..

eij � yij � ŷij

y4. � 85.77y3. � 88.92
y2. � 91.68y1. � 92.82
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■ T A B L E  4 . 5
Incorrect Analysis of the Vascular Graft Experiment as a Completely Randomized Design

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Extrusion pressure 178.17 3 59.39 3.95 0.0235

Error 302.14 20 15.11

Total 480.31 23
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.

(a)

■ F I G U R E  4 . 2 Computer output for Example 4.1. (a) Design-Expert; (b) JMP



We can also use the graphical procedure of Section 3.5.1 to compare mean yield at the
four extrusion pressures. Figure 4.3 plots the four means from Example 4.1 relative to a
scaled t distribution with a scale factor � � 1.10. This plot indicates that
the two lowest pressures result in the same mean yield, but that the mean yields for 8700 psi and

�7.33/6�MSE/b
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■ F I G U R E  4 . 2 (Continued)

80 85 90

234 1

95
Yield

■ F I G U R E  4 . 3 Mean
yields for the four extrusion
pressures relative to a
scaled t distribution with a
scale factor 
�MSE/b � �7.33/6 � 1.10

Oneway Analysis of Yield By Pressure

Block
Batch

Oneway Anova

Summary of Fit

0.771218Rsquare
0.649201Adj Rsquare
2.706612Root Mean Square Error
89.79583Mean of Response

24Observations (or Sum Wgts)

Analysis of Variance

Mean SquareSum of SquaresDFSource F Prob > FRatio

0.00198.107159.3904178.171253Pressure
0.00555.248738.4504192.252085Batch

7.3257109.8862515Error
480.3095823C.Total

Means for Oneway Anova

Upper 95%Lower 95%ErrorStd.MeanNumberLevel

95.17290.4611.105092.816768500
94.03989.3281.105091.683368700
91.27286.5611.105088.916768900
88.12283.4111.105085.766769100

Error uses a pooled estimate of error varianceStd.

Block Means

NumberMeanBatch

487.70001
489.75002
491.00003
490.55004
485.32505
494.45006

(b)



8900 psi (�2 and �3) are also similar. The highest pressure (9100 psi) results in a mean
yield that is much lower than all other means. This figure is a useful aid in interpreting the
results of the experiment and the Fisher LSD calculations in the Design-Expert output in
Figure 4.2.

4.1.2 Model Adequacy Checking

We have previously discussed the importance of checking the adequacy of the assumed
model. Generally, we should be alert for potential problems with the normality assumption,
unequal error variance by treatment or block, and block–treatment interaction. As in the
completely randomized design, residual analysis is the major tool used in this diagnostic
checking. The residuals for the randomized block design in Example 4.1 are listed at the bot-
tom of the Design-Expert output in Figure 4.2.

A normal probability plot of these residuals is shown in Figure 4.4. There is no severe
indication of nonnormality, nor is there any evidence pointing to possible outliers. Figure 4.5
plots the residuals versus the fitted values . There should be no relationship between the size
of the residuals and the fitted values . This plot reveals nothing of unusual interest. Figure
4.6 shows plots of the residuals by treatment (extrusion pressure) and by batch of resin or
block. These plots are potentially very informative. If there is more scatter in the residuals for
a particular treatment, that could indicate that this treatment produces more erratic response
readings than the others. More scatter in the residuals for a particular block could indicate that
the block is not homogeneous. However, in our example, Figure 4.6 gives no indication of
inequality of variance by treatment but there is an indication that there is less variability in
the yield for batch 6. However, since all of the other residual plots are satisfactory, we will
ignore this.

ŷij

ŷij
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■ F I G U R E  4 . 4 Normal probability plot
of residuals for Example 4.1

■ F I G U R E  4 . 5 Plot of residuals versus ij

for Example 4.1
ŷ



Sometimes the plot of residuals versus has a curvilinear shape; for example, there
may be a tendency for negative residuals to occur with low values, positive residuals with
intermediate values, and negative residuals with high values. This type of pattern is sug-
gestive of interaction between blocks and treatments. If this pattern occurs, a transformation
should be used in an effort to eliminate or minimize the interaction. In Section 5.3.7, we
describe a statistical test that can be used to detect the presence of interaction in a random-
ized block design.

4.1.3 Some Other Aspects of the Randomized 
Complete Block Design

Additivity of the Randomized Block Model. The linear statistical model that we
have used for the randomized block design

is completely additive. This says that, for example, if the first treatment causes the expected
response to increase by five units (�1 � 5) and if the first block increases the expected response
by 2 units (�1 � 2), the expected increase in response of both treatment 1 and block 1 together
is E(y11) � � � �1 � �1 � � � 5 � 2 � � � 7. In general, treatment 1 always increases the
expected response by 5 units over the sum of the overall mean and the block effect.

Although this simple additive model is often useful, in some situations it is inadequate.
Suppose, for example, that we are comparing four formulations of a chemical product using
six batches of raw material; the raw material batches are considered blocks. If an impurity in
batch 2 affects formulation 2 adversely, resulting in an unusually low yield, but does not affect
the other formulations, an interaction between formulations (or treatments) and batches (or

yij � � � �i � �j � �ij

ŷijŷij

ŷij

ŷij
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■ F I G U R E  4 . 6 Plot of residuals by extrusion pressure (treatment) and by batches of resin (block) for
Example 4.1
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blocks) has occurred. Similarly, interactions between treatments and blocks can occur when
the response is measured on the wrong scale. Thus, a relationship that is multiplicative in the
original units, say

is linear or additive in a log scale since, for example,

or

Although this type of interaction can be eliminated by a transformation, not all interactions
are so easily treated. For example, transformations do not eliminate the formulation–batch
interaction discussed previously. Residual analysis and other diagnostic checking procedures
can be helpful in detecting nonadditivity.

If interaction is present, it can seriously affect and possibly invalidate the analysis of
variance. In general, the presence of interaction inflates the error mean square and may
adversely affect the comparison of treatment means. In situations where both factors, as well
as their possible interaction, are of interest, factorial designs must be used. These designs are
discussed extensively in Chapters 5 through 9.

Random Treatments and Blocks. Our presentation of the randomized complete
block design thus far has focused on the case when both the treatments and blocks were con-
sidered as fixed factors. There are many situations where either treatments or blocks (or both)
are random factors. It is very common to find that the blocks are random. This is usually what
the experimenter would like to do, because we would like for the conclusions from the exper-
iment to be valid across the population of blocks that the ones selected for the experiments
were sampled from. First, we consider the case where the treatments are fixed and the blocks
are random. Equation 4.1 is still the appropriate statistical model, but now the block effects
are random, that is, we assume that the �j , j � 1, 2,..., b are NID(0, �2

�) random variables.
This is a special case of a mixed model (because it contains both fixed and random factors).
In Chapters 13 and 14 we will discuss mixed models in more detail and provide several exam-
ples of situations where they occur. Our discussion here is limited to the RCBD.  

Assuming that the RCBD model Equation 4.1 is appropriate, if the blocks are random
and the treatments are fixed we can show that:

(4.14)

Thus, the variance of the observations is constant, the covariance between any two observa-
tions in different blocks is zero, but the covariance between two observations from the same
block is . The expected mean squares from the usual ANOVA partitioning of the total sum
of squares are 

(4.15)

E(MSE) � �2

E(MSBlocks) � �2 � a�2
�

E(MSTreatments) � �2 �

b�
a

i�1
�2

i

a � 1

�2
�

Cov(yij, yi�j) � �2
� i Z i�

Cov(yij, yi�j�) � 0,   j Z j�

V(yij) � �2
� � �2

E(yij) � � � �i, i � 1, 2,..., a

E(y*ij ) � �* � �*i � �*j

ln E(yij) � ln � � ln �i � ln �j

E(yij) � ��i�j



The appropriate statistic for testing the null hypothesis of no treatment effects (all
) is 

which is exactly the same test statistic we used in the case where the blocks were fixed. Based
on the expected mean squares, we can obtain an ANOVA-type estimator of the variance com-
ponent for blocks as 

(4.16)

For example, for the vascular graft experiment in Example 4.1 the estimate of is

This is a method-of-moments estimate and there is no simple way to find a confidence inter-
val on the block variance component . The REML method would be preferred here. Table 4.6
is the JMP output for Example 4.1 assuming that blocks are random. The REML estimate of

is exactly the same as the ANOVA estimate, but REML automatically produces the stan-
dard error of the estimate (6.116215) and the approximate 95 percent confidence interval.
JMP gives the test for the fixed effect (pressure), and the results are in agreement with those
originally reported in Example 4.1. REML also produces the point estimate and CI for the
error variance . The ease with which confidence intervals can be constructed is a major rea-
son why REML has been so widely adopted.

Now consider a situation where there is an interaction between treatments and
blocks. This could be accounted for by adding an interaction term to the original statisti-
cal model Equation 4.1. Let be the interaction effect of treatment I in block j. Then
the model is 

(4.17)

The interaction effect is assumed to be random because it involves the random block effects.
If is the variance component for the block treatment interaction, then we can show that
the expected mean squares are 

(4.18)

From the expected mean squares, we see that the usual F-statistic F � MSTreatments/MSE would
be used to test for no treatment effects. So another advantage of the random block model is
that the assumption of no interaction in the RCBD is not important. However, if blocks are
fixed and there is interaction, then the interaction effect is not in the expected mean square for
treatments but it is in the error expected mean square, so there would not be a statistical test
for the treatment effects.  
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Choice of Sample Size. Choosing the sample size, or the number of blocks to run,
is an important decision when using an RCBD. Increasing the number of blocks increases
the number of replicates and the number of error degrees of freedom, making design more
sensitive. Any of the techniques discussed in Section 3.7 for selecting the number of repli-
cates to run in a completely randomized single-factor experiment may be applied directly to
the RCBD. For the case of a fixed factor, the operating characteristic curves in Appendix
Chart V may be used with

(4.19)

where there are a � 1 numerator degrees of freedom and (a � 1)(b � 1) denominator degrees
of freedom.

�2 �

b�
a

i�1
� 2

i

a� 2
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TA B L E  4 . 6
JMP Output for Example 4.1 with Blocks Assumed Random

Response Y

Summary of Fit

RSquare 0.756688

RSquare Adj 0.720192

Root Mean Square Error 2.706612

Mean of Response 89.79583

Observations (or Sum Wgts) 24

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total

Block 1.0621666 7.7811667 6.116215 �4.206394 19.768728 51.507

Residual 7.32575 2.6749857 3.9975509 17.547721 48.493

Total 15.106917 100.000

Covariance Matrix of Variance Component Estimates

Random Effect Block Residual

Block 37.408085 �1.788887

Residual �1.788887 7.1555484

Fixed Effect Tests

Source Nparm DF DFDen F Ratio Prob > F

Pressure 3 3 15 8.1071 0.0019*



Estimating Missing Values. When using the RCBD, sometimes an observation in
one of the blocks is missing. This may happen because of carelessness or error or for reasons
beyond our control, such as unavoidable damage to an experimental unit. A missing observa-
tion introduces a new problem into the analysis because treatments are no longer orthogonal
to blocks; that is, every treatment does not occur in every block. There are two general
approaches to the missing value problem. The first is an approximate analysis in which the
missing observation is estimated and the usual analysis of variance is performed just as if the
estimated observation were real data, with the error degrees of freedom reduced by 1. This
approximate analysis is the subject of this section. The second is an exact analysis, which is
discussed in Section 4.1.4.

Suppose the observation yij for treatment i in block j is missing. Denote the missing
observation by x. As an illustration, suppose that in the vascular graft experiment of Example
4.1 there was a problem with the extrusion machine when the 8700 psi run was conducted in
the fourth batch of material, and the observation y24 could not be obtained. The data might
appear as in Table 4.7.

In general, we will let represent the grand total with one missing observation, rep-
resent the total for the treatment with one missing observation, and be the total for the
block with one missing observation. Suppose we wish to estimate the missing observation x

y�. j

y�i.y�ij
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Consider the RCBD for the vascular grafts described in
Example 4.1. Suppose that we wish to determine the appro-
priate number of blocks to run if we are interested in detect-
ing a true maximum difference in yield of 6 with a reasonably
high probability and an estimate of the standard deviation
of the errors is � � 3. From Equation 3.45, the minimum
value of �2 is (writing b, the number of blocks, for n)

where D is the maximum difference we wish to detect. Thus,

�2 �
b(6)2

2(4)(3)2
� 0.5b

�2 �
bD2

2a�2

If we use b � 5 blocks, � � � 1.58,
and there are (a � 1)(b � 1) � 3(4) � 12 error degrees of
freedom. Appendix Chart V with �1 � a � 1 � 3 and 	 �
0.05 indicates that the � risk for this design is approxi-
mately 0.55 (power � 1 � � � 0.45). If we use b � 6
blocks, � � , with (a � 1)
(b � 1) � 3(5) � 15 error degrees of freedom, and the cor-
responding � risk is approximately 0.4 (power � 1 � � �
0.6). Because the batches of resin are expensive and the cost
of experimentation is high, the experimenter decides to use
six blocks, even though the power is only about 0.6 (actually
many experiments work very well with power values of only
0.5 or higher).

�0.5b � �0.5(6) � 1.73

�0.5b � �0.5(5)

■ T A B L E  4 . 7
Randomized Complete Block Design for the Vascular Graft Experiment with One Missing Value

Batch of Resin (Block)
Extrusion
Pressures (PSI) 1 2 3 4 5 6

8500 90.3 89.2 98.2 93.9 87.4 97.9 556.9

8700 92.5 89.5 90.6 x 87.0 95.8 455.4

8900 85.5 90.8 89.6 86.2 88.0 93.4 533.5

9100 82.5 89.5 85.6 87.4 78.9 90.7 514.6

Block totals 350.8 359.0 364.0 267.5 341.3 377.8 y�.. � 2060.4



so that x will have a minimum contribution to the error sum of squares. Because SSE �
, this is equivalent to choosing x to minimize

or

(4.20)

where R includes all terms not involving x. From dSSE / dx � 0, we obtain

(4.21)

as the estimate of the missing observation.
For the data in Table 4.7, we find that and .

Therefore, from Equation 4.16,

The usual analysis of variance may now be performed using y24 � 91.08 and reducing the
error degrees of freedom by 1. The analysis of variance is shown in Table 4.8. Compare the
results of this approximate analysis with the results obtained for the full data set (Table 4.4).

If several observations are missing, they may be estimated by writing the error sum of
squares as a function of the missing values, differentiating with respect to each missing value,
equating the results to zero, and solving the resulting equations. Alternatively, we may use
Equation 4.21 iteratively to estimate the missing values. To illustrate the iterative approach,
suppose that two values are missing. Arbitrarily estimate the first missing value, and then use
this value along with the real data and Equation 4.21 to estimate the second. Now Equation
4.21 can be used to reestimate the first missing value, and following this, the second can be
reestimated. This process is continued until convergence is obtained. In any missing value
problem, the error degrees of freedom are reduced by one for each missing observation.

4.1.4 Estimating Model Parameters and the General
Regression Significance Test

If both treatments and blocks are fixed, we may estimate the parameters in the RCBD model
by least squares. Recall that the linear statistical model is

(4.22)yij � � � �i � �j � �ij   �i � 1, 2, . . . , a
j � 1, 2, . . . , b

x � y24 �
4(455.4) � 6(267.5) � 2060.4

(3)(5)
� 91.08

y�.. � 2060.4y�2. � 455.4, y�.4 � 267.5,

x �
ay�i. � by�.j � y�. .

(a � 1)(b � 1)

SSE � x2 �
1
b

(y�i. � x)2 �
1
a(y�.j � x)2 �

1
ab

(y�.. � x)2 � R

SSE � �
a

i�1
�
b

j�1
y2

ij �
1
b�

a

i�1
��

b

j�1
yij�2

�
1
a�

b

j�1
��

a

i�1
yij�2

�
1

ab��
a

i�1
�
b

j�1
yij�2

(yij � yi. � y.j � y..)
2�a

i�1�
b
j�1
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■ T A B L E  4 . 8
Approximate Analysis of Variance for Example 4.1 with One Missing Value

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Extrusion pressure 166.14 3 55.38 7.63 0.0029

Batches of raw material 189.52 5 37.90

Error 101.70 14 7.26

Total 457.36 23



Applying the rules in Section 3.9.2 for finding the normal equations for an experimen-
tal design model, we obtain

(4.23)

Notice that the second through the (a � 1)st equations in Equation 4.23 sum to the first
normal equation, as do the last b equations. Thus, there are two linear dependencies in the
normal equations, implying that two constraints must be imposed to solve Equation 4.23. The
usual constraints are

(4.24)

Using these constraints helps simplify the normal equations considerably. In fact, they
become

(4.25)

whose solution is

(4.26)

Using the solution to the normal equation in Equation 4.26, we may find the estimated or fit-
ted values of yij as

This result was used previously in Equation 4.13 for computing the residuals from a random-
ized block design.

� yi. � y.j � y..

� y.. � (yi. � y..) � (y.j � y..)

ŷij � �̂ � �̂i � �̂j

�̂j � y.j � y..   j � 1, 2, . . . , b

�̂i � yi. � y..   i � 1, 2, . . . , a

�̂ � y..

a�̂ � a�̂j � y.j   j � 1, 2, . . . , b

b�̂ � b�̂i � yi.  i � 1, 2, . . . , a

ab �̂ � y..

�
a

i�1
�̂i � 0   �

b

j�1
�̂j � 0

� y.b�b: aa�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂2 � Á � a�̂b

ooo

�2: aa�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂22 � Á � a�̂b � y.2

�1: aa�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂2 � Á � a�̂b � y.1

b�̂a � a�̂1 � a�̂2 � Á � a�̂b � ya.�a: ab�̂

ooo

�2: ab�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂2 � Á � a�̂b � y2.

�1: ab�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂2 � Á � a�̂b � y1.

�: ab�̂ � b�̂1 � b�̂2 � Á � b�̂a � a�̂1 � a�̂2 � Á � a�̂b � y..
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The general regression significance test can be used to develop the analysis of variance
for the randomized complete block design. Using the solution to the normal equations given
by Equation 4.26, the reduction in the sum of squares for fitting the full model is

with a � b � 1 degrees of freedom, and the error sum of squares is

with (a � 1)(b � 1) degrees of freedom. Compare this last equation with SSE in Equation 4.7.
To test the hypothesis H0: �i � 0, the reduced model is

which is just a single-factor analysis of variance. By analogy with Equation 3.5, the reduction
in the sum of squares for fitting the reduced model is

which has b degrees of freedom. Therefore, the sum of squares due to {�i} after fitting � and
{�j} is

which we recognize as the treatment sum of squares with a � 1 degrees of freedom (Equa-
tion 4.10).

The block sum of squares is obtained by fitting the reduced model

yij � � � �i � �ij

� �
a

i�1

y2
i.

b
�

y2
..

ab

� �
a

i�1

y2
i.

b
� �

b

j�1

y2
.j

a
�

y2
..

ab
� �

b

j�1

y2
.j

a

� R(full model) � R(reduced model)
R(���, �) � R(�, �, �) � R(�, �)

R(�, �) � �
b

j�1

y2
.j

a

yij � � � �j � �ij

� �
a

i�1
�
b

j�1
(yij � yi. � y.j � y..)

2

� �
a

i�1
�
b

j�1
y2

ij � �
a

i�1

y2
i.

b
� �

b

j�1

y2
.j

a
�

y2
..

ab

SSE � �
a

i�1
�
b

j�1
y2

ij � R(�, �, �)

� �
a

i�1

y2
i.

b
� �

b

j�1

y2
.j

a
�

y2
..

ab

�
y2

..

ab
� �

a

i�1
yi. yi. �

y2
..

ab
� �

b

j�1
y.jy.j �

y2
..

ab

� y.. y.. � �
a

i�1
(yi. � y..)yi. � �

b

j�1
(y.j � y..)y.j

R(�, �, �) � �̂y.. � �
a

i�1
�̂i yi. � �

b

j�1
�̂jy.j
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which is also a single-factor analysis. Again, by analogy with Equation 3.5, the reduction in
the sum of squares for fitting this model is

with a degrees of freedom. The sum of squares for blocks {�j} after fitting � and {�i} is

with b � 1 degrees of freedom, which we have given previously as Equation 4.11.
We have developed the sums of squares for treatments, blocks, and error in the random-

ized complete block design using the general regression significance test. Although we would
not ordinarily use the general regression significance test to actually analyze data in a ran-
domized complete block, the procedure occasionally proves useful in more general random-
ized block designs, such as those discussed in Section 4.4.

Exact Analysis of the Missing Value Problem. In Section 4.1.3 an approximate
procedure for dealing with missing observations in the RCBD was presented. This approx-
imate analysis consists of estimating the missing value so that the error mean square is
minimized. It can be shown that the approximate analysis produces a biased mean square
for treatments in the sense that E(MSTreatments) is larger than E(MSE) if the null hypothesis
is true. Consequently, too many significant results are reported.

The missing value problem may be analyzed exactly by using the general regression
significance test. The missing value causes the design to be unbalanced, and because all the
treatments do not occur in all blocks, we say that the treatments and blocks are not orthog-
onal. This method of analysis is also used in more general types of randomized block
designs; it is discussed further in Section 4.4. Many computer packages will perform this
analysis.

4.2 The Latin Square Design

In Section 4.1 we introduced the randomized complete block design as a design to reduce the
residual error in an experiment by removing variability due to a known and controllable nui-
sance variable. There are several other types of designs that utilize the blocking principle. For
example, suppose that an experimenter is studying the effects of five different formulations of
a rocket propellant used in aircrew escape systems on the observed burning rate. Each formu-
lation is mixed from a batch of raw material that is only large enough for five formulations to
be tested. Furthermore, the formulations are prepared by several operators, and there may be
substantial differences in the skills and experience of the operators. Thus, it would seem that
there are two nuisance factors to be “averaged out” in the design: batches of raw material and
operators. The appropriate design for this problem consists of testing each formulation exact-
ly once in each batch of raw material and for each formulation to be prepared exactly once by
each of five operators. The resulting design, shown in Table 4.9, is called a Latin square
design. Notice that the design is a square arrangement and that the five formulations 
(or treatments) are denoted by the Latin letters A, B, C, D, and E; hence the name Latin square.

� �
b

j�1

y2
.j

a
�

y2
..

ab

� �
a

i�1

y2
i.

b
� �

b

j�1

y2
.j

a
�

y2
..

ab
� �

a

i�1

y2
i.

b

R(� ��, �) � R(�, �, �) � R(�, �)

R(�, �) � �
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i�1

y2
i.

b
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We see that both batches of raw material (rows) and operators (columns) are orthogonal to
treatments.

The Latin square design is used to eliminate two nuisance sources of variability; that is,
it systematically allows blocking in two directions. Thus, the rows and columns actually
represent two restrictions on randomization. In general, a Latin square for p factors, or a 
p � p Latin square, is a square containing p rows and p columns. Each of the resulting p2 cells
contains one of the p letters that corresponds to the treatments, and each letter occurs once
and only once in each row and column. Some examples of Latin squares are

4 � 4 5 � 5 6 � 6

A B D C A D B E C A D C E B F

B C A D D A C B E B A E C F D

C D B A C B E D A C E D F A B

D A C B B E A C D D C F B E A

E C D A B F B A D C E

E F B A D C

Latin squares are closely related to a popular puzzle called a sudoku puzzle that origi-
nated in Japan (sudoku means “single number” in Japanese). The puzzle typically consists of
a 9 � 9 grid, with nine additional 3 � 3 blocks contained within. A few of the spaces contain
numbers and the others are blank. The goal is to fill the blanks with the integers from 1 to 9 so
that each row, each column, and each of the nine 3 � 3 blocks making up the grid contains just
one of each of the nine integers. The additional constraint that a standard 9 � 9 sudoku puzzle
have 3 � 3 blocks that also contain each of the nine integers reduces the large number of pos-
sible 9 � 9 Latin squares to a smaller but still quite large number, approximately 6 � 1021.

Depending on the number of clues and the size of the grid, sudoku puzzles can be
extremely difficult to solve. Solving an n � n sudoku puzzle belongs to a class of computa-
tional problems called NP-complete (the NP refers to non-polynomial computing time). An
NP-complete problem is one for which it’s relatively easy to check whether a particular
answer is correct but may require an impossibly long time to solve by any simple algorithm as
n gets larger.

Solving a sudoku puzzle is also equivalent to “coloring” a graph—an array of points
(vertices) and lines (edges) in a particular way. In this case, the graph has 81 vertices, one for
each cell of the grid. Depending on the puzzle, only certain pairs of vertices are joined by an
edge. Given that some vertices have already been assigned a “color” (chosen from the nine
number possibilities), the problem is to “color” the remaining vertices so that any two ver-
tices joined by an edge don’t have the same “color.”
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■ T A B L E  4 . 9
Latin Square Design for the Rocket Propellant Problem

Operators
Batches of
Raw Material 1 2 3 4 5

1 A � 24 B � 20 C � 19 D � 24 E � 24

2 B � 17 C � 24 D � 30 E � 27 A � 36

3 C � 18 D � 38 E � 26 A � 27 B � 21

4 D � 26 E � 31 A � 26 B � 23 C � 22

5 E � 22 A � 30 B � 20 C � 29 D � 31



The statistical model for a Latin square is

(4.27)

where yijk is the observation in the ith row and kth column for the jth treatment, � is the over-
all mean, 	i is the ith row effect, �j is the jth treatment effect, �k is the kth column effect, and
�ijk is the random error. Note that this is an effects model. The model is completely additive;
that is, there is no interaction between rows, columns, and treatments. Because there is only
one observation in each cell, only two of the three subscripts i, j, and k are needed to denote
a particular observation. For example, referring to the rocket propellant problem in Table 4.8,
if i � 2 and k � 3, we automatically find j � 4 (formulation D), and if i � 1 and j � 3 (for-
mulation C), we find k � 3. This is a consequence of each treatment appearing exactly once
in each row and column.

The analysis of variance consists of partitioning the total sum of squares of the N � p2

observations into components for rows, columns, treatments, and error, for example,

(4.28)

with respective degrees of freedom

Under the usual assumption that �ijk is NID (0, �2), each sum of squares on the right-hand side
of Equation 4.28 is, upon division by �2, an independently distributed chi-square random vari-
able. The appropriate statistic for testing for no differences in treatment means is

which is distributed as Fp�1,(p�2)(p�1) under the null hypothesis. We may also test for no row effect
and no column effect by forming the ratio of MSRows or MSColumns to MSE. However, because the
rows and columns represent restrictions on randomization, these tests may not be appropriate.

The computational procedure for the ANOVA in terms of treatment, row, and column
totals is shown in Table 4.10. From the computational formulas for the sums of squares, we
see that the analysis is a simple extension of the RCBD, with the sum of squares resulting
from rows obtained from the row totals.

F0 �
MSTreatments

MSE

p2 � 1 � p � 1 � p � 1 � p � 1 � (p � 2)(p � 1)

SST � SSRows � SSColumns � SSTreatments � SSE

yijk � � � 	i � �j � �k � �ijk �i � 1, 2, . . . , p
j � 1, 2, . . . , p
k � 1, 2, . . . , p
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■ T A B L E  4 . 1 0
Analysis of Variance for the Latin Square Design

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Treatments p � 1

Rows p � 1

Columns p � 1

Error SSE (by subtraction) ( p � 2)( p � 1)

Total p2 � 1SST � �
i
�

j
�

k
y2

ijk �
y2

...

N

SSE

(p � 2)(p � 1)

SSColumns

p � 1
SSColumns �

1
p �

p

k�1
y2

..k �
y2

...

N

SSRows

p � 1
SSRows �

1
p�

p

i�1
y2

i.. �
y2

...

N

F0 �
MSTreatments

MSE

SSTreatments

p � 1
SSTreatments �

1
p �

p

j�1
y2

.j. �
y2

..

N
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Consider the rocket propellant problem previously
described, where both batches of raw material and opera-
tors represent randomization restrictions. The design for
this experiment, shown in Table 4.8, is a 5 � 5 Latin
square. After coding by subtracting 25 from each observa-
tion, we have the data in Table 4.11. The sums of squares
for the total, batches (rows), and operators (columns) are
computed as follows:

The totals for the treatments (Latin letters) are

Latin Letter Treatment Total

A
B
C
D
E y.5. � 5

y.4. � 24
y.3. � �13
y.2. � �24
y.1. � 18

�
(10)2

25
� 150.00

�
1
5

 [(�18)2 � 182 � (�4)2 � 52 � 92]

SSOperators �
1
p �

p

k�1
y2

..k �
y2

...

N

�
(10)2

25
� 68.00

�
1
5

 [(�14)2 � 92 � 52 � 32 � 72]

SSBatches �
1
p�

p

i�1
y2

i.. �
y2

...

N

� 680 �
(10)2

25
� 676.00

SST � �
i
�

j
�

k
y2

ijk �
y2

...

N

The sum of squares resulting from the formulations is com-
puted from these totals as

The error sum of squares is found by subtraction

The analysis of variance is summarized in Table 4.12. We
conclude that there is a significant difference in the mean
burning rate generated by the different rocket propellant
formulations. There is also an indication that differences
between operators exist, so blocking on this factor was a
good precaution. There is no strong evidence of a differ-
ence between batches of raw material, so it seems that in
this particular experiment we were unnecessarily con-
cerned about this source of variability. However, blocking
on batches of raw material is usually a good idea.

� 676.00 �68.00 � 150.00 �330.00 �128.00

SSE � SST � SSBatches � SSOperators � SSFormulations

�
(10)2

25
� 330.00

�
182 � (�24)2 � (�13)2 � 242 � 52

5

SSFormulations �
1
p�

p

j�1
y2

.j. �
y2

...

N

■ T A B L E  4 . 1 1
Coded Data for the Rocket Propellant Problem

Batches of
Operators

Raw Material 1 2 3 4 5 yi..

1 A � �1 B � �5 C � �6 D � �1 E � �1 �14

2 B � �8 C � �1 D � 5 E � 2 A � 11 9

3 C � �7 D � 13 E � 1 A � 2 B � �4 5

4 D � 1 E � 6 A � 1 B � �2 C � �3 3

5 E � �3 A � 5 B � �5 C � 4 D � 6 7

y..k �18 18 �4 5 9 10 � y...



As in any design problem, the experimenter should investigate the adequacy of the model by
inspecting and plotting the residuals. For a Latin square, the residuals are given by

The reader should find the residuals for Example 4.3 and construct appropriate plots.
A Latin square in which the first row and column consists of the letters written in alpha-

betical order is called a standard Latin square, which is the design shown in Example 4.4. A
standard Latin square can always be obtained by writing the first row in alphabetical order and
then writing each successive row as the row of letters just above shifted one place to the left.
Table 4.13 summarizes several important facts about Latin squares and standard Latin squares.

As with any experimental design, the observations in the Latin square should be taken in
random order. The proper randomization procedure is to select the particular square employed at
random. As we see in Table 4.13, there are a large number of Latin squares of a particular size,
so it is impossible to enumerate all the squares and select one randomly. The usual procedure is

� yijk � yi.. � y.j. � y..k � 2y...

eijk � yijk � ŷijk
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■ T A B L E  4 . 1 2
Analysis of Variance for the Rocket Propellant Experiment

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Formulations 330.00 4 82.50 7.73 0.0025

Batches of raw material 68.00 4 17.00

Operators 150.00 4 37.50

Error 128.00 12 10.67

Total 676.00 24

■ T A B L E  4 . 1 3
Standard Latin Squares and Number of Latin Squares of Various Sizesa

Size 3 � 3 4 � 4 5 � 5 6 � 6 7 � 7 p � p

Examples of A B C A B C D A B C D E A B C D E F A B C D E F G ABC . . . P

standard squares B C A B C D A B A E C D B C F A D E B C D E F G A BCD . . . A

C A B C D A B C D A E B C F B E A D C D E F G A B CDE . . . B

D A B C D E B A C D E A B F C D E F G A B C

E C D B A E A D F C B E F G A B C D

F D E C B A F G A B C D E PAB . . . (P � 1)

G A B C D E F

Number of 1 4 56 9408 16,942,080 — 
standard squares

Total number of 12 576 161,280 818,851,200 61,479,419,904,000 p!( p � 1)! �
Latin squares (number of

standard squares)

aSome of the information in this table is found in Fisher and Yates (1953). Little is known about the properties of Latin squares larger than 7 � 7.

o



to select an arbitrary Latin square from a table of such designs, as in Fisher and Yates (1953), or
start with a standard square, and then arrange the order of the rows, columns, and letters at 
random. This is discussed more completely in Fisher and Yates (1953).

Occasionally, one observation in a Latin square is missing. For a p � p Latin square,
the missing value may be estimated by

(4.29)

where the primes indicate totals for the row, column, and treatment with the missing value,
and is the grand total with the missing value.

Latin squares can be useful in situations where the rows and columns represent factors
the experimenter actually wishes to study and where there are no randomization restrictions.
Thus, three factors (rows, columns, and letters), each at p levels, can be investigated in only
p2 runs. This design assumes that there is no interaction between the factors. More will be said
later on the subject of interaction.

Replication of Latin Squares. A disadvantage of small Latin squares is that they
provide a relatively small number of error degrees of freedom. For example, a 3 � 3 Latin
square has only two error degrees of freedom, a 4 � 4 Latin square has only six error degrees
of freedom, and so forth. When small Latin squares are used, it is frequently desirable to repli-
cate them to increase the error degrees of freedom.

A Latin square may be replicated in several ways. To illustrate, suppose that the 5 � 5
Latin square used in Example 4.4 is replicated n times. This could have been done as follows:

1. Use the same batches and operators in each replicate.

2. Use the same batches but different operators in each replicate (or, equivalently, use
the same operators but different batches).

3. Use different batches and different operators.

The analysis of variance depends on the method of replication.
Consider case 1, where the same levels of the row and column blocking factors are used

in each replicate. Let yijkl be the observation in row i, treatment j, column k, and replicate l.
There are N � np2 total observations. The ANOVA is summarized in Table 4.14.

y�...

yijk �
p(y�i.. � y�.j. � y�...k) � 2y�...

(p � 2)(p � 1)
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■ T A B L E  4 . 1 4
Analysis of Variance for a Replicated Latin Square, Case 1

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Treatments p � 1

Rows p � 1

Columns p � 1

Replicates n � 1

Error Subtraction (p � 1)[n(p � 1) � 3]

Total np2 � 1� � � � y2
ijkl �

y2
....

N

SSE

( p � 1)[n( p � 1) � 3]

SSReplicates

n � 1
1
p2 �

n

l�1
y2

...l �
y2

....

N

SSColumns

p � 1
1
np �

p

k�1
y2

..k. �
y2

....

N

SSRows

p � 1
1
np �

p

i�1
y2

i... �
y2

....

N

MSTreatments

MSE

SSTreatments

p � 1
1
np �

p

j�1
y2

.j.. �
y2

....

N



Now consider case 2 and assume that new batches of raw material but the same opera-
tors are used in each replicate. Thus, there are now five new rows (in general, p new rows)
within each replicate. The ANOVA is summarized in Table 4.15. Note that the source of vari-
ation for the rows really measures the variation between rows within the n replicates.

Finally, consider case 3, where new batches of raw material and new operators are used in
each replicate. Now the variation that results from both the rows and columns measures the vari-
ation resulting from these factors within the replicates. The ANOVA is summarized in Table 4.16.

There are other approaches to analyzing replicated Latin squares that allow some inter-
actions between treatments and squares (refer to Problem 4.30).

Crossover Designs and Designs Balanced for Residual Effects. Occasionally,
one encounters a problem in which time periods are a factor in the experiment. In general, there
are p treatments to be tested in p time periods using np experimental units. For example,
a human performance analyst is studying the effect of two replacement fluids on dehydration
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■ T A B L E  4 . 1 5
Analysis of Variance for a Replicated Latin Square, Case 2

Source of Degrees of Mean
Variation Sum of Squares Freedom Square F0

Treatments p � 1

Rows n(p � 1)

Columns p � 1

Replicates n � 1

Error Subtraction (p � 1)(np � 1)

Total np2 � 1�
i
�

j
�

k
�

l
y2

ijkl �
y2

....

N

SSE

( p � 1)(np � 1)

SSReplicates

n � 1
1
p2 �

n

l�1
y2

...l �
y2

....

N

SSColumns

p � 1
1
np �

p

k�1
y2

..k. �
y2

....

N

SSRows

n( p � 1)
1
p �

n

l�1
�
p

i�1
y2

i..l � �
n

l�1

y2
...l

p2

MSTreatments

MSE

SSTreatments

p � 1
1
np �

p

j�1
y2

.j.. �
y2

....

N

■ T A B L E  4 . 1 6
Analysis of Variance for a Replicated Latin Square, Case 3

Source of Degrees of Mean
Variation Sum of Squares Freedom Square F0

Treatments p � 1

Rows n(p � 1)

Columns n(p � 1)

Replicates n � 1

Error Subtraction (p � 1)[n(p � 1) � 1]

Total np2 � 1�
i
�

j
�

k
�

l
y2

ijkl �
y2

....

N

SSE

( p � 1)[n( p � 1) � 1]

SSReplicates

n � 1
1
p2 �

n

l�1
y2

...l �
y2

....

N

SSColumns

n( p � 1)
1
p �

n

l�1
�
p

k�1
y2

..kl � �
n

l�1

y2
...l

p2

SSRows

n( p � 1)
1
p �

n

l�1
�
p

i�1
y2

i..l � �
n

l�1

y2
...l

p2

MSTreatments

MSE

SSTreatments

p � 1
1
np �

p

j�1
y2

.j.. �
y2

....

N



in 20 subjects. In the first period, half of the subjects (chosen at random) are given fluid A and
the other half fluid B. At the end of the period, the response is measured and a period of time
is allowed to pass in which any physiological effect of the fluids is eliminated. Then the
experimenter has the subjects who took fluid A take fluid B and those who took fluid B take
fluid A. This design is called a crossover design. It is analyzed as a set of 10 Latin squares
with two rows (time periods) and two treatments (fluid types). The two columns in each of
the 10 squares correspond to subjects.

The layout of this design is shown in Figure 4.7. Notice that the rows in the Latin square
represent the time periods and the columns represent the subjects. The 10 subjects who
received fluid A first (1, 4, 6, 7, 9, 12, 13, 15, 17, and 19) are randomly determined.

An abbreviated analysis of variance is summarized in Table 4.17. The subject sum of
squares is computed as the corrected sum of squares among the 20 subject totals, the period
sum of squares is the corrected sum of squares among the rows, and the fluid sum of squares
is computed as the corrected sum of squares among the letter totals. For further details of the
statistical analysis of these designs see Cochran and Cox (1957), John (1971), and Anderson
and McLean (1974).

It is also possible to employ Latin square type designs for experiments in which the
treatments have a residual effect—that is, for example, if the data for fluid B in period 2 still
reflected some effect of fluid A taken in period 1. Designs balanced for residual effects are
discussed in detail by Cochran and Cox (1957) and John (1971).

4.3 The Graeco-Latin Square Design

Consider a p � p Latin square, and superimpose on it a second p � p Latin square in which
the treatments are denoted by Greek letters. If the two squares when superimposed have the
property that each Greek letter appears once and only once with each Latin letter, the two
Latin squares are said to be orthogonal, and the design obtained is called a Graeco-Latin
square. An example of a 4 � 4 Graeco-Latin square is shown in Table 4.18.
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■ TA B L E  4 . 1 7
Analysis of Variance for the Crossover
Design in Figure 4.7

Source of Degrees of
Variation Freedom

Subjects (columns) 19

Periods (rows) 1

Fluids (letters) 1

Error 18

Total 39 

■ F I G U R E  4 . 7 A crossover design



The Graeco-Latin square design can be used to control systematically three sources of
extraneous variability, that is, to block in three directions. The design allows investigation of
four factors (rows, columns, Latin letters, and Greek letters), each at p levels in only p2 runs.
Graeco-Latin squares exist for all p � 3 except p � 6.

The statistical model for the Graeco-Latin square design is

(4.30)

where yijkl is the observation in row i and column l for Latin letter j and Greek letter k, 
i is
the effect of the ith row, �j is the effect of Latin letter treatment j, �k is the effect of Greek
letter treatment k, �l is the effect of column l, and �ijkl is an NID (0, �2) random error com-
ponent. Only two of the four subscripts are necessary to completely identify an observation.

The analysis of variance is very similar to that of a Latin square. Because the Greek let-
ters appear exactly once in each row and column and exactly once with each Latin letter, the
factor represented by the Greek letters is orthogonal to rows, columns, and Latin letter treat-
ments. Therefore, a sum of squares due to the Greek letter factor may be computed from the
Greek letter totals, and the experimental error is further reduced by this amount. The computa-
tional details are illustrated in Table 4.19. The null hypotheses of equal row, column, Latin let-
ter, and Greek letter treatments would be tested by dividing the corresponding mean square by
mean square error. The rejection region is the upper tail point of the Fp�1,( p�3)( p�1) distribution.

yijkl � � � 
i � �j � �k � �l � �ijkl �
i � 1, 2 , . . . , p
j � 1, 2 , . . . , p
k � 1, 2 , . . . , p
l � 1, 2 , . . . , p
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■ T A B L E  4 . 1 9
Analysis of Variance for a Graeco-Latin Square Design

Source of Variation Sum of Squares Degrees of Freedom

Latin letter treatments p � 1

Greek letter treatments p � 1

Rows p � 1

Columns p � 1

Error SSE (by subtraction) (p � 3)(p � 1)

Total p2 � 1SST � �
i
�

j
�

k
�

l
y2

ijkl �
y2

....

N

SSColumns �
1
p �

p

l�1
y2

...l �
y2

....

N

SSRows �
1
p �

p

i�1
y2

i... �
y2

....

N

SSG �
1
p �

p

k�1
y2

..k. �
y2

....

N

SSL �
1
p �

p

j�1
y2

.j.. �
y2

....

N

■ T A B L E  4 . 1 8
4 � 4 Graeco-Latin Square Design

Column

Row 1 2 3 4

1 A	 B� C� D�

2 B� A� D� C	

3 C� D	 A� B�

4 D� C� B	 A�
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E X A M P L E  4 . 4

Suppose that in the rocket propellant experiment of
Example 4.3 an additional factor, test assemblies, could be
of importance. Let there be five test assemblies denoted by
the Greek letters �, �, �, �, and �. The resulting 5 � 5
Graeco-Latin square design is shown in Table 4.20.

Notice that, because the totals for batches of raw mate-
rial (rows), operators (columns), and formulations (Latin
letters) are identical to those in Example 4.3, we have

The totals for the test assemblies (Greek letters) are

Greek Letter Test Assembly Total

	 y..1. � 10

� y..2. � �6

� y..3. � �3

� y..4. � �4

� y..5. � 13

and  SSFormulations � 330.00

SSBatches � 68.00,  SSOperators � 150.00,  

Thus, the sum of squares due to the test assemblies is

The complete ANOVA is summarized in Table 4.21.
Formulations are significantly different at 1 percent. In
comparing Tables 4.21 and 4.12, we observe that removing
the variability due to test assemblies has decreased the
experimental error. However, in decreasing the experimen-
tal error, we have also reduced the error degrees of freedom
from 12 (in the Latin square design of Example 4.3) to 8.
Thus, our estimate of error has fewer degrees of freedom,
and the test may be less sensitive.

� (�4)2 � 132] �
(10)2

25
� 62.00

�
1
5

 [102 � (�6)2 � (�3)2

SSAssemblies �
1
p �

p

k�1
y2

..k. �
y2

....

N

■ T A B L E  4 . 2 0
Graeco-Latin Square Design for the Rocket Propellant Problem

Batches of
Operators

Raw Material 1 2 3 4 5 yi...

1 A	 � �1 B� � �5 C� � �6 D� � �1 E� � �1 �14

2 B� � �8 C� � �1 D	 � 5 E� � 2 A� � 11 9

3 C� � �7 D� � 13 E� � 1 A� � 2 B	 � �4 5

4 D� � 1 E	 � 6 A� � 1 B� � �2 C� � �3 3

5 E� � �3 A� � 5 B� � �5 C	 � 4 D� � 6 7

y...l �18 18 �4 5 9 10 � y...

■ T A B L E  4 . 2 1
Analysis of Variance for the Rocket Propellant Problem

Sum of Degrees of
Source of Variation Squares Freedom Mean Square F0 P-Value

Formulations 330.00 4 82.50 10.00 0.0033

Batches of raw material 68.00 4 17.00

Operators 150.00 4 37.50

Test assemblies 62.00 4 15.50

Error 66.00 8 8.25

Total 676.00 24 



The concept of orthogonal pairs of Latin squares forming a Graeco-Latin square can be
extended somewhat. A p � p hypersquare is a design in which three or more orthogonal p � p
Latin squares are superimposed. In general, up to p � 1 factors could be studied if a complete set
of p � 1 orthogonal Latin squares is available. Such a design would utilize all (p � 1)( p � 1) �
p2 � 1 degrees of freedom, so an independent estimate of the error variance is necessary. Of
course, there must be no interactions between the factors when using hypersquares.

4.4 Balanced Incomplete Block Designs

In certain experiments using randomized block designs, we may not be able to run all the treat-
ment combinations in each block. Situations like this usually occur because of shortages of exper-
imental apparatus or facilities or the physical size of the block. For example, in the vascular graft
experiment (Example 4.1), suppose that each batch of material is only large enough to accommo-
date testing three extrusion pressures. Therefore, each pressure cannot be tested in each batch. For
this type of problem it is possible to use randomized block designs in which every treatment is
not present in every block. These designs are known as randomized incomplete block designs.

When all treatment comparisons are equally important, the treatment combinations
used in each block should be selected in a balanced manner, so that any pair of treatments
occur together the same number of times as any other pair. Thus, a balanced incomplete
block design (BIBD) is an incomplete block design in which any two treatments appear
together an equal number of times. Suppose that there are a treatments and that each block
can hold exactly k (k � a) treatments. A balanced incomplete block design may be construct-
ed by taking blocks and assigning a different combination of treatments to each block.
Frequently, however, balance can be obtained with fewer than blocks. Tables of BIBDs are
given in Fisher and Yates (1953), Davies (1956), and Cochran and Cox (1957).

As an example, suppose that a chemical engineer thinks that the time of reaction for a chem-
ical process is a function of the type of catalyst employed. Four catalysts are currently being inves-
tigated. The experimental procedure consists of selecting a batch of raw material, loading the pilot
plant, applying each catalyst in a separate run of the pilot plant, and observing the reaction time.
Because variations in the batches of raw material may affect the performance of the catalysts, the
engineer decides to use batches of raw material as blocks. However, each batch is only large enough
to permit three catalysts to be run. Therefore, a randomized incomplete block design must be used.
The balanced incomplete block design for this experiment, along with the observations recorded,
is shown in Table 4.22. The order in which the catalysts are run in each block is randomized.

4.4.1 Statistical Analysis of the BIBD

As usual, we assume that there are a treatments and b blocks. In addition, we assume that each
block contains k treatments, that each treatment occurs r times in the design (or is replicated

(a
k)

(a
k)
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■ T A B L E  4 . 2 2
Balanced Incomplete Block Design for Catalyst Experiment

Treatment Block (Batch of Raw Material)

(Catalyst) 1 2 3 4 yi.

1 73 74 — 71 218

2 — 75 67 72 214

3 73 75 68 — 216

4 75 — 72 75 222

y.j 221 224 207 218 870 � y.



r times), and that there are N � ar � bk total observations. Furthermore, the number of times
each pair of treatments appears in the same block is

If a � b, the design is said to be symmetric.
The parameter � must be an integer. To derive the relationship for �, consider any treat-

ment, say treatment 1. Because treatment 1 appears in r blocks and there are k � 1 other treat-
ments in each of those blocks, there are r(k � 1) observations in a block containing treatment 1.
These r(k � 1) observations also have to represent the remaining a � 1 treatments � times.
Therefore, �(a � 1) � r(k � 1).

The statistical model for the BIBD is

(4.31)

where yij is the ith observation in the jth block, � is the overall mean, �i is the effect of the ith
treatment, �j is the effect of the jth block, and �ij is the NID (0, �2) random error component.
The total variability in the data is expressed by the total corrected sum of squares:

(4.32)

Total variability may be partitioned into

where the sum of squares for treatments is adjusted to separate the treatment and the block
effects. This adjustment is necessary because each treatment is represented in a different set
of r blocks. Thus, differences between unadjusted treatment totals y1., y2., . . . , ya. are also
affected by differences between blocks.

The block sum of squares is

(4.33)

where y.j is the total in the jth block. SSBlocks has b � 1 degrees of freedom. The adjusted treat-
ment sum of squares is

(4.34)

where Qi is the adjusted total for the ith treatment, which is computed as

(4.35)

with nij � 1 if treatment i appears in block j and nij � 0 otherwise. The adjusted treatment
totals will always sum to zero. SSTreatments(adjusted) has a � 1 degrees of freedom. The error sum
of squares is computed by subtraction as

(4.36)

and has N � a � b � 1 degrees of freedom.
The appropriate statistic for testing the equality of the treatment effects is

The ANOVA is summarized in Table 4.23.

F0 �
MSTreatments(adjusted)

MSE

SSE � SST � SSTreatments(adjusted) � SSBlocks

Qi � yi. �
1
k �

b

j�1
nijy.j   i � 1, 2, . . . , a

SSTreatments(adjusted) �

k�
a

i�1
Q2

i

�a

SSBlocks �
1
k �

b

j�1
y2

.j �
y2

..

N

SST � SSTreatments(adjusted) � SSBlocks � SSE

SST � �
i
�

j
y2

ij �
y2

..

N

yij � � � �i � �j � �ij

� �
r (k � 1)

a � 1
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■ T A B L E  4 . 2 3
Analysis of Variance for the Balanced Incomplete Block Design

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments a � 1
(adjusted)

Blocks b � 1

Error SSE (by subtraction) N � a � b � 1

Total N � 1� � y2
ij �

y2
..

N

SSE

N � a � b � 1

SSBlocks

b � 1
1
k � y2

.j �
y2

..

N

F0 �
MSTreatments(adjusted)

MSE

SSTreatments(adjusted)

a � 1

k � Q2
i

�a

E X A M P L E  4 . 5

Consider the data in Table 4.22 for the catalyst experiment.
This is a BIBD with a � 4, b � 4, k � 3, r � 3, � � 2, and
N � 12. The analysis of this data is as follows. The total
sum of squares is

The block sum of squares is found from Equation 4.33 as

To compute the treatment sum of squares adjusted for
blocks, we first determine the adjusted treatment totals
using Equation 4.35 as

� 55.00

�
1
3

 [(221)2 � (207)2 � (224)2 � (218)2] �
(870)2

12

SSBlocks �
1
3 �

4

j�1
y2

.j �
y2

..

12

� 63,156 �
(870)2

12
� 81.00

SST � �
i
�

j
y2

ij �
y2

..

12
The adjusted sum of squares for treatments is computed
from Equation 4.34 as

The error sum of squares is obtained by subtraction as

The analysis of variance is shown in Table 4.24. Because
the P-value is small, we conclude that the catalyst
employed has a significant effect on the time of reaction.

� 81.00 � 22.75 � 55.00 � 3.25

SSE � SST � SSTreatments(adjusted) � SSBlocks

� 22.75

�
3[(�9/3)2 � (�7/3)2 � (�4/3)2 � (20/3)2]

(2)(4)

SSTreatments(adjusted) �

k�
4

i�1
Q2

i

�a

Q4 � (222) �
1
3(221 � 207 � 218) � 20/3

Q3 � (216) �
1
3(221 � 207 � 224) � �4/3

Q2 � (214) �
1
3(207 � 224 � 218) � �7/3

Q1 � (218) �
1
3(221 � 224 � 218) � �9/3

■ T A B L E  4 . 2 4
Analysis of Variance for Example 4.5

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Treatments (adjusted 22.75 3 7.58 11.66 0.0107

for blocks)

Blocks 55.00 3 —

Error 3.25 5 0.65

Total 81.00 11 



If the factor under study is fixed, tests on individual treatment means may be of interest. If
orthogonal contrasts are employed, the contrasts must be made on the adjusted treatment
totals, the {Qi} rather than the {yi.}. The contrast sum of squares is

where {ci} are the contrast coefficients. Other multiple comparison methods may be used to
compare all the pairs of adjusted treatment effects, which we will find in Section 4.4.2, are
estimated by � kQi/(�a). The standard error of an adjusted treatment effect is

(4.37)

In the analysis that we have described, the total sum of squares has been partitioned into
an adjusted sum of squares for treatments, an unadjusted sum of squares for blocks, and an
error sum of squares. Sometimes we would like to assess the block effects. To do this, we
require an alternate partitioning of SST, that is,

Here SSTreatments is unadjusted. If the design is symmetric, that is, if a � b, a simple formula
may be obtained for SSBlocks(adjusted). The adjusted block totals are

(4.38)

and

(4.39)

The BIBD in Example 4.5 is symmetric because a � b � 4. Therefore,

and

Also,

A summary of the analysis of variance for the symmetric BIBD is given in Table 4.25.
Notice that the sums of squares associated with the mean squares in Table 4.25 do not add to
the total sum of squares, that is,

This is a consequence of the nonorthogonality of treatments and blocks.

SST Z SSTreatments(adjusted) � SSBlocks(adjusted) � SSE

SSTreatments �
(218)2 � (214)2 � (216)2 � (222)2

3
�

(870)2

12
� 11.67

SSBlocks(adjusted) �
3[(7/3)2 � (24/3)2 � (�31/3)2 � (0)2]

(2)(4)
� 66.08

Q�4 � (218) �
1
3(218 � 214 � 222) � 0

Q�3 � (207) �
1
3(214 � 216 � 222) � �31/3

Q�2 � (224) �
1
3(218 � 214 � 216) � 24/3

Q�1 � (221) �
1
3(218 � 216 � 222) � 7/3

SSBlocks(adjusted) �

r�
b

j�1
 (Q�j)

2

�b

Q�j � y.j �
1
4 �

a

i�1
nijyi.  j � 1, 2, . . . , b

SST � SSTreatments � SSBlocks(adjusted) � SSE

S � �kMSE

�a

�̂i

SSC �

k��
a

i�1
ciQi�2

�a�
a

i�1
c2

i
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Computer Output. There are several computer packages that will perform the analy-
sis for a balanced incomplete block design. The SAS General Linear Models procedure is one
of these and Minitab and JMP are others. The upper portion of Table 4.26 is the Minitab
General Linear Model output for Example 4.5. Comparing Tables 4.26 and 4.25, we see that
Minitab has computed the adjusted treatment sum of squares and the adjusted block sum of
squares (they are called “Adj SS” in the Minitab output).

The lower portion of Table 4.26 is a multiple comparison analysis, using the Tukey
method. Confidence intervals on the differences in all pairs of means and the Tukey test are
displayed. Notice that the Tukey method would lead us to conclude that catalyst 4 is different
from the other three.

4.4.2 Least Squares Estimation of the Parameters

Consider estimating the treatment effects for the BIBD model. The least squares normal equa-
tions are

(4.40)

Imposing , we find that . Furthermore, using the equations for {�j} to
eliminate the block effects from the equations for {�i}, we obtain

(4.41)

Note that the right-hand side of Equation 4.36 is kQi, where Qi is the ith adjusted treatment
total (see Equation 4.29). Now, because nijnpj � � if p i and � npj (because npj � 0
or 1), we may rewrite Equation 4.41 as

(4.42)r(k � 1)�̂i � ��
a

p�1
pZ1

�̂p � kQi  i � 1, 2, . . . , a

n2
pjZ�b

j�1

rk�̂i � r �̂i � �
b

j�1
�
a

p�1
pZ1

nijnpj �̂p � kyi. � �
b

j�1
nijy.j

�̂ � y..��̂i � ��̂j � 0

�j�k�̂ � �
a

i�1
nij�̂i � k�̂j � y.j  j � 1, 2, . . . , b

�i�r�̂ � r�̂i � �
b

j�1
nij�̂j � yi.  i � 1, 2, . . . , a

��N�̂ � r�
a

i�1
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b

j�1
�̂j � y..
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■ T A B L E  4 . 2 5
Analysis of Variance for Example 4.5, Including Both Treatments and Blocks

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F0 P-Value

Treatments (adjusted) 22.75 3 7.58 11.66 0.0107

Treatments (unadjusted) 11.67 3

Blocks (unadjusted) 55.00 3

Blocks (adjusted) 66.08 3 22.03 33.90 0.0010

Error 3.25 5 0.65

Total 81.00 11 
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■ T A B L E  4 . 2 6
Minitab (General Linear Model) Analysis for Example 4.5

General Linear Model
Factor Type Levels Values
Catalyst fixed 4 1 2 3 4
Block fixed 4 1 2 3 4

Analysis of Variance for Time, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F P
Catalyst 3 11.667 22.750 7.583 11.67 0.011
Block 3 66.083 66.083 22.028 33.89 0.001
Error 5 3.250 3.250 0.650
Total 11 81.000

Tukey 95.0% Simultaneous Confidence Intervals
Response Variable Time
All Pairwise Comparisons among Levels of Catalyst

Catalyst � 1 subtracted from:

Catalyst Lower Center Upper ---------�--------�--------�------
2 �2.327 0.2500 2.827 (--------*--------)
3 �1.952 0.6250 3.202 (--------*--------)
4 1.048 3.6250 6.202 (--------*--------)

----------�--------�--------�------
0.0 2.5 5.0

Catalyst � 2 subtracted from:

Catalyst Lower Center Upper ---------�--------�--------�------
3 �2.202 0.3750 2.952 (--------*--------)
4 0.798 3.3750 5.952 (--------*--------)

----------�--------�--------�------
0.0 2.5 5.0

Catalyst � 3 subtracted from:

Catalyst Lower Center Upper ---------�--------�--------�------
4 0.4228 3.000 5.577 (--------*--------)

----------�--------�--------�------
0.0 2.5 5.0

Tukey Simultaneous Tests
Response Variable Time
All Pairwise Comparisons among Levels of Catalyst

Catalyst � 1 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value
2 0.2500 0.6982 0.3581 0.9825
3 0.6250 0.6982 0.8951 0.8085
4 3.6250 0.6982 5.1918 0.0130

Catalyst � 2 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value
3 0.3750 0.6982 0.5371 0.9462
4 3.3750 0.6982 4.8338 0.0175

Catalyst � 3 subtracted from:

Level Difference SE of Adjusted
Catalyst of Means Difference T-Value P-Value
4 3.000 0.6982 4.297 0.0281



Finally, note that the constraint implies that and recall that r(k� 1) �
�(a � 1) to obtain

(4.43)

Therefore, the least squares estimators of the treatment effects in the balanced incomplete
block model are

(4.44)

As an illustration, consider the BIBD in Example 4.5. Because Q1 � �9/3, Q2 � �7/3,
Q3 � �4/3, and Q4 � 20/3, we obtain

as we found in Section 4.4.1.

4.4.3 Recovery of Interblock Information in the BIBD

The analysis of the BIBD given in Section 4.4.1 is usually called the intrablock analysis
because block differences are eliminated and all contrasts in the treatment effects can be
expressed as comparisons between observations in the same block. This analysis is appro-
priate regardless of whether the blocks are fixed or random. Yates (1940) noted that, if the
block effects are uncorrelated random variables with zero means and variance , one may
obtain additional information about the treatment effects �i. Yates called the method of
obtaining this additional information the interblock analysis.

Consider the block totals y.j as a collection of b observations. The model for these obser-
vations [following John (1971)] is

(4.45)

where the term in parentheses may be regarded as error. The interblock estimators of � and
�i are found by minimizing the least squares function

This yields the following least squares normal equations:

(4.46)

where and denote the interblock estimators. Imposing the constraint , we
obtain the solutions to Equations 4.46 as

(4.47)
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It is possible to show that the interblock estimators and the intrablock estimators are
uncorrelated.

The interblock estimators can differ from the intrablock estimators . For exam-
ple, the interblock estimators for the BIBD in Example 4.5 are computed as follows:

Note that the values of nijy.j were used previously on page 169 in computing the adjusted
treatment totals in the intrablock analysis.

Now suppose we wish to combine the interblock and intrablock estimators to obtain a
single, unbiased, minimum variance estimate of each �i. It is possible to show that both and

are unbiased and also that

and

We use a linear combination of the two estimators, say

(4.49)

to estimate �i. For this estimation method, the minimum variance unbiased combined estima-
tor should have weights 	1 � u1/(u1 � u2) and 	2 � u2/(u1 � u2), where u1 � 1/V( ) and
u2 � 1/V( ). Thus, the optimal weights are inversely proportional to the variances of

and . This implies that the best combined estimator is

which can be simplified to

(4.50)

Unfortunately, Equation 4.50 cannot be used to estimate the �i because the variances �2

and are unknown. The usual approach is to estimate �2 and from the data and replace
these parameters in Equation 4.50 by the estimates. The estimate usually taken for �2 is the
error mean square from the intrablock analysis of variance, or the intrablock error. Thus,

�̂2 � MSE

� 2
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The estimate of is found from the mean square for blocks adjusted for treatments. In gen-
eral, for a balanced incomplete block design, this mean square is

(4.51)

and its expected value [which is derived in Graybill (1961)] is

Thus, if MSBlocks(adjusted) 
 MSE, the estimate of is

(4.52)

and if MSBlocks(adjusted) � MSE, we set � 0. This results in the combined estimator

(4.53a)

(4.53b)

We now compute the combined estimates for the data in Example 4.5. From Table 4.25 we
obtain � MSE � 0.65 and MSBlocks(adjusted) � 22.03. (Note that in computing MSBlocks(adjusted)

we make use of the fact that this is a symmetric design. In general, we must use Equation
4.51. Because MSBlocks(adjusted) 
 MSE, we use Equation 4.52 to estimate as

Therefore, we may substitute � 0.65 and � 8.02 into Equation 4.53a to obtain the com-
bined estimates listed below. For convenience, the intrablock and interblock estimates are also
given. In this example, the combined estimates are close to the intrablock estimates because
the variance of the interblock estimates is relatively large.

Parameter Intrablock Estimate Interblock Estimate Combined Estimate

�1 �1.12 10.50 �1.09

�2 �0.88 �3.50 �0.88

�3 �0.50 �0.50 �0.50

�4 2.50 �6.50 2.47
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4.5 Problems

4.1. The ANOVA from a randomized complete block
experiment output is shown below.

Source DF SS MS F P

Treatment 4 1010.56 ? 29.84 ?

Block ? ? 64.765 ? ?

Error 20 169.33 ?

Total 29 1503.71

(a) Fill in the blanks. You may give bounds on the P-value.

(b) How many blocks were used in this experiment?

(c) What conclusions can you draw?

4.2. Consider the single-factor completely randomized sin-
gle factor experiment shown in Problem 3.4. Suppose that this
experiment had been conducted in a randomized complete
block design, and that the sum of squares for blocks was 80.00.
Modify the ANOVA for this experiment to show the correct
analysis for the randomized complete block experiment.

4.3. A chemist wishes to test the effect of four chemical
agents on the strength of a particular type of cloth. Because
there might be variability from one bolt to another, the
chemist decides to use a randomized block design, with the
bolts of cloth considered as blocks. She selects five bolts and
applies all four chemicals in random order to each bolt. The
resulting tensile strengths follow. Analyze the data from this
experiment (use 	 � 0.05) and draw appropriate conclusions.

Bolt

Chemical 1 2 3 4 5

1 73 68 74 71 67
2 73 67 75 72 70
3 75 68 78 73 68
4 73 71 75 75 69

4.4. Three different washing solutions are being compared
to study their effectiveness in retarding bacteria growth in 
5-gallon milk containers. The analysis is done in a laboratory,
and only three trials can be run on any day. Because days could
represent a potential source of variability, the experimenter
decides to use a randomized block design. Observations are
taken for four days, and the data are shown here. Analyze the
data from this experiment (use 	 � 0.05) and draw conclusions.

Days

Solution 1 2 3 4

1 13 22 18 39
2 16 24 17 44
3 5 4 1 22

4.5. Plot the mean tensile strengths observed for each
chemical type in Problem 4.3 and compare them to an appro-
priately scaled t distribution. What conclusions would you
draw from this display?

4.6. Plot the average bacteria counts for each solution in
Problem 4.4 and compare them to a scaled t distribution. What
conclusions can you draw?

4.7. Consider the hardness testing experiment described in
Section 4.1. Suppose that the experiment was conducted as
described and that the following Rockwell C-scale data
(coded by subtracting 40 units) obtained:

Coupon

Tip 1 2 3 4

1 9.3 9.4 9.6 10.0
2 9.4 9.3 9.8 9.9
3 9.2 9.4 9.5 9.7
4 9.7 9.6 10.0 10.2

(a) Analyze the data from this experiment.

(b) Use the Fisher LSD method to make comparisons
among the four tips to determine specifically which
tips differ in mean hardness readings.

(c) Analyze the residuals from this experiment.

4.8. A consumer products company relies on direct mail
marketing pieces as a major component of its advertising
campaigns. The company has three different designs for a
new brochure and wants to evaluate their effectiveness, as
there are substantial differences in costs between the three
designs. The company decides to test the three designs by
mailing 5000 samples of each to potential customers in four
different regions of the country. Since there are known
regional differences in the customer base, regions are consid-
ered as blocks. The number of responses to each mailing is as
follows.

Region

Design NE NW SE SW

1 250 350 219 375
2 400 525 390 580
3 275 340 200 310

(a) Analyze the data from this experiment.

(b) Use the Fisher LSD method to make comparisons
among the three designs to determine specifically
which designs differ in the mean response rate.

(c) Analyze the residuals from this experiment.
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4.9. The effect of three different lubricating oils on fuel
economy in diesel truck engines is being studied. Fuel econo-
my is measured using brake-specific fuel consumption after
the engine has been running for 15 minutes. Five different
truck engines are available for the study, and the experimenters
conduct the following randomized complete block design.

Truck

Oil 1 2 3 4 5

1 0.500 0.634 0.487 0.329 0.512
2 0.535 0.675 0.520 0.435 0.540
3 0.513 0.595 0.488 0.400 0.510

(a) Analyze the data from this experiment.

(b) Use the Fisher LSD method to make comparisons
among the three lubricating oils to determine specifical-
ly which oils differ in brake-specific fuel consumption.

(c) Analyze the residuals from this experiment.

4.10. An article in the Fire Safety Journal (“The Effect of
Nozzle Design on the Stability and Performance of Turbulent
Water Jets,” Vol. 4, August 1981) describes an experiment in
which a shape factor was determined for several different
nozzle designs at six levels of jet efflux velocity. Interest
focused on potential differences between nozzle designs,
with velocity considered as a nuisance variable. The data are
shown below:

Nozzle
Jet Efflux Velocity (m/s)

Design 11.73 14.37 16.59 20.43 23.46 28.74

1 0.78 0.80 0.81 0.75 0.77 0.78
2 0.85 0.85 0.92 0.86 0.81 0.83
3 0.93 0.92 0.95 0.89 0.89 0.83
4 1.14 0.97 0.98 0.88 0.86 0.83
5 0.97 0.86 0.78 0.76 0.76 0.75

(a) Does nozzle design affect the shape factor? Compare
the nozzles with a scatter plot and with an analysis of
variance, using 	 � 0.05.

(b) Analyze the residuals from this experiment.

(c) Which nozzle designs are different with respect to
shape factor? Draw a graph of the average shape factor
for each nozzle type and compare this to a scaled t dis-
tribution. Compare the conclusions that you draw from
this plot to those from Duncan’s multiple range test.

4.11. An article in Communications of the ACM (Vol. 30,
No. 5, 1987) studied different algorithms for estimating soft-
ware development costs. Six algorithms were applied to sev-
eral different software development projects and the percent
error in estimating the development cost was observed.

Some of the data from this experiment is shown in the table
below.

(a) Do the algorithms differ in their mean cost estimation
accuracy? 

(b) Analyze the residuals from this experiment.

(c) Which algorithm would you recommend for use in
practice?

Project

Algorithm 1 2 3 4 5 6

1(SLIM 1244 21 82 2221 905 839
2(COCOMO-A) 281 129 396 1306 336 910
3(COCOMO-R) 220 84 458 543 300 794
4(COCONO-C) 225 83 425 552 291 826
5(FUNCTION
POINTS) 19 11 �34 121 15 103
6(ESTIMALS) �20 35 �53 170 104 199

4.12. An article in Nature Genetics (2003, Vol. 34, pp.
85–90) “Treatment-Specific Changes in Gene Expression
Discriminate in vivo Drug Response in Human Leukemia
Cells” studied gene expression as a function of different treat-
ments for leukemia. Three treatment groups are: mercaptop-
urine (MP) only; low-dose methotrexate (LDMTX) and MP;
and high-dose methotrexate (HDMTX) and MP. Each group
contained ten subjects. The responses from a specific gene are
shown in the table below.

(a) Is there evidence to support the claim that the treat-
ment means differ?

(b) Check the normality assumption. Can we assume
these samples are from normal populations?

(c) Take the logarithm of the raw data. Is there evidence to
support the claim that the treatment means differ for
the transformed data? 

(d) Analyze the residuals from the transformed data and
comment on model adequacy.

Treatments Observations

MP ONLY 334.5 31.6 701 41.2 61.2 69.6 67.5 66.6 120.7 881.9

MP + HDMTX 919.4 404.2 1024.8 54.1 62.8 671.6 882.1 354.2 321.9 91.1

MP + LDMTX 108.4 26.1 240.8 191.1 69.7 242.8 62.7 396.9 23.6 290.4

4.13. Consider the ratio control algorithm experiment
described in Section 3.8. The experiment was actually con-
ducted as a randomized block design, where six time periods
were selected as the blocks, and all four ratio control algo-
rithms were tested in each time period. The average cell
voltage and the standard deviation of voltage (shown in
parentheses) for each cell are as follows:



Ratio
Control

Time Period

Algorithm 1 2 3

1 4.93 (0.05) 4.86 (0.04) 4.75 (0.05)
2 4.85 (0.04) 4.91 (0.02) 4.79 (0.03)
3 4.83 (0.09) 4.88 (0.13) 4.90 (0.11)
4 4.89 (0.03) 4.77 (0.04) 4.94 (0.05)

Ratio
Control

Time Period

Algorithm 4 5 6

1 4.95 (0.06) 4.79 (0.03) 4.88 (0.05)
2 4.85 (0.05) 4.75 (0.03) 4.85 (0.02)
3 4.75 (0.15) 4.82 (0.08) 4.90 (0.12)
4 4.86 (0.05) 4.79 (0.03) 4.76 (0.02)

(a) Analyze the average cell voltage data. (Use 
	 � 0.05.) Does the choice of ratio control algorithm
affect the average cell voltage?

(b) Perform an appropriate analysis on the standard devi-
ation of voltage. (Recall that this is called “pot noise.”)
Does the choice of ratio control algorithm affect the
pot noise?

(c) Conduct any residual analyses that seem appropriate.
(d) Which ratio control algorithm would you select if your

objective is to reduce both the average cell voltage and
the pot noise?

4.14. An aluminum master alloy manufacturer produces
grain refiners in ingot form. The company produces the prod-
uct in four furnaces. Each furnace is known to have its own
unique operating characteristics, so any experiment run in the
foundry that involves more than one furnace will consider fur-
naces as a nuisance variable. The process engineers suspect
that stirring rate affects the grain size of the product. Each fur-
nace can be run at four different stirring rates. A randomized
block design is run for a particular refiner, and the resulting
grain size data is as follows.

Furnace

Stirring Rate (rpm) 1 2 3 4

5 8 4 5 6
10 14 5 6 9
15 14 6 9 2
20 17 9 3 6

(a) Is there any evidence that stirring rate affects grain size?

(b) Graph the residuals from this experiment on a normal
probability plot. Interpret this plot.
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(c) Plot the residuals versus furnace and stirring rate.
Does this plot convey any useful information?

(d) What should the process engineers recommend con-
cerning the choice of stirring rate and furnace for
this particular grain refiner if small grain size is
desirable?

4.15. Analyze the data in Problem 4.4 using the general
regression significance test.

4.16. Assuming that chemical types and bolts are fixed,
estimate the model parameters �i and �j in Problem 4.3.

4.17. Draw an operating characteristic curve for the design
in Problem 4.4. Does the test seem to be sensitive to small dif-
ferences in the treatment effects?

4.18. Suppose that the observation for chemical type 2 and
bolt 3 is missing in Problem 4.3. Analyze the problem by esti-
mating the missing value. Perform the exact analysis and
compare the results.

4.19. Consider the hardness testing experiment in Problem
4.7. Suppose that the observation for tip 2 in coupon 3 is
missing. Analyze the problem by estimating the missing
value.

4.20. Two missing values in a randomized block. Suppose
that in Problem 4.3 the observations for chemical type 2 and
bolt 3 and chemical type 4 and bolt 4 are missing.

(a) Analyze the design by iteratively estimating the missing
values, as described in Section 4.1.3.

(b) Differentiate SSE with respect to the two missing val-
ues, equate the results to zero, and solve for estimates
of the missing values. Analyze the design using these
two estimates of the missing values.

(c) Derive general formulas for estimating two missing
values when the observations are in different blocks.

(d) Derive general formulas for estimating two missing
values when the observations are in the same block.

4.21. An industrial engineer is conducting an experiment on
eye focus time. He is interested in the effect of the distance of
the object from the eye on the focus time. Four different
distances are of interest. He has five subjects available for the
experiment. Because there may be differences among individu-
als, he decides to conduct the experiment in a randomized block
design. The data obtained follow. Analyze the data from this
experiment (use 	 � 0.05) and draw appropriate conclusions.

Subject

Distance (ft) 1 2 3 4 5

4 10 6 6 6 6
6 7 6 6 1 6
8 5 3 3 2 5

10 6 4 4 2 3



4.22. The effect of five different ingredients (A, B, C, D, E)
on the reaction time of a chemical process is being studied.
Each batch of new material is only large enough to permit five
runs to be made. Furthermore, each run requires approximately

hours, so only five runs can be made in one day. The exper-
imenter decides to run the experiment as a Latin square so that
day and batch effects may be systematically controlled. She
obtains the data that follow. Analyze the data from this exper-
iment (use 	 � 0.05) and draw conclusions.

Day

Batch 1 2 3 4 5

1 A � 8 B � 7 D � 1 C � 7 E � 3
2 C � 11 E � 2 A � 7 D � 3 B � 8
3 B � 4 A � 9 C � 10 E � 1 D � 5
4 D � 6 C � 8 E � 6 B � 6 A � 10
5 E � 4 D � 2 B � 3 A � 8 C � 8

4.23. An industrial engineer is investigating the effect of
four assembly methods (A, B, C, D) on the assembly time for
a color television component. Four operators are selected for
the study. Furthermore, the engineer knows that each assem-
bly method produces such fatigue that the time required for
the last assembly may be greater than the time required for the
first, regardless of the method. That is, a trend develops in the
required assembly time. To account for this source of variabil-
ity, the engineer uses the Latin square design shown below.
Analyze the data from this experiment (	 � 0.05) and draw
appropriate conclusions.

Order of
Operator

Assembly 1 2 3 4

1 C � 10 D � 14 A � 7 B � 8
2 B � 7 C � 18 D � 11 A � 8
3 A � 5 B � 10 C � 11 D � 9
4 D � 10 A � 10 B � 12 C � 14

4.24. Consider the randomized complete block design in
Problem 4.4. Assume that the days are random. Estimate the
block variance component.

4.25. Consider the randomized complete block design in
Problem 4.7. Assume that the coupons are random. Estimate
the block variance component.

4.26. Consider the randomized complete block design in
Problem 4.9. Assume that the trucks are random. Estimate the
block variance component.

11
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4.27. Consider the randomized complete block design in
Problem 4.11. Assume that the software projects that 
were used as blocks are random. Estimate the block variance
component.

4.28. Consider the gene expression experiment in Problem
4.12. Assume that the subjects used in this experiment are ran-
dom. Estimate the block variance component.

4.29. Suppose that in Problem 4.20 the observation from
batch 3 on day 4 is missing. Estimate the missing value and
perform the analysis using the value.

4.30. Consider a p � p Latin square with rows (	i),
columns (�k), and treatments (�j) fixed. Obtain least squares
estimates of the model parameters 	i, �k, and �j.

4.31. Derive the missing value formula (Equation 4.27) for
the Latin square design.

4.32. Designs involving several Latin squares. [See
Cochran and Cox (1957), John (1971).] The p � p Latin square
contains only p observations for each treatment. To obtain more
replications the experimenter may use several squares, say n. It
is immaterial whether the squares used are the same or differ-
ent. The appropriate model is

where yijkh is the observation on treatment j in row i and col-
umn k of the hth square. Note that 	i(h) and �k(h) are the row
and column effects in the hth square, �h is the effect of the hth
square, and (��)jh is the interaction between treatments and
squares.

(a) Set up the normal equations for this model, and solve
for estimates of the model parameters. Assume that
appropriate side conditions on the parameters are

, and k�k(h) � 0 for each h, �
0, for each h, and 0 for 
each j.

(b) Write down the analysis of variance table for this
design.

4.33. Discuss how the operating characteristics curves in
the Appendix may be used with the Latin square design.

4.34. Suppose that in Problem 4.22 the data taken on day 5
were incorrectly analyzed and had to be discarded. Develop
an appropriate analysis for the remaining data.

4.35. The yield of a chemical process was measured using
five batches of raw material, five acid concentrations, five
standing times (A, B, C, D, E), and five catalyst concentrations
(	, �, �, �, �). The Graeco-Latin square that follows was used.
Analyze the data from this experiment (use 	 � 0.05) and
draw conclusions.

�h(�̂�)jh ��j(�̂�)jh � 0
�j�̂j��h�̂h � 0, �i	̂i(h) � 0

yijkh �
� � �h � 	i(h)

� �j � �k(h)

�  (��)jh � �ijkh
�

i �  1,2, . . . , p
j �  1,2, . . . , p
k �  1,2, . . . , p
h �  1,2, . . . , n



Acid Concentration

Batch 1 2 3

1 A	 � 26 B� � 16 C� � 19
2 B� � 18 C� � 21 D� � 18
3 C� � 20 D	 � 12 E� � 16
4 D� � 15 E� � 15 A� � 22
5 E� � 10 A� � 24 B	 � 17

Acid Concentration

Batch 4 5

1 D� � 16 E� � 13
2 E	 � 11 A� � 21
3 A� � 25 B� � 13
4 B� � 14 C	 � 17
5 C� � 17 D� � 14

4.36. Suppose that in Problem 4.23 the engineer suspects
that the workplaces used by the four operators may represent
an additional source of variation. A fourth factor, workplace
(	, �, �, �) may be introduced and another experiment con-
ducted, yielding the Graeco-Latin square that follows.
Analyze the data from this experiment (use 	 � 0.05) and
draw conclusions.

Order of
Operator

Assembly 1 2 3 4

1 C� � 11 B� � 10 D� � 14 A	 � 8
2 B	 � 8 C� � 12 A� � 10 D� � 12
3 A� � 9 D	 � 11 B� � 7 C� � 15
4 D� � 9 A� � 8 C	 � 18 B� � 6

4.37. Construct a 5 � 5 hypersquare for studying the
effects of five factors. Exhibit the analysis of variance table
for this design.

4.38. Consider the data in Problems 4.23 and 4.36.
Suppressing the Greek letters in problem 4.36, analyze the
data using the method developed in Problem 4.32.

4.39. Consider the randomized block design with one miss-
ing value in Problem 4.19. Analyze this data by using the
exact analysis of the missing value problem discussed in
Section 4.1.4. Compare your results to the approximate analy-
sis of these data given from Problem 4.19.

4.40. An engineer is studying the mileage performance
characteristics of five types of gasoline additives. In the road
test he wishes to use cars as blocks; however, because of a
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time constraint, he must use an incomplete block design. He
runs the balanced design with the five blocks that follow.
Analyze the data from this experiment (use 	 � 0.05) and
draw conclusions.

Car

Additive 1 2 3 4 5

1 17 14 13 12
2 14 14 13 10
3 12 13 12 9
4 13 11 11 12
5 11 12 10 8

4.41. Construct a set of orthogonal contrasts for the data in
Problem 4.33. Compute the sum of squares for each contrast.

4.42. Seven different hardwood concentrations are being
studied to determine their effect on the strength of the paper
produced. However, the pilot plant can only produce three
runs each day. As days may differ, the analyst uses the bal-
anced incomplete block design that follows. Analyze the data
from this experiment (use 	 � 0.05) and draw conclusions.

Hardwood
Days

Concentration (%) 1 2 3 4

2 114
4 126 120
6 137 117
8 141 129 149

10 145 150
12 120
14 136

Hardwood
Days

Concentration (%) 5 6 7

2 120 117
4 119
6 134
8

10 143
12 118 123
14 130 127

4.43. Analyze the data in Example 4.5 using the general
regression significance test.

4.44. Prove that is the adjusted sum of squares
for treatments in a BIBD.

k(a
i�1Q

2
i /(�a)



4.45. An experimenter wishes to compare four treatments
in blocks of two runs. Find a BIBD for this experiment with
six blocks.

4.46. An experimenter wishes to compare eight treat-
ments in blocks of four runs. Find a BIBD with 14 blocks
and � � 3.

4.47. Perform the interblock analysis for the design in
Problem 4.40.

4.48. Perform the interblock analysis for the design in
Problem 4.42.

4.49. Verify that a BIBD with the parameters a � 8, r � 8,
k � 4, and b � 16 does not exist.

4.50. Show that the variance of the intrablock estimators 
is k(a � 1)�2/(�a2).

4.51. Extended incomplete block designs. Occasionally,
the block size obeys the relationship a � k � 2a. An
extended incomplete block design consists of a single
replicate of each treatment in each block along with an
incomplete block design with k* � k � a. In the balanced
case, the incomplete block design will have parameters 
k* � k � a, r* � r � b, and �*. Write out the statistical
analysis. (Hint: In the extended incomplete block design,
we have � � 2r � b � �*.)

4.52. Suppose that a single-factor experiment with five lev-
els of the factor has been conducted. There are three replicates
and the experiment has been conducted as a complete ran-
domized design. If the experiment had been conducted in
blocks, the pure error degrees of freedom would be reduced
by (choose the correct answer):

(a) 3 

(b) 5 

(c) 2 

(d) 4 

(e) None of the above 

4.53. Physics graduate student Laura Van Ertia has con-
ducted a complete randomized design with a single factor,
hoping to solve the mystery of the unified theory and

��̂i�
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complete her dissertation. The results of this experiment
are summarized in the following ANOVA display:

Source DF SS MS F

Factor - - 14.18 -
Error - 37.75 -
Total 23 108.63

Answer the following questions about this experiment.

(a) The sum of squares for the factor is ______.   

(b). The number of degrees of freedom for the single fac-
tor in the experiment is______.

(c) The number of degrees of freedom for error is ______. 

(d) The mean square for error is______.   

(e) The value of the test statistic is______. 

(f) If the significance level is 0.05, your conclusions are
not to reject the null hypothesis. (Yes or No)

(g) An upper bound on the P-value for the test statistic
is______.

(h) A lower bound on the P-value for the test statistic
is______.

(i) Laura used ______ levels of the factor in this experi-
ment.

(j) Laura replicated this experiment ______ times.

(k) Suppose that Laura had actually conducted this exper-
iment as a randomized complete block design and the
sum of squares for blocks was 12. Reconstruct the
ANOVA display above to reflect this new situation.
How much has blocking reduced the estimate of
experimental error?

4.54. Consider the direct mail marketing experiment in
Problem 4.8. Suppose that this experiment had been run as a
complete randomized design, ignoring potential regional differ-
ences, but that exactly the same data was obtained. Reanalyze
the experiment under this new assumption. What difference
would ignoring blocking have on the results and conclusions?
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5.1 Basic Definitions and Principles

Many experiments involve the study of the effects of two or more factors. In general,
factorial designs are most efficient for this type of experiment. By a factorial design, we
mean that in each complete trial or replicate of the experiment all possible combinations of
the levels of the factors are investigated. For example, if there are a levels of factor A and
b levels of factor B, each replicate contains all ab treatment combinations. When factors are
arranged in a factorial design, they are often said to be crossed.

The effect of a factor is defined to be the change in response produced by a change
in the level of the factor. This is frequently called a main effect because it refers to the pri-
mary factors of interest in the experiment. For example, consider the simple experiment in
Figure 5.1. This is a two-factor factorial experiment with both design factors at two levels.
We have called these levels “low” and “high” and denoted them “�” and “�,” respectively.
The main effect of factor A in this two-level design can be thought of as the difference
between the average response at the low level of A and the average response at the high
level of A. Numerically, this is

A �
40 � 52

2
�

20 � 30
2

� 21

The supplemental material is on the textbook website www.wiley.com/college/montgomery.
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184 Chapter 5 ■ Introduction to Factorial Designs

That is, increasing factor A from the low level to the high level causes an average response
increase of 21 units. Similarly, the main effect of B is

If the factors appear at more than two levels, the above procedure must be modified because there
are other ways to define the effect of a factor. This point is discussed more completely later.

In some experiments, we may find that the difference in response between the levels of
one factor is not the same at all levels of the other factors. When this occurs, there is an
interaction between the factors. For example, consider the two-factor factorial experiment
shown in Figure 5.2. At the low level of factor B (or B�), the A effect is

and at the high level of factor B (or B�), the A effect is

Because the effect of A depends on the level chosen for factor B, we see that there is interaction
between A and B. The magnitude of the interaction effect is the average difference in these two
A effects, or AB � (�28 � 30)/2 � �29. Clearly, the interaction is large in this experiment.

These ideas may be illustrated graphically. Figure 5.3 plots the response data in Fig-
ure 5.1 against factor A for both levels of factor B. Note that the B� and B� lines are approxi-
mately parallel, indicating a lack of interaction between factors A and B. Similarly, Figure 5.4

A � 12 � 40 � �28

A � 50 � 20 � 30

B �
30 � 52

2
�

20 � 40
2

� 11
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plots the response data in Figure 5.2. Here we see that the B� and B� lines are not parallel.
This indicates an interaction between factors A and B. Two-factor interaction graphs such as
these are frequently very useful in interpreting significant interactions and in reporting results
to nonstatistically trained personnel. However, they should not be utilized as the sole tech-
nique of data analysis because their interpretation is subjective and their appearance is often
misleading.

There is another way to illustrate the concept of interaction. Suppose that both of our
design factors are quantitative (such as temperature, pressure, time, etc.). Then a regression
model representation of the two-factor factorial experiment could be written as

where y is the response, the �’s are parameters whose values are to be determined, x1 is a vari-
able that represents factor A, x2 is a variable that represents factor B, and � is a random error
term. The variables x1 and x2 are defined on a coded scale from �1 to �1 (the low and high
levels of A and B), and x1x2 represents the interaction between x1 and x2.

The parameter estimates in this regression model turn out to be related to the effect
estimates. For the experiment shown in Figure 5.1 we found the main effects of A and B to be
A � 21 and B � 11. The estimates of �1 and �2 are one-half the value of the corresponding
main effect; therefore, and . The interaction effect in
Figure 5.1 is AB � 1, so the value of interaction coefficient in the regression model is 

� 1/2 � 0.5. The parameter �0 is estimated by the average of all four responses, or 
� (20 � 40 � 30 � 52)/4 � 35.5. Therefore, the fitted regression model is

The parameter estimates obtained in the manner for the factorial design with all factors at two
levels (� and �) turn out to be least squares estimates (more on this later).

The interaction coefficient ( � 0.5) is small relative to the main effect coefficients 
and . We will take this to mean that interaction is small and can be ignored. Therefore, drop-
ping the term 0.5x1x2 gives us the model

Figure 5.5 presents graphical representations of this model. In Figure 5.5a we have a plot
of the plane of y-values generated by the various combinations of x1 and x2. This three-
dimensional graph is called a response surface plot. Figure 5.5b shows the contour lines
of constant response y in the x1, x2 plane. Notice that because the response surface is a
plane, the contour plot contains parallel straight lines.

ŷ � 35.5 � 10.5x1 � 5.5x2

�̂2

�̂1�̂12

ŷ � 35.5 � 10.5x1 � 5.5x2 � 0.5x1x2

�̂0

�̂12

�̂2 � 11/2 � 5.5�̂1 � 21/2 � 10.5

y � �0 � �1x1 � �2x2 � �12x1x2 � �
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Now suppose that the interaction contribution to this experiment was not negligible;
that is, the coefficient �12 was not small. Figure 5.6 presents the response surface and contour
plot for the model

(We have let the interaction effect be the average of the two main effects.) Notice that the sig-
nificant interaction effect “twists” the plane in Figure 5.6a. This twisting of the response
surface results in curved contour lines of constant response in the x1, x2 plane, as shown in
Figure 5.6b. Thus, interaction is a form of curvature in the underlying response surface
model for the experiment.

The response surface model for an experiment is extremely important and useful. We
will say more about it in Section 5.5 and in subsequent chapters.

Generally, when an interaction is large, the corresponding main effects have little prac-
tical meaning. For the experiment in Figure 5.2, we would estimate the main effect of A to be

which is very small, and we are tempted to conclude that there is no effect due to A. However,
when we examine the effects of A at different levels of factor B, we see that this is not the
case. Factor A has an effect, but it depends on the level of factor B. That is, knowledge of the
AB interaction is more useful than knowledge of the main effect. A significant interaction will
often mask the significance of main effects. These points are clearly indicated by the inter-
action plot in Figure 5.4. In the presence of significant interaction, the experimenter must
usually examine the levels of one factor, say A, with levels of the other factors fixed to draw
conclusions about the main effect of A.

5.2 The Advantage of Factorials

The advantage of factorial designs can be easily illustrated. Suppose we have two factors A
and B, each at two levels. We denote the levels of the factors by A�, A�, B�, and B�.
Information on both factors could be obtained by varying the factors one at a time, as shown
in Figure 5.7. The effect of changing factor A is given by A�B� � A�B�, and the effect of
changing factor B is given by A�B� � A�B�. Because experimental error is present, it is
desirable to take two observations, say, at each treatment combination and estimate the effects
of the factors using average responses. Thus, a total of six observations are required.

A �
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2
�

20 � 40
2

� 1
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If a factorial experiment had been performed, an additional treatment combination,
A� B�, would have been taken. Now, using just four observations, two estimates of the A
effect can be made: A� B� � A�B� and A� B� � A�B�. Similarly, two estimates of the B
effect can be made. These two estimates of each main effect could be averaged to produce
average main effects that are just as precise as those from the single-factor experiment, but
only four total observations are required and we would say that the relative efficiency of the
factorial design to the one-factor-at-a-time experiment is (6/4) � 1.5. Generally, this relative
efficiency will increase as the number of factors increases, as shown in Figure 5.8.

Now suppose interaction is present. If the one-factor-at-a-time design indicated that 
A�B� and A�B� gave better responses than A�B�, a logical conclusion would be that A�B�

would be even better. However, if interaction is present, this conclusion may be seriously in
error. For an example, refer to the experiment in Figure 5.2.

In summary, note that factorial designs have several advantages. They are more efficient
than one-factor-at-a-time experiments. Furthermore, a factorial design is necessary when
interactions may be present to avoid misleading conclusions. Finally, factorial designs allow
the effects of a factor to be estimated at several levels of the other factors, yielding conclu-
sions that are valid over a range of experimental conditions.

5.3 The Two-Factor Factorial Design

5.3.1 An Example

The simplest types of factorial designs involve only two factors or sets of treatments. There
are a levels of factor A and b levels of factor B, and these are arranged in a factorial design;
that is, each replicate of the experiment contains all ab treatment combinations. In general,
there are n replicates.

As an example of a factorial design involving two factors, an engineer is designing a bat-
tery for use in a device that will be subjected to some extreme variations in temperature. The
only design parameter that he can select at this point is the plate material for the battery, and he
has three possible choices. When the device is manufactured and is shipped to the field, the engi-
neer has no control over the temperature extremes that the device will encounter, and he knows
from experience that temperature will probably affect the effective battery life. However, tem-
perature can be controlled in the product development laboratory for the purposes of a test.
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The engineer decides to test all three plate materials at three temperature levels—15,
70, and 125°F—because these temperature levels are consistent with the product end-use
environment. Because there are two factors at three levels, this design is sometimes called a
32 factorial design. Four batteries are tested at each combination of plate material and tem-
perature, and all 36 tests are run in random order. The experiment and the resulting observed
battery life data are given in Table 5.1.

In this problem the engineer wants to answer the following questions:

1. What effects do material type and temperature have on the life of the battery?

2. Is there a choice of material that would give uniformly long life regardless of
temperature?

This last question is particularly important. It may be possible to find a material alternative
that is not greatly affected by temperature. If this is so, the engineer can make the battery
robust to temperature variation in the field. This is an example of using statistical experimen-
tal design for robust product design, a very important engineering problem.

This design is a specific example of the general case of a two-factor factorial. To pass
to the general case, let yijk be the observed response when factor A is at the ith level (i � 1,
2, . . . , a) and factor B is at the jth level ( j � 1, 2, . . . , b) for the kth replicate (k � 1, 2, . . . , n).
In general, a two-factor factorial experiment will appear as in Table 5.2. The order in which
the abn observations are taken is selected at random so that this design is a completely
randomized design.

The observations in a factorial experiment can be described by a model. There are sev-
eral ways to write the model for a factorial experiment. The effects model is

(5.1)

where � is the overall mean effect, �i is the effect of the ith level of the row factor A, �j is
the effect of the jth level of column factor B, (��)ij is the effect of the interaction between
�i and �j, and �ijk is a random error component. Both factors are assumed to be fixed, and
the treatment effects are defined as deviations from the overall mean, so and

. Similarly, the interaction effects are fixed and are defined such that �
� 0. Because there are n replicates of the experiment, there are abn total

observations.
�b

j�1(��)ij

�a
i�1(��)ij�b

j�1�j � 0
�a

i�1�i � 0

yijk � � � �i � �j � (��)ij � �ijk  � i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , n

■ T A B L E  5 . 1
Life (in hours) Data for the Battery Design Example

Material Temperature (°F)
Type 15 70 125

1 130 155 34 40 20 70

74 180 80 75 82 58

2 150 188 136 122 25 70

159 126 106 115 58 45

3 138 110 174 120 96 104

168 160 150 139 82 60 



Another possible model for a factorial experiment is the means model

where the mean of the ijth cell is

We could also use a regression model as in Section 5.1. Regression models are particularly
useful when one or more of the factors in the experiment are quantitative. Throughout most
of this chapter we will use the effects model (Equation 5.1) with an illustration of the regres-
sion model in Section 5.5.

In the two-factor factorial, both row and column factors (or treatments), A and B, are of
equal interest. Specifically, we are interested in testing hypotheses about the equality of row
treatment effects, say

(5.2a)

and the equality of column treatment effects, say

(5.2b)

We are also interested in determining whether row and column treatments interact. Thus, we
also wish to test

(5.2c)

We now discuss how these hypotheses are tested using a two-factor analysis of variance.

5.3.2 Statistical Analysis of the Fixed Effects Model

Let yi . . denote the total of all observations under the ith level of factor A, y.j. denote the total
of all observations under the jth level of factor B, yij. denote the total of all observations in the

H1�at least one (��)ij Z 0

H0�(��)ij � 0   for all i, j

H1�at least one �j Z 0

H0��1 � �2 � Á � �b � 0

H1�at least one �i Z 0

H0��1 � �2 � Á � �a � 0

�ij � � � �i � �j � (��)ij

yijk � �ij � �ijk  � i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , n

5.3 The Two-Factor Factorial Design 189

■ TA B L E  5 . 2
General Arrangement for a Two-Factor Factorial Design

Factor B

1 2 . . . b

1
y111, y112, y121, y122, y1b1, y1b2,
. . . , y11n . . . , y12n . . . , y1bn

2
y211, y212, y221, y222, y2b1, y2b2,

Factor A . . . , y21n . . . , y22n . . . , y2bn

a
ya11, ya12, ya21, ya22, yab1, yab2,
. . . , ya1n . . . , ya2n . . . , yabn

o
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ijth cell, and y . . . denote the grand total of all the observations. Define , , , and as the
corresponding row, column, cell, and grand averages. Expressed mathematically,

(5.3)

The total corrected sum of squares may be written as

(5.4)

because the six cross products on the right-hand side are zero. Notice that the total sum of
squares has been partitioned into a sum of squares due to “rows,” or factor A, (SSA); a sum of
squares due to “columns,” or factor B, (SSB); a sum of squares due to the interaction between
A and B, (SSAB); and a sum of squares due to error, (SSE). This is the fundamental ANOVA
equation for the two-factor factorial. From the last component on the right-hand side of
Equation 5.4, we see that there must be at least two replicates (n � 2) to obtain an error sum
of squares.

We may write Equation 5.4 symbolically as

(5.5)

The number of degrees of freedom associated with each sum of squares is

Effect Degrees of Freedom

A a � 1

B b � 1

AB interaction (a � 1)(b � 1)

Error ab(n � 1)

Total abn � 1

We may justify this allocation of the abn � 1 total degrees of freedom to the sums of squares
as follows: The main effects A and B have a and b levels, respectively; therefore they have 
a � 1 and b � 1 degrees of freedom as shown. The interaction degrees of freedom are sim-
ply the number of degrees of freedom for cells (which is ab � 1) minus the number of degrees
of freedom for the two main effects A and B; that is, ab � 1 � (a � 1) � (b � 1) �

SST � SSA � SSB � SSAB � SSE

� �
a

i�1
�
b

j�1
�
n

k�1
 (yijk � yij.)

2

� n �
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i�1
�
b

j�1
 (yij. � yi.. � y.j. � y...)

2

� bn �
a

i�1
 (yi.. � y...)

2 � an �
b

j�1
 (y.j. � y...)

2

� (yij. � yi.. � y.j. � y...) � (yijk � yij.)]
2

�
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i�1
�
b

j�1
�
n

k�1
 (yijk � y...)

2 � �
a

i�1
�
b

j�1
�
n

k�1
 [(yi.. � y...) � (y.j. � y...)

y... � �
a

i�1
�
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j�1
�
n

k�1
yijk   y... �

y...

abn

yij. � �
n

k�1
yijk   yij. �

yij.

n   i � 1, 2, . . . , a
j � 1, 2, . . . , b

y.j. � �
a

i�1
�
n

k�1
yijk   y.j. �

y.j.

an   j � 1, 2, . . . , b

yi.. � �
b

j�1
�
n

k�1
yijk   yi.. �

yi..

bn
  i � 1, 2, . . . , a

y...yij.y.j.yi..



(a � 1)(b � 1). Within each of the ab cells, there are n � 1 degrees of freedom between the
n replicates; thus there are ab(n � 1) degrees of freedom for error. Note that the number of
degrees of freedom on the right-hand side of Equation 5.5 adds to the total number of degrees
of freedom.

Each sum of squares divided by its degrees of freedom is a mean square. The expected
values of the mean squares are

and

Notice that if the null hypotheses of no row treatment effects, no column treatment effects,
and no interaction are true, then MSA, MSB, MSAB, and MSE all estimate � 2. However, if there
are differences between row treatment effects, say, then MSA will be larger than MSE.
Similarly, if there are column treatment effects or interaction present, then the corresponding
mean squares will be larger than MSE. Therefore, to test the significance of both main effects
and their interaction, simply divide the corresponding mean square by the error mean square.
Large values of this ratio imply that the data do not support the null hypothesis.

If we assume that the model (Equation 5.1) is adequate and that the error terms �ijk

are normally and independently distributed with constant variance �2, then each of the
ratios of mean squares MSA/MSE, MSB/MSE, and MSAB/MSE is distributed as F with a � 1,
b � 1, and (a � 1)(b � 1) numerator degrees of freedom, respectively, and ab(n � 1)
denominator degrees of freedom,1 and the critical region would be the upper tail of the F
distribution. The test procedure is usually summarized in an analysis of variance table, as
shown in Table 5.3.

Computationally, we almost always employ a statistical software package to conduct an
ANOVA. However, manual computing of the sums of squares in Equation 5.5 is straightfor-
ward. One could write out the individual elements of the ANOVA identity

and calculate them in the columns of a spreadsheet. Then each column could be squared
and summed to produce the ANOVA sums of squares. Computing formulas in terms of
row, column, and cell totals can also be used. The total sum of squares is computed as
usual by

(5.6)SST � �
a

i�1
�
b

j�1
�
n

k�1
y2

ijk �
y2

...

abn

yijk � y... � (yi.. � y...) � (y.j. � y...) � (yij. � yi.. � y.j. � y...) � (yijk � yij.)

E(MSE) � E � SSE

ab(n � 1)� � � 2

E(MSAB) � E � SSAB

(a � 1)(b � 1)� � � 2 �

n �
a

i�1
�
b

j�1
 (��)2

ij

(a � 1)(b � 1)

E(MSB) � E � SSB

b � 1� � � 2 �

an �
b

j�1
�2

j

b � 1

E(MSA) � E � SSA

a � 1� � � 2 �

bn �
a

i�1
� 2

i

a � 1
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1The F test may be viewed as an approximation to a randomization test, as noted previously. 
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The sums of squares for the main effects are

(5.7)

and

(5.8)

It is convenient to obtain the SSAB in two stages. First we compute the sum of squares between
the ab cell totals, which is called the sum of squares due to “subtotals”:

This sum of squares also contains SSA and SSB. Therefore, the second step is to compute SSAB

as

(5.9)

We may compute SSE by subtraction as

(5.10)

or

SSE � SST � SSSubtotals

SSE � SST � SSAB � SSA � SSB

SSAB � SSSubtotals � SSA � SSB

SSSubtotals �
1
n �

a

i�1
�
b

j�1
y2

ij. �
y2

...

abn

SSB �
1

an �
b

j�1
y2

.j. �
y2

...

abn

SSA �
1

bn �
a

i�1
y2

i.. �
y2

...

abn

■ TA B L E  5 . 3
The Analysis of Variance Table for the Two-Factor Factorial, Fixed Effects Model

Source of Sum of Degrees of
Variation Squares Freedom Mean Square F0

A treatments SSA a � 1

B treatments SSB b � 1

Interaction SSAB (a � 1)(b � 1)

Error SSE ab(n � 1)

Total SST abn � 1

MSE �
SSE

ab(n � 1)

F0 �
MSAB

MSE
MSAB �

SSAB

(a � 1)(b � 1)

F0 �
MSB

MSE
MSB �

SSB

b � 1

F0 �
MSA

MSE
MSA �

SSA

a � 1

E X A M P L E  5 . 1 The Battery Design Experiment

Table 5.4 presents the effective life (in hours) observed in
the battery design example described in Section 5.3.1. The

row and column totals are shown in the margins of the
table, and the circled numbers are the cell totals.
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Using Equations 5.6 through 5.10, the sums of squares are
computed as follows:

�
(3799)2
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� 39,118.72

�
1

(3)(4)
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1
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.j. �
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abn
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(3)(4)
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SSMaterial �
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bn �
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i.. �
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� (60)2 �
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n

k�1
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ijk �
y2

...

abn

■ TA B L E  5 . 4
Life Data (in hours) for the Battery Design Experiment

Material
Temperature (°F)

Type 15 70 125 yi..

130 155 34 40 20 70

1 74 180
539

80 75
229

82 58
230

998

150 188 136 122 25 70

2 159 126
623

106 115
479

58 45
198

1300

138 110 174 120 96 104

3 168 160
576

150 139
583

82 60
342

1501

1738 1291 770 3799 � y...y.j.

and

The ANOVA is shown in Table 5.5. Because F0.05,4,27 �
2.73, we conclude that there is a significant interaction
between material types and temperature. Furthermore,
F0.05,2,27 � 3.35, so the main effects of material type and
temperature are also significant. Table 5.5 also shows the P-
values for the test statistics.

To assist in interpreting the results of this experiment, it
is helpful to construct a graph of the average responses at

� 9613.78 � 18,230.75

� 77,646.97 � 10,683.72 � 39,118.72

SSE � SST � SSMaterial � SSTemperature � SSInteraction

 � 39,118.72 � 9613.78

�
(3799)2

36
� 10,683.72

�
1
4

 [(539)2 � (229)2 � Á � (342)2]

� SSTemperature

SSInteraction �
1
n �

a

i�1
�
b

j�1
y2

ij. �
y2

...

abn
� SSMaterial
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Multiple Comparisons. When the ANOVA indicates that row or column means differ,
it is usually of interest to make comparisons between the individual row or column means to
discover the specific differences. The multiple comparison methods discussed in Chapter 3
are useful in this regard.

We now illustrate the use of Tukey’s test on the battery life data in Example 5.1. Note
that in this experiment, interaction is significant. When interaction is significant, compar-
isons between the means of one factor (e.g., A) may be obscured by the AB interaction. One
approach to this situation is to fix factor B at a specific level and apply Tukey’s test to the
means of factor A at that level. To illustrate, suppose that in Example 5.1 we are interested
in detecting differences among the means of the three material types. Because interaction
is significant, we make this comparison at just one level of temperature, say level 2 (70°F).
We assume that the best estimate of the error variance is the MSE from the ANOVA table,

each treatment combination. This graph is shown in Figure
5.9. The significant interaction is indicated by the lack of
parallelism of the lines. In general, longer life is attained at
low temperature, regardless of material type. Changing
from low to intermediate temperature, battery life with
material type 3 may actually increase, whereas it decreases

■ TA B L E  5 . 5
Analysis of Variance for Battery Life Data

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0 P-Value

Material types 10,683.72 2 5,341.86 7.91 0.0020

Temperature 39,118.72 2 19,559.36 28.97 < 0.0001

Interaction 9,613.78 4 2,403.44 3.56 0.0186

Error 18,230.75 27 675.21

Total 77,646.97 35

15 70 125

Temperature (°F)

Material type 3

Material type 1
Material type 2
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■ F I G U R E  5 . 9 Material type–temperature plot for
Example 5.1

for types 1 and 2. From intermediate to high temperature,
battery life decreases for material types 2 and 3 and is
essentially unchanged for type 1. Material type 3 seems to
give the best results if we want less loss of effective life as
the temperature changes.



utilizing the assumption that the experimental error variance is the same over all treatment
combinations.

The three material type averages at 70°F arranged in ascending order are

and

where we obtained q0.05(3, 27) 
 3.50 by interpolation in Appendix Table VII. The pairwise
comparisons yield

This analysis indicates that at the temperature level 70°F, the mean battery life is the same for
material types 2 and 3, and that the mean battery life for material type 1 is significantly lower
in comparison to both types 2 and 3.

If interaction is significant, the experimenter could compare all ab cell means to deter-
mine which ones differ significantly. In this analysis, differences between cell means include
interaction effects as well as both main effects. In Example 5.1, this would give 36 compar-
isons between all possible pairs of the nine cell means.

Computer Output. Figure 5.10 presents condensed computer output for the battery life
data in Example 5.1. Figure 5.10a contains Design-Expert output and Figure 5.10b contains
JMP output. Note that

with 8 degrees of freedom. An F test is displayed for the model source of variation. The
P-value is small (� 0.0001), so the interpretation of this test is that at least one of the three terms
in the model is significant. The tests on the individual model terms (A, B, AB) follow. Also,

That is, about 77 percent of the variability in the battery life is explained by the plate material
in the battery, the temperature, and the material type–temperature interaction. The residuals
from the fitted model are displayed on the Design-Expert computer output and 
the JMP output contains a plot of the residuals versus the predicted response. We now discuss
the use of these residuals and residual plots in model adequacy checking.

R2 �
SSModel

SSTotal
�

59,416.22
77,646.97

� 0.7652

�  59,416.22

�  10,683.72 � 39,118.72 � 9613.78

SSModel � SSMaterial � SSTemperature � SSInteraction

2 vs. 1:   119.75 � 57.25 � 62.50 � T0.05 � 45.47

3 vs. 2:   145.75 � 119.75 � 26.00 � T0.05 � 45.47

3 vs. 1:   145.75 � 57.25 � 88.50 � T0.05 � 45.47

�  45.47

�  3.50�675.21
4

T0.05 � q0.05(3, 27)�MSE

n

y32. � 145.75    (material type 3)

y22. � 119.75    (material type 2)

y12. � 57.25    (material type 1)
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■ F I G U R E  5 . 1 0 Computer output for Example 5.1. (a) Design-Expert output; (b) JMP output

(a)



5.3 The Two-Factor Factorial Design 197

■ F I G U R E  5 . 1 0 (Continued)
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0.76521RSquare
0.695642RSquare Adj
25.98486Root Mean Square Error
105.5278Mean of Response

36Observations (or Sum Wgts)

Analysis of Variance

Mean SquareSum of SquaresDFSource F Ratio
10.99957427.0359416.2228Model

Prob > F675.2118230.75027Error
77646.97235C.Total <.001

Effect Tests

Source Sum of SquaresDFNparm F Prob > FRatio
0.00207.911410683.72222
<.000128.967739118.72222

Material Type

0.01863.55959613.77844
Temperature
Material Type Temperature
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5.3.3 Model Adequacy Checking

Before the conclusions from the ANOVA are adopted, the adequacy of the underlying model
should be checked. As before, the primary diagnostic tool is residual analysis. The residuals
for the two-factor factorial model with interaction are

(5.11)

and because the fitted value (the average of the observations in the ijth cell),
Equation 5.11 becomes

(5.12)

The residuals from the battery life data in Example 5.1 are shown in the Design-Expert
computer output (Figure 5.10a) and in Table 5.6. The normal probability plot of these resid-
uals (Figure 5.11) does not reveal anything particularly troublesome, although the largest neg-
ative residual (�60.75 at 15°F for material type 1) does stand out somewhat from the others.
The standardized value of this residual is � �2.34, and this is the only
residual whose absolute value is larger than 2.

Figure 5.12 plots the residuals versus the fitted values . This plot was also shown in
the JMP computer output in Figure 5.10b. There is some mild tendency for the variance of the
residuals to increase as the battery life increases. Figures 5.13 and 5.14 plot the residuals ver-
sus material types and temperature, respectively. Both plots indicate mild inequality of vari-
ance, with the treatment combination of 15°F and material type 1 possibly having larger vari-
ance than the others.

From Table 5.6 we see that the 15°F-material type 1 cell contains both extreme residu-
als (�60.75 and 45.25). These two residuals are primarily responsible for the inequality of
variance detected in Figures 5.12, 5.13, and 5.14. Reexamination of the data does not reveal
any obvious problem, such as an error in recording, so we accept these responses as legiti-
mate. It is possible that this particular treatment combination produces slightly more erratic
battery life than the others. The problem, however, is not severe enough to have a dramatic
impact on the analysis and conclusions.

5.3.4 Estimating the Model Parameters

The parameters in the effects model for two-factor factorial

(5.13)yijk � � � �i � �j � (��)ij � �ijk

ŷijk

�60.75/�675.21

eijk � yijk � yij.

ŷijk � yij.

eijk � yijk � ŷijk

■ TA B L E  5 . 6
Residuals for Example 5.1

Material
Temperature (°F)

Type 15 70 125

1 �4.75 20.25 �23.25 �17.25 �37.50 12.50

�60.75 45.25 22.75 17.75 24.50 0.50

2 �5.75 32.25 16.25 2.25 �24.50 20.50

3.25 �29.75 �13.75 �4.75 8.50 �4.50

3 �6.00 �34.00 28.25 �25.75 10.50 18.50

24.00 16.00 4.25 �6.75 �3.50 �25.50



may be estimated by least squares. Because the model has 1 � a � b � ab parameters to be
estimated, there are 1 � a � b � ab normal equations. Using the method of Section 3.9, we
find that it is not difficult to show that the normal equations are

(5.14a)

(5.14b)�i�bn�̂ � bn�̂i � n �
b

j�1
�̂j � n �

b

j�1
 (��)̂ij � yi..   i � 1, 2, . . . , a

��abn�̂ � bn �
a

i�1
�̂i � an �

b

j�1
�̂j � n �

a

i�1
�
b

j�1
 (��̂)ij � y...
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■ F I G U R E  5 . 1 1
Normal probability plot of residuals for Example 5.1

■ F I G U R E  5 . 1 2
Plot of residuals versus for Example 5.1ŷijk
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■ F I G U R E  5 . 1 3
Plot of residuals versus material type for Example 5.1
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■ F I G U R E  5 . 1 4
Plot of residuals versus temperature for Example 5.1
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(5.14c)

(5.14d)

For convenience, we have shown the parameter corresponding to each normal equation on the
left in Equations 5.14.

The effects model (Equation 5.13) is an overparameterized model. Notice that the a
equations in Equation 5.14b sum to Equation 5.14a and that the b equations of Equation 5.14c
sum to Equation 5.14a. Also summing Equation 5.14d over j for a particular i will give
Equation 5.14b, and summing Equation 5.14d over i for a particular j will give Equation
5.14c. Therefore, there are a � b � 1 linear dependencies in this system of equations, and
no unique solution will exist. In order to obtain a solution, we impose the constraints

(5.15a)

(5.15b)

(5.15c)

and

(5.15d)

Equations 5.15a and 5.15b constitute two constraints, whereas Equations 5.15c and 5.15d
form a � b � 1 independent constraints. Therefore, we have a � b � 1 total constraints, the
number needed.

Applying these constraints, the normal equations (Equations 5.14) simplify consider-
ably, and we obtain the solution

(5.16)

Notice the considerable intuitive appeal of this solution to the normal equations. Row treatment
effects are estimated by the row average minus the grand average; column treatments are esti-
mated by the column average minus the grand average; and the ijth interaction is estimated by
the ijth cell average minus the grand average, the ith row effect, and the jth column effect.

Using Equation 5.16, we may find the fitted value yijk as

� yij.

�  (yij. � yi.. � y.j. � y...)

� y... � (yi.. � y...) � (y.j. � y...)

ŷijk � �̂� �̂i � �̂j � (��̂)ij

 (��̂)ij � yij. � yi.. � y.j. � y...   �i � 1, 2, . . . , a
j � 1, 2, . . . , b

�̂j � y.j. � y...   j � 1, 2, . . . , b

�̂i � yi.. � y...   i � 1, 2, . . . , a

�̂ � y...

�
b

j�1
 (��̂)ij � 0   i � 1, 2, . . . , a

�
a

i�1
 (��̂)ij � 0   j � 1, 2, . . . , b

�
b

j�1
�̂j � 0

�
a

i�1
�̂i � 0

(��)ij�n�̂ � n�̂i � n�̂j � n(��)̂ij � yij.   �i � 1, 2, . . . , a
j � 1, 2, . . . , b

�j�an�̂ � n �
a

i�1
�̂i � an�̂j � n �

a

i�1
 (��̂)ij � y.j.   j � 1, 2, . . . , b



That is, the kth observation in the ijth cell is estimated by the average of the n observations in
that cell. This result was used in Equation 5.12 to obtain the residuals for the two-factor fac-
torial model.

Because constraints (Equations 5.15) have been used to solve the normal equations, the
model parameters are not uniquely estimated. However, certain important functions of the
model parameters are estimable, that is, uniquely estimated regardless of the constraint cho-
sen. An example is �i � �u � , which might be thought of as the “true” differ-
ence between the ith and the uth levels of factor A. Notice that the true difference between the
levels of any main effect includes an “average” interaction effect. It is this result that disturbs
the tests on main effects in the presence of interaction, as noted earlier. In general, any func-
tion of the model parameters that is a linear combination of the left-hand side of the normal
equations is estimable. This property was also noted in Chapter 3 when we were discussing
the single-factor model. For more information, see the supplemental text material for this
chapter.

5.3.5 Choice of Sample Size

The operating characteristic curves in Appendix Chart V can be used to assist the experi-
menter in determining an appropriate sample size (number of replicates, n) for a two-factor
factorial design. The appropriate value of the parameter �2 and the numerator and denomina-
tor degrees of freedom are shown in Table 5.7.

A very effective way to use these curves is to find the smallest value of �2 correspon-
ding to a specified difference between any two treatment means. For example, if the differ-
ence in any two row means is D, then the minimum value of �2 is

(5.17)

whereas if the difference in any two column means is D, then the minimum value of �2 is

(5.18)�2 �
naD2

2b� 2

�2 �
nbD2

2a� 2

(��)i. � (��)u.
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■ TA B L E  5 . 7
Operating Characteristic Curve Parameters for Chart V of the 
Appendix for the Two-Factor Factorial, Fixed Effects Model

Numerator Denominator 
Factor �2 Degrees of Freedom Degrees of Freedom

A a � 1 ab(n � 1)

B b � 1 ab(n � 1)

AB (a � 1)(b � 1) ab(n � 1)

n �
a

i�1
�
b

j�1
 (��)2

ij

�2[(a � 1)(b � 1) � 1 ]

an �
b

j�1
�2

j

b�2

bn �
a

i�1
�2

i

a�2
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Finally, the minimum value of �2 corresponding to a difference of D between any two inter-
action effects is

(5.19)

To illustrate the use of these equations, consider the battery life data in Example 5.1.
Suppose that before running the experiment we decide that the null hypothesis should be
rejected with a high probability if the difference in mean battery life between any two tem-
peratures is as great as 40 hours. Thus a difference of D � 40 has engineering significance,
and if we assume that the standard deviation of battery life is approximately 25, then Equation
5.18 gives

as the minimum value of �2. Assuming that 	 � 0.05, we can now use Appendix Table V to
construct the following display:

�1 � Numerator �2 � Error Degrees
n 	2 	 Degrees of Freedom of Freedom �

2 2.56 1.60 2 9 0.45

3 3.84 1.96 2 18 0.18

4 5.12 2.26 2 27 0.06

Note that n � 4 replicates give a � risk of about 0.06, or approximately a 94 percent
chance of rejecting the null hypothesis if the difference in mean battery life at any two tem-
perature levels is as large as 40 hours. Thus, we conclude that four replicates are enough to
provide the desired sensitivity as long as our estimate of the standard deviation of battery life
is not seriously in error. If in doubt, the experimenter could repeat the above procedure with
other values of � to determine the effect of misestimating this parameter on the sensitivity of
the design.

5.3.6 The Assumption of No Interaction in a 
Two-Factor Model

Occasionally, an experimenter feels that a two-factor model without interaction is appro-
priate, say

(5.20)

We should be very careful in dispensing with the interaction terms, however, because the
presence of significant interaction can have a dramatic impact on the interpretation of the
data.

The statistical analysis of a two-factor factorial model without interaction is straightfor-
ward. Table 5.8 presents the analysis of the battery life data from Example 5.1, assuming that

yijk � � � �i � �j � �ijk   � i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , n

�  1.28n

�
n(3)(40)2

2(3)(25)2

�2 �
naD2

2b� 2

�2 �
nD2

2� 2[(a � 1)(b � 1) � 1]



the no-interaction model (Equation 5.20) applies. As noted previously, both main effects are
significant. However, as soon as a residual analysis is performed for these data, it becomes
clear that the no-interaction model is inadequate. For the two-factor model without interac-
tion, the fitted values are . A plot of (the cell averages minus the
fitted value for that cell) versus the fitted value is shown in Figure 5.15. Now the quanti-
ties may be viewed as the differences between the observed cell means and the esti-
mated cell means assuming no interaction. Any pattern in these quantities is suggestive of the
presence of interaction. Figure 5.15 shows a distinct pattern as the quantities move
from positive to negative to positive to negative again. This structure is the result of interac-
tion between material types and temperature.

5.3.7 One Observation per Cell

Occasionally, one encounters a two-factor experiment with only a single replicate, that is,
only one observation per cell. If there are two factors and only one observation per cell, the
effects model is

(5.21)

The analysis of variance for this situation is shown in Table 5.9, assuming that both factors
are fixed.

From examining the expected mean squares, we see that the error variance �2 is not
estimable; that is, the two-factor interaction effect (��)ij and the experimental error cannot be
separated in any obvious manner. Consequently, there are no tests on main effects unless the

yij � � � �i � �j � (��)ij � �ij   �i � 1, 2, . . . , a
j � 1, 2, . . . , b

yij. � ŷijk

yij. � ŷijk

ŷijk

yij. � ŷijkŷijk � yi.. � y.j. � y...
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■ TA B L E  5 . 8
Analysis of Variance for Battery Life Data Assuming No Interaction

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0

Material types 10,683.72 2 5,341.86 5.95

Temperature 39,118.72 2 19,559.36 21.78

Error 27,844.52 31 898.21

Total 77,646.96 35
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■ F I G U R E  5 . 1 5
Plot of versus ,
battery life data
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interaction effect is zero. If there is no interaction present, then (��)ij � 0 for all i and j, and
a plausible model is

(5.22)

If the model (Equation 5.22) is appropriate, then the residual mean square in Table 5.9 is an
unbiased estimator of � 2, and the main effects may be tested by comparing MSA and MSB to
MSResidual.

A test developed by Tukey (1949a) is helpful in determining whether interaction is
present. The procedure assumes that the interaction term is of a particularly simple form,
namely,

where � is an unknown constant. By defining the interaction term this way, we may use a
regression approach to test the significance of the interaction term. The test partitions the
residual sum of squares into a single-degree-of-freedom component due to nonadditivity
(interaction) and a component for error with (a � 1)(b � 1) � 1 degrees of freedom.
Computationally, we have

(5.23)

with one degree of freedom, and

(5.24)

with (a � 1)(b � 1) � 1 degrees of freedom. To test for the presence of interaction, we
compute

(5.25)

If F0 
 F	,1,(a�1)(b�1)�1, the hypothesis of no interaction must be rejected.

F0 �
SSN

SSError/[(a � 1)(b � 1) � 1]

SSError � SSResidual � SSN

SSN �
��

a

i�1
�
b

j�1
yijyi. y.j � y..�SSA � SSB �

y2
..

ab�	
2

abSSASSB

(��)ij � ��i�j

yij � � � �i � �j � �ij   �i � 1, 2, . . . , a
j � 1, 2, . . . , b

■ TA B L E  5 . 9
Analysis of Variance for a Two-Factor Model, One Observation per Cell

Source of Sum of Degrees of Mean Expected 
Variation Squares Freedom Square Mean Square

Rows (A) a � 1 MSA

Columns (B) b � 1 MSB

Residual or AB Subtraction (a � 1)(b � 1) MSResidual

Total ab � 1�
a

i�1
�
b

j�1
y2

ij �
y2

..

ab

�2 �
�� (��)2

ij

(a � 1)(b � 1)

�2 �
a � �2

j

b � 1�
b

j�1

y2
.j

a
�

y2
..

ab

�2 �
b � �2

i

a � 1�
a

i�1

y2
i.

b
�

y2
..

ab
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E X A M P L E  5 . 2

The impurity present in a chemical product is affected by
two factors—pressure and temperature. The data from a
single replicate of a factorial experiment are shown in
Table 5.10. The sums of squares are

and

�  36.93 � 23.33 � 11.60 � 2.00

SSResidual � SST � SSA � SSB

�  166 � 129.07 � 36.93

SST � �
a

i�1
�
b

j�1
y2

ij �
y2

..

ab

�
1
3

 [92 � 62 � 132 � 62 � 102] �
442

(3)(5)
� 11.60

SSB �
1
a �

b

j�1
y2

.j �
y2

..

ab

�
1
5

 [232 � 132 � 82] �
442

(3)(5)
� 23.33

SSA �
1
b �

a

i�1
y2

i. �
y2

..

ab

The sum of squares for nonadditivity is computed from
Equation 5.23 as follows:

and the error sum of squares is, from Equation 5.24,

The complete ANOVA is summarized in Table 5.11. The
test statistic for nonadditivity is F0 � 0.0985/0.2716 �
0.36, so we conclude that there is no evidence of
interaction in these data. The main effects of temper-
ature and pressure are significant.

�  2.00 � 0.0985 � 1.9015

SSError � SSResidual � SSN

�
[20.00]2

4059.42
� 0.0985

�
[7236 � (44)(23.33 � 11.60 � 129.07)]2

(3)(5)(23.33)(11.60)

SSN �
��

a

i�1
�
b

j�1
yijyi. y.j � y..�SSA � SSB �

y2
..

ab�	
2

abSSASSB

� (2)(8)(10) � 7236

�
a

i�1
�
b

j�1
yijyi. y.j � (5)(23)(9) � (4)(23)(6) � Á

■ TA B L E  5 . 1 0
Impurity Data for Example 5.2

Temperature Pressure
(°F) 25 30 35 40 45 yi.

100 5 4 6 3 5 23

125 3 1 4 2 3 13

150 1 1 3 1 2 8

y.j 9 6 13 6 10 44 � y..

■ TA B L E  5 . 1 1
Analysis of Variance for Example 5.2

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0 P-Value

Temperature 23.33 2 11.67 42.97 0.0001

Pressure 11.60 4 2.90 10.68 0.0042

Nonadditivity 0.0985 1 0.0985 0.36 0.5674

Error 1.9015 7 0.2716

Total 36.93 14
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In concluding this section, we note that the two-factor factorial model with one obser-
vation per cell (Equation 5.22) looks exactly like the randomized complete block model
(Equation 4.1). In fact, the Tukey single-degree-of-freedom test for nonadditivity can be
directly applied to test for interaction in the randomized block model. However, remember
that the experimental situations that lead to the randomized block and factorial models are
very different. In the factorial model, all ab runs have been made in random order, whereas
in the randomized block model, randomization occurs only within the block. The blocks are
a randomization restriction. Hence, the manner in which the experiments are run and the
interpretation of the two models are quite different.

5.4 The General Factorial Design

The results for the two-factor factorial design may be extended to the general case where there
are a levels of factor A, b levels of factor B, c levels of factor C, and so on, arranged in a fac-
torial experiment. In general, there will be abc . . . n total observations if there are n replicates
of the complete experiment. Once again, note that we must have at least two replicates (n � 2)
to determine a sum of squares due to error if all possible interactions are included in the model.

If all factors in the experiment are fixed, we may easily formulate and test hypotheses
about the main effects and interactions using the ANOVA. For a fixed effects model, test sta-
tistics for each main effect and interaction may be constructed by dividing the corresponding
mean square for the effect or interaction by the mean square error. All of these F tests will be
upper-tail, one-tail tests. The number of degrees of freedom for any main effect is the num-
ber of levels of the factor minus one, and the number of degrees of freedom for an interaction
is the product of the number of degrees of freedom associated with the individual components
of the interaction.

For example, consider the three-factor analysis of variance model:

(5.26)

Assuming that A, B, and C are fixed, the analysis of variance table is shown in Table 5.12.
The F tests on main effects and interactions follow directly from the expected mean squares.

Usually, the analysis of variance computations would be done using a statistics software
package. However, manual computing formulas for the sums of squares in Table 5.12 are
occasionally useful. The total sum of squares is found in the usual way as

(5.27)

The sums of squares for the main effects are found from the totals for factors A(yi...), B(y.j..),
and C(y..k.) as follows:

(5.28)

(5.29)

(5.30)SSC �
1

abn �
c

k�1
y2

..k. �
y2

....

abcn

SSB �
1

acn �
b

j�1
y2

.j.. �
y2

....

abcn

SSA �
1

bcn �
a

i�1
y2

i... �
y2

....

abcn

SST � �
a

i�1
�
b

j�1
�

c

k�1
�
n

l�1
y2

ijkl �
y2

....

abcn

�  (���)ijk � �ijkl   �
i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , c
l � 1, 2, . . . , n

yijkl � � � �i � �j � �k � (��)ij � (��)ik � (��)jk



To compute the two-factor interaction sums of squares, the totals for the A � B, A � C, and
B � C cells are needed. It is frequently helpful to collapse the original data table into three
two-way tables to compute these quantities. The sums of squares are found from

(5.31)

(5.32)

and

(5.33)

Note that the sums of squares for the two-factor subtotals are found from the totals in each
two-way table. The three-factor interaction sum of squares is computed from the three-way
cell totals {yijk.} as

(5.34a)

(5.34b)� SSSubtotals(ABC) � SSA � SSB � SSC � SSAB � SSAC � SSBC

SSABC �
1
n �
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�
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j�1
�

c

k�1
y2

ijk. �
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....

abcn
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SSBC �
1
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b
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�

c
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y2
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....

abcn
� SSB � SSC

� SSSubtotals(AC) � SSA � SSC

SSAC �
1
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a

i�1
�

c

k�1
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....

abcn
� SSA � SSC

� SSSubtotals(AB) � SSA � SSB
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1
cn �

a

i�1
�
b

j�1
y2

ij.. �
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....

abcn
� SSA � SSB
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■ TA B L E  5 . 1 2
The Analysis of Variance Table for the Three-Factor Fixed Effects Model

Source of Sum of Mean 
Variation Squares Degrees of Freedom Square Expected Mean Square F0

A SSA a � 1 MSA

B SSB b � 1 MSB

C SSC c � 1 MSC

AB SSAB (a � 1)(b � 1) MSAB

AC SSAC (a � 1)(c � 1) MSAC

BC SSBC (b � 1)(c � 1) MSBC

ABC SSABC (a � 1)(b � 1)(c � 1) MSABC

Error SSE abc(n � 1) MSE �2

Total SST abcn � 1

F0 �
MSABC

MSE
�2 �

n � � � (���)2
ijk

(a � 1)(b � 1)(c � 1)

F0 �
MSBC

MSE
�2 �

an � � (��)2
jk

(b � 1)(c � 1)

F0 �
MSAC

MSE
�2 �

bn � � (��)2
ik

(a � 1)(c � 1)

F0 �
MSAB

MSE
�2 �

cn � � (��)2
ij

(a � 1)(b � 1)

F0 �
MSC

MSE
�2 �

abn � �2
k

c � 1

F0 �
MSB

MSE
�2 �

acn � �2
j

b � 1

F0 �
MSA

MSE
�2 �

bcn � �2
i

a � 1
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The error sum of squares may be found by subtracting the sum of squares for each main effect
and interaction from the total sum of squares or by

(5.35)SSE � SST � SSSubtotals(ABC)

E X A M P L E  5 . 3 The Soft Drink Bottling Problem

A soft drink bottler is interested in obtaining more uniform
fill heights in the bottles produced by his manufacturing
process. The filling machine theoretically fills each bottle to
the correct target height, but in practice, there is variation
around this target, and the bottler would like to understand
the sources of this variability better and eventually reduce it.

The process engineer can control three variables during
the filling process: the percent carbonation (A), the operat-
ing pressure in the filler (B), and the bottles produced per
minute or the line speed (C). The pressure and speed are
easy to control, but the percent carbonation is more difficult
to control during actual manufacturing because it varies
with product temperature. However, for purposes of an
experiment, the engineer can control carbonation at three
levels: 10, 12, and 14 percent. She chooses two levels for
pressure (25 and 30 psi) and two levels for line speed (200

and 250 bpm). She decides to run two replicates of a facto-
rial design in these three factors, with all 24 runs taken in
random order. The response variable observed is the average
deviation from the target fill height observed in a production
run of bottles at each set of conditions. The data that resulted
from this experiment are shown in Table 5.13. Positive devi-
ations are fill heights above the target, whereas negative
deviations are fill heights below the target. The circled num-
bers in Table 5.13 are the three-way cell totals yijk..

The total corrected sum of squares is found from
Equation 5.27 as

�  571 �
(75)2

24
� 336.625

SST � �
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i�1
�
b

j�1
�

c

k�1
�
n

l�1
y2

ijkl �
y2

....

abcn

■ TA B L E  5 . 1 3
Fill Height Deviation Data for Example 5.3

Operating Pressure (B)

25 psi 30 psi

Percent
Line Speed (C) Line Speed (C)

Carbonation (A) 200 250 200 250 yi...

�3 �1 �1 1

10 �1
�4

0
�1

0
�1

1
2

�4

0 2 2 6

12 1
1

1
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3
5

5
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14 4
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6
13

9
16
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21

59

B � C Totals y.jk. 6 15 20 34 75 � y....

y.j.. 21 54

A � B Totals A � C Totals

yij.. yi.k.

B C
A 25 30 A 200 250

10 �5 1 10 �5 1

12 4 16 12 6 14

14 22 37 14 25 34
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and the sums of squares for the main effects are calculated
from Equations 5.28, 5.29, and 5.30 as

and

To calculate the sums of squares for the two-factor inter-
actions, we must find the two-way cell totals. For example,
to find the carbonation–pressure or AB interaction, we need
the totals for the A � B cells {yij..} shown in Table 5.13.
Using Equation 5.31, we find the sums of squares as

The carbonation–speed or AC interaction uses the A � C
cell totals {yi.k.} shown in Table 5.13 and Equation 5.32:

The pressure–speed or BC interaction is found from the B �
C cell totals {y.jk.} shown in Table 5.13 and Equation 5.33:

�  1.042
� 45.375 � 22.042

�
1
6
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The three-factor interaction sum of squares is found
from the A � B � C cell totals {yijk.}, which are circled in
Table 5.13. From Equation 5.34a, we find

Finally, noting that

we have

The ANOVA is summarized in Table 5.14. We see that
the percentage of carbonation, operating pressure, and line
speed significantly affect the fill volume. The carbonation-
pressure interaction F ratio has a P-value of 0.0558, indi-
cating some interaction between these factors.

The next step should be an analysis of the residuals from
this experiment. We leave this as an exercise for the reader but
point out that a normal probability plot of the residuals and the
other usual diagnostics do not indicate any major concerns.

To assist in the practical interpretation of this experiment,
Figure 5.16 presents plots of the three main effects and the AB
(carbonation–pressure) interaction. The main effect plots are
just graphs of the marginal response averages at the levels of
the three factors. Notice that all three variables have positive
main effects; that is, increasing the variable moves the aver-
age deviation from the fill target upward. The interaction
between carbonation and pressure is fairly small, as shown by
the similar shape of the two curves in Figure 5.16d.

Because the company wants the average deviation from
the fill target to be close to zero, the engineer decides to rec-
ommend the low level of operating pressure (25 psi) and the
high level of line speed (250 bpm, which will maximize the
production rate). Figure 5.17 plots the average observed
deviation from the target fill height at the three different car-
bonation levels for this set of operating conditions. Now the
carbonation level cannot presently be perfectly controlled in
the manufacturing process, and the normal distribution
shown with the solid curve in Figure 5.17 approximates 
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the variability in the carbonation levels presently experi-
enced. As the process is impacted by the values of the car-
bonation level drawn from this distribution, the fill heights
will fluctuate considerably. This variability in the fill
heights could be reduced if the distribution of the carbona-

tion level values followed the normal distribution shown
with the dashed line in Figure 5.17. Reducing the standard
deviation of the carbonation level distribution was ultimate-
ly achieved by improving temperature control during man-
ufacturing.

■ TA B L E  5 . 1 4
Analysis of Variance for Example 5.3

Sum of Degrees of Mean 
Source of Variation Squares Freedom Square F0 P-Value

Percentage of carbonation (A) 252.750 2 126.375 178.412 �0.0001

Operating pressure (B) 45.375 1 45.375 64.059 �0.0001

Line speed (C) 22.042 1 22.042 31.118 0.0001

AB 5.250 2 2.625 3.706 0.0558

AC 0.583 2 0.292 0.412 0.6713

BC 1.042 1 1.042 1.471 0.2485

ABC 1.083 2 0.542 0.765 0.4867

Error 8.500 12 0.708

Total 336.625 23

■ F I G U R E  5 . 1 6
Main effects and interaction plots for
Example 5.3. (a) Percentage of carbonation
(A). (b) Pressure (B). (c) Line speed (C).
(d) Carbonation–pressure interaction
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We have indicated that if all the factors in a factorial experiment are fixed, test statistic
construction is straightforward. The statistic for testing any main effect or interaction is
always formed by dividing the mean square for the main effect or interaction by the mean
square error. However, if the factorial experiment involves one or more random factors, the
test statistic construction is not always done this way. We must examine the expected mean
squares to determine the correct tests. We defer a complete discussion of experiments with
random factors until Chapter 13.

5.5 Fitting Response Curves and Surfaces

The ANOVA always treats all of the factors in the experiment as if they were qualitative or cat-
egorical. However, many experiments involve at least one quantitative factor. It can be useful
to fit a response curve to the levels of a quantitative factor so that the experimenter has an
equation that relates the response to the factor. This equation might be used for interpolation,
that is, for predicting the response at factor levels between those actually used in the experi-
ment. When at least two factors are quantitative, we can fit a response surface for predicting
y at various combinations of the design factors. In general, linear regression methods are used
to fit these models to the experimental data. We illustrated this procedure in Section 3.5.1 for
an experiment with a single factor. We now present two examples involving factorial experi-
ments. In both examples, we will use a computer software package to generate the regression
models. For more information about regression analysis, refer to Chapter 10 and the supple-
mental text material for this chapter.

5.5 Fitting Response Curves and Surfaces 211

E X A M P L E  5 . 4

Consider the battery life experiment described in Exa-
mple 5.1. The factor temperature is quantitative, and the
material type is qualitative. Furthermore, there are three
levels of temperature. Consequently, we can compute a
linear and a quadratic temperature effect to study how
temperature affects the battery life. Table 5.15 presents

condensed output from Design-Expert for this experiment
and assumes that temperature is quantitative and material
type is qualitative.

The ANOVA in Table 5.15 shows that the “model”
source of variability has been subdivided into several
components. The components “A” and “A2” represent the
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■ TA B L E  5 . 1 5
Design-Expert Output for Example 5.4

Response: Life In Hours
ANOVA for Response Surface Reduced Cubic Model

Analysis of Variance Table [Partial Sum of Squares]

Sum of Mean F
Source Squares DF Square Value Prov � F

Model 59416.22 8 7427.03 11.00 �0.0001 significant

A 39042.67 1 39042.67 57.82 �0.0001

B 10683.72 2 5341.86 7.91 0.0020

A2 76.06 1 76.06 0.11 0.7398

AB 2315.08 2 1157.54 1.71 0.1991

A2B 7298.69 2 3649.35 5.40 0.0106

Residual 18230.75 27 675.21

Lack of Fit 0.000 0

Pure Error 18230.75 27 675.21

Cor Total 77646.97 35

Std. Dev. 25.98 R-Squared 0.7652

Mean 105.53 Adj R-Squared 0.6956

C.V. 24.62 Pred R-Squared 0.5826

PRESS 32410.22 Adeq Precision 8.178

Coefficient Standard 95% Cl 95% Cl
Term Estimate DF Error Low High VIF

Intercept 107.58 1 7.50 92.19 122.97

A-Temp �40.33 1 5.30 �51.22 �29.45 1.00

B[1] �50.33 1 10.61 �72.10 �28.57

B[2] 12.17 1 10.61 �9.60 33.93

A2 �3.08 1 9.19 �21.93 15.77 1.00

AB[1] 1.71 1 7.50 �13.68 17.10

AB[2] �12.79 1 7.50 �28.18 2.60

A2B[1] 41.96 1 12.99 15.30 68.62

A2B[2] �14.04 1 12.99 �40.70 12.62

Final Equation in Terms of Coded Factors:

Life �

�107.58

�40.33 *A

�50.33 *B[1]

�12.17 *B[2]

�3.08 *A2

�1.71 *AB[1]

�12.79 *AB[2]

�41.96 *A2B[1]

�14.04 *A2[2]
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linear and quadratic effects of temperature, and “B” rep-
resents the main effect of the material type factor. Recall
that material type is a qualitative factor with three levels.
The terms “AB” and “A2B” are the interactions of the lin-
ear and quadratic temperature factor with material type.

The P-values indicate that A2 and AB are not signifi-
cant, whereas the A2B term is significant. Often we think

about removing nonsignificant terms or factors from a
model, but in this case, removing A2 and AB and retain-
ing A2B will result in a model that is not hierarchical.
The hierarchy principle indicates that if a model con-
tains a high-order term (such as A2B), it should also con-
tain all of the lower order terms that compose it (in this
case A2 and AB). Hierarchy promotes a type of internal

■ TA B L E  5 . 1 5 (Continued)

Final Equation in Terms of Actual Factors:
Material Type 1

Life �

�169.38017
�2.48860 *Temp
�0.012851 *Temp2

Material Type 2
Life �

�159.62397
�0.17901 *Temp
�0.41627 *Temp2

Material Type 3
Life �

�132.76240
�0.89264 *Temp
�0.43218 *Temp2

15.00 42.50 70.00

Temperature

Material type 1

Material type 2

Material type 3

97.50

2

2

2

125.00

Li
fe

188

146

104

62

20

■ F I G U R E  5 . 1 8
Predicted life as a
function of temperature
for the three material
types, Example 5.4
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E X A M P L E  5 . 5

The effective life of a cutting tool installed in a numerically
controlled machine is thought to be affected by the cutting
speed and the tool angle. Three speeds and three angles are
selected, and a 32 factorial experiment with two replicates
is performed. The coded data are shown in Table 5.16. The
circled numbers in the cells are the cell totals {yij.}.

Table 5.17 shows the JMP output for this experiment.
This is a classical ANOVA, treating both factors as categor-
ical. Notice that both design factors tool angle and speed as

well as the angle–speed interaction are significant. Since
the factors are quantitative, and both factors have three lev-
els, a second-order model such as

where x1 � angle and x2 � speed could also be fit to the
data. The JMP output for this model is shown in Table 5.18.
Notice that JMP “centers” the predictors when forming the
interaction and quadratic model terms. The second-order model

y � �0 � �1x1 � �2x2 � �12x1x2 � �11x1
2 � �22x2

2 � �

■ TA B L E  5 . 1 6
Data for Tool Life Experiment

Total Angle
Cutting Speed (in/min)

(degrees) 125 150 175 yi..

�2 �3 2

15 �1 �3 0 �3 3 5 �1

0 1 4

20 2 2 3 4 6 10 16

�1 5 0

25 0 �1 6 11
�1 �1 9

y.j. �2 12 14 24 � y...

If several factors in a factorial experiment are quantitative a response surface may be
used to model the relationship between y and the design factors. Furthermore, the quantita-
tive factor effects may be represented by single-degree-of-freedom polynomial effects.
Similarly, the interactions of quantitative factors can be partitioned into single-degree-of-
freedom components of interaction. This is illustrated in the following example.

consistency in a model, and many statistical model
builders rigorously follow the principle. However, hierar-
chy is not always a good idea, and many models actually
work better as prediction equations without including the
nonsignificant terms that promote hierarchy. For more
information, see the supplemental text material for this
chapter.

The computer output also gives model coefficient esti-
mates and a final prediction equation for battery life in
coded factors. In this equation, the levels of temperature are
A � �1, 0, �1, respectively, when temperature is at the
low, middle, and high levels (15, 70, and 125°C). The vari-
ables B[1] and B[2] are coded indicator variables that are
defined as follows:

Material Type
1 2 3

B[1] 1 0 �1

B[2] 0 1 �1

There are also prediction equations for battery life in terms
of the actual factor levels. Notice that because material type
is a qualitative factor there is an equation for predicted life
as a function of temperature for each material type. Figure
5.18 shows the response curves generated by these three
prediction equations. Compare them to the two-factor inter-
action graph for this experiment in Figure 5.9.
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■ TA B L E  5 . 1 7
JMP ANOVA for the Tool Life Experiment in Example 5.5

Summary of Fit

RSquare 0.895161

RSquare Adj 0.801971

Root Mean Square Error 1.20185

Mean of Response 1.333333

Observations (or Sum Wgts) 18

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 8 111.00000 13.8750 9.6058
Error 9 13.00000 1.4444 Prob 
 F
C. Total 17 124.00000 0.0013

Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob � F
Angle 2 2 24.333333 8.4231 0.0087
Speed 2 2 25.333333 8.7692 0.0077
Angle*Speed 4 4 61.333333 10.6154 0.0018
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doesn’t look like a very good fit to the data; the value of R2

is only 0.465 (compared to R2 � 0.895 in the categorical
variable ANOVA) and the only significant factor is the lin-
ear term in speed for which the P-value is 0.0731. Notice
that the mean square for error in the second-order model fit
is 5.5278, considerably larger than it was in the classical
categorical variable ANOVA of Table 5.17. The JMP output
in Table 5.18 shows the prediction profiler, a graphical
display showing the response variable life as a function of
each design factor, angle and speed. The prediction profiler

is very useful for optimization. Here it has been set to the
levels of angle and speed that result in maximum predicted
life.

Part of the reason for the relatively poor fit of the sec-
ond-order model is that only one of the four degrees of free-
dom for interaction are accounted for in this model. In addi-
tion to the term �12x1x2, there are three other terms that
could be fit to completely account for the four degrees of
freedom for interaction, namely , and

.�1122x2
1x2

2

�112x2
1x2, �122x1x2

2

■ TA B L E  5 . 1 8
JMP Output for the Second-Order Model, Example 5.5

Summary of Fit

RSquare 0.465054

RSquare Adj 0.242159

Root Mean Square Error 2.351123

Mean of Response 1.333333

Observations (or Sum Wgts) 18

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 5 57.66667 11.5333 2.0864
Error 12 66.33333 5.5278 Prob 
 F
C. Total 17 124.00000 0.1377

Parameter Estimates
Term Estimate Std. Error t Ratio Prob � | t|
Intercept �8 5.048683 �1.58 0.1390
Angle 0.1666667 0.135742 1.23 0.2431
Speed 0.0533333 0.027148 1.96 0.0731
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JMP output for the second-order model with the addi-
tional higher-order terms is shown in Table 5.19. While
these higher-order terms are components of the two-factor
interaction, the final model is a reduced quartic. Although

there are some large P-values, all model terms have been
retained to ensure hierarchy. The prediction profiler indi-
cates that maximum tool life is achieved around an angle of
25 degrees and speed of 150 in/min.

■ TA B L E  5 . 1 8 (Continued)

(Angle-20)*(Speed-150) �0.008 0.00665 �1.20 0.2522

(Angle-20)*(Angle-20) �0.08 0.047022 �1.70 0.1146

(Speed-150)*(Speed-150) �0.0016 0.001881 �0.85 0.4116
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■ F I G U R E  5 . 1 9
Two-dimensional contour plot of the tool life response
surface for Example 5.5
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Figure 5.19 is the contour plot of tool life for this model
and Figure 5.20 is a three-dimensional response surface
plot. These plots confirm the estimate of the optimum oper-
ating conditions found from the JMP prediction profiler.

Exploration of response surfaces is an important use of
designed experiments, which we will discuss in more detail
in Chapter 11.

■ TA B L E  5 . 1 9
JMP Output for the Expanded Model in Example 5.5

Summary of Fit

RSquare 0.895161

RSquare Adj 0.801971

Root Mean Square Error 1.20185

Mean of Response 1.333333

Observations (or Sum Wgts) 18

Analysis of Variance

Sum of
Source DF Squares Mean Square F Ratio

Model 8 111.00000 13.8750 9.6058

Error 9 13.00000 1.4444 Prob > F

C. Total 17 124.00000 0.0013*

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

Intercept �24 4.41588 �5.43 0.0004*

Angle 0.7 0.120185 5.82 0.0003*

Speed 0.08 0.024037 3.33 0.0088*

(Angle-20)*(Speed-150) �0.008 0.003399 �2.35 0.0431*

(Angle-20)*(Angle-20) 2.776e-17 0.041633 0.00 1.0000

(Speed-150)*(Speed-150) 0.0016 0.001665 0.96 0.3618

(Angle-20)*(Speed-150)*(Angle-20) �0.0016 0.001178 �1.36 0.2073

(Speed-150)*(Speed-150)*(Angle-20) �0.00128 0.000236 �5.43 0.0004*

(Angle-20)*(Speed-150)*(Angle-20)*(Speed-150) �0.000192 8.158a-5 �2.35 0.0431*

Response Y

Actual by Predicted Plot
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■ TA B L E  5 . 1 9 (Continued)

Effect Tests

Sum of

Source Nparm DF Squares F Ratio Prob > F

Angle 1 1 49.000000 33.9231 0.0003*

Speed 1 1 16.000000 11.0769 0.0088*

Angle*Speed 1 1 8.000000 5.5385 0.0431*

Angle*Angle 1 1 6.4198e-31 0.0000 1.0000

Speed*Speed 1 1 1.333333 0.9231 0.3618

Angle*Speed*Angle 1 1 2.666667 1.8462 0.2073

Speed*Speed*Angle 1 1 42.666667 29.5385 0.0004*

Angle*Speed*Angle*Speed 1 1 8.000000 5.5385 0.0431*

Sorted Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Angle 0.7 0.120185 5.82 0.0003*
(Speed-150)*(Speed-150)*(Angle-20) �0.00128 0.000236 �5.43 0.0004*
Speed 0.08 0.024037 3.33 0.0088*
(Angle-20)*(Speed-150)*(Angle-20)*(Speed-150) �0.000192 8.158a-5 �2.35 0.0431*
(Angle-20)*(Speed-150) �0.008 0.003399 �2.35 0.0431*
(Angle-20)*(Speed-150)*(Angle-20) �0.0016 0.001178 �1.36 0.2073
(Speed-150)*(Speed-150) 0.0016 0.001665 0.96 0.3618
(Angle-20)*(Angle-20) 2.776e-17 0.041633 0.00 1.0000

Prediction Profiler

5.6 Blocking in a Factorial Design

We have discussed factorial designs in the context of a completely randomized experiment.
Sometimes, it is not feasible or practical to completely randomize all of the runs in a factori-
al. For example, the presence of a nuisance factor may require that the experiment be run in
blocks. We discussed the basic concepts of blocking in the context of a single-factor experi-
ment in Chapter 4. We now show how blocking can be incorporated in a factorial. Some other
aspects of blocking in factorial designs are presented in Chapters 7, 8, 9, and 13.
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Consider a factorial experiment with two factors (A and B) and n replicates. The linear
statistical model for this design is

(5.36)

where �i, �j, and (��)ij represent the effects of factors A, B, and the AB interaction, respective-
ly. Now suppose that to run this experiment a particular raw material is required. This raw
material is available in batches that are not large enough to allow all abn treatment combina-
tions to be run from the same batch. However, if a batch contains enough material for ab
observations, then an alternative design is to run each of the n replicates using a separate batch
of raw material. Consequently, the batches of raw material represent a randomization restric-
tion or a block, and a single replicate of a complete factorial experiment is run within each
block. The effects model for this new design is

(5.37)

where �k is the effect of the kth block. Of course, within a block the order in which the treat-
ment combinations are run is completely randomized.

The model (Equation 5.37) assumes that interaction between blocks and treatments is
negligible. This was assumed previously in the analysis of randomized block designs. If
these interactions do exist, they cannot be separated from the error component. In fact, the
error term in this model really consists of the (��)ik, (��)jk, and (���)ijk interactions. The
analysis of variance is outlined in Table 5.20. The layout closely resembles that of a factori-
al design, with the error sum of squares reduced by the sum of squares for blocks.
Computationally, we find the sum of squares for blocks as the sum of squares between the n

yijk � � � �i � �j � (��)ij � �k � �ijk   � i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , n

yijk � � � �i � �j � (��)ij � �ijk   � i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , n

■ TA B L E  5 . 2 0
Analysis of Variance for a Two-Factor Factorial in a Randomized Complete Block

Source of Degrees of Expected 
Variation Sum of Squares Freedom Mean Square F0

Blocks n � 1

A a � 1

B b � 1

AB (a � 1)(b � 1)

Error Subtraction (ab � 1)(n � 1) �2

Total abn � 1�
i

�
j

�
k

y2
ijk �

y2
...

abn

MSAB

MSE
�2 �

n � � (��)2
ij

(a � 1)(b � 1)
1
n �

i
�

j
y2

ij. �
y2

...

abn
� SSA � SSB

MSB

MSE
�2 �

an � �2
j

b � 1
1
an �

j
y2

.j. �
y2

...

abn

MSA

MSE
�2 �

bn � �2
i

a � 1
1
bn �

i
y2

i.. �
y2

...

abn

�2 � ab�2
�

1
ab �

k
y2

..k �
y2

...

abn
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E X A M P L E  5 . 6

An engineer is studying methods for improving the ability
to detect targets on a radar scope. Two factors she consid-
ers to be important are the amount of background noise, or
“ground clutter,” on the scope and the type of filter placed
over the screen. An experiment is designed using three lev-
els of ground clutter and two filter types. We will consider
these as fixed-type factors. The experiment is performed by
randomly selecting a treatment combination (ground clutter
level and filter type) and then introducing a signal repre-
senting the target into the scope. The intensity of this target
is increased until the operator observes it. The intensity
level at detection is then measured as the response variable.
Because of operator availability, it is convenient to select an
operator and keep him or her at the scope until all the nec-
essary runs have been made. Furthermore, operators differ
in their skill and ability to use the scope. Consequently, it
seems logical to use the operators as blocks. Four operators
are randomly selected. Once an operator is chosen, the
order in which the six treatment combinations are run is
randomly determined. Thus, we have a 3 � 2 factorial
experiment run in a randomized complete block. The data
are shown in Table 5.21.

The linear model for this experiment is

where �i represents the ground clutter effect, �j represents
the filter type effect, (��)ij is the interaction, �k is the block
effect, and �ijk is the NID(0, �2) error component. The
sums of squares for ground clutter, filter type, and their
interaction are computed in the usual manner. The sum of
squares due to blocks is found from the operator totals
{y..k} as follows:

�  402.17

�
(2278)2

(3)(2)(4)

�
1

(3)(2)
 [(572)2 � (579)2 � (597)2 � (530)2]

SSBlocks �
1
ab �

n

k�1
y2

..k �
y2

...

abn

yijk � � � �i � �j � (��)ij � �k � �ijk   �i � 1, 2, 3
j � 1, 2
k �  1, 2, 3, 4

■ TA B L E  5 . 2 1
Intensity Level at Target Detection

Operators (blocks)
1 2 3 4

Filter Type 1 2 1 2 1 2 1 2

Ground clutter

Low 90 86 96 84 100 92 92 81

Medium 102 87 106 90 105 97 96 80

High 114 93 112 91 108 95 98 83

block totals {y..k}. The ANOVA in Table 5.20 assumes that both factors are fixed and that
blocks are random. The ANOVA estimator of the variance component for blocks , is

In the previous example, the randomization was restricted to within a batch of raw
material. In practice, a variety of phenomena may cause randomization restrictions, such as
time and operators. For example, if we could not run the entire factorial experiment on one
day, then the experimenter could run a complete replicate on day 1, a second replicate on day
2, and so on. Consequently, each day would be a block.

�2
� �

MSBlocks � MSE

ab

�2
�

The complete ANOVA for this experiment is summarized
in Table 5.22. The presentation in Table 5.22 indicates that all
effects are tested by dividing their mean squares by the mean
square error. Both ground clutter level and filter type are 

significant at the 1 percent level, whereas their interaction is
significant only at the 10 percent level. Thus, we conclude
that both ground clutter level and the type of scope filter used
affect the operator’s ability to detect the target, and there is
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■ TA B L E  5 . 2 2
Analysis of Variance for Example 5.6

Sum of Degrees of Mean 
Source of Variation Squares Freedom Square F0 P-Value

Ground clutter (G) 335.58 2 167.79 15.13 0.0003

Filter type (F) 1066.67 1 1066.67 96.19 �0.0001

GF 77.08 2 38.54 3.48 0.0573

Blocks 402.17 3 134.06

Error 166.33 15 11.09

Total 2047.83 23

some evidence of mild interaction between these factors. The
ANOVA estimate of the variance component for blocks is �̂2

� �
MSBlocks � MSE

ab
�

134.06 � 11.09
(3162)

� 20.50

The JMP output for this experiment is shown in 
Table 5.23. The REML estimate of the variance component
for blocks is shown in this output, and because this is a 

balanced design, the REML and ANOVA estimates agree.
JMP also provides the confidence intervals on both variance
components and .�2

��2

■ TA B L E  5 . 2 3
JMP Output for Example 5.6

Whole Model

Actual by Predicted Plot
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RSq = 0.92  RMSE = 3.33
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Summary of Fit

RSquare 0.917432

RSquare Adj 0.894497

Root Mean Square Error 3.329998

Mean of Response 94.91667

Observations (or Sum Wgts) 24

REML Variance component Estimates

Var

Random Effect Var Ratio Component Std Error 95% Lower 95% Upper Pct of Total

Operators (Blocks) 1.8481964 20.494444 18.255128 �15.28495 56.273839 64.890

Residual 11.088889 4.0490897 6.0510389 26.561749 35.110

Total 31.583333 100.000

-2 LogLikelihood = 118.73680261
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Covariance Matrix of

Variance Component Estimates

Operators

Random Effect (Blocks) Residual

Operators (Blocks) 333.24972 �2.732521

Residual �2.732521 16.395128

Fixed Effect Tests

Source Nparm DF DFDen F Ratio Prob > F

Clutter 2 2 15 15.1315 0.0003*

Filter Type 1 1 15 96.1924 <.0001*

Clutter*Filter Type 2 2 15 3.4757 0.0575

Residual by Predicted Plot
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In the case of two randomization restrictions, each with p levels, if the number of treat-
ment combinations in a k-factor factorial design exactly equals the number of restriction lev-
els, that is, if p � ab . . . m, then the factorial design may be run in a p � p Latin square. For
example, consider a modification of the radar target detection experiment of Example 5.6.
The factors in this experiment are filter type (two levels) and ground clutter (three levels),
and operators are considered as blocks. Suppose now that because of the setup time required,
only six runs can be made per day. Thus, days become a second randomization restriction,
resulting in the 6 � 6 Latin square design, as shown in Table 5.24. In this table we have used
the lowercase letters fi and gj to represent the ith and jth levels of filter type and ground clut-
ter, respectively. That is, f1g2 represents filter type 1 and medium ground clutter. Note that
now six operators are required, rather than four as in the original experiment, so the number
of treatment combinations in the 3 � 2 factorial design exactly equals the number of restric-
tion levels. Furthermore, in this design, each operator would be used only once on each day.
The Latin letters A, B, C, D, E, and F represent the 3 � 2 � 6 factorial treatment combina-
tions as follows: A � f1g1, B � f1g2, C � f1g3, D � f2g1, E � f2g2, and F � f2g3.

The five degrees of freedom between the six Latin letters correspond to the main effects
of filter type (one degree of freedom), ground clutter (two degrees of freedom), and their
interaction (two degrees of freedom). The linear statistical model for this design is

(5.38)yijkl � � � 	i � �j � �k � (��)jk � 
l � �ijkl   �
i � 1, 2, . . . , 6
j � 1, 2, 3  
k � 1, 2  

l � 1, 2, . . . , 6
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■ TA B L E  5 . 2 4
Radar Detection Experiment Run in a 6 � 6 Latin Square

Operator

Day 1 2 3 4 5 6

1 A(f1g1 � 90) B(f1g2 � 106) C(f1g3 � 108) D(f2g1 � 81) F(f2g3 � 90) E(f2g2 � 88)

2 C(f1g3 � 114) A(f1g1 � 96) B(f1g2 � 105) F(f2g3 � 83) E(f2g2 � 86) D(f2g1 � 84)

3 B(f1g2 � 102) E(f2g2 � 90) G(f2g3 � 95) A(f1g1 � 92) D(f2g1 � 85) C(f1g3 � 104)

4 E(f2g2 � 87) D(f2g1 � 84) A(f1g1 � 100) B(f1g2 � 96) C(f1g3 � 110) F(f2g3 � 91)

5 F(f2g3 � 93) C(f1g3 � 112) D(f2g1 � 92) E(f2g2 � 80) A(f1g1 � 90) B(f1g2 � 98)

6 D(f2g1 � 86) F(f2g3 � 91) E(f2g2 � 97) C(f1g3 � 98) B(f1g2 � 100) A(f1g1 � 92)

■ TA B L E  5 . 2 5
Analysis of Variance for the Radar Detection Experiment Run as a 3 
 2
Factorial in a Latin Square

General Formula 
Source of Sum of Degrees of for Degrees of 
Variation Squares Freedom Freedom Mean Square F0 P-Value

Ground clutter, G 571.50 2 a � 1 285.75 28.86 �0.0001

Filter type, F 1469.44 1 b � 1 1469.44 148.43 �0.0001

GF 126.73 2 (a � 1)(b � 1) 63.37 6.40 0.0071

Days (rows) 4.33 5 ab � 1 0.87

Operators (columns) 428.00 5 ab � 1 85.60

Error 198.00 20 (ab � 1)(ab � 2) 9.90

Total 2798.00 35 (ab)2 � 1

where �j and �k are effects of ground clutter and filter type, respectively, and 	i and 
l repre-
sent the randomization restrictions of days and operators, respectively. To compute the sums
of squares, the following two-way table of treatment totals is helpful:

Ground Clutter Filter Type 1 Filter Type 2 y.j..

Low 560 512 1072

Medium 607 528 1135

High   646   543 1189

y..k. 1813 1583 3396 � y....

Furthermore, the row and column totals are

Rows (y.jkl): 563 568 568 568 565 564

Columns (yijk.): 572 579 597 530 561 557

The ANOVA is summarized in Table 5.25. We have added a column to this table indi-
cating how the number of degrees of freedom for each sum of squares is determined.
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5.7 Problems

5.1. The following output was obtained from a computer
program that performed a two-factor ANOVA on a factorial
experiment.

Two-way ANOVA: y versus, A, B

Source DF SS MS F P
A 1 0.322
B 80.554 40.2771 4.59
Interaction
Error 12 105.327 8.7773
Total 17 231.551

(a) Fill in the blanks in the ANOVA table. You can use
bounds on the P-values.

(b) How many levels were used for factor B?

(c) How many replicates of the experiment were per-
formed?

(d) What conclusions would you draw about this experi-
ment?

5.2. The following output was obtained from a computer
program that performed a two-factor ANOVA on a factorial
experiment.

Two-way ANOVA: y versus A, B

Source DF SS MS F P
A 1 0.0002
B 180.378
Interaction 3 8.479 0.932
Error 8 158.797
Total 15 347.653

(a) Fill in the blanks in the ANOVA table. You can use
bounds on the P-values.

(b) How many levels were used for factor B?

(c) How many replicates of the experiment were per-
formed?

(d) What conclusions would you draw about this experi-
ment?

5.3. The yield of a chemical process is being studied. The
two most important variables are thought to be the pressure
and the temperature. Three levels of each factor are selected,
and a factorial experiment with two replicates is performed.
The yield data are as follows:

Pressure (psig) 

Temperature (°C) 200 215 230

150 90.4 90.7 90.2

90.2 90.6 90.4

160 90.1 90.5 89.9

90.3 90.6 90.1

170 90.5 90.8 90.4

90.7 90.9 90.1

(a) Analyze the data and draw conclusions. Use 	 � 0.05.

(b) Prepare appropriate residual plots and comment on the
model’s adequacy.

(c) Under what conditions would you operate this
process?

5.4. An engineer suspects that the surface finish of a metal
part is influenced by the feed rate and the depth of cut. He
selects three feed rates and four depths of cut. He then con-
ducts a factorial experiment and obtains the following data:

Feed Rate
Depth of Cut (in)

(in/min) 0.15 0.18 0.20 0.25

74 79 82 99

0.20 64 68 88 104

60 73 92 96

92 98 99 104

0.25 86 104 108 110

88 88 95 99

99 104 108 114

0.30 98 99 110 111

102 95 99 107

(a) Analyze the data and draw conclusions. Use 	 � 0.05.

(b) Prepare appropriate residual plots and comment on the
model’s adequacy.

(c) Obtain point estimates of the mean surface finish at
each feed rate.

(d) Find the P-values for the tests in part (a).

5.5. For the data in Problem 5.4, compute a 95 percent
confidence interval estimate of the mean difference in
response for feed rates of 0.20 and 0.25 in/min.

5.6. An article in Industrial Quality Control (1956, pp.
5–8) describes an experiment to investigate the effect of the
type of glass and the type of phosphor on the brightness of a
television tube. The response variable is the current necessary
(in microamps) to obtain a specified brightness level. The data
are as follows:

Glass
Phosphor Type

Type 1 2 3

280 300 290

1 290 310 285

285 295 290

230 260 220

2 235 240 225

240 235 230
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(a) Is there any indication that either factor influences
brightness? Use 	 � 0.05.

(b) Do the two factors interact? Use 	 � 0.05.

(c) Analyze the residuals from this experiment.

5.7. Johnson and Leone (Statistics and Experimental
Design in Engineering and the Physical Sciences, Wiley,
1977) describe an experiment to investigate warping of
copper plates. The two factors studied were the temperature
and the copper content of the plates. The response variable
was a measure of the amount of warping. The data were as
follows:

Copper Content (%)

Temperature (°C) 40 60 80 100

50 17, 20 16, 21 24, 22 28, 27

75 12, 9 18, 13 17, 12 27, 31

100 16, 12 18, 21 25, 23 30, 23

125 21, 17 23, 21 23, 22 29, 31

(a) Is there any indication that either factor affects the
amount of warping? Is there any interaction between
the factors? Use 	 � 0.05.

(b) Analyze the residuals from this experiment.

(c) Plot the average warping at each level of copper con-
tent and compare them to an appropriately scaled t dis-
tribution. Describe the differences in the effects of the
different levels of copper content on warping. If low
warping is desirable, what level of copper content
would you specify?

(d) Suppose that temperature cannot be easily controlled
in the environment in which the copper plates are to be
used. Does this change your answer for part (c)?

5.8. The factors that influence the breaking strength of a
synthetic fiber are being studied. Four production machines
and three operators are chosen and a factorial experiment is
run using fiber from the same production batch. The results
are as follows:

Machine

Operator 1 2 3 4

1 109 110 108 110

110 115 109 108

2 110 110 111 114

112 111 109 112

3 116 112 114 120

114 115 119 117

(a) Analyze the data and draw conclusions. Use 	 � 0.05.

(b) Prepare appropriate residual plots and comment on the
model’s adequacy.

5.9. A mechanical engineer is studying the thrust force
developed by a drill press. He suspects that the drilling speed
and the feed rate of the material are the most important fac-
tors. He selects four feed rates and uses a high and low drill
speed chosen to represent the extreme operating conditions.
He obtains the following results. Analyze the data and draw
conclusions. Use 	 � 0.05.

Feed Rate

Drill Speed 0.015 0.030 0.045 0.060

125 2.70 2.45 2.60 2.75

2.78 2.49 2.72 2.86

200 2.83 2.85 2.86 2.94

2.86 2.80 2.87 2.88

5.10. An experiment is conducted to study the influence of
operating temperature and three types of faceplate glass in the
light output of an oscilloscope tube. The following data are
collected:

Temperature

Glass Type 100 125 150

580 1090 1392

1 568 1087 1380

570 1085 1386

550 1070 1328

2 530 1035 1312

579 1000 1299

546 1045 867

3 575 1053 904

599 1066 889

(a) Use 	 � 0.05 in the analysis. Is there a significant
interaction effect? Does glass type or temperature
affect the response? What conclusions can you
draw?

(b) Fit an appropriate model relating light output to glass
type and temperature.

(c) Analyze the residuals from this experiment.
Comment on the adequacy of the models you have
considered.

5.11. Consider the experiment in Problem 5.3. Fit an
appropriate model to the response data. Use this model to
provide guidance concerning operating conditions for the
process.

5.12. Use Tukey’s test to determine which levels of the
pressure factor are significantly different for the data in
Problem 5.3.



5.13. An experiment was conducted to determine whether
either firing temperature or furnace position affects the baked
density of a carbon anode. The data are shown below:

Temperature (°C)

Position 800 825 850

570 1063 565

1 565 1080 510

583 1043 590

528 988 526

2 547 1026 538

521 1004 532

Suppose we assume that no interaction exists. Write down the
statistical model. Conduct the analysis of variance and test
hypotheses on the main effects. What conclusions can be
drawn? Comment on the model’s adequacy.

5.14. Derive the expected mean squares for a two-factor
analysis of variance with one observation per cell, assuming
that both factors are fixed.

5.15. Consider the following data from a two-factor factorial
experiment. Analyze the data and draw conclusions. Perform a
test for nonadditivity. Use 	 � 0.05.

Column Factor

Row Factor 1 2 3 4

1 36 39 36 32

2 18 20 22 20

3 30 37 33 34

5.16. The shear strength of an adhesive is thought to be
affected by the application pressure and temperature. A facto-
rial experiment is performed in which both factors are
assumed to be fixed. Analyze the data and draw conclusions.
Perform a test for nonadditivity.

Pressure
Temperature (°F)

(lb/in2) 250 260 270

120 9.60 11.28 9.00

130 9.69 10.10 9.57

140 8.43 11.01 9.03

150 9.98 10.44 9.80

5.17. Consider the three-factor model

yijk � � � �i � �j

� �k � (��)ij

�  (��)jk � �ijk
� i � 1, 2, . . . , a

j � 1, 2, . . . , b
k � 1, 2, . . . , c

Notice that there is only one replicate. Assuming all the fac-
tors are fixed, write down the analysis of variance table,
including the expected mean squares. What would you use as
the “experimental error” to test hypotheses?

5.18. The percentage of hardwood concentration in raw
pulp, the vat pressure, and the cooking time of the pulp are
being investigated for their effects on the strength of paper.
Three levels of hardwood concentration, three levels of pres-
sure, and two cooking times are selected. A factorial experi-
ment with two replicates is conducted, and the following data
are obtained:

Percentage of Cooking Time 3.0 Hours

Hardwood Pressure
Concentration 400 500 650

2 196.6 197.7 199.8

196.0 196.0 199.4

4 198.5 196.0 198.4

197.2 196.9 197.6

8 197.5 195.6 197.4

196.6 196.2 198.1

Percentage of Cooking Time 4.0 Hours

Hardwood Pressure
Concentration 400 500 650

2 198.4 199.6 200.6

198.6 200.4 200.9

4 197.5 198.7 199.6

198.1 198.0 199.0

8 197.6 197.0 198.5

198.4 197.8 199.8

(a) Analyze the data and draw conclusions. Use 	 � 0.05.

(b) Prepare appropriate residual plots and comment on the
model’s adequacy.

(c) Under what set of conditions would you operate this
process? Why?

5.19. The quality control department of a fabric finishing
plant is studying the effect of several factors on the dyeing of
cotton–synthetic cloth used to manufacture men’s shirts.
Three operators, three cycle times, and two temperatures were
selected, and three small specimens of cloth were dyed under
each set of conditions. The finished cloth was compared to a
standard, and a numerical score was assigned. The results are
as follows. Analyze the data and draw conclusions. Comment
on the model’s adequacy.
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Temperature

300°C 350°C
Operator Operator

Cycle Time 1 2 3 1 2 3

23 27 31 24 38 34

40 24 28 32 23 36 36

25 26 29 28 35 39

36 34 33 37 34 34

50 35 38 34 39 38 36

36 39 35 35 36 31

28 35 26 26 36 28

60 24 35 27 29 37 26

27 34 25 25 34 24

5.20. In Problem 5.3, suppose that we wish to reject the null
hypothesis with a high probability if the difference in the true
mean yield at any two pressures is as great as 0.5. If a reason-
able prior estimate of the standard deviation of yield is 0.1,
how many replicates should be run?

5.21. The yield of a chemical process is being studied. The
two factors of interest are temperature and pressure. Three lev-
els of each factor are selected; however, only nine runs can be
made in one day. The experimenter runs a complete replicate
of the design on each day. The data are shown in the following
table. Analyze the data, assuming that the days are blocks.

Day 1 Day 2
Pressure Pressure

Temperature 250 260 270 250 260 270

Low 86.3 84.0 85.8 86.1 85.2 87.3

Medium 88.5 87.3 89.0 89.4 89.9 90.3

High 89.1 90.2 91.3 91.7 93.2 93.7

5.22. Consider the data in Problem 5.7. Analyze the data,
assuming that replicates are blocks.

5.23. Consider the data in Problem 5.8. Analyze the data,
assuming that replicates are blocks.

5.24. An article in the Journal of Testing and Evaluation
(Vol. 16, no. 2, pp. 508–515) investigated the effects of cyclic
loading and environmental conditions on fatigue crack growth
at a constant 22 MPa stress for a particular material. The data
from this experiment are shown below (the response is crack
growth rate):

Environment
Frequency Air H2O Salt H2O

2.29 2.06 1.90

10 2.47 2.05 1.93

2.48 2.23 1.75

2.12 2.03 2.06

2.65 3.20 3.10

1 2.68 3.18 3.24

2.06 3.96 3.98

2.38 3.64 3.24

2.24 11.00 9.96

0.1 2.71 11.00 10.01

2.81 9.06 9.36

2.08 11.30 10.40

(a) Analyze the data from this experiment (use 	 � 0.05).

(b) Analyze the residuals.

(c) Repeat the analyses from parts (a) and (b) using ln (y)
as the response. Comment on the results.

5.25. An article in the IEEE Transactions on Electron
Devices (Nov. 1986, pp. 1754) describes a study on polysili-
con doping. The experiment shown below is a variation of
their study. The response variable is base current.

Polysilicon Anneal Temperature (°C)

Doping (ions) 900 950 1000

1 � 1020 4.60 10.15 11.01

4.40 10.20 10.58

2 � 1020 3.20 9.38 10.81

3.50 10.02 10.60

(a) Is there evidence (with 	 � 0.05) indicating that either
polysilicon doping level or anneal temperature affects
base current?

(b) Prepare graphical displays to assist in interpreting this
experiment.

(c) Analyze the residuals and comment on model adequacy.

(d) Is the model

supported by this experiment (x1 � doping level, x2 �
temperature)? Estimate the parameters in this model
and plot the response surface.

5.26. An experiment was conducted to study the life (in
hours) of two different brands of batteries in three different
devices (radio, camera, and portable DVD player). A com-
pletely randomized two-factor factorial experiment was con-
ducted and the following data resulted.

y � �0 � �1x1 � �2x2

� �22x2
2 � �12x1x2 � �



Device
Brand of DVD
Battery Radio Camera Player

A 8.6 7.9 5.4

8.2 8.4 5.7

B 9.4 8.5 5.8

8.8 8.9 5.9

(a) Analyze the data and draw conclusions, using 	 �
0.05.

(b) Investigate model adequacy by plotting the residuals.

(c) Which brand of batteries would you recommend?

5.27. I have recently purchased new golf clubs, which I
believe will significantly improve my game. Below are the
scores of three rounds of golf played at three different golf
courses with the old and the new clubs.

Course
Clubs Ahwatukee Karsten Foothills

Old 90 91 88

87 93 86

86 90 90

New 88 90 86

87 91 85

85 88 88

(a) Conduct an analysis of variance. Using 	 � 0.05,
what conclusions can you draw?

(b) Investigate model adequacy by plotting the residuals.

5.28. A manufacturer of laundry products is investigating
the performance of a newly formulated stain remover. The
new formulation is compared to the original formulation with
respect to its ability to remove a standard tomato-like stain in
a test article of cotton cloth using a factorial experiment. The
other factors in the experiment are the number of times the
test article is washed (1 or 2) and whether or not a detergent
booster is used. The response variable is the stain shade after
washing (12 is the darkest, 0 is the lightest). The data are
shown in the following table.

Number of Number of 
Washings Washings

1 2
Formulation Booster Booster

Yes No Yes No

New 6, 5 6, 5 3, 2 4, 1

Original 10, 9 11, 11 10, 9 9, 10
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(a) Conduct an analysis of variance. Using � � 0.05,
what conclusions can you draw?

(b) Investigate model adequacy by plotting the residuals.

5.29. Bone anchors are used by orthopedic surgeons in
repairing torn rotator cuffs (a common shoulder tendon injury
among baseball players). The bone anchor is a threaded insert
that is screwed into a hole that has been drilled into the shoul-
der bone near the site of the torn tendon. The torn tendon is
then sutured to the anchor. In a successful operation, the ten-
don is stabilized and reattaches itself to the bone. However,
bone anchors can pull out if they are subjected to high loads.
An experiment was performed to study the force required to
pull out the anchor for three anchor types and two different
foam densities (the foam simulates the natural variability
found in real bone). Two replicates of the experiment were
performed. The experimental design and the pullout force
response data are as follows.

Foam Density
Anchor Type Low High

A 190, 200 241, 255

B 185, 190 230, 237

C 210, 205 256, 260

(a) Analyze the data from this experiment.

(b) Investigate model adequacy by constructing appropri-
ate residual plots.

(c) What conclusions can you draw?

5.30. An experiment was performed to investigate the key-
board feel on a computer (crisp or mushy) and the size of the
keys (small, medium, or large). The response variable is typ-
ing speed. Three replicates of the experiment were performed.
The experimental design and the data are as follow.

Keyboard Feel
Key Size Mushy Crisp

Small 31, 33, 35 36, 40, 41

Medium 36, 35, 33 40, 41, 42

Large 37, 34, 33 38, 36, 39

(a) Analyze the data from this experiment.

(b) Investigate model adequacy by constructing appropri-
ate residual plots.

(c) What conclusions can you draw?

5.31. An article in Quality Progress (May 2011, pp. 42–48)
describes the use of factorial experiments to improve a silver
powder production process. This product is used in conduc-
tive pastes to manufacture a wide variety of products ranging
from silicon wafers to elastic membrane switches. Powder
density (g/cm2) and surface area (cm2/g) are the two critical
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characteristics of this product. The experiments involved three
factors—reaction temperature, ammonium percent, and stir-
ring rate. Each of these factors had two levels and the design
was replicated twice. The design is shown below.

Ammonium Stir Rate Temperature Surface
(%) (RPM) ( C) Density Area

2 100 8 14.68 0.40

2 100 8 15.18 0.43

30 100 8 15.12 0.42

30 100 8 17.48 0.41

2 150 8 7.54 0.69

2 150 8 6.66 0.67

30 150 8 12.46 0.52

30 150 8 12.62 0.36

2 100 40 10.95 0.58

2 100 40 17.68 0.43

30 100 40 12.65 0.57

30 100 40 15.96 0.54

2 150 40 8.03 0.68

2 150 40 8.84 0.75

30 150 40 14.96 0.41

30 150 40 14.96 0.41

(a) Analyze the density response. Are any interactions sig-
nificant? Draw appropriate conclusions about the
effects of the significant factors on the response.

(b) Prepare appropriate residual plots and comment on
model adequacy.

(c) Construct contour plots to aid in practical interpreta-
tion of the density response.

(d) Analyze the surface area response. Are any interac-
tions significant? Draw appropriate conclusions
about the effects of the significant factors on the
response.

(e) Prepare appropriate residual plots and comment on
model adequacy.

(f) Construct contour plots to aid in practical interpreta-
tion of the surface area response.

5.32. Continuation of Problem 5.31. Suppose that the
specifications require that surface area must be between 0.3
and 0.6 cm2/g and that density must be less than 14 g/cm3.
Find a set of operating conditions that will result in a product
that meets these requirements.

5.33. An article in Biotechnology Progress (2001, Vol. 17,
pp. 366–368) described an experiment to investigate nisin
extraction in aqueous two-phase solutions. A two-factor facto-
rial experiment was conducted using factors A = concentration
of PEG and B = concentration of Na2SO4. Data similar to that
reported in the paper are shown below.

�

A B Extraction (%)

13 11 62.9

13 11 65.4

15 11 76.1

15 11 72.3

13 13 87.5

13 13 84.2

15 13 102.3

15 13 105.6

(a) Analyze the extraction response. Draw appropriate
conclusions about the effects of the significant factors
on the response.

(b) Prepare appropriate residual plots and comment on
model adequacy.

(c) Construct contour plots to aid in practical interpreta-
tion of the density response.

5.34. Reconsider the experiment in Problem 5.4. Suppose
that this experiment had been conducted in three blocks, with
each replicate a block. Assume that the observations in the
data table are given in order, that is, the first observation in
each cell comes from the first replicate, and so on. Reanalyze
the data as a factorial experiment in blocks and estimate the
variance component for blocks. Does it appear that blocking
was useful in this experiment?

5.35. Reconsider the experiment in Problem 5.6. Suppose
that this experiment had been conducted in three blocks, with
each replicate a block. Assume that the observations in the
data table are given in order, that is, the first observation in
each cell comes from the first replicate, and so on. Reanalyze
the data as a factorial experiment in blocks and estimate the
variance component for blocks. Does it appear that blocking
was useful in this experiment?

5.36. Reconsider the experiment in Problem 5.8. Suppose
that this experiment had been conducted in two blocks, with
each replicate a block. Assume that the observations in the
data table are given in order, that is, the first observation in
each cell comes from the first replicate, and so on. Reanalyze
the data as a factorial experiment in blocks and estimate the
variance component for blocks. Does it appear that blocking
was useful in this experiment?

5.37. Reconsider the three-factor factorial experiment in
Problem 5.18. Suppose that this experiment had been con-
ducted in two blocks, with each replicate a block. Assume that
the observations in the data table are given in order, that is, the
first observation in each cell comes from the first replicate,
and so on. Reanalyze the data as a factorial experiment in
blocks and estimate the variance component for blocks. Does
it appear that blocking was useful in this experiment?

5.38. Reconsider the three-factor factorial experiment
in Problem 5.19. Suppose that this experiment had been
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conducted in three blocks, with each replicate a block.
Assume that the observations in the data table are given in
order, that is, the first observation in each cell comes from
the first replicate, and so on. Reanalyze the data as a fac-
torial experiment in blocks and estimate the variance
component for blocks. Does it appear that blocking was
useful in this experiment?

5.39. Reconsider the bone anchor experiment in Problem
5.29. Suppose that this experiment had been conducted in two
blocks, with each replicate a block. Assume that the observa-
tions in the data table are given in order, that is, the first obser-
vation in each cell comes from the first replicate, and so on.
Reanalyze the data as a factorial experiment in blocks and
estimate the variance component for blocks. Does it appear
that blocking was useful in this experiment?

5.40. Reconsider the keyboard experiment in Problem 5.30.
Suppose that this experiment had been conducted in three
blocks, with each replicate a block. Assume that the observa-
tions in the data table are given in order, that is, the first obser-
vation in each cell comes from the first replicate, and so on.
Reanalyze the data as a factorial experiment in blocks and
estimate the variance component for blocks. Does it appear
that blocking was useful in this experiment?

5.41. The C. F. Eye Care company manufactures lenses for
transplantation into the eye following cataract surgery. An
engineering group has conducted an experiment involving
two factors to determine their effect on the lens polishing
process. The results of this experiment are summarized in the
following ANOVA display:

Source DF SS MS F P-value

Factor A — — 0.0833 0.05 0.952

Factor B — 96.333 96.3333 57.80 <0.001

Interaction 2 12.167 6.0833 3.65 —

Error 6 10.000 —

Total 11 118.667

Answer the following questions about this experiment.  

(a) The sum of squares for factor A is______.

(b) The number of degrees of freedom for factor A in the
experiment is_____.

(c) The number of degrees of freedom for factor B
is_______.

(d) The mean square for error is______.

(e) An upper bound for the P-value for the interaction test
statistic is______.

(f) The engineers used ______ levels of the factor A in
this experiment. 

(g) The engineers used ______ levels of the factor B in
this experiment.

(h) There are ______ replicates of this experiment.

(i) Would you conclude that the effect of factor B
depends on the level of factor A (Yes or No)?

(j) An estimate of the standard deviation of the response
variable is ______.

5.42. Reconsider the lens polishing experiment in Problem
5.41. Suppose that this experiment had been conducted as a ran-
domized complete block design. The sum of squares for blocks
is 4.00. Reconstruct the ANOVA given this new information.
What impact does the blocking have on the conclusions from
the original experiment?

5.43. In Problem 4.53 you met physics PhD student Laura
Van Ertia who had conducted a single-factor experiment in her
pursuit of the unified theory. She is at it again, and this time she
has moved on to a two-factor factorial conducted as a com-
pletely randomized deesign. From her experiment, Laura has
constructed the following incomplete ANOVA display:

Source SS DF MS F

A 350.00 2

B 300.00 150

AB 200.00 50

Error 150.00 18

Total 1000.00

(a) How many levels of factor B did she use in the exper-
iment? ______

(b) How many degrees of freedom are associated with
interaction? ______

(c) The error mean square is ______.

(d) The mean square for factor A is ______.

(e) How many replicates of the experiment were condu-
cted? ______ 

(f) What are your conclusions about interaction and the
two main effects?  

(g) An estimate of the standard deviation of the response
variable is ______. 

(h) If this experiment had been run in blocks there would
have been ______ degrees of freedom for blocks.

5.44. Continuation of Problem 5.43. Suppose that Laura
did actually conduct the experiment in Problem 5.43 as a ran-
domized complete block design. Assume that the block sum
of squares is 60.00. Reconstruct the ANOVA display under
this new set of assumptions.

5.45. Consider the following ANOVA for a two-factor 
factorial experiment:

Source_______DF______SS ______MS _____F______P

A_____________2___8.0000__4.00000__2.00__0.216

B_____________1___8.3333__8.33333__4.17__0.087

Interaction___2__10.6667__5.33333__2.67__0.148

Error_________6__12.0000__2.00000

Total________11__39.0000
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In addition to the ANOVA, you are given the following data
totals. Row totals (factor A) � 18, 10, 14; column totals (fac-
tor B) � 16, 26; cell totals � 10, 8, 2, 8, 4, 10; and replicate
totals � 19, 23. The grand total is 42. The original experiment
was a completely randomized design. Now suppose that the
experiment had been run in two complete blocks. Answer the
following questions about the ANOVA for the blocked exper-
iment.

(a) The block sum of squares is ______.

(b) There are______ degrees of freedom for blocks.

(c) The error sum of squares is now ______.

(d) The interaction effect is now significant at 1 percent
(Yes or No).

5.46. Consider the following incomplete ANOVA table:

Source SS DF MS F

A 50.00 1 50.00

B 80.00 2 40.00

AB 30.00 2 15.00

Error 12

Total 172.00 17

In addition to the ANOVA table, you know that the experi-
ment has been replicated three times and that the totals of the
three replicates are 10, 12, and 14, respectively. The original
experiment was run as a completely randomized design.
Answer the following questions:

(a) The pure error estimate of the standard deviation of the
sample observations is 1 (Yes or No).

(b) Suppose that the experiment had been run in blocks, so
that it is a randomized complete block design. The
number of degrees of freedom for blocks would be
______.

(c) The block sum of squares is ______.

(d) The error sum of squares in the randomized complete
block design is now ______.

(e) For the randomized complete block design, what is the
estimate of the standard deviation of the sample obser-
vations?
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SUPPLEMENTAL MATERIAL FOR CHAPTER 6
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S6.7 Testing for “Pure Quadratic” Curvature 

Using a t-Test

6.1 Introduction

Factorial designs are widely used in experiments involving several factors where it is neces-
sary to study the joint effect of the factors on a response. Chapter 5 presented general methods
for the analysis of factorial designs. However, several special cases of the general factorial
design are important because they are widely used in research work and also because they form
the basis of other designs of considerable practical value.

The most important of these special cases is that of k factors, each at only two levels.
These levels may be quantitative, such as two values of temperature, pressure, or time; or
they may be qualitative, such as two machines, two operators, the “high” and “low” levels of
a factor, or perhaps the presence and absence of a factor. A complete replicate of such a design
requires 2 � 2 � . . . � 2 � 2k observations and is called a 2k factorial design.

This chapter focuses on this extremely important class of designs. Throughout this
chapter, we assume that (1) the factors are fixed, (2) the designs are completely randomized,
and (3) the usual normality assumptions are satisfied.

The 2k design is particularly useful in the early stages of experimental work when many
factors are likely to be investigated. It provides the smallest number of runs with which k fac-
tors can be studied in a complete factorial design. Consequently, these designs are widely
used in factor screening experiments.

Because there are only two levels for each factor, we assume that the response is
approximately linear over the range of the factor levels chosen. In many factor screening

The supplemental material is on the textbook website www.wiley.com/college/montgomery.
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experiments, when we are just starting to study the process or the system, this is often a
reasonable assumption. In Section 6.8, we will present a simple method for checking this
assumption and discuss what action to take if it is violated. The book by Mee (2009) is a use-
ful supplement to this chapter and chapters 7 and 8.

6.2 The 22 Design

The first design in the 2k series is one with only two factors, say A and B, each run at two lev-
els. This design is called a 22 factorial design. The levels of the factors may be arbitrarily
called “low” and “high.” As an example, consider an investigation into the effect of the con-
centration of the reactant and the amount of the catalyst on the conversion (yield) in a chemi-
cal process. The objective of the experiment was to determine if adjustments to either of these
two factors would increase the yield. Let the reactant concentration be factor A and let the two
levels of interest be 15 and 25 percent. The catalyst is factor B, with the high level denoting the
use of 2 pounds of the catalyst and the low level denoting the use of only 1 pound. The exper-
iment is replicated three times, so there are 12 runs. The order in which the runs are made is
random, so this is a completely randomized experiment. The data obtained are as follows:

Factor Replicate
A B Treatment 

Combination I II III Total

� � A low, B low 28 25 27 80

� � A high, B low 36 32 32 100

� � A low, B high 18 19 23 60

� � A high, B high 31 30 29 90

The four treatment combinations in this design are shown graphically in Figure 6.1. By
convention, we denote the effect of a factor by a capital Latin letter. Thus “A” refers to the
effect of factor A, “B” refers to the effect of factor B, and “AB” refers to the AB interaction.
In the 22 design, the low and high levels of A and B are denoted by “�” and “�,” respective-
ly, on the A and B axes. Thus, � on the A axis represents the low level of concentration (15%),
whereas � represents the high level (25%), and � on the B axis represents the low level of
catalyst, and � denotes the high level.

b = 60
(18 + 19 + 23)

ab = 90 
(31 + 30 + 29)

(1) = 80
(28 + 25 + 27)

a = 100 
(36 + 32 + 32)

–

–
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■ F I G U R E  6 . 1 Treatment
combinations in the 22 design
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The four treatment combinations in the design are also represented by lowercase letters,
as shown in Figure 6.1. We see from the figure that the high level of any factor in the treat-
ment combination is denoted by the corresponding lowercase letter and that the low level of
a factor in the treatment combination is denoted by the absence of the corresponding letter.
Thus, a represents the treatment combination of A at the high level and B at the low level, b
represents A at the low level and B at the high level, and ab represents both factors at the high
level. By convention, (1) is used to denote both factors at the low level. This notation is used
throughout the 2k series.

In a two-level factorial design, we may define the average effect of a factor as the
change in response produced by a change in the level of that factor averaged over the lev-
els of the other factor. Also, the symbols (1), a, b, and ab now represent the total of the
response observation at all n replicates taken at the treatment combination, as illustrated
in Figure 6.1. Now the effect of A at the low level of B is [a � (1)]/n, and the effect of A
at the high level of B is [ab � b]/n. Averaging these two quantities yields the main effect
of A:

(6.1)

The average main effect of B is found from the effect of B at the low level of A (i.e.,
[b � (1)]/n) and at the high level of A (i.e., [ab � a]/n) as

(6.2)

We define the interaction effect AB as the average difference between the effect of A
at the high level of B and the effect of A at the low level of B. Thus,

(6.3)

Alternatively, we may define AB as the average difference between the effect of B at
the high level of A and the effect of B at the low level of A. This will also lead to Equa-
tion 6.3.

The formulas for the effects of A, B, and AB may be derived by another method. The
effect of A can be found as the difference in the average response of the two treatment com-
binations on the right-hand side of the square in Figure 6.1 (call this average because it is
the average response at the treatment combinations where A is at the high level) and the two
treatment combinations on the left-hand side (or ). That is,

This is exactly the same result as in Equation 6.1. The effect of B, Equation 6.2, is
found as the difference between the average of the two treatment combinations on the top

�
1

2n
[ab � a � b � (1)]

�
ab � a

2n
�

b � (1)
2n

A � yA� � yA�

yA�

yA�

�
1

2n
[ab � (1) � a � b]

AB �
1

2n
{[ab � b] � [a � (1)]}

�
1

2n
[ab � b � a � (1)]

B �
1

2n
{[ab � a] � [b � (1)]}

�
1

2n
[ab � a � b � (1)]

A �
1

2n
{[ab � b] � [a � (1)]}
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of the square ( ) and the average of the two treatment combinations on the bottom 
( ), or

Finally, the interaction effect AB is the average of the right-to-left diagonal treatment combi-
nations in the square [ab and (1)] minus the average of the left-to-right diagonal treatment
combinations (a and b), or

which is identical to Equation 6.3.
Using the experiment in Figure 6.1, we may estimate the average effects as

The effect of A (reactant concentration) is positive; this suggests that increasing A from the
low level (15%) to the high level (25%) will increase the yield. The effect of B (catalyst) is
negative; this suggests that increasing the amount of catalyst added to the process will
decrease the yield. The interaction effect appears to be small relative to the two main effects.

In experiments involving 2k designs, it is always important to examine the magnitude
and direction of the factor effects to determine which variables are likely to be important. The
analysis of variance can generally be used to confirm this interpretation (t-tests could be used
too). Effect magnitude and direction should always be considered along with the ANOVA,
because the ANOVA alone does not convey this information. There are several excellent sta-
tistics software packages that are useful for setting up and analyzing 2k designs. There are also
special time-saving methods for performing the calculations manually.

Consider determining the sums of squares for A, B, and AB. Note from Equation 6.1
that a contrast is used in estimating A, namely

(6.4)

We usually call this contrast the total effect of A. From Equations 6.2 and 6.3, we see that
contrasts are also used to estimate B and AB. Furthermore, these three contrasts are orthogo-
nal. The sum of squares for any contrast can be computed from Equation 3.29, which states
that the sum of squares for any contrast is equal to the contrast squared divided by the num-
ber of observations in each total in the contrast times the sum of the squares of the contrast
coefficients. Consequently, we have

(6.5)

(6.6)SSB �
[ab � b � a � (1)]2

4n

SSA �
[ab � a � b � (1)]2

4n

ContrastA � ab � a � b � (1)

AB �
1

2(3)
 (90 � 80 � 100 � 60) � 1.67

B �
1

2(3)
 (90 � 60 � 100 � 80) � �5.00

A �
1

2(3)
 (90 � 100 � 60 � 80) � 8.33
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2n
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and

(6.7)

as the sums of squares for A, B, and AB. Notice how simple these equations are. We can com-
pute sums of squares by only squaring one number.

Using the experiment in Figure 6.1, we may find the sums of squares from Equations
6.5, 6.6, and 6.7 as

(6.8)

and

The total sum of squares is found in the usual way, that is,

(6.9)

In general, SST has 4n � 1 degrees of freedom. The error sum of squares, with 4(n � 1)
degrees of freedom, is usually computed by subtraction as

(6.10)

For the experiment in Figure 6.1, we obtain

and

using SSA, SSB, and SSAB from Equations 6.8. The complete ANOVA is summarized in Table 6.1.
On the basis of the P-values, we conclude that the main effects are statistically significant and
that there is no interaction between these factors. This confirms our initial interpretation of
the data based on the magnitudes of the factor effects.

It is often convenient to write down the treatment combinations in the order (1), a, b,
ab. This is referred to as standard order (or Yates’s order, for Frank Yates who was one of
Fisher coworkers and who made many important contributions to designing and analyzing
experiments). Using this standard order, we see that the contrast coefficients used in estimat-
ing the effects are

Effects (1) a b ab

A �1 �1 �1 �1

B �1 �1 �1 �1

AB �1 �1 �1 �1

� 31.34

� 323.00 � 208.33 � 75.00 � 8.33

SSE � SST � SSA � SSB � SSAB

� 9398.00 � 9075.00 � 323.00

SST � �
2

i�1
�
2

j�1
�
3

k�1
y2

ijk �
y2

...

4(3)

SSE � SST � SSA � SSB � SSAB
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2

i�1
�
2

j�1
�
n

k�1
y2

ijk �
y2

...

4n

SSAB �
(10)2

4(3)
� 8.33

SSB �
( �30)2

4(3)
� 75.00

SSA �
(50)2

4(3)
� 208.33

SSAB �
[ab � (1) � a � b]2

4n
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Note that the contrast coefficients for estimating the interaction effect are just the product of
the corresponding coefficients for the two main effects. The contrast coefficient is always
either �1 or �1, and a table of plus and minus signs such as in Table 6.2 can be used to
determine the proper sign for each treatment combination. The column headings in Table 6.2
are the main effects (A and B), the AB interaction, and I, which represents the total or aver-
age of the entire experiment. Notice that the column corresponding to I has only plus signs.
The row designators are the treatment combinations. To find the contrast for estimating any
effect, simply multiply the signs in the appropriate column of the table by the corresponding
treatment combination and add. For example, to estimate A, the contrast is �(1) � a � b � ab,
which agrees with Equation 6.1. Note that the contrasts for the effects A, B, and AB are
orthogonal. Thus, the 22 (and all 2k designs) is an orthogonal design. The 
1 coding for the
low and high levels of the factors is often called the orthogonal coding or the effects coding.

The Regression Model. In a 2k factorial design, it is easy to express the results of the
experiment in terms of a regression model. Because the 2k is just a factorial design, we could
also use either an effects or a means model, but the regression model approach is much more nat-
ural and intuitive. For the chemical process experiment in Figure 6.1, the regression model is

where x1 is a coded variable that represents the reactant concentration, x2 is a coded variable
that represents the amount of catalyst, and the �’s are regression coefficients. The relationship
between the natural variables, the reactant concentration and the amount of catalyst, and the
coded variables is

and

x2 �
Catalyst � (Catalystlow � Catalysthigh)/2

(Catalysthigh � Catalystlow)/2

x1 �
Conc � (Conclow � Conchigh)/2

(Conchigh � Conclow)/2

y � �0 � �1x1 � �2x2 � �

■ TA B L E  6 . 1
Analysis of Variance for the Experiment in Figure 6.1

Source of Sum of Degrees of Mean
Variation Squares Freedom Square Fq P-Value

A 208.33 1 208.33 53.15 0.0001

B 75.00 1 75.00 19.13 0.0024

AB 8.33 1 8.33 2.13 0.1826

Error 31.34 8 3.92

Total 323.00 11 

■ TA B L E  6 . 2
Algebraic Signs for Calculating Effects in 
the 22 Design

Treatment Factorial Effect
Combination I A B AB

(1) � � � �

a � � � �

b � � � �

ab � � � �
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When the natural variables have only two levels, this coding will produce the familiar 
1
notation for the levels of the coded variables. To illustrate this for our example, note that

Thus, if the concentration is at the high level (Conc � 25%), then x1 � �1; if the concentra-
tion is at the low level (Conc � 15%), then x1 � �1. Furthermore,

Thus, if the catalyst is at the high level (Catalyst � 2 pounds), then x2 � �1; if the catalyst
is at the low level (Catalyst � 1 pound), then x2 � �1.

The fitted regression model is

where the intercept is the grand average of all 12 observations, and the regression coefficients
and are one-half the corresponding factor effect estimates. The regression coefficient is

one-half the effect estimate because a regression coefficient measures the effect of a one-unit
change in x on the mean of y, and the effect estimate is based on a two-unit change (from �1
to �1). This simple method of estimating the regression coefficients results in least squares
parameter estimates. We will return to this topic again in Section 6.7. Also see the supple-
mental material for this chapter.

Residuals and Model Adequacy. The regression model can be used to obtain the
predicted or fitted value of y at the four points in the design. The residuals are the differences
between the observed and fitted values of y. For example, when the reactant concentration is
at the low level (x1 � �1) and the catalyst is at the low level (x2 � �1), the predicted yield
is

There are three observations at this treatment combination, and the residuals are

The remaining predicted values and residuals are calculated similarly. For the high level of
the reactant concentration and the low level of the catalyst,

and

e6 � 32 � 34.165 � �2.165

e5 � 32 � 34.165 � �2.165

e4 � 36 � 34.165 � 1.835

ŷ � 27.5 � �8.33
2 �(�1) � ��5.00

2 �(�1) � 34.165

e3 � 27 � 25.835 � 1.165

e2 � 25 � 25.835 � �0.835

e1 � 28 � 25.835 � 2.165

ŷ � 27.5 � �8.33
2 �(�1) � ��5.00

2 �(�1) � 25.835

�̂2�̂1

ŷ � 27.5 � �8.33
2 � x1 � ��5.00

2 � x2

�
Catalyst � 1.5

0.5

x2 �
Catalyst � (1 � 2)/2

(2 � 1)/2

�
Conc � 20

5

x1 �
Conc � (15 � 25)/2

(25 � 15)/2
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For the low level of the reactant concentration and the high level of the catalyst,

and

Finally, for the high level of both factors,

and

Figure 6.2 presents a normal probability plot of these residuals and a plot of the residuals
versus the predicted yield. These plots appear satisfactory, so we have no reason to suspect
that there are any problems with the validity of our conclusions.

The Response Surface. The regression model

can be used to generate response surface plots. If it is desirable to construct these plots in
terms of the natural factor levels, then we simply substitute the relationships between the
natural and coded variables that we gave earlier into the regression model, yielding

� 18.33 � 0.8333 Conc � 5.00 Catalyst

ŷ � 27.5 � �8.33
2 ��Conc � 20

5 � � ��5.00
2 ��Catalyst � 1.5

0.5 �

ŷ � 27.5 � �8.33
2 � x1 � ��5.00

2 � x2

e12 � 29 � 29.165 � �0.165

e11 � 30 � 29.165 � 0.835

e10 � 31 � 29.165 � 1.835

ŷ � 27.5 � �8.33
2 �(�1) � ��5.00

2 �(�1) � 29.165

e9 � 23 � 20.835 � 2.165

e8 � 19 � 20.835 � �1.835

e7 � 18 � 20.835 � �2.835

ŷ � 27.5 � �8.33
2 �(�1) � ��5.00

2 �(�1) � 20.835
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■ F I G U R E  6 . 2 Residual plots for the chemical process experiment
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Figure 6.3a presents the three-dimensional response surface plot of yield from this
model, and Figure 6.3b is the contour plot. Because the model is first-order (that is, it contains
only the main effects), the fitted response surface is a plane. From examining the contour plot,
we see that yield increases as reactant concentration increases and catalyst amount decreases.
Often, we use a fitted surface such as this to find a direction of potential improvement for a
process. A formal way to do so, called the method of steepest ascent, will be presented in
Chapter 11 when we discuss methods for systematically exploring response surfaces.

6.3 The 23 Design

Suppose that three factors, A, B, and C, each at two levels, are of interest. The design is called
a 23 factorial design, and the eight treatment combinations can now be displayed geometri-
cally as a cube, as shown in Figure 6.4a. Using the “� and �” orthogonal coding to represent
the low and high levels of the factors, we may list the eight runs in the 23 design as in Figure 6.4b.
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■ F I G U R E  6 . 3 Response surface plot and contour plot of yield from the chemical process experiment
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This is sometimes called the design matrix. Extending the label notation discussed in Section 6.2,
we write the treatment combinations in standard order as (1), a, b, ab, c, ac, bc, and abc.
Remember that these symbols also represent the total of all n observations taken at that par-
ticular treatment combination.

Three different notations are widely used for the runs in the 2k design. The first is the
� and � notation, often called the geometric coding (or the orthogonal coding or the effects
coding). The second is the use of lowercase letter labels to identify the treatment combinations.
The final notation uses 1 and 0 to denote high and low factor levels, respectively, instead of 
� and �. These different notations are illustrated below for the 23 design:

Run A B C Labels A B C

1 � � � (1) 0 0 0

2 � � � a 1 0 0

3 � � � b 0 1 0

4 � � � ab 1 1 0

5 � � � c 0 0 1

6 � � � ac 1 0 1

7 � � � bc 0 1 1

8 � � � abc 1 1 1

There are seven degrees of freedom between the eight treatment combinations in the 23

design. Three degrees of freedom are associated with the main effects of A, B, and C. Four
degrees of freedom are associated with interactions; one each with AB, AC, and BC and one
with ABC.

Consider estimating the main effects. First, consider estimating the main effect A. The
effect of A when B and C are at the low level is [a � (1)]/n. Similarly, the effect of A when B
is at the high level and C is at the low level is [ab � b]/n. The effect of A when C is at the
high level and B is at the low level is [ac � c]/n. Finally, the effect of A when both B and C
are at the high level is [abc � bc]/n. Thus, the average effect of A is just the average of these
four, or

(6.11)

This equation can also be developed as a contrast between the four treatment combina-
tions in the right face of the cube in Figure 6.5a (where A is at the high level) and the four in
the left face (where A is at the low level). That is, the A effect is just the average of the four
runs where A is at the high level ( ) minus the average of the four runs where A is at the low
level ( ), or

This equation can be rearranged as

which is identical to Equation 6.11.

A �
1

4n
[a � ab � ac � abc � (1) � b � c � bc]

�
a � ab � ac � abc

4n
�

(1) � b � c � bc
4n

A � yA� � yA�

yA�

yA�

A �
1

4n
[a � (1) � ab � b � ac � c � abc � bc]
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In a similar manner, the effect of B is the difference in averages between the four treat-
ment combinations in the front face of the cube and the four in the back. This yields

(6.12)

The effect of C is the difference in averages between the four treatment combinations in the
top face of the cube and the four in the bottom, that is,

(6.13)

The two-factor interaction effects may be computed easily. A measure of the AB inter-
action is the difference between the average A effects at the two levels of B. By convention,
one-half of this difference is called the AB interaction. Symbolically,

B Average A Effect

High (�)

Low (�)

Difference
[abc � bc � ab � b � ac � c � a � (1)]

2n

{(ac � c) � [a � (1)]}
2n

[(abc � bc) � (ab � b)]
2n

�
1

4n
[c � ac � bc � abc � (1) � a � b � ab]

C � yC� � yC�

�
1

4n
[b � ab � bc � abc � (1) � a � c � ac]

B � yB� � yB�

■ F I G U R E  6 . 5
Geometric presenta-
tion of contrasts
corresponding to the
main effects and
interactions in the 
23 design A B

(a) Main effects

C

– +
–

+

–

+

AB

B

C

A

(b) Two-factor interaction

(c) Three-factor interaction

= + runs

= – runs

BC

+ +

–

–

AC

+

+

–

–

ABC

–
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Because the AB interaction is one-half of this difference,

(6.14)

We could write Equation 6.14 as follows:

In this form, the AB interaction is easily seen to be the difference in averages between runs
on two diagonal planes in the cube in Figure 6.5b. Using similar logic and referring to Figure
6.5b, we find that the AC and BC interactions are

(6.15)

and

(6.16)

The ABC interaction is defined as the average difference between the AB interaction at
the two different levels of C. Thus,

(6.17)

As before, we can think of the ABC interaction as the difference in two averages. If the runs
in the two averages are isolated, they define the vertices of the two tetrahedra that comprise
the cube in Figure 6.5c.

In Equations 6.11 through 6.17, the quantities in brackets are contrasts in the treatment
combinations. A table of plus and minus signs can be developed from the contrasts, which is
shown in Table 6.3. Signs for the main effects are determined by associating a plus with the
high level and a minus with the low level. Once the signs for the main effects have been estab-
lished, the signs for the remaining columns can be obtained by multiplying the appropriate

�
1
4n

[abc � bc � ac � c � ab � b � a � (1)]

ABC �
1

4n
{[abc � bc] � [ac � c] � [ab � b] � [a � (1)]}

BC �
1

4n
[(1) � a � b � ab � c � ac � bc � abc]

AC �
1

4n
[(1) � a � b � ab � c � ac � bc � abc]

AB �
abc � ab � c � (1)

4n
�

bc � b � ac � a
4n

AB �
[abc � bc � ab � b � ac � c � a � (1)]

4n

■ TA B L E  6 . 3
Algebraic Signs for Calculating Effects in the 23 Design

Factorial Effect
Treatment
Combination I A B AB C AC BC ABC

(1) � � � � � � � �

a � � � � � � � �

b � � � � � � � �

ab � � � � � � � �

c � � � � � � � �

ac � � � � � � � �

bc � � � � � � � �

abc � � � � � � � �
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preceding columns row by row. For example, the signs in the AB column are the product of
the A and B column signs in each row. The contrast for any effect can be obtained easily from
this table.

Table 6.3 has several interesting properties: (1) Except for column I, every column has
an equal number of plus and minus signs. (2) The sum of the products of the signs in any two
columns is zero. (3) Column I multiplied times any column leaves that column unchanged.
That is, I is an identity element. (4) The product of any two columns yields a column in the
table. For example, A � B � AB, and

We see that the exponents in the products are formed by using modulus 2 arithmetic. (That
is, the exponent can only be 0 or 1; if it is greater than 1, it is reduced by multiples of 2 until
it is either 0 or 1.) All of these properties are implied by the orthogonality of the 23 design
and the contrasts used to estimate the effects.

Sums of squares for the effects are easily computed because each effect has a corre-
sponding single-degree-of-freedom contrast. In the 23 design with n replicates, the sum of
squares for any effect is

(6.18)SS �
(Contrast)2

8n

AB � B � AB2 � A

E X A M P L E  6 . 1

A 23 factorial design was used to develop a nitride etch
process on a single-wafer plasma etching tool. The design
factors are the gap between the electrodes, the gas flow
(C2F6 is used as the reactant gas), and the RF power
applied to the cathode (see Figure 3.1 for a schematic of
the plasma etch tool). Each factor is run at two levels, and
the design is replicated twice. The response variable is the
etch rate for silicon nitride (Å/m). The etch rate data are
shown in Table 6.4, and the design is shown geometrically
in Figure 6.6.

Using the totals under the treatment combinations
shown in Table 6.4, we may estimate the factor effects as
follows:

�
1
8

[�813] � �101.625

� 1617 � 2089 � 1589 � 2138]

�
1
8

[1319 � 1154 � 1277 � 1234

A �
1

4n
[a � (1) � ab � b � ac � c � abc � bc]

■ TA B L E  6 . 4
The Plasma Etch Experiment, Example 6.1

Coded Factors Etch Rate Factor Levels

Run A B C Replicate 1 Replicate 2 Total Low (�1) High (�1)

1 �1 �1 �1 550 604 (1) � 1154 A (Gap, cm) 0.80 1.20

2 1 �1 �1 669 650 a � 1319 B (C2F6 flow, SCCM) 125 200

3 �1 1 �1 633 601 b � 1234 C (Power, W) 275 325

4 1 1 �1 642 635 ab � 1277

5 �1 �1 1 1037 1052 c � 2089

6 1 �1 1 749 868 ac � 1617

7 �1 1 1 1075 1063 bc � 2138

8 1 1 1 729 860 abc � 1589
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�
1
8

[�17] � �2.125

� 1617 � 2138 � 1589]

�
1
8

[1154 � 1319 � 1234 � 1277 � 2089

BC �
1

4n
[(1) � a � b � ab � c � ac � bc � abc]

�
1
8

[�1229] � �153.625

� 1617 � 2138 � 1589]

�
1
8

[1154 � 1319 � 1234 � 1277 � 2089

AC �
1

4n
[(1) � a � b � ab � c � ac � bc � abc]

�
1
8

[�199] � �24.875

� 1589 � 2138 � 1617 � 2089]

�
1
8

[1277 � 1319 � 1234 � 1154

AB �
1

4n
[ab � a � b � (1) � abc � bc � ac � c]

�
1
8

[2449] � 306.125

� 1319 � 1234 � 1277]

�
1
8

[2089 � 1617 � 2138 � 1589 � 1154

C �
1

4n
[c � ac � bc � abc � (1) � a � b � ab]

�
1
8

[59] � 7.375

� 1319 � 2089 � 1617]

�
1
8

[1234 � 1277 � 2138 � 1589 � 1154

B �
1

4n
[b � ab � bc � abc � (1) � a � c � ac]

and

The largest effects are for power (C � 306.125), gap 
(A � �101.625), and the power–gap interaction (AC �
�153.625).

The sums of squares are calculated from Equation 6.18
as follows:

and

The total sum of squares is SST � 531,420.9375 and by
subtraction SSE � 18,020.50. Table 6.5 summarizes the
effect estimates and sums of squares. The column labeled
“percent contribution” measures the percentage contribu-
tion of each model term relative to the total sum of squares.
The percentage contribution is often a rough but effective
guide to the relative importance of each model term. Note
that the main effect of C (Power) really dominates this
process, accounting for over 70 percent of the total variabil-
ity, whereas the main effect of A (Gap) and the AC interac-
tion account for about 8 and 18 percent, respectively.

The ANOVA in Table 6.6 may be used to confirm the
magnitude of these effects. We note from Table 6.6 that the
main effects of Gap and Power are highly significant (both
have very small P-values). The AC interaction is also highly
significant; thus, there is a strong interaction between Gap
and Power.

SSABC �
(45)2

16
� 126.5625

SSBC �
(�17)2

16
� 18.0625

SSAC �
(�1229)2

16
� 94,402.5625

SSAB �
(�199)2

16
� 2475.0625

SSC �
(2449)2

16
� 374,850.0625

SSB �
(59)2

16
� 217.5625

SSA �
(�813)2

16
� 41,310.5625

�
1
8

[45] � 5.625

� 1234 � 1319 � 1154]

�
1
8

[1589 � 2138 � 1617 � 2089 � 1277

ABC �
1

4n
[abc � bc � ac � c � ab � b � a � (1)]

Power (C)

Gap (A)

C2 F6 Flow

325 w 

c = 2089 

bc = 2138 

ac = 1617 

b = 1234 

(1) = 1154 

ab = 1277 

a = 1319 

abc = 1589 

275 w 

0.80 cm 1.20 cm 

125 sccm 

200 sccm 

–
–

–

+

+

+

■ F I G U R E  6 . 6 The 23 design for the plasma
etch experiment for Example 6.1
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■ TA B L E  6 . 5
Effect Estimate Summary for Example 6.1

Effect Sum of Percent
Factor Estimate Squares Contribution

A �101.625 41,310.5625 7.7736

B 7.375 217.5625 0.0409

C 306.125 374,850.0625 70.5373

AB �24.875 2475.0625 0.4657

AC �153.625 94,402.5625 17.7642

BC �2.125 18.0625 0.0034

ABC 5.625 126.5625 0.0238 

■ TA B L E  6 . 6
Analysis of Variance for the Plasma Etching Experiment

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Gap (A) 41,310.5625 1 41,310.5625 18.34 0.0027

Gas flow (B) 217.5625 1 217.5625 0.10 0.7639

Power (C) 374,850.0625 1 374,850.0625 166.41 0.0001

AB 2475.0625 1 2475.0625 1.10 0.3252

AC 94,402.5625 1 94,402.5625 41.91 0.0002

BC 18.0625 1 18.0625 0.01 0.9308

ABC 126.5625 1 126.5625 0.06 0.8186

Error 18,020.5000 8 2252.5625

Total 531,420.9375 15

The Regression Model and Response Surface. The regression model for predicting
etch rate is

where the coded variables x1 and x3 represent A and C, respectively. The x1x3 term is the AC
interaction. Residuals can be obtained as the difference between observed and predicted etch
rate values. We leave the analysis of these residuals as an exercise for the reader.

Figure 6.7 presents the response surface and contour plot for etch rate obtained from the
regression model. Notice that because the model contains interaction, the contour lines of
constant etch rate are curved (or the response surface is a “twisted” plane). It is desirable to
operate this process so that the etch rate is close to 900 Å/m. The contour plot shows that sev-
eral combinations of gap and power will satisfy this objective. However, it will be necessary
to control both of these variables very precisely.

� 776.0625 � ��101.625
2 � x1 � �306.125

2 � x3 � ��153.625
2 � x1x3

ŷ � �̂0 � �̂1x1 � �̂3x3 � �̂13x1x3
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Computer Solution. Many statistics software packages are available that will set up
and analyze two-level factorial designs. The output from one of these computer programs,
Design-Expert, is shown in Table 6.7. In the upper part of the table, an ANOVA for the full
model is presented. The format of this presentation is somewhat different from the ANOVA
results given in Table 6.6. Notice that the first line of the ANOVA is an overall summary for
the full model (all main effects and interactions), and the model sum of squares is

Thus the statistic

is testing the hypotheses

Because F0 is large, we would conclude that at least one variable has a nonzero effect. Then
each individual factorial effect is tested for significance using the F statistic. These results
agree with Table 6.6.

Below the full model ANOVA in Table 6.7, several R2 statistics are presented. The ordi-
nary R2 is

and it measures the proportion of total variability explained by the model. A potential prob-
lem with this statistic is that it always increases as factors are added to the model, even if these
factors are not significant. The adjusted R2 statistic, defined as

R2
Adj � 1 �

SSE/dfE

SSTotal/dfTotal
� 1 �

18,020.50/8

5.314 �  105/15
� 0.9364

R2 �
SSModel

SSTotal
�

5.134 �  105

5.314 �  105
� 0.9661

H1�at least one � � 0

H0��1 � �2 � �3 � �12 � �13 � �23 � �123 � 0

F0 �
MSModel

MSE
�

73,342.92
2252.56

� 32.56

SSModel � SSA � SSB � SSC � SSAB � SSAC � SSBC � SSABC � 5.134 �  105

1.20

1.20

1.10

1.10

1.00

1.00
0.90

0.900.80 0.80275.00
275.00

287.50

287.50

300.00

300.00

312.50

312.50

325.00

325.00

1056.75

941.813

826.875

711.938

597
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(a) The response surface (b) The contour plot

■ F I G U R E  6 . 7 Response surface and contour plot of etch rate for Example 6.1
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■ TA B L E  6 . 7
Design-Expert Output for Example 6.1

Response: Etch rate
ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

Sum of Mean F
Source Squares DF Square Value Prob 
 F
Model 5.134E�005 7 73342.92 32.56 �0.0001

A 41310.56 1 41310.56 18.34 0.0027
B 217.56 1 217.56 0.097 0.7639
C 3.749E�005 1 3.749E�005 166.41 �0.0001

AB 2475.06 1 2475.06 1.10 0.3252
AC 94402.56 1 94402.56 41.91 0.0002
BC 18.06 1 18.06 8.019E-003 0.9308

ABC 126.56 1 126.56 0.056 0.8186
Pure Error 18020.50 8 2252.56
Cor Total 5.314E�005 15

Std. Dev. 47.46 R-Squared 0.9661
Mean 776.06 Adj R-Squared 0.9364
C.V. 6.12 Pred R-Squared 0.8644
PRESS 72082.00 Adeq Precisioin 14.660

Coefficient Standard 95% CI 95% CI
Factor Estimated DF Error Low High VIF
Intercept 776.06 1 11.87 748.70 803.42
A-Gap �50.81 1 11.87 �78.17 �23.45 1.00
B-Gas flow 3.69 1 11.87 �23.67 31.05 1.00
C-Power 153.06 1 11.87 125.70 180.42 1.00
AB �12.44 1 11.87 �39.80 14.92 1.00
AC �76.81 1 11.87 �104.17 �49.45 1.00
BC �1.06 1 11.87 �28.42 26.30 1.00
ABC 2.81 1 11.87 �24.55 30.17 1.00

Final Equation in Terms of Coded Factors:
Etch rate �
�776.06
�50.81 * A
�3.69 * B
�153.06 * C
�12.44 * A * B
�76.81 * A * C
�1.06 * B * C
�2.81 * A * B * C

Final Equation in Terms of Actual Factors:
Etch rate �
�6487.33333
�5355.41667 * Gap
�6.59667 * Gas flow
�24.10667 * Power
�6.15833 * Gap * Gas flow
�17.80000 * Gap * Power
�0.016133 * Gas flow * Power
�0.015000 * Gap * Gas flow * Power
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■ TA B L E  6 . 7 (Continued)

Response: Etch rate
ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

Sum of Mean F
Source Squares DF Square Value Prob � F
Model 5.106E�005 3 1.702E�005 97.91 �0.0001

A 41310.56 1 41310.56 23.77 0.0004
C 3.749E�005 1 3.749E�005 215.66 �0.0001

AC 94402.56 1 94402.56 54.31 �0.0001
Residual 20857.75 12 1738.15

Lack of Fit 2837.25 4 709.31 0.31 0.8604
Pure Error 18020.50 8 2252.56

Cor Total 5.314E�005 15

Std. Dev. 41.69 R-Squared 0.9608
Mean 776.06 Adj R-Squared 0.9509
C.V. 5.37 Pred R-Squared 0.9302
PRESS 37080.44 Adeq Precision 22.055

Coefficient Standard 95% CI 95% CI
Factor Estimate DF Error Low High VIF
Intercept 776.06 1 10.42 753.35 798.77
A-Gap �50.81 1 10.42 �73.52 28.10 1.00
C-Power 153.06 1 10.42 130.35 175.77 1.00
AC �76.81 1 10.42 �99.52 �54.10 1.00

Final Equation in Terms of Coded Factors:
Etch rate �
�776.06
�50.81 * A

�153.06 * C
�76.81 * A * C

Final Equation in Terms of Actual Factors:
Etch rate �

�5415.37500
�4354.68750 * Gap

�21.48500 * Power
�15.36250 * Gap * Power

Diagnostics Case Statistics
Standard Actual Predicted Student Cook’s Outlier Run

Order Value Value Residual Leverage Residual Distance t Order
1 550.00 597.00 �47.00 0.250 �1.302 0.141 �1.345 9
2 604.00 597.00 7.00 0.250 0.194 0.003 0.186 6
3 669.00 649.00 20.00 0.250 0.554 0.026 0.537 14
4 650.00 649.00 1.00 0.250 0.028 0.000 0.027 1
5 633.00 597.00 36.00 0.250 0.997 0.083 0.997 3
6 601.00 597.00 4.00 0.250 0.111 0.001 0.106 12
7 642.00 649.00 �7.00 0.250 �0.194 0.003 �0.186 13
8 635.00 649.00 �14.00 0.250 �0.388 0.013 �0.374 8
9 1037.00 1056.75 �19.75 0.250 �0.547 0.025 �0.530 5

10 1052.00 1056.75 �4.75 0.250 �0.132 0.001 �0.126 16
11 749.00 801.50 �52.50 0.250 �1.454 0.176 �1.534 2
12 868.00 801.50 66.50 0.250 1.842 0.283 2.082 15
13 1075.00 1056.75 18.25 0.250 0.505 0.021 0.489 4
14 1063.00 1056.75 6.25 0.250 0.173 0.002 0.166 7
15 729.00 801.50 �72.50 0.250 �2.008 0.336 �2.359 10
16 860.00 801.50 58.50 0.250 1.620 0.219 1.755 11
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is a statistic that is adjusted for the “size” of the model, that is, the number of factors. The
adjusted R2 can actually decrease if nonsignificant terms are added to a model. The PRESS
statistic is a measure of how well the model will predict new data. (PRESS is actually an
acronym for prediction error sum of squares, and it is computed as the sum of the squared
prediction errors obtained by predicting the ith data point with a model that includes all obser-
vations except the ith one.) A model with a small value of PRESS indicates that the model is
likely to be a good predictor. The “Prediction R2” statistic is computed as

This indicates that the full model would be expected to explain about 86 percent of the vari-
ability in new data.

The next portion of the output presents the regression coefficient for each model term
and the standard error of each coefficient, defined as

The standard errors of all model coefficients are equal because the design is orthogonal. The
95 percent confidence intervals on each regression coefficient are computed from

where the degrees of freedom on t are the number of degrees of freedom for error; that is,
N is the total number of runs in the experiment (16), and p is the number of model para-
meters (8). The full model in terms of both the coded variables and the natural variables is
also presented.

The last part of the display in Table 6.7 illustrates the output following the removal of
the nonsignificant interaction terms. This reduced model now contains only the main effects
A, C, and the AC interaction. The error or residual sum of squares is now composed of a
pure error component arising from the replication of the eight corners of the cube and a lack-
of-fit component consisting of the sums of squares for the factors that were dropped from the
model (B, AB, BC, and ABC). Once again, the regression model representation of the experi-
mental results is given in terms of both coded and natural variables. The proportion of total vari-
ability in etch rate that is explained by this model is

which is smaller than the R2 for the full model. Notice, however, that the adjusted R2 for the
reduced model is actually slightly larger than the adjusted R2 for the full model, and PRESS
for the reduced model is considerably smaller, leading to a larger value of for the reduced
model. Clearly, removing the nonsignificant terms from the full model has produced a final
model that is likely to function more effectively as a predictor of new data. Notice that the
confidence intervals on the regression coefficients for the reduced model are shorter than the
corresponding confidence intervals for the full model.

The last part of the output presents the residuals from the reduced model. Design-
Expert will also construct all of the residual plots that we have previously discussed.

Other Methods for Judging the Significance of Effects. The analysis of variance
is a formal way to determine which factor effects are nonzero. Several other methods are use-
ful. Below, we show how to calculate the standard error of the effects, and we use these stan-
dard errors to construct confidence intervals on the effects. Another method, which we will
illustrate in Section 6.5, uses normal probability plots to assess the importance of the effects.

R2
Pred

R2 �
SSModel

SSTotal
�

5.106 �  105

5.314 �  105
� 0.9608

�̂ � t0.025,N�pse( �̂) � � � �̂ � t0.025,N�pse(�̂)

se(�̂) � �V(�̂) � �MSE

n2k
� �MSE

N
� �2252.56

2(8)
� 11.87

R2
Pred � 1 �

PRESS
SSTotal

� 1 �
72,082.00

5.314 �  105
� 0.8644
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The standard error of an effect is easy to find. If we assume that there are n replicates
at each of the 2k runs in the design, and if yi1, yi2, . . . , yin are the observations at the ith run,
then

is an estimate of the variance at the ith run. The 2k variance estimates can be combined to give
an overall variance estimate:

(6.19)

This is also the variance estimate given by the error mean square in the analysis of variance.
The variance of each effect estimate is

Each contrast is a linear combination of 2k treatment totals, and each total consists of n obser-
vations. Therefore,

and the variance of an effect is

The estimated standard error would be found by replacing �2 by its estimate S2 and taking the
square root of this last expression:

(6.20)

Notice that the standard error of an effect is twice the standard error of an estimated
regression coefficient in the regression model for the 2k design (see the Design-Expert com-
puter output for Example 6.1). It would be possible to test the significance of any effect by
comparing the effect estimates to its standard error:

This is a t statistic with N � p degrees of freedom.
The 100(1 � 	) percent confidence intervals on the effects are computed from Effect


 t	/2,N�pse(Effect), where the degrees of freedom on t are just the error or residual degrees
of freedom (N � p � total number of runs � number of model parameters).

To illustrate this method, consider the plasma etching experiment in Example 6.1. The
mean square error for the full model is MSE � 2252.56. Therefore, the standard error of each
effect is (using S2 � MSE)

se(Effect) �
2S

�n2k
�

2�2252.56
�2(23)

� 23.73

t0 �
Effect

se(Effect)

se(Effect) �
2S

�n2k

V(Effect) �
1

(n2k�1)2
n2k� 2 �

1
n2k�2

� 2

V(Contrast) � n2k� 2

�
1

(n2k�1)2
V(Contrast)

V(Effect) � V �Contrast
n2k�1 �

S 2 �
1

2k(n � 1)
�
2k

i�1
�
n

j�1
 (yij � yi)

2

S 2
i �

1
n � 1 �

n

j�1
 (yij � yi)

2   i � 1, 2, . . . , 2k
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Now t0.025,8 � 2.31 and t0.025,8 se(Effect) � 2.31(23.73) � 54.82, so approximate 95
percent confidence intervals on the factor effects are

This analysis indicates that A, C, and AC are important factors because they are the only factor
effect estimates for which the approximate 95 percent confidence intervals do not include zero.

Dispersion Effects. The process engineer working on the plasma etching tool was
also interested in dispersion effects; that is, do any of the factors affect variability in etch rate
from run to run? One way to answer the question is to look at the range of etch rates for each
of the eight runs in the 23 design. These ranges are plotted on the cube in Figure 6.8. Notice
that the ranges in etch rates are much larger when both Gap and Power are at their high lev-
els, indicating that this combination of factor levels may lead to more variability in etch rate
than other recipes. Fortunately, etch rates in the desired range of 900 Å/m can be achieved
with settings of Gap and Power that avoid this situation.

6.4 The General 2k Design

The methods of analysis that we have presented thus far may be generalized to the case of a
2k factorial design, that is, a design with k factors each at two levels. The statistical model
for a 2k design would include k main effects, two-factor interactions, three-factor inter-
actions, . . . , and one k-factor interaction. That is, the complete model would contain 2k � 1
effects for a 2k design. The notation introduced earlier for treatment combinations is also used
here. For example, in a 25 design abd denotes the treatment combination with factors A, B,
and D at the high level and factors C and E at the low level. The treatment combinations may
be written in standard order by introducing the factors one at a time, with each new factor
being successively combined with those that precede it. For example, the standard order for
a 24 design is (1), a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd, and abcd.

The general approach to the statistical analysis of the 2k design is summarized in Table
6.8. As we have indicated previously, a computer software package is usually employed in
this analysis process.

(k
3 )(k

2 )

ABC:  5.625 
 54.82
BC: �2.125 
 54.82
AC:   �153.625 
 54.82
AB: �24.875 
 54.82

C:  306.125 
 54.82
B:  7.375 
 54.82
A: �101.625 
 54.82

Power (C)

Gap (A)

C2 F6 Flow

325 w
R = 15 

R = 59 

R = 12 

R = 32 R = 7

R = 119 

R = 19

R = 131

225 w

0.80 cm 1.20 cm 

125 sccm 

200 sccm 

–
–

–

+

+

+

■ F I G U R E  6 . 8 Ranges
of etch rates for Example 6.1
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The sequence of steps in Table 6.8 should, by now, be familiar. The first step is to esti-
mate factor effects and examine their signs and magnitudes. This gives the experimenter pre-
liminary information regarding which factors and interactions may be important and in which
directions these factors should be adjusted to improve the response. In forming the initial
model for the experiment, we usually choose the full model, that is, all main effects and inter-
actions, provided that at least one of the design points has been replicated (in the next section,
we discuss a modification to this step). Then in step 3, we use the analysis of variance to for-
mally test for the significance of main effects and interaction. Table 6.9 shows the general
form of an analysis of variance for a 2k factorial design with n replicates. Step 4, refine the

■ TA B L E  6 . 9
Analysis of Variance for a 2k Design

Source of Sum of Degrees of
Variation Squares Freedom

k main effects

A SSA 1

B SSB 1

K SSK 1

two-factor interactions

AB SSAB 1

AC SSAC 1

JK SSJK 1

three-factor interactions

ABC SSABC 1

ABD SSABD 1

IJK SSIJK 1

k-factor interaction

SS 1

Error SSE 2k(n � 1)

Total SST n2k � 1

ABC Á KABC Á K
(k

k)
ooo

ooo

(k
3)

ooo

(k
2)

ooo

■ TA B L E  6 . 8
Analysis Procedure for a 2k Design

1. Estimate factor effects

2. Form initial model

a. If the design is replicated, fit the full model

b. If there is no replication, form the model
using a normal probability plot of the effects

3. Perform statistical testing

4. Refine model

5. Analyze residuals

6. Interpret results 
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model, usually consists of removing any nonsignificant variables from the full model. Step 5
is the usual residual analysis to check for model adequacy and assumptions. Sometimes
model refinement will occur after residual analysis if we find that the model is inadequate or
assumptions are badly violated. The final step usually consists of graphical analysis—either
main effect or interaction plots, or response surface and contour plots.

Although the calculations described above are almost always done with a computer,
occasionally it is necessary to manually calculate an effect estimate or sum of squares for an
effect. To estimate an effect or to compute the sum of squares for an effect, we must first
determine the contrast associated with that effect. This can always be done by using a table
of plus and minus signs, such as Table 6.2 or Table 6.3. However, this is awkward for large
values of k and we can use an alternate method. In general, we determine the contrast for
effect by expanding the right-hand side of

(6.21)

In expanding Equation 6.21, ordinary algebra is used with “1” being replaced by (1) in the
final expression. The sign in each set of parentheses is negative if the factor is included in the
effect and positive if the factor is not included.

To illustrate the use of Equation 6.21, consider a 23 factorial design. The contrast for AB
would be

As a further example, in a 25 design, the contrast for ABCD would be

Once the contrasts for the effects have been computed, we may estimate the effects and
compute the sums of squares according to

(6.22)

and

(6.23)

respectively, where n denotes the number of replicates. There is also a tabular algorithm due
to Frank Yates that can occasionally be useful for manual calculation of the effect estimates
and the sums of squares. Refer to the supplemental text material for this chapter.

6.5 A Single Replicate of the 2k Design

For even a moderate number of factors, the total number of treatment combinations in a 2k

factorial design is large. For example, a 25 design has 32 treatment combinations, a 26 design
has 64 treatment combinations, and so on. Because resources are usually limited, the number
of replicates that the experimenter can employ may be restricted. Frequently, available

SSAB Á K �
1

n2k
(ContrastAB Á K)2

AB Á K �
2

n2k
(ContrastAB Á K)

 � be � ce � abce � de � abde � acde � bcde

 � abc � d � abd � acd � bcd � ae

 � ad � bc � ac � ab � (1) � a � b � c

 � ace � abe � e � abcd � cd � bd

� abcde � cde � bde � ade � bce

 ContrastABCD � (a � 1)(b � 1)(c � 1)(d � 1)(e � 1)

� abc � ab � c � (1) � ac � bc � a � b

 ContrastAB � (a � 1)(b � 1)(c � 1)

ContrastAB Á K � (a 
 1)(b 
 1) Á (k 
 1)

AB Á K
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resources only allow a single replicate of the design to be run, unless the experimenter is
willing to omit some of the original factors.

An obvious risk when conducting an experiment that has only one run at each test com-
bination is that we may be fitting a model to noise. That is, if the response y is highly vari-
able, misleading conclusions may result from the experiment. The situation is illustrated in
Figure 6.9a. In this figure, the straight line represents the true factor effect. However, because
of the random variability present in the response variable (represented by the shaded band),
the experimenter actually obtains the two measured responses represented by the dark dots.
Consequently, the estimated factor effect is close to zero, and the experimenter has reached
an erroneous conclusion concerning this factor. Now if there is less variability in the response,
the likelihood of an erroneous conclusion will be smaller. Another way to ensure that reliable
effect estimates are obtained is to increase the distance between the low (�) and high (�) lev-
els of the factor, as illustrated in Figure 6.9b. Notice that in this figure, the increased distance
between the low and high factor levels results in a reasonable estimate of the true factor effect.

The single-replicate strategy is often used in screening experiments when there are rel-
atively many factors under consideration. Because we can never be entirely certain in such
cases that the experimental error is small, a good practice in these types of experiments is to
spread out the factor levels aggressively. You might find it helpful to reread the guidance on
choosing factor levels in Chapter 1.

A single replicate of a 2k design is sometimes called an unreplicated factorial. With
only one replicate, there is no internal estimate of error (or “pure error”). One approach to the
analysis of an unreplicated factorial is to assume that certain high-order interactions are neg-
ligible and combine their mean squares to estimate the error. This is an appeal to the sparsity
of effects principle; that is, most systems are dominated by some of the main effects and low-
order interactions, and most high-order interactions are negligible.

While the effect sparsity principle has been observed by experimenters for many decades,
only recently has it been studied more objectively. A paper by Li, Sudarsanam, and Frey (2006)
studied 113 response variables obtained from 43 published experiments from a wide range of sci-
ence and engineering disciplines. All of the experiments were full factorials with between three
and seven factors, so no assumptions had to be made about interactions. Most of the experiments
had either three or four factors. The authors found that about 40 percent of the main effects in
the experiments they studied were significant, while only about 11 percent of the two-factor inter-
actions were significant. Three-factor interactions were very rare, occurring only about 5 percent
of the time. The authors also investigated the absolute values of factor effects for main effects,
two-factor interactions, and three-factor interactions. The median of main effect strength was
about four times larger than the median strength of two-factor interactions. The median strength
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factor effect
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(a) Small distance between factor levels
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■ F I G U R E  6 . 9 The impact of the choice of factor levels in an unreplicated design
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■ TA B L E  6 . 1 0
Pilot Plant Filtration Rate Experiment

Filtration
Run Factor Rate
Number A B C D Run Label (gal/h)

1 � � � � (1) 45

2 � � � � a 71

3 � � � � b 48

4 � � � � ab 65

5 � � � � c 68

6 � � � � ac 60

7 � � � � bc 80

8 � � � � abc 65

9 � � � � d 43

10 � � � � ad 100

11 � � � � bd 45

12 � � � � abd 104

13 � � � � cd 75

14 � � � � acd 86

15 � � � � bcd 70

16 � � � � abcd 96

E X A M P L E  6 . 2 A Single Replicate of the 24 Design

A chemical product is produced in a pressure vessel. A
factorial experiment is carried out in the pilot plant to
study the factors thought to influence the filtration rate of
this product. The four factors are temperature (A), pres-

sure (B), concentration of formaldehyde (C), and stirring
rate (D). Each factor is present at two levels. The design
matrix and the response data obtained from a single repli-
cate of the 24 experiment are shown in Table 6.10 and

of two-factor interactions was more than two times larger than the median strength of three-
factor interactions. However, there were many two- and three-factor interactions that were larger
than the median main effect. Another paper by Bergquist, Vanhatalo, and Nordenvaad (2011) also
studied the effect of the sparsity question using 22 different experiments with 35 responses. They
considered both full factorial and fractional factorial designs with factors at two levels. Their
results largely agree with those of Li et al. (2006), with the exception that three-factor interac-
tions were less frequent, occurring only about 2 percent of the time. This difference may be par-
tially explained by the inclusion of experiments with indications of curvature and the need for
transformations in the Li et al. (2006) study. Bergquist et al. (2011) excluded such experiments.
Overall, both of these studies confirm the validly of the sparsity of effects principle. 

When analyzing data from unreplicated factorial designs, occasionally real high-order
interactions occur. The use of an error mean square obtained by pooling high-order interactions
is inappropriate in these cases. A method of analysis attributed to Daniel (1959) provides a sim-
ple way to overcome this problem. Daniel suggests examining a normal probability plot of
the estimates of the effects. The effects that are negligible are normally distributed, with mean
zero and variance �2 and will tend to fall along a straight line on this plot, whereas significant
effects will have nonzero means and will not lie along the straight line. Thus, the preliminary
model will be specified to contain those effects that are apparently nonzero, based on the nor-
mal probability plot. The apparently negligible effects are combined as an estimate of error.
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■ TA B L E  6 . 1 1
Contrast Constants for the 24 Design

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

(1) � � � � � � � � � � � � � � �

a � � � � � � � � � � � � � � �

b � � � � � � � � � � � � � � �

ab � � � � � � � � � � � � � � �

c � � � � � � � � � � � � � � �

ac � � � � � � � � � � � � � � �

bc � � � � � � � � � � � � � � �

abc � � � � � � � � � � � � � � �

d � � � � � � � � � � � � � � �

ad � � � � � � � � � � � � � � �

bd � � � � � � � � � � � � � � �

abd � � � � � � � � � � � � � � �

cd � � � � � � � � � � � � � � �

acd � � � � � � � � � � � � � � �

bcd � � � � � � � � � � � � � � �

abcd � � � � � � � � � � � � � � � 

■ TA B L E  6 . 1 2
Factor Effect Estimates and Sums of Squares for the 24

Factorial in Example 6.2

Model Effect Sum of Percent
Term Estimate Squares Contribution

A 21.625 1870.56 32.6397

B 3.125 39.0625 0.681608

C 9.875 390.062 6.80626

D 14.625 855.563 14.9288

AB 0.125 0.0625 0.00109057

AC �18.125 1314.06 22.9293

AD 16.625 1105.56 19.2911

BC 2.375 22.5625 0.393696

BD �0.375 0.5625 0.00981515

CD �1.125 5.0625 0.0883363

ABC 1.875 14.0625 0.245379

ABD 4.125 68.0625 1.18763

ACD �1.625 10.5625 0.184307

BCD �2.625 27.5625 0.480942

ABCD 1.375 7.5625 0.131959 

Figure 6.10. The 16 runs are made in random order. The
process engineer is interested in maximizing the filtration
rate. Current process conditions give filtration rates of
around 75 gal/h. The process also currently uses the con-
centration of formaldehyde, factor C, at the high level.
The engineer would like to reduce the formaldehyde con-
centration as much as possible but has been unable to do
so because it always results in lower filtration rates.

We will begin the analysis of these data by constructing
a normal probability plot of the effect estimates. The table
of plus and minus signs for the contrast constants for the 24

design are shown in Table 6.11. From these contrasts, we
may estimate the 15 factorial effects and the sums of
squares shown in Table 6.12.

68 60

80 65

45 71

48 65

75 86

70

D
+–

96

43 100

45 104

B

C

A

■ F I G U R E  6 . 1 0 Data from the pilot plant filtra-
tion rate experiment for Example 6.2
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■ F I G U R E  6 . 1 2 Main effect and interaction plots for Example 6.2
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■ F I G U R E  6 . 1 1 Normal probability plot of
the effects for the 24 factorial in Example 6.2

The normal probability plot of these effects is shown in
Figure 6.11. All of the effects that lie along the line are neg-
ligible, whereas the large effects are far from the line. The
important effects that emerge from this analysis are the
main effects of A, C, and D and the AC and AD interactions.

The main effects of A, C, and D are plotted in Figure
6.12a. All three effects are positive, and if we considered
only these main effects, we would run all three factors at
the high level to maximize the filtration rate. However, it is
always necessary to examine any interactions that are
important. Remember that main effects do not have much
meaning when they are involved in significant interactions.

The AC and AD interactions are plotted in Figure 6.12b.
These interactions are the key to solving the problem. Note
from the AC interaction that the temperature effect is very
small when the concentration is at the high level and very
large when the concentration is at the low level, with the
best results obtained with low concentration and high tem-
perature. The AD interaction indicates that stirring rate D
has little effect at low temperature but a large positive
effect at high temperature. Therefore, the best filtration
rates would appear to be obtained when A and D are at the
high level and C is at the low level. This would allow the
reduction of the formaldehyde concentration to a lower
level, another objective of the experimenter.
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Design Projection. Another interpretation of the effects in Figure 6.11 is possible.
Because B (pressure) is not significant and all interactions involving B are negligible, we may
discard B from the experiment so that the design becomes a 23 factorial in A, C, and D with
two replicates. This is easily seen from examining only columns A, C, and D in the design
matrix shown in Table 6.10 and noting that those columns form two replicates of a 23 design.
The analysis of variance for the data using this simplifying assumption is summarized in
Table 6.13. The conclusions that we would draw from this analysis are essentially unchanged
from those of Example 6.2. Note that by projecting the single replicate of the 24 into a repli-
cated 23, we now have both an estimate of the ACD interaction and an estimate of error based
on what is sometimes called hidden replication.

The concept of projecting an unreplicated factorial into a replicated factorial in fewer
factors is very useful. In general, if we have a single replicate of a 2k design, and if h (h � k)
factors are negligible and can be dropped, then the original data correspond to a full two-level
factorial in the remaining k � h factors with 2h replicates.

Diagnostic Checking. The usual diagnostic checks should be applied to the residu-
als of a 2k design. Our analysis indicates that the only significant effects are A � 21.625,
C � 9.875, D � 14.625, AC � �18.125, and AD � 16.625. If this is true, the estimated fil-
tration rates are given by

where 70.06 is the average response, and the coded variables x1, x3, x4 take on values between
�1 and �1. The predicted filtration rate at run (1) is

� 46.22

� �18.125
2 �(�1)(�1) � �16.625

2 �(�1)(�1)

ŷ � 70.06 � �21.625
2 �(�1) � �9.875

2 �(�1) � �14.625
2 �(�1)

� �16.625
2 � x1x4

ŷ � 70.06 � �21.625
2 � x1 � �9.875

2 � x3 � �14.625
2 � x4 � �18.125

2 � x1x3

■ TA B L E  6 . 1 3
Analysis of Variance for the Pilot Plant Filtration Rate Experiment in A, C, and D

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

A 1870.56 1 1870.56 83.36 �0.0001

C 390.06 1 390.06 17.38 �0.0001

D 855.56 1 855.56 38.13 �0.0001

AC 1314.06 1 1314.06 58.56 �0.0001

AD 1105.56 1 1105.56 49.27 �0.0001

CD 5.06 1 5.06 �1

ACD 10.56 1 10.56 �1

Error 179.52 8 22.44

Total 5730.94 15



6.5 A Single Replicate of the 2k Design 261

Because the observed value is 45, the residual is e � y � � 45 � 46.25 � �1.25. The val-
ues of y, , and e � y � for all 16 observations are as follows:

y e � y �

(1) 45 46.25 �1.25
a 71 69.38 1.63
b 48 46.25 1.75
ab 65 69.38 �4.38
c 68 74.25 �6.25
ac 60 61.13 �1.13
bc 80 74.25 5.75
abc 65 61.13 3.88
d 43 44.25 �1.25
ad 100 100.63 �0.63
bd 45 44.25 0.75
abd 104 100.63 3.38
cd 75 72.25 2.75
acd 86 92.38 �6.38
bcd 70 72.25 �2.25
abcd 96 92.38 3.63

A normal probability plot of the residuals is shown in Figure 6.13. The points on this plot lie
reasonably close to a straight line, lending support to our conclusion that A, C, D, AC, and AD
are the only significant effects and that the underlying assumptions of the analysis are satisfied.

The Response Surface. We used the interaction plots in Figure 6.12 to provide a prac-
tical interpretation of the results of this experiment. Sometimes we find it helpful to use the
response surface for this purpose. The response surface is generated by the regression model

� �18.125
2 � x1x3 � �16.625

2 � x1x4

ŷ � 70.06 � �21.625
2 � x1 � �9.875

2 � x3 � �14.625
2 � x4

ŷŷ

ŷŷ
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■ F I G U R E  6 . 1 3
Normal probability
plot of residuals for
Example 6.2
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Figure 6.14a shows the response surface contour plot when stirring rate is at the high level
(i.e., x4 � 1). The contours are generated from the above model with x4 � 1, or

Notice that the contours are curved lines because the model contains an interaction term.
Figure 6.14b is the response surface contour plot when temperature is at the high level

(i.e., x1 � 1). When we put x1 � 1 in the regression model, we obtain

These contours are parallel straight lines because the model contains only the main effects of
factors C (x3) and D (x4).

Both contour plots indicate that if we want to maximize the filtration rate, variables 
A (x1) and D (x4) should be at the high level and that the process is relatively robust to con-
centration C. We obtained similar conclusions from the interaction graphs.

The Half-Normal Plot of Effects. An alternative to the normal probability plot of
the factor effects is the half-normal plot. This is a plot of the absolute value of the effect
estimates against their cumulative normal probabilities. Figure 6.15 presents the half-normal
plot of the effects for Example 6.2. The straight line on the half-normal plot always passes
through the origin and should also pass close to the fiftieth percentile data value. Many ana-
lysts feel that the half-normal plot is easier to interpret, particularly when there are only a few
effect estimates such as when the experimenter has used an eight-run design. Some software
packages will construct both plots.

Other Methods for Analyzing Unreplicated Factorials. The standard analysis
procedure for an unreplicated two-level factorial design is the normal (or half-normal) plot of
the estimated factor effects. However, unreplicated designs are so widely used in practice that
many formal analysis procedures have been proposed to overcome the subjectivity of the nor-
mal probability plot. Hamada and Balakrishnan (1998) compared some of these methods.
They found that the method proposed by Lenth (1989) has good power to detect significant
effects. It is also easy to implement, and as a result it appears in several software packages for
analyzing data from unreplicated factorials. We give a brief description of Lenth’s method.

ŷ � 80.8725 � �8.25
2 � x3 � �31.25

2 � x4
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2 � x1x3
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Suppose that we have m contrasts of interest, say c1, c2, . . . , cm. If the design is an
unreplicated 2k factorial design, these contrasts correspond to the m � 2k � 1 factor effect
estimates. The basis of Lenth’s method is to estimate the variance of a contrast from the
smallest (in absolute value) contrast estimates. Let

and

PSE is called the “pseudostandard error,” and Lenth shows that it is a reasonable estimator of the
contrast variance when there are only a few active (significant) effects. The PSE is used to judge
the significance of contrasts. An individual contrast can be compared to the margin of error

where the degrees of freedom are defined as d � m/3. For inference on a group of contrasts,
Lenth suggests using the simultaneous margin of error

where the percentage point of the t distribution used is � � 1 � (1 � 0.951/m)/2.
To illustrate Lenth’s method, consider the 24 experiment in Example 6.2. The calcula-

tions result in s0 � 1.5 � ��2.625� � 3.9375 and 2.5 � 3.9375 � 9.84375, so

Now consider the effect estimates in Table 6.12. The SME criterion would indicate that the four
largest effects (in magnitude) are significant because their effect estimates exceed SME. The
main effect of C is significant according to the ME criterion, but not with respect to SME.
However, because the AC interaction is clearly important, we would probably include C in the
list of significant effects. Notice that in this example, Lenth’s method has produced the same
answer that we obtained previously from examination of the normal probability plot of effects.

Several authors [see Loughin and Nobel (1997), Hamada and Balakrishnan (1998),
Larntz and Whitcomb (1998), Loughin (1998), and Edwards and Mee (2008)] have observed

SME � 5.219 � 2.625 � 13.70

ME � 2.571 � 2.625 � 6.75

PSE � 1.5 � �1.75 � � 2.625

SME � t�,d � PSE

ME � t0.025,d � PSE

PSE � 1.5 � median(�cj ���cj � �  2.5s0)

s0 � 1.5 � median(�cj �)
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that Lenth’s method results in values of ME and SME that  are too conservative and have lit-
tle power to detect significant effects. Simulation methods can be used to calibrate his proce-
dure. Larntz and Whitcomb (1998) suggest replacing the original ME and SME multipliers
with adjusted multipliers as follows:

Number of Contrasts 7 15 31

Original ME 3.764 2.571 2.218

Adjusted ME 2.295 2.140 2.082

Original SME 9.008 5.219 4.218

Adjusted SME 4.891 4.163 4.030

These are in close agreement with the results in Ye and Hamada (2000).
The JMP software package implements Lenth’s method as part of the screening plat-

form analysis procedure for two-level designs. In their implementation, P-values for each fac-
tor and interaction are computed from a “real-time” simulation. This simulation assumes that
none of the factors in the experiment are significant and calculates the observed value of the
Lenth statistic 10,000 times for this null model. Then P-values are obtained by determining
where the observed Lenth statistics fall relative to the tails of these simulation-based refer-
ence distributions. These P-values can be used as guidance in selecting factors for the model.
Table 6.14 shows the JMP output from the screening analysis platform for the resin filtration
rate experiment in Example 6.2. Notice that in addition to the Lenth statistics, the JMP out-
put includes a half-normal plot of the effects and a “Pareto” chart of the effect (contrast) mag-
nitudes. When the factors are entered into the model, the Lenth procedure would recommend
including the same factors in the model that we identified previously.

The final JMP output for the fitted model is shown in Table 6.15. The Prediction Profiler
at the bottom of the table has been set to the levels of the factors than maximize filtration rate.
These are the same settings that we determined earlier by looking at the contour plots.

In general, the Lenth method is a clever and very useful procedure. However, we rec-
ommend using it as a supplement to the usual normal probability plot of effects, not as a
replacement for it.

Bisgaard (1998–1999) has provided a nice graphical technique, called a conditional
inference chart, to assist in interpreting the normal probability plot. The purpose of the graph
is to help the experimenter in judging significant effects. This would be relatively easy if the
standard deviation � were known, or if it could be estimated from the data. In unreplicated
designs, there is no internal estimate of �, so the conditional inference chart is designed to
help the experimenter evaluate effect magnitude for a range of standard deviation values.
Bisgaard bases the graph on the result that the standard error of an effect in a two-level design
with N runs (for an unreplicated factorial, N � 2k) is

where � is the standard deviation of an individual observation. Then 
2 times the standard
error of an effect is

Once the effects are estimated, plot a graph as shown in Figure 6.16, with the effect estimates plot-
ted along the vertical or y-axis. In this figure, we have used the effect estimates from Example 6.2.
The horizontal, or x-axis, of Figure 6.16 is a standard deviation (�) scale. The two lines are at

y � �
4�

�N
  and   y � �

4�

�N

� 4�

�N

2�

�N
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■ TA B L E  6 . 1 4
JMP Screening Platform Output for Example 6.2

Response Y
Summary of Fit

RSquare 1
RSquare Adj -
Root Mean Square Error -
Mean of Response 70.0625
Observations (or Sum Wgts) 16

Sorted Parameter Estimates

Relative Pseudo Pseudo 
Term Estimate Std Error t-Ratio Pseudo t-Ratio p-Value
Temp 10.8125 0.25 8.24 0.0004*
Temp*Conc �9.0625 0.25 �6.90 0.0010*
Temp*StirR 8.3125 0.25 6.33 0.0014*
StirR 7.3125 0.25 5.57 0.0026*
Conc 4.9375 0.25 3.76 0.0131*
Temp*Pressure*StirR 2.0625 0.25 1.57 0.1769
Pressure 1.5625 0.25 1.19 0.2873
Pressure*Conc*StirR �1.3125 0.25 �1.00 0.3632
Pressure*Conc 1.1875 0.25 0.90 0.4071
Temp*Pressure*Conc 0.9375 0.25 0.71 0.5070
Temp*Conc*StirR �0.8125 0.25 �0.62 0.5630
Temp*Pressure*Conc*StirR 0.6875 0.25 0.52 0.6228
Conc*StirR �0.5625 0.25 �0.43 0.6861
Pressure*StirR �0.1875 0.25 �0.14 0.8920
Temp*Pressure 0.0625 0.25 0.05 0.9639

No error degrees of freedom, so ordinary tests uncomputable. Relative Std Error corresponds to residual standard error of 1.
Pseudo t-Ratio and p-Value calculated using Lenth PSE � 1.3125 and DFE � 5

Effect Screening
The parameter estimates have equal variances.
The parameter estimates are not correlated.

Lenth PSE
1.3125

Orthog t Test used Pseudo Standard Error

Normal Plot

Blue line is Lenth’s PSE, from the estimates population
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JMP Output for the Fitted Model Example 6.2

Response Filtration Rate Actual by Predicted Plot
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RSquare Adj 0.948929

Root Mean Square Error 4.417296

Mean of Response 70.0625

Observations (or Sum Wgts) 16

Analysis of Variance

Sum of

Source DF Squares Mean Square F Ratio

Model 5 5535.8125 1107.16 56.7412

Error 10 195.1250 19.51 Prob � F

C. Total 15 5730.9375 �.0001*

Prob � |t|
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Sum of Mean F Ratio

Source DF Squares Square 0.3482

Lack of Fit 2 15.62500 7.8125 Prob � F

Pure Error 8 179.50000 22.4375 0.7162

Total Error 10 195.12500 Max RSq

0.9687

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

Intercept 70.0625 1.104324 63.44 �.0001*

Temperature 10.8125 1.104324 9.79 �.0001*

Stirring Rate 7.3125 1.104324 6.62 �.0001*

Concentration 4.9375 1.104324 4.47 0.0012*

Temperature 8.3125 1.104324 7.53 �.0001*
*Stirring Rate

Temperature �9.0625 1.104324 �8.21 �.0001*
*Concentration

Sorted Parameter Estimates

Term Estimate Std Error t Ratio

Temperature 10.8125 1.104324 9.79

Temperature *Concentration �9.0625 1.104324 �8.21

Temperature *Stirring Rate 8.3125 1.104324 7.53

Stirring Rate 7.3125 1.104324 6.62

Concentration 4.9375 1.104324 4.47
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In our example, N � 16, so the lines are at y � �� and y � ��. Thus, for any given value
of the standard deviation �, we can read off the distance between these two lines as an approx-
imate 95 percent confidence interval on the negligible effects.

In Figure 6.16, we observe that if the experimenter thinks that the standard deviation is
between 4 and 8, then factors A, C, D, and the AC and AD interactions are significant. If he or
she thinks that the standard deviation is as large as 10, factor C may not be significant. That is,
for any given assumption about the magnitude of �, the experimenter can construct a “yardstick”
for judging the approximate significance of effects. The chart can also be used in reverse. For
example, suppose that we were uncertain about whether factor C is significant. The experimenter
could then ask whether it is reasonable to expect that � could be as large as 10 or more. If it is
unlikely that � is as large as 10, then we can conclude that C is significant.

Effect of Outliers in Unreplicated Designs. Experimenters often worry about the
impact of outliers in unreplicated designs, concerned that the outlier will invalidate the analy-
sis and render the results of the experiment useless. This usually isn’t a major concern. The
reason for this is that the effect estimates are reasonably robust to outliers. To see this,
consider an unreplicated 24 design with an outlier for (say) the cd treatment combination. The
effect of any factor, say for example A, is

and the cd response appears in only one of the averages, in this case . The average is
an average of eight observations (half of the 16 runs in the 24), so the impact of the outlier cd
is damped out by averaging it with the other seven runs. This will happen with all of the other
effect estimates. As an illustration, consider the 24 design in the resin filtration rate experi-
ment of Example 6.2. Suppose that the run (the correct response was 75). Figure
6.17a shows the half-normal plot of the effects. It is obvious that the correct set of important
effects is identified on the graph. However, the half-normal plot gives an indication that an out-
lier may be present. Notice that the straight line identifying the nonsignificant effects does not
point toward the origin. In fact, the reference line from the origin is not even close to the

cd � 375

yA�yA�

A � yA� � yA�
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inference chart for Example 6.2
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collection of nonsignificant effects. A full normal probability plot would also have provided
evidence of an outlier. The normal probability plot for this example is shown in Figure 6.17b.
Notice that there are two distinct lines on the normal probability plot, not a single line passing
through the nonsignificant effects. This is usually a strong indication that on outlier is present.

The illustration here involves a very severe outlier (375 instead of 75). This outlier is so
dramatic that it would likely be spotted easily just by looking at the sample data or certainly
by examining the residuals.

What should we do when an outlier is present? If it is a simple data recording or trans-
position error, an experimenter may be able to correct the outlier, replacing it with the right
value. One suggestion is to replace it by an estimate (following the tactic introduced in
Chapter 4 for blocked designs). This will preserve the orthogonality of the design and make
interpretation easy. Replacing the outlier with an estimate that makes the highest order inter-
action estimate zero (in this case, replacing cd with a value that makes ) is one
option. Discarding the outlier and analyzing the remaining observations is another option.
This same approach would be used if one of the observations from the experiment is miss-
ing. Exercise 6.32 asks the reader to follow through with this suggestion for Example 6.2.

Modern computer software can analyze the data from 2k designs with missing values
because they use the method of least squares to estimate the effects, and least squares does not
require an orthogonal design. The impact of this is that the effect estimates are no longer uncor-
related as they would be from an orthogonal design. The normal probability plotting technique
requires that the effect estimates be uncorrelated with equal variance, but the degree of correla-
tion introduced by a missing observation is relatively small in 2k designs where the number of fac-
tor k is at least four. The correlation between the effect estimates and the model regression coef-
ficients will not usually cause significant problems in interpreting the normal probability plot.

Figure 6.18 presents the half-normal probability plot obtained for the effect estimates
if the outlier observation in Example 6.2 is omitted. This plot is easy to interpret,
and exactly the same significant effects are identified as when the full set of experimental
data was used. The correlation between design factors in this situation is . It can be
shown that the correlation between the model regression coefficients is larger, that is 
0.5, but
this still does not lead to any difficulty in interpreting the half-normal probability plot.

6.6 Additional Examples of Unreplicated 2k Designs

Unreplicated 2k designs are widely used in practice. They may be the most common variation
of the 2k design. This section presents four interesting applications of these designs, illustrat-
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E X A M P L E  6 . 3 Data Transformation in a Factorial Design

Daniel (1976) describes a 24 factorial design used to study
the advance rate of a drill as a function of four factors: drill
load (A), flow rate (B), rotational speed (C), and the type of
drilling mud used (D). The data from the experiment are
shown in Figure 6.19.

The normal probability plot of the effect estimates from
this experiment is shown in Figure 6.20. Based on this plot,
factors B, C, and D along with the BC and BD interactions
require interpretation. Figure 6.21 is the normal probability
plot of the residuals and Figure 6.22 is the plot of the resid-
uals versus the predicted advance rate from the model con-
taining the identified factors. There are clearly problems
with normality and equality of variance. A data transforma-

tion is often used to deal with such problems. Because the
response variable is a rate, the log transformation seems a
reasonable candidate.

Figure 6.23 presents a normal probability plot of the
effect estimates following the transformation y* � ln y.
Notice that a much simpler interpretation now seems possi-
ble because only factors B, C, and D are active. That is,
expressing the data in the correct metric has simplified its
structure to the point that the two interactions are no longer
required in the explanatory model.

Figures 6.24 and 6.25 present, respectively, a normal
probability plot of the residuals and a plot of the residuals
versus the predicted advance rate for the model in the log
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experiment of Example 6.3
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Residuals
–2 –1 0 1 2

1

5

10

20
30

50

70

90

95

99

80

N
o

rm
al

 p
ro

b
ab

ili
ty

 (
1 

– 
P

j)
× 

10
0

P
j

× 
10

0

1

5

10

20
30

50

70
80

90

95

99

Predicted advance rate
2 5 8 11 14

R
es

id
ua

ls

–2

–1

0

1

2

■ F I G U R E  6 . 2 2 Plot of residuals ver-
sus predicted advance rate for Example 6.3
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■ F I G U R E  6 . 2 3 Normal probability plot of
effects for Example 6.3 following log transformation

■ F I G U R E  6 . 2 1 Normal probability plot of
residuals for Example 6.3

scale containing B, C, and D. These plots are now satisfac-
tory. We conclude that the model for y* � ln y requires only
factors B, C, and D for adequate interpretation. The
ANOVA for this model is summarized in Table 6.16. The
model sum of squares is

and R2 � SSModel/SST � 7.115/7.288 � 0.98, so the model
explains about 98 percent of the variability in the drill
advance rate.
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■ TA B L E  6 . 1 6
Analysis of Variance for Example 6.3 following the Log Transformation

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0 P-Value

B (Flow) 5.345 1 5.345 381.79 �0.0001

C (Speed) 1.339 1 1.339 95.64 �0.0001

D (Mud) 0.431 1 0.431 30.79 �0.0001

Error 0.173 12 0.014

Total 7.288 15 

E X A M P L E  6 . 4 Location and Dispersion Effects in an Unreplicated
Factorial

A 24 design was run in a manufacturing process producing
interior sidewall and window panels for commercial air-
craft. The panels are formed in a press, and under present
conditions the average number of defects per panel in a
press load is much too high. (The current process average
is 5.5 defects per panel.) Four factors are investigated using
a single replicate of a 24 design, with each replicate corre-
sponding to a single press load. The factors are temperature
(A), clamp time (B), resin flow (C), and press closing time
(D). The data for this experiment are shown in Figure 6.26.

A normal probability plot of the factor effects is shown in
Figure 6.27. Clearly, the two largest effects are A � 5.75 and
C � �4.25. No other factor effects appear to be large, and A
and C explain about 77 percent of the total variability. We
therefore conclude that lower temperature (A) and higher
resin flow (C) would reduce the incidence of panel defects.

Careful residual analysis is an important aspect of any
experiment. A normal probability plot of the residuals
showed no anomalies, but when the experimenter plotted
the residuals versus each of the factors A through D, the
plot of residuals versus B (clamp time) presented the
pattern shown in Figure 6.28. This factor, which is unim-
portant insofar as the average number of defects per panel
is concerned, is very important in its effect on process vari-
ability, with the lower clamp time resulting in less variabil-
ity in the average number of defects per panel in a press
load.
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process experiment of Example 6.4
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The residuals from a 2k design provide much information about the problem under
study. Because residuals can be thought of as observed values of the noise or error, they often
give insight into process variability. We can systematically examine the residuals from an
unreplicated 2k design to provide information about process variability.

Consider the residual plot in Figure 6.28. The standard deviation of the eight residu-
als where B is at the low level is S(B�) � 0.83, and the standard deviation of the eight
residuals where B is at the high level is S(B�) � 2.72. The statistic

(6.24)

has an approximate normal distribution if the two variances �2(B�) and �2(B�) are equal. To
illustrate the calculations, the value of is

Table 6.17 presents the complete set of contrasts for the 24 design along with the residuals
for each run from the panel process experiment in Example 6.4. Each column in this table con-
tains an equal number of plus and minus signs, and we can calculate the standard deviation of the
residuals for each group of signs in each column, say S(i�) and S(i�), i � 1, 2, . . . , 15. Then

(6.25)F*i � ln
S 2(i�)

S 2(i�)
  i � 1, 2, . . . , 15

� 2.37

� ln
(2.72)2

(0.83)2

F*B � ln
S 2(B�)

S 2(B�)

F*B

F*B � ln
S 2(B�)

S 2(B�)
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 timeR

es
id

u
al

s

0

5

–5

C = Resin
flow

A = Temperature (°F)

B = Clamp
time (min)

20

10

R = 0.5 

R = 1 

R = 3.5

R = 4.5 R = 6.5 

R = 2 

R = 4.5

295 325 

7

9

0.75

5.75

3.25 7.25

12.25

11.755.5

7.0

R = 1.5 

■ F I G U R E  6 . 2 8 Plot of residuals versus
clamp time for Example 6.4 ■ F I G U R E  6 . 2 9 Cube plot of temperature,

clamp time, and resin flow for Example 6.4

The dispersion effect of clamp time is also very evident
from the cube plot in Figure 6.29, which plots the average
number of defects per panel and the range of the number of
defects at each point in the cube defined by factors A, B, and
C. The average range when B is at the high level (the back
face of the cube in Figure 6.29) is � 4.75 and when B is
at the low level, it is � 1.25.RB�

RB�

As a result of this experiment, the engineer decided to run
the process at low temperature and high resin flow to reduce
the average number of defects, at low clamp time to reduce the
variability in the number of defects per panel, and at low press
closing time (which had no effect on either location or disper-
sion). The new set of operating conditions resulted in a new
process average of less than one defect per panel.
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is a statistic that can be used to assess the magnitude of the dispersion effects in the experi-
ment. If the variance of the residuals for the runs where factor i is positive equals the variance
of the residuals for the runs where factor i is negative, then has an approximate normal
distribution. The values of are shown below each column in Table 6.15.

Figure 6.30 is a normal probability plot of the dispersion effects . Clearly, B is an
important factor with respect to process dispersion. For more discussion of this procedure, see

F*i
F*i

F*i

■ TA B L E  6 . 1 7
Calculation of Dispersion Effects for Example 6.4

Run A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD Residual

1 � � � � � � � � � � � � � � � �0.94

2 � � � � � � � � � � � � � � � �0.69

3 � � � � � � � � � � � � � � � �2.44

4 � � � � � � � � � � � � � � � �2.69

5 � � � � � � � � � � � � � � � �1.19

6 � � � � � � � � � � � � � � � 0.56

7 � � � � � � � � � � � � � � � �0.19

8 � � � � � � � � � � � � � � � 2.06

9 � � � � � � � � � � � � � � � 0.06

10 � � � � � � � � � � � � � � � 0.81

11 � � � � � � � � � � � � � � � 2.06

12 � � � � � � � � � � � � � � � 3.81

13 � � � � � � � � � � � � � � � �0.69

14 � � � � � � � � � � � � � � � �1.44

15 � � � � � � � � � � � � � � � 3.31

16 � � � � � � � � � � � � � � � �2.44

S(i�) 2.25 2.72 2.21 1.91 1.81 1.80 1.80 2.24 2.05 2.28 1.97 1.93 1.52 2.09 1.61

S(i�) 1.85 0.83 1.86 2.20 2.24 2.26 2.24 1.55 1.93 1.61 2.11 1.58 2.16 1.89 2.33

0.39 2.37 0.34 �0.28 �0.43 �0.46 �0.44 0.74 0.12 0.70 �0.14 0.40 �0.70 0.20 �0.74F*i
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Box and Meyer (1986) and Myers, Montgomery and Anderson-Cook (2009). Also, in order
for the model residuals to properly convey information about dispersion effects, the location
model must be correctly specified. Refer to the supplemental text material for this chapter for
more details and an example.

E X A M P L E  6 . 5 Duplicate Measurements on the Response

A team of engineers at a semiconductor manufacturer ran a
24 factorial design in a vertical oxidation furnace. Four
wafers are “stacked” in the furnace, and the response vari-
able of interest is the oxide thickness on the wafers. The
four design factors are temperature (A), time (B), pressure
(C), and gas flow (D). The experiment is conducted by
loading four wafers into the furnace, setting the process
variables to the test conditions required by the experimen-
tal design, processing the wafers, and then measuring the
oxide thickness on all four wafers. Table 6.18 presents the
design and the resulting thickness measurements. In this
table, the four columns labeled “Thickness” contain the
oxide thickness measurements on each individual wafer,
and the last two columns contain the sample average and
sample variance of the thickness measurements on the four
wafers in each run.

The proper analysis of this experiment is to consider the
individual wafer thickness measurements as duplicate
measurements and not as replicates. If they were really
replicates, each wafer would have been processed individ-
ually on a single run of the furnace. However, because all
four wafers were processed together, they received the
treatment factors (that is, the levels of the design variables)
simultaneously, so there is much less variability in the indi-
vidual wafer thickness measurements than would have been
observed if each wafer was a replicate. Therefore, the aver-
age of the thickness measurements is the correct response
variable to initially consider.

Table 6.19 presents the effect estimates for this exper-
iment, using the average oxide thickness as the response
variable. Note that factors A and B and the AB interac-
tion have large effects that together account for nearly 90

y

■ TA B L E  6 . 1 8
The Oxide Thickness Experiment

Standard Run
Order Order A B C D Thickness s2

1 10 �1 �1 �1 �1 378 376 379 379 378 2

2 7 1 �1 �1 �1 415 416 416 417 416 0.67

3 3 �1 1 �1 �1 380 379 382 383 381 3.33

4 9 1 1 �1 �1 450 446 449 447 448 3.33

5 6 �1 �1 1 �1 375 371 373 369 372 6.67

6 2 1 �1 1 �1 391 390 388 391 390 2

7 5 �1 1 1 �1 384 385 386 385 385 0.67

8 4 1 1 1 �1 426 433 430 431 430 8.67

9 12 �1 �1 �1 1 381 381 375 383 380 12.00

10 16 1 �1 �1 1 416 420 412 412 415 14.67

11 8 �1 1 �1 1 371 372 371 370 371 0.67

12 1 1 1 �1 1 445 448 443 448 446 6

13 14 �1 �1 1 1 377 377 379 379 378 1.33

14 15 1 �1 1 1 391 391 386 400 392 34

15 11 �1 1 1 1 375 376 376 377 376 0.67

16 13 1 1 1 1 430 430 428 428 429 1.33 

y
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percent of the variability in average oxide thickness.
Figure 6.31 is a normal probability plot of the effects. From
examination of this display, we would conclude that factors
A, B, and C and the AB and AC interactions are important.

The analysis of variance display for this model is shown in
Table 6.20.

The model for predicting average oxide thickness is

The residual analysis of this model is satisfactory.
The experimenters are interested in obtaining an aver-

age oxide thickness of 400 Å, and product specifications
require that the thickness must lie between 390 and 410 Å.
Figure 6.32 presents two contour plots of average thick-
ness, one with factor C (or x3), pressure, at the low level
(that is, x3 � �1) and the other with C (or x3) at the high
level (that is, x3 � �1). From examining these contour
plots, it is obvious that there are many combinations of
time and temperature (factors A and B) that will produce
acceptable results. However, if pressure is held constant at
the low level, the operating “window” is shifted toward the
left, or lower, end of the time axis, indicating that lower
cycle times will be required to achieve the desired oxide
thickness.

It is interesting to observe the results that would be
obtained if we incorrectly consider the individual wafer
oxide thickness measurements as replicates. Table 6.21
presents a full-model ANOVA based on treating the exper-
iment as a replicated 24 factorial. Notice that there are many
significant factors in this analysis, suggesting a much more
complex model than the one that we found when using the
average oxide thickness as the response. The reason for this
is that the estimate of the error variance in Table 6.21 is too
small ( ). The residual mean square in Table 6.21
reflects a combination of the variability between wafers
within a run and variability between runs. The estimate of
error obtained from Table 6.20 is much larger, ,
and it is primarily a measure of the between-run variability.
This is the best estimate of error to use in judging the sig-
nificance of process variables that are changed from run to
run.

A logical question to ask is: What harm results from
identifying too many factors as important, as the incorrect
analysis in Table 6.21 would certainly do. The answer is that
trying to manipulate or optimize the unimportant factors
would be a waste of resources, and it could result in adding
unnecessary variability to other responses of interest.

When there are duplicate measurements on the
response, these observations almost always contain useful
information about some aspect of process variability. For
example, if the duplicate measurements are multiple tests
by a gauge on the same experimental unit, then the dupli-
cate measurements give some insight about gauge capabil-
ity. If the duplicate measurements are made at different
locations on an experimental unit, they may give some
information about the uniformity of the response variable

�̂ 2 � 17.61

�̂ 2 � 6.12

9.06x2 � 5.19x3 � 8.44x1x2 � 5.31x1x3

ŷ � 399.19 � 21.56x1 �

■ TA B L E  6 . 1 9
Effect Estimates for Example 6.5, Response Variable Is
Average Oxide Thickness

Model Effect Sum of Percent 
Term Estimate Squares Contribution

A 43.125 7439.06 67.9339

B 18.125 1314.06 12.0001

C �10.375 430.562 3.93192

D �1.625 10.5625 0.0964573

AB 16.875 1139.06 10.402

AC �10.625 451.563 4.12369

AD 1.125 5.0625 0.046231

BC 3.875 60.0625 0.548494

BD �3.875 60.0625 0.548494

CD 1.125 5.0625 0.046231

ABC �0.375 0.5625 0.00513678

ABD 2.875 33.0625 0.301929

ACD �0.125 0.0625 0.000570753

BCD �0.625 1.5625 0.0142688

ABCD 0.125 0.0625 0.000570753 
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■ F I G U R E  6 . 3 1 Normal probability plot of
the effects for the average oxide thickness response,
Example 6.5
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■ F I G U R E  6 . 3 2 Contour plots of average oxide thickness with pressure (x 3) held 
constant

■ TA B L E  6 . 2 0
Analysis of Variance (from Design-Expert) for the Average Oxide Thickness Response, Example 6.5

Sum of Mean F
Source Squares DF Square Value Prob 
 F

Model 10774.31 5 2154.86 122.35 �0.000

A 7439.06 1 7439.06 422.37 �0.000

B 1314.06 1 1314.06 74.61 �0.000

C 430.56 1 430.56 24.45 0.0006

AB 1139.06 1 1139.06 64.67 �0.000

AC 451.46 1 451.56 25.64 0.0005

Residual 176.12 10 17.61

Cor Total 10950.44 15

Std. Dev. 4.20 R-Squared 0.9839

Mean 399.19 Adj R-Squared 0.9759

C.V. 1.05 Pred R-Squared 0.9588

PRESS 450.88 Adeq Precision 27.967

Coefficient Standard 95% CI 95% CI
Factor Estimate DF Error Low High

Intercept 399.19 1 1.05 396.85 401.53

A-Time 21.56 1 1.05 19.22 23.90

B-Temp 9.06 1 1.05 6.72 11.40

C-Pressure �5.19 1 1.05 �7.53 �2.85

AB 8.44 1 1.05 6.10 10.78

AC �5.31 1 1.05 �7.65 �2.97
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across that unit. In our example, because we have one
observation on each of the four experimental units that have
undergone processing together, we have some information
about the within-run variability in the process. This infor-
mation is contained in the variance of the oxide thickness
measurements from the four wafers in each run. It would be
of interest to determine whether any of the process vari-
ables influence the within-run variability.

Figure 6.33 is a normal probability plot of the effect
estimates obtained using ln(s2) as the response. Recall
from Chapter 3 that we indicated that the log transforma-
tion is generally appropriate for modeling variability.
There are not any strong individual effects, but factor 
A and BD interaction are the largest. If we also include the
main effects of B and D to obtain a hierarchical model,
then the model for ln (s2) is

The model accounts for just slightly less than half of the
variability in the ln (s2) response, which is certainly not

ln (s 2)
√≈

� 1.08 � 0.41x1 � 0.40x2 � 0.20x4 � 0.56x2x4

■ TA B L E  6 . 2 1
Analysis of Variance (from Design-Expert) of the Individual Wafer Oxide Thickness Response

Source Sum of Squares DF Mean Square F Value Prob 
 F

Model 43801.75 15 2920.12 476.75 �0.0001

A 29756.25 1 29756.25 4858.16 �0.0001

B 5256.25 1 5256.25 858.16 �0.0001

C 1722.25 1 1722.25 281.18 �0.0001

D 42.25 1 42.25 6.90 0.0115

AB 4556.25 1 4556.25 743.88 �0.0001

AC 1806.25 1 1806.25 294.90 �0.0001

AD 20.25 1 20.25 3.31 0.0753

BC 240.25 1 240.25 39.22 �0.0001

BD 240.25 1 240.25 39.22 �0.0001

CD 20.25 1 20.25 3.31 0.0753

ABD 132.25 1 132.25 21.59 �0.0001

ABC 2.25 1 2.25 0.37 0.5473

ACD 0.25 1 0.25 0.041 0.8407

BCD 6.25 1 6.25 1.02 0.3175

ABCD 0.25 1 0.25 0.041 0.8407

Residual 294.00 48 6.12

Lack of Fit 0.000 0

Pure Error 294.00 48 6.13

Cor Total 44095.75 63 
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■ F I G U R E  6 . 3 3 Normal probability plot of
the effects using ln (s2) as the response, Example 6.5
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is shown in Figure 6.35, with the specifications on mean
oxide thickness and the constraint s2 � 2 shown as con-
tours. In this plot, pressure is held constant at the low
level and gas flow is held constant at the high level. 
The open region near the upper left center of the graph
identifies a feasible region for the variables time and
temperature.

This is a simple example of using contour plots to study
two responses simultaneously. We will discuss this problem
in more detail in Chapter 11.

spectacular as empirical models go, but it is often difficult
to obtain exceptionally good models of variances.

Figure 6.34 is a contour plot of the predicted variance
(not the log of the predicted variance) with pressure x3 at
the low level (recall that this minimizes cycle time) and gas
flow x4 at the high level. This choice of gas flow gives the
lowest values of predicted variance in the region of the con-
tour plot.

The experimenters here were interested in selecting
values of the design variables that gave a mean oxide
thickness within the process specifications and as close
to 400 Å as possible, while simultaneously making the
within-run variability small, say s2 � 2. One possible
way to find a suitable set of conditions is to overlay the
contour plots in Figures 6.32 and 6.34. The overlay plot
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■ F I G U R E  6 . 3 4 Contour plot of s2 (within-
run variability) with pressure at the low level
and gas flow at the high level
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■ F I G U R E  6 . 3 5 Overlay of the average
oxide thickness and s2 responses with pressure at
the low level and gas flow at the high level

E X A M P L E  6 . 6  Credit Card Marketing

An article in the International Journal of Research in
Marketing (“Experimental Design on the Front Lines of
Marketing: Testing New Ideas to Increase Direct Mail
Sales,” 2006, Vol. 23, pp. 309–319) describes an experi-
ment to test new ideas to increase direct mail sales by the

credit card division of a financial services company. They
want to improve the response rate to its credit card offers.
They know from experience that the interest rates are an
important factor in attracting potential customers, so they
have decided to focus on factors involving both interest
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The marketing team used columns A through D of the 24

factorial test matrix shown in Table 6.22 to create 16 mail
packages. The �/� sign combinations in the 11 interaction
(product) columns are used solely to facilitate the statistical

analysis of the results. Each of the 16 test combinations was
mailed to 7500 customers, and 2837 customers responded
positively to the offers. 

rates and fees. They want to test changes in both introduc-
tory and long-term rates, as well as the effects of adding an

account-opening fee and lowering the annual fee. The fac-
tors tested in the experiment are as follows:

Table 6.23 is the JMP output for the screening analysis.
Lenth’s method with simulated P-values is used to identify
significant factors. All four main effects are significant, and
one interaction (AB, or Annual Fee � Account Opening
Fee). The prediction profiler indicates the settings of the
four factors that will result in the maximum response rate.
The lower annual fee, no account opening fee, the lower

long-term interest rate and either value of the initial interest
rate produce the best response, 3.39 percent. The optimum
conditions occur at one of the actual test combinations
because all four design factors were treated as qualitative.
With continuous factors, the optimal conditions are usually
not at one of the experimental runs.

■ TA B L E  6 . 2 2
The 24 Factorial Design Used in the Credit Card Marketing Experiment, Example 6.6

Annual- Account- Initial interest Long-term (interactions)
fee opening fee rate interest rate

Test A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD Orders Response 
cell rate

1 � � � � � � � � � � � � � � � 184 2.45%

2 � � � � � � � � � � � � � � � 252 3.36%

3 � � � � � � � � � � � � � � � 162 2.16%

4 � � � � � � � � � � � � � � � 172 2.29%

5 � � � � � � � � � � � � � � � 187 2.49%

6 � � � � � � � � � � � � � � � 254 3.39%

7 � � � � � � � � � � � � � � � 174 2.32%

8 � � � � � � � � � � � � � � � 183 2.44%

9 � � � � � � � � � � � � � � � 138 1.84%

10 � � � � � � � � � � � � � � � 168 2.24%

11 � � � � � � � � � � � � � � � 127 1.69%

12 � � � � � � � � � � � � � � � 140 1.87%

13 � � � � � � � � � � � � � � � 172 2.29%

14 � � � � � � � � � � � � � � � 219 2.92%

15 � � � � � � � � � � � � � � � 153 2.04%

16 � � � � � � � � � � � � � � � 152 2.03%

Factor (�) Control (�) New idea

A: Annual fee Current Lower

B: Account-opening fee No Yes

C: Initial interest rate Current Lower

D: Long-term interest rate Low High
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■ TA B L E  6 . 2 3
JMP Output for Example 6.6

Response Response Rate

Summary of Fit
RSquare 1

RSquare Adj .

Root Mean Square Error .

Mean of Response 2.36375

Observations (or Sum Wgts) 16

Sorted Parameter Estimates

Term
Account Opening Fee[No]
Long-term Interest Rate[Low]
Annual Fee[Current]
Annual Fee[Current]*Account Opening Fee[No]
initial Interest Rate[Current]
initial Interest Rate[Current]*Long-term Interest Rate[Low]
Annual Fee[Current]*Long-term Interest Rate[Low]
Account Opening Fee[No]*initial Interest Rate[Current]*Long-term Interest Rate[Low]
Account Opening Fee[No]*Long-term Interest Rate[Low]
Annual Fee[Current]*Account Opening Fee[No]*Long-term Interest Rate[Low]
Annual Fee[Current]*Account Opening Fee[No]*initial Interest Rate[Current]
Annual Fee[Current]*Account Opening Fee[No]*initial Interest Rate[Current]*Long-term Interest Rate[Low]
Account Opening Fee[No]*initial Interest Rate[Current]
Annual Fee[Current]*initial Interest Rate[Current]*Long-term Interest Rate[Low]
Annual Fee[Current]*initial Interest Rate[Current]

No error degrees of freedom, so ordinary tests uncomputable.
Relative Std Error corresponds to residual standard error of 1.
Pseudo t-Ratio and p-Value calculated using Lenth PSE � 0.07125
and DFE�5

Relative Pseudo Pseudo
Estimate Std Error t-Ratio p-Value

0.25875 0.25 3.63 0.0150*
0.24875 0.25 3.49 0.0174*

�0.20375 0.25 �2.86 0.0354*
�0.15125 0.25 �2.12 0.0872
�0.12625 0.25 �1.77 0.1366

0.07875 0.25 1.11 0.3194
�0.05375 0.25 �0.75 0.4846

0.05375 0.25 0.75 0.4846
0.05125 0.25 0.72 0.5042

�0.04375 0.25 �0.61 0.5661
0.02625 0.25 0.37 0.7276

�0.02625 0.25 �0.37 0.7276
�0.02375 0.25 �0.33 0.7524
�0.00375 0.25 �0.05 0.9601

0.00125 0.25 0.02 0.9867

6.7 2k Designs are Optimal Designs

Two-level factorial designs have many interesting and useful properties. In this section, a brief
description of some of these properties is given. We have remarked in previous sections that
the model regression coefficients and effect estimates from a 2k design are least squares
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estimates. This is discussed in the supplemental text material for this chapter and presented
in more detail in Chapter 10, but it is useful to give a proof of this here.

Consider a very simple case the 22 design with one replicate. This is a four-run design,
with treatment combinations (1), a, b, and ab. The design is shown geometrically in Figure 6.1.
The model we fit to the data from this design is

where x1 and x2 are the main effects of the two factors on the 
1 scale and x1x2 is the two-
factor interaction. We can write out each one of the four runs in this design in terms of this
model as follows:

It is much easier if we write these four equations in matrix form:

The least squares estimates of the model parameters are the values of the �’s that minimize
the sum of the squares of the model errors, . The least squares estimates are

where the prime ( ) denotes a transpose and (X�X)�1 is the inverse of X�X. We will prove this
result later in Chapter 10. For the 22 design, the quantities X�X and X�y are

and

The X�X matrix is diagonal because the 22 design is orthogonal. The least squares estimates
are as follows:
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The least squares estimates of the model regression coefficients are exactly equal to one-half
of the usual effect estimates.

It turns out that the variance of any model regression coefficient is easy to find:

All model regression coefficients have the same variance. Furthermore, there is no other
four-run design on the design space bounded by 
1 that makes the variance of the model
regression coefficients smaller. In general, the variance of any model regression coefficient in
a 2k design where each design point is replicated n times is , where N
is the total number of runs in the design. This is the minimum possible variance for the regres-
sion coefficient.

For the 22 design, the determinant of the matrix is

This is the maximum possible value of the determinant for a four-run design on the design
space bounded by 
1. It turns out that the volume of the joint confidence region that contains
all the model regression coefficients is inversely proportional to the square root of the deter-
minant of . Therefore, to make this joint confidence region as small as possible, we would
want to choose a design that makes the determinant of as large as possible. This is
accomplished by choosing the 22 design.

In general, a design that minimizes the variance of the model regression coefficients is
called a D-optimal design. The D terminology is used because these designs are found by
selecting runs in the design to maximize the determinant of . The 2k design is a D-optimal
design for fitting the first-order model or the first-order model with interaction. Many com-
puter software packages, such as JMP, Design-Expert, and Minitab, have algorithms for find-
ing D-optimal designs. These algorithms can be very useful in constructing experimental
designs for many practical situations. We will make use of them in subsequent chapters.

Now consider the variance of the predicted response in the 22 design

The variance of the predicted response is a function of the point in the design space where the
prediction is made (x1 and x2) and the variance of the model regression coefficients. The esti-
mates of the regression coefficients are independent because the 22 design is orthogonal and
they all have variance , so

The maximum prediction variance occurs when and is equal to �2. To
determine how good this is, we need to know the best possible value of prediction variance that
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we can attain. It turns out that the smallest possible value of the maximum prediction variance
over the design space is p�2/N, where p is the number of model parameters and N is the num-
ber of runs in the design. The 22 design has N � 4 runs and the model has p � 4 parameters,
so the model that we fit to the data from this experiment minimizes the maximum prediction
variance over the design region. A design that has this property is called a G-optimal design.
In general, 2k designs are G-optimal designs for fitting the first-order model or the first-order
model with interaction.

We can evaluate the prediction variance at any point of interest in the design space. For
example, when we are at the center of the design where , the prediction variance is

When and , the prediction variance is

An alternative to evaluating the prediction variance at a lot of points in the design space
is to consider the average prediction variance over the design space. One way to calculate
this average prediction variance is

where A is the area (in general the volume) of the design space. To compute the average, we are
integrating the variance function over the design space and dividing by the area of the region.

Sometimes I is called the integrated variance criterion. Now for a 22 design, the area
of the design region is , and

It turns out that this is the smallest possible value of the average prediction variance that
can be obtained from a four-run design used to fit a first-order model with interaction on this
design space. A design with this property is called an I-optimal design. In general, 2k designs
are I-optimal designs for fitting the first-order model or the first-order model with interaction.
The JMP software will construct I-optimal designs. This can be very useful in constructing
designs when response prediction is the goal of the experiment.

It is also possible to display the prediction variance over the design space graphically.
Figure 6.36 is output from JMP illustrating three possible displays of the prediction variance
from a 22 design. The first graph is the prediction variance profiler, which plots the
unscaled prediction variance

against the levels of each design factor. The “crosshairs” on the graphs are adjustable, so that
the unscaled prediction variance can be displayed at any desired combination of the variables
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The second graph is a fraction of design space (FDS) plot, which shows the unscaled
prediction variance on the vertical scale and the fraction of design space on the horizontal
scale. This graph also has an adjustable crosshair that is shown at the 50 percent point on the
fraction of design space scale. The crosshairs indicate that the unscaled prediction variance
will be at most 0.425 � 2 (remember that the unscaled prediction variance divides by �2, that’s
why the point on the vertical scale is 0.425) over a region that covers 50 percent of the design
region. Therefore, an FDS plot gives a simple display of how the prediction variance is dis-
tributed throughout the design region. An ideal FDS plot would be flat with a small value of
the unscaled prediction variance. FDS plots are an ideal way to compare designs in terms of
their potential prediction performance.

The final display in the JMP output is a surface plot of the unscaled prediction variance.
The contours of constant prediction variance for the 22 are circular; that is, all points in the
design space that are at the same distance from the center of the design have the same predic-
tion variance.

6.8 The Addition of Center Points to the 2k Design

A potential concern in the use of two-level factorial designs is the assumption of linearity in
the factor effects. Of course, perfect linearity is unnecessary, and the 2k system will work
quite well even when the linearity assumption holds only very approximately. In fact, we have
noted that if interaction terms are added to a main effect or first-order model, resulting in

(6.28)

then we have a model capable of representing some curvature in the response function. This cur-
vature, of course, results from the twisting of the plane induced by the interaction terms �ijxixj.

In some situations, the curvature in the response function will not be adequately mod-
eled by Equation 6.28. In such cases, a logical model to consider is

(6.29)

where the �jj represent pure second-order or quadratic effects. Equation 6.29 is called a
second-order response surface model.

In running a two-level factorial experiment, we usually anticipate fitting the first-order
model in Equation 6.28, but we should be alert to the possibility that the second-order model
in Equation 6.29 is more appropriate. There is a method of replicating certain points in a 2k

factorial that will provide protection against curvature from second-order effects as well as
allow an independent estimate of error to be obtained. The method consists of adding center
points to the 2k design. These consist of nC replicates run at the points xi � 0 (i � 1, 2, . . . , k).
One important reason for adding the replicate runs at the design center is that center points
do not affect the usual effect estimates in a 2k design. When we add center points, we assume
that the k factors are quantitative.

To illustrate the approach, consider a 22 design with one observation at each of the
factorial points (�, �), (�, �), (�, �), and (�, �) and nC observations at the center point
(0, 0). Figures 6.37 and 6.38 illustrate the situation. Let be the average of the four runs at
the four factorial points, and be the average of the nC runs at the center point. If the differ-
ence is small, then the center points lie on or near the plane passing through the
factorial points, and there is no quadratic curvature. On the other hand, if is large,yF � yC

yF � yC

yC
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E X A M P L E  6 . 7

We will illustrate the addition of center points to a 2k design
by reconsidering the pilot plant experiment in Example 6.2.
Recall that this is an unreplicated 24 design. Refer to the
original experiment shown in Table 6.10. Suppose that four
center points are added to this experiment, and at the points
x1 � x2 � x3 � x4 � 0 the four observed filtration rates were

73, 75, 66, and 69. The average of these four center points
is , and the average of the 16 factorial runs is

. Since are very similar, we suspect
that there is no strong curvature present.

Table 6.24 summarizes the analysis of variance for this
experiment. In the upper portion of the table, we have fit the

yC and yFyF � 70.06
yC � 70.75

then quadratic curvature is present. A single-degree-of-freedom sum of squares for pure
quadratic curvature is given by

(6.30)

where, in general, nF is the number of factorial design points. This sum of squares may be
incorporated into the ANOVA and may be compared to the error mean square to test for pure
quadratic curvature. More specifically, when points are added to the center of the 2k design,
the test for curvature (using Equation 6.30) actually tests the hypotheses

Furthermore, if the factorial points in the design are unreplicated, one may use the nC center
points to construct an estimate of error with nC � 1 degrees of freedom. A t-test can also be
used to test for curvature. Refer to the supplemental text material for this chapter.

H1��
k

j�1
�jj �  0

H0��
k

j�1
�jj � 0

SSPure quadratic �
nFnC (yF � yC)2

nF � nC
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■ TA B L E  6 . 2 4
Analysis of Variance for Example 6.6

ANOVA for the Full Model

Source of Sum of Mean
Variation Squares DF Square F Prob 
 F

Model 5730.94 15 382.06 23.51 0.0121

A 1870.56 1 1870.56 115.11 0.0017

B 39.06 1 39.06 2.40 0.2188

C 390.06 1 390.06 24.00 0.0163

D 855.56 1 855.56 52.65 0.0054

AB 0.063 1 0.063 3.846E-003 0.9544

AC 1314.06 1 1314.06 80.87 0.0029

AD 1105.56 1 1105.56 68.03 0.0037

BC 22.56 1 22.56 1.39 0.3236

BD 0.56 1 0.56 0.035 0.8643

CD 5.06 1 5.06 0.31 0.6157

ABC 14.06 1 14.06 0.87 0.4209

ABD 68.06 1 68.06 4.19 0.1332

ACD 10.56 1 10.56 0.65 0.4791

BCD 27.56 1 27.56 1.70 0.2838

ABCD 7.56 1 7.56 0.47 0.5441

Pure quadratic 

Curvature 1.51 1 1.51 0.093 0.7802

Pure error 48.75 3 16.25

Cor total 5781.20 19

full model. The mean square for pure error is calculated
from the center points as follows:

(6.29)

Thus, in Table 6.22,

The difference � 70.06 � 70.75 � �0.69 is
used to compute the pure quadratic (curvature) sum of
squares in the ANOVA table from Equation 6.30 as
follows:

yF � yC

MSE �
�
4

i�1
 (yi � 70.75)2

4 � 1
�

48.75
3

� 16.25

MSE �
SSE

nC � 1
�

�
Center points

 (yi � yc)2

nC � 1
The ANOVA indicates that there is no evidence of

second-order curvature in the response over the region of
exploration. That is, the null hypothesis H0 : �11 � �22 �
�33 � �44 � 0 cannot be rejected. The significant effects are
A, C, D, AC, and AD. The ANOVA for the reduced model
is shown in the lower portion of Table 6.24. The results of
this analysis agree with those from Example 6.2, where the
important effects were isolated using the normal probability
plotting method.

�
(16)(4)( � 0.69)2

16 � 4
� 1.51

SSPure quadratic �
nFnC (yF � yC)2

nF � nC
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In Example 6.6, we concluded that there was no indication of quadratic effects; that is,
a first-order model in A, C, D, along with the AC, and AD interaction is appropriate. However,
there will be situations where the quadratic terms will be required. To illustrate for the
case of k � 2 design factors, suppose that the curvature test is significant so that we will now
have to assume a second-order model such as

Unfortunately, we cannot estimate the unknown parameters (the �’s) in this model because
there are six parameters to estimate and the 22 design and center points in Figure 6.38 have
only five independent runs.

A simple and highly effective solution to this problem is to augment the 2k design with
four axial runs, as shown in Figure 6.39a for the case of k � 2. The resulting design, called a
central composite design, can now be used to fit the second-order model. Figure 6.39b shows
a central composite design for k � 3 factors. This design has 14 � nC runs (usually 
and is a very efficient design for fitting the 10-parameter second-order model in k � 3 factors.

3 � nC � 5)

y � �0 � �1x1 � �2x2 � �12x1x2 � �11x
2
1 � �22x

2
2 � �

(x2
i )

■ F I G U R E  6 . 3 9 Central composite designs

■ TA B L E  6 . 2 4 (Continued)

ANOVA for the Reduced Model

Source of Sum of Mean
Variation Squares DF Square F Prob 
 F

Model 5535.81 5 1107.16 59.02 � 0.000

A 1870.56 1 1870.56 99.71 � 0.000

C 390.06 1 390.06 20.79 0.0005

D 855.56 1 855.56 45.61 � 0.000

AC 1314.06 1 1314.06 70.05 � 0.000

AD 1105.56 1 1105.56 58.93 � 0.000

Pure quadratic 

curvature 1.51 1 1.51 0.081 0.7809

Residual 243.87 13 18.76

Lack of fit 195.12 10 19.51 1.20 0.4942

Pure error 48.75 3 16.25

Cor total 5781.20 19 
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Central composite designs are used extensively in building second-order response sur-
face models. These designs will be discussed in more detail in Chapter 11.

We conclude this section with a few additional useful suggestions and observations con-
cerning the use of center points.

1. When a factorial experiment is conducted in an ongoing process, consider using the
current operating conditions (or recipe) as the center point in the design. This often
assures the operating personnel that at least some of the runs in the experiment are
going to be performed under familiar conditions, and so the results obtained (at
least for these runs) are unlikely to be any worse than are typically obtained.

2. When the center point in a factorial experiment corresponds to the usual operating
recipe, the experimenter can use the observed responses at the center point to pro-
vide a rough check of whether anything “unusual” occurred during the experiment.
That is, the center point responses should be very similar to the responses observed
historically in routine process operation. Often operating personnel will maintain a
control chart for monitoring process performance. Sometimes the center point
responses can be plotted directly on the control chart as a check of the manner in
which the process was operating during the experiment.

3. Consider running the replicates at the center point in nonrandom order.
Specifically, run one or two center points at or near the beginning of the experi-
ment, one or two near the middle, and one or two near the end. By spreading the
center points out in time, the experimenter has a rough check on the stability of the
process during the experiment. For example, if a trend has occurred in the response
while the experiment was performed, plotting the center point responses versus
time order may reveal this.

4. Sometimes experiments must be conducted in situations where there is little or no
prior information about process variability. In these cases, running two or three cen-
ter points as the first few runs in the experiment can be very helpful. These runs can
provide a preliminary estimate of variability. If the magnitude of the variability seems
reasonable, continue; on the contrary, if larger than anticipated (or reasonable!) vari-
ability is observed, stop. Often it will be very profitable to study the question of why
the variability is so large before proceeding with the rest of the experiment.

5. Usually, center points are employed when all design factors are quantitative.
However, sometimes there will be one or more qualitative or categorical variables
and several quantitative ones. Center points can still be employed in these cases. To
illustrate, consider an experiment with two quantitative factors, time and tempera-
ture, each at two levels, and a single qualitative factor, catalyst type, also with two
levels (organic and nonorganic). Figure 6.40 shows the 23 design for these factors.
Notice that the center points are placed in the opposed faces of the cube that involve
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■ F I G U R E  6 . 4 0 A 23 factorial
design with one qualitative factor and
center points
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the quantitative factors. In other words, the center points can be run at the high- and
low-level treatment combinations of the qualitative factors as long as those sub-
spaces involve only quantitative factors.

6.9 Why We Work with Coded Design Variables

The reader will have noticed that we have performed all of the analysis and model fitting for
a 2k factorial design in this chapter using coded design variables, �1 � xi � �1, and not the
design factors in their original units (sometimes called actual, natural, or engineering units).
When the engineering units are used, we can obtain different numerical results in comparison
to the coded unit analysis, and often the results will not be as easy to interpret.

To illustrate some of the differences between the two analyses, consider the following
experiment. A simple DC-circuit is constructed in which two different resistors, 1 and 2�, can
be connected. The circuit also contains an ammeter and a variable-output power supply. With
a resistor installed in the circuit, the power supply is adjusted until a current flow of either 4
or 6 amps is obtained. Then the voltage output of the power supply is read from a voltmeter.
Two replicates of a 22 factorial design are performed, and Table 6.25 presents the results. We
know that Ohm’s law determines the observed voltage, apart from measurement error.
However, the analysis of these data via empirical modeling lends some insight into the value
of coded units and the engineering units in designed experiments.

Table 6.26 and 6.27 present the regression models obtained using the design vari-
ables in the usual coded variables (x1 and x2) and the engineering units, respectively.
Minitab was used to perform the calculations. Consider first the coded variable analysis in
Table 6.26. The design is orthogonal and the coded variables are also orthogonal. Notice
that both main effects (x1 � current) and (x2 � resistance) are significant as is the interac-
tion. In the coded variable analysis, the magnitudes of the model coefficients are directly
comparable; that is, they all are dimensionless, and they measure the effect of changing
each design factor over a one-unit interval. Furthermore, they are all estimated with the
same precision (notice that the standard error of all three coefficients is 0.053). The inter-
action effect is smaller than either main effect, and the effect of current is just slightly
more than one-half the resistance effect. This suggests that over the range of the factors
studied, resistance is a more important variable. Coded variables are very effective for
determining the relative size of factor effects.

Now consider the analysis based on the engineering units, as shown in Table 6.27. In
this model, only the interaction is significant. The model coefficient for the interaction term

■ TA B L E  6 . 2 5
The Circuit Experiment

I (Amps) R (Ohms) x1 x2 V (Volts)

4 1 �1 �1 3.802

4 1 �1 �1 4.013

6 1 1 �1 6.065

6 1 1 �1 5.992

4 2 �1 1 7.934

4 2 �1 1 8.159

6 2 1 1 11.865

6 2 1 1 12.138 
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is 0.9170, and the standard error is 0.1046. We can construct a t statistic for testing the
hypothesis that the interaction coefficient is unity:

The P-value for this test statistic is P � 0.76. Therefore, we cannot reject the null hypoth-
esis that the coefficient is unity, which is consistent with Ohm’s law. Note that the regression
coefficients are not dimensionless and that they are estimated with differing precision. This is
because the experimental design, with the factors in the engineering units, is not orthogonal.

Because the intercept and the main effects are not significant, we could consider fitting
a model containing only the interaction term IR. The results are shown in Table 6.28. Notice

t0 �
�̂IR � 1

se(�̂IR)
�

0.9170 � 1
0.1046

� �0.7935

■ TA B L E  6 . 2 7
Regression Analysis for the Circuit Experiment Using Engineering Units

The regression equation is

V � �0.806 � 0.144 I � 0.471 R � 0.917 IR

Predictor Coef StDev T P

Constant �0.8055 0.8432 �0.96 0.394

I 0.1435 0.1654 0.87 0.434

R 0.4710 0.5333 0.88 0.427

IR 0.9170 0.1046 8.77 0.001

S � 0.1479 R-Sq � 99.9% R-Sq(adj) � 99.8%

Analysis of Variance

Source DF SS MS F P

Regression 3 71.267 23.756 1085.95 0.000

Residual Error 4 0.088 0.022

Total 7 71.354

■ TA B L E  6 . 2 6
Regression Analysis for the Circuit Experiment Using Coded Variables

The regression equation is

V � 7.50 � 1.52 � 1 � 2.53 � 2 � 0.458 � 1 � 2

Predictor Coef StDev T P

Constant 7.49600 0.05229 143.35 0.000

x1 1.51900 0.05229 29.05 0.000

x2 2.52800 0.05229 48.34 0.000

x1x2 0.45850 0.05229 8.77 0.001

S � 0.1479 R-Sq � 99.9% R-Sq(adj) � 99.8%

Analysis of Variance

Source DF SS MS F P

Regression 3 71.267 23.756 1085.95 0.000

Residual Error 4 0.088 0.022

Total 7 71.354
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6.1. An engineer is interested in the effects of cutting
speed (A), tool geometry (B), and cutting angle (C) on the life
(in hours) of a machine tool. Two levels of each factor are
chosen, and three replicates of a 23 factorial design are run.
The results are as follows:

Treatment Replicate
A B C Combination I II III

� � � (1) 22 31 25

� � � a 32 43 29

� � � b 35 34 50

� � � ab 55 47 46

� � � c 44 45 38

� � � ac 40 37 36

� � � bc 60 50 54

� � � abc 39 41 47

(a) Estimate the factor effects. Which effects appear to be
large?

(b) Use the analysis of variance to confirm your conclu-
sions for part (a).

(c) Write down a regression model for predicting tool life
(in hours) based on the results of this experiment.

(d) Analyze the residuals. Are there any obvious problems?

(e) On the basis of an analysis of main effect and interac-
tion plots, what coded factor levels of A, B, and C
would you recommend using?

6.2. Reconsider part (c) of Problem 6.1. Use the regression
model to generate response surface and contour plots of the
tool life response. Interpret these plots. Do they provide insight
regarding the desirable operating conditions for this process?

6.3. Find the standard error of the factor effects and
approximate 95 percent confidence limits for the factor effects
in Problem 6.1. Do the results of this analysis agree with the
conclusions from the analysis of variance?

6.4. Plot the factor effects from Problem 6.1 on a graph
relative to an appropriately scaled t distribution. Does this
graphical display adequately identify the important factors?
Compare the conclusions from this plot with the results from
the analysis of variance.

6.5. A router is used to cut locating notches on a printed
circuit board. The vibration level at the surface of the board
as it is cut is considered to be a major source of dimensional
variation in the notches. Two factors are thought to influence

that the estimate of the interaction term regression coefficient is now different from what it
was in the previous engineering-units analysis because the design in engineering units is not
orthogonal. The coefficient is also virtually unity.

Generally, the engineering units are not directly comparable, but they may have physi-
cal meaning as in the present example. This could lead to possible simplification based on the
underlying mechanism. In almost all situations, the coded unit analysis is preferable. It is fair-
ly unusual for a simplification based on some underlying mechanism (as in our example) to
occur. The fact that coded variables let an experimenter see the relative importance of the
design factors is useful in practice.

6.10 Problems

■ TA B L E  6 . 2 8
Regression Analysis for the Circuit Experiment (Interaction Term Only)

The regression equation is
V � 1.00 IR

Predictor Coef Std. Dev. T P
Noconstant
IR 1.00073 0.00550 181.81 0.000

S � 0.1255
Analysis of Variance

Source DF SS MS F P
Regression 3 71.267 23.756 1085.95 0.000
Residual Error 4 0.088 0.022
Total 7 71.354 
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vibration: bit size (A) and cutting speed (B). Two bit sizes (
and in.) and two speeds (40 and 90 rpm) are selected, and
four boards are cut at each set of conditions shown below.
The response variable is vibration measured as the resultant
vector of three accelerometers (x, y, and z) on each test cir-
cuit board.

Replicate
Treatment

A B Combination I II III IV

� � (1) 18.2 18.9 12.9 14.4

� � a 27.2 24.0 22.4 22.5

� � b 15.9 14.5 15.1 14.2

� � ab 41.0 43.9 36.3 39.9

(a) Analyze the data from this experiment.

(b) Construct a normal probability plot of the residuals,
and plot the residuals versus the predicted vibration
level. Interpret these plots.

(c) Draw the AB interaction plot. Interpret this plot. What
levels of bit size and speed would you recommend for
routine operation?

6.6. Reconsider the experiment described in Problem 6.1.
Suppose that the experimenter only performed the eight trials
from replicate I. In addition, he ran four center points and
obtained the following response values: 36, 40, 43, 45.

(a) Estimate the factor effects. Which effects are large?

(b) Perform an analysis of variance, including a check for
pure quadratic curvature. What are your conclusions?

(c) Write down an appropriate model for predicting tool
life, based on the results of this experiment. Does this
model differ in any substantial way from the model in
Problem 6.1, part (c)?

(d) Analyze the residuals.

(e) What conclusions would you draw about the appropri-
ate operating conditions for this process?

6.7. An experiment was performed to improve the yield of
a chemical process. Four factors were selected, and two repli-
cates of a completely randomized experiment were run. The
results are shown in the following table:

Replicate Replicate
Treatment Treatment
Combination I II Combination I II

(1) 90 93 d 98 95

a 74 78 ad 72 76

b 81 85 bd 87 83

ab 83 80 abd 85 86

c 77 78 cd 99 90

ac 81 80 acd 79 75

bc 88 82 bcd 87 84

abc 73 70 abcd 80 80

1
8

1
16

(a) Estimate the factor effects.

(b) Prepare an analysis of variance table and determine
which factors are important in explaining yield.

(c) Write down a regression model for predicting yield,
assuming that all four factors were varied over the range
from �1 to �1 (in coded units).

(d) Plot the residuals versus the predicted yield and on a
normal probability scale. Does the residual analysis
appear satisfactory?

(e) Two three-factor interactions, ABC and ABD, appar-
ently have large effects. Draw a cube plot in the factors
A, B, and C with the average yields shown at each cor-
ner. Repeat using the factors A, B, and D. Do these two
plots aid in data interpretation? Where would you rec-
ommend that the process be run with respect to the
four variables?

6.8. A bacteriologist is interested in the effects of two dif-
ferent culture media and two different times on the growth of
a particular virus. He or she performs six replicates of a 22

design, making the runs in random order. Analyze the bacte-
rial growth data that follow and draw appropriate conclu-
sions. Analyze the residuals and comment on the model’s
adequacy.

Culture Medium
Time (h) 1 2

21 22 25 26

12 23 28 24 25

20 26 29 27

37 39 31 34

18 38 38 29 33

35 36 30 35

6.9. An industrial engineer employed by a beverage bottler
is interested in the effects of two different types of 32-ounce
bottles on the time to deliver 12-bottle cases of the product. The
two bottle types are glass and plastic. Two workers are used to
perform a task consisting of moving 40 cases of the product 50
feet on a standard type of hand truck and stacking the cases in
a display. Four replicates of a 22 factorial design are performed,
and the times observed are listed in the following table. Analyze
the data and draw appropriate conclusions. Analyze the residu-
als and comment on the model’s adequacy.

Worker
Bottle Type 1 2

Glass 5.12 4.89 6.65 6.24

4.98 5.00 5.49 5.55

Plastic 4.95 4.43 5.28 4.91

4.27 4.25 4.75 4.71
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6.10. In Problem 6.9, the engineer was also interested in
potential fatigue differences resulting from the two types of bot-
tles. As a measure of the amount of effort required, he measured
the elevation of the heart rate (pulse) induced by the task. The
results follow. Analyze the data and draw conclusions. Analyze
the residuals and comment on the model’s adequacy.

Worker
Bottle Type 1 2

Glass 39 45 20 13

58 35 16 11

Plastic 44 35 13 10

42 21 16 15

6.11. Calculate approximate 95 percent confidence limits
for the factor effects in Problem 6.10. Do the results of this
analysis agree with the analysis of variance performed in
Problem 6.10?

6.12. An article in the AT&T Technical Journal (March/April
1986, Vol. 65, pp. 39–50) describes the application of two-level
factorial designs to integrated circuit manufacturing. A basic
processing step is to grow an epitaxial layer on polished silicon
wafers. The wafers mounted on a susceptor are positioned
inside a bell jar, and chemical vapors are introduced. The sus-
ceptor is rotated, and heat is applied until the epitaxial layer is
thick enough. An experiment was run using two factors: arsenic
flow rate (A) and deposition time (B). Four replicates were run,
and the epitaxial layer thickness was measured ( m). The data
are shown in Table P6.1.

�

■ TA B L E  P 6 . 1
The 2 2 Design for Problem 6.12

Replicate Factor Levels

A B I II III IV Low (�) High (�)

� � 14.037 16.165 13.972 13.907 A 55% 59%

� � 13.880 13.860 14.032 13.914

� � 14.821 14.757 14.843 14.878 B Short Long

� � 14.888 14.921 14.415 14.932 (10 min) (15 min) 

(a) Estimate the factor effects.

(b) Conduct an analysis of variance. Which factors are
important?

(c) Write down a regression equation that could be used to
predict epitaxial layer thickness over the region of arsenic
flow rate and deposition time used in this experiment.

(d) Analyze the residuals. Are there any residuals that
should cause concern?

(e) Discuss how you might deal with the potential outlier
found in part (d).

6.13. Continuation of Problem 6.12. Use the regression
model in part (c) of Problem 6.12 to generate a response sur-
face contour plot for epitaxial layer thickness. Suppose it is
critically important to obtain layer thickness of 14.5�m. What
settings of arsenic flow rate and decomposition time would
you recommend?

6.14. Continuation of Problem 6.13. How would your
answer to Problem 6.13 change if arsenic flow rate was more
difficult to control in the process than the deposition time?

6.15. A nickel–titanium alloy is used to make components
for jet turbine aircraft engines. Cracking is a potentially serious
problem in the final part because it can lead to nonrecoverable
failure. A test is run at the parts producer to determine the effect
of four factors on cracks. The four factors are pouring temper-
ature (A), titanium content (B), heat treatment method (C), and
amount of grain refiner used (D). Two replicates of a 24 design
are run, and the length of crack (in mm �10�2) induced in a

sample coupon subjected to a standard test is measured. The
data are shown in Table P6.2

■ TA B L E  P 6 . 2
The Experiment for problem 6.15

Replicate
Treatment

A B C D Combination I II

� � � � (1) 7.037 6.376
� � � � a 14.707 15.219
� � � � b 11.635 12.089
� � � � ab 17.273 17.815
� � � � c 10.403 10.151
� � � � ac 4.368 4.098
� � � � bc 9.360 9.253
� � � � abc 13.440 12.923
� � � � d 8.561 8.951
� � � � ad 16.867 17.052
� � � � bd 13.876 13.658
� � � � abd 19.824 19.639
� � � � cd 11.846 12.337
� � � � acd 6.125 5.904
� � � � bcd 11.190 10.935
� � � � abcd 15.653 15.053
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(a) Estimate the factor effects. Which factor effects appear
to be large?

(b) Conduct an analysis of variance. Do any of the factors
affect cracking? Use 	 � 0.05.

(c) Write down a regression model that can be used to
predict crack length as a function of the significant
main effects and interactions you have identified in
part (b).

(d) Analyze the residuals from this experiment.

(e) Is there an indication that any of the factors affect the
variability in cracking?

(f) What recommendations would you make regarding
process operations? Use interaction and/or main effect
plots to assist in drawing conclusions.

6.16. Continuation of Problem 6.15. One of the variables
in the experiment described in Problem 6.15, heat treatment
method (C), is a categorical variable. Assume that the remain-
ing factors are continuous.

(a) Write two regression models for predicting crack
length, one for each level of the heat treatment method
variable. What differences, if any, do you notice in
these two equations?

(b) Generate appropriate response surface contour plots
for the two regression models in part (a).

(c) What set of conditions would you recommend for the
factors A, B, and D if you use heat treatment method C
� �?

(d) Repeat part (c) assuming that you wish to use heat
treatment method C � �.

6.17. An experimenter has run a single replicate of a 24

design. The following effect estimates have been calculated:

(a) Construct a normal probability plot of these effects.

(b) Identify a tentative model, based on the plot of the
effects in part (a).

6.18. The effect estimates from a 24 factorial design are as fol-
lows: ABCD � �1.5138, ABC � �1.2661, ABD � �0.9852,
ACD � �0.7566, BCD � �0.4842, CD � �0.0795, BD 
� �0.0793, AD � 0.5988, BC � 0.9216, AC � 1.1616,
AB � 1.3266, D � 4.6744, C � 5.1458, B � 8.2469, and 
A � 12.7151. Are you comfortable with the conclusions that all
main effects are active?

6.19. The effect estimates from a 24 factorial experiment
are listed here. Are any of the effects significant? ABCD 
� �2.5251, BCD � 4.4054, ACD � �0.4932, ABD 
� �5.0842, ABC � �5.7696, CD � 4.6707, BD �
�4.6620, BC � �0.7982, AD � �1.6564, AC � 1.1109, AB 
� �10.5229, D � �6.0275, C � �8.2045, B � �6.5304,
and A � �0.7914.

6.20. Consider a variation of the bottle filling experiment
from Example 5.3. Suppose that only two levels of carbona-
tion are used so that the experiment is a 23 factorial design
with two replicates. The data are shown in Table P6.3.

     CD �  1.27    

  BD �  14.74   ABCD � � 6.25

D � �18.73   BC �  20.78   BCD � � 7.98

C � �7.84   AD �  9.78   ACD �  10.20

B � �67.52   AC �  11.69   ABD � � 6.50

A �  76.95   AB � � 51.32   ABC � � 2.82

■ TA B L E  P 6 . 3
Fill Height Experiment from Problem 6.20

Coded Factors Fill Height Deviation Factor Levels

Run A B C Replicate 1 Replicate 2 Low (�1) High (�1)

1 � � � �3 �1 A (%) 10 12
2 � � � 0 1 B (psi) 25 30
3 � � � �1 0 C (b/m) 200 250
4 � � � 2 3
5 � � � �1 0
6 � � � 2 1
7 � � � 1 1
8 � � � 6 5 

(a) Analyze the data from this experiment. Which factors
significantly affect fill height deviation?

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy?

(c) Obtain a model for predicting fill height deviation in
terms of the important process variables. Use this
model to construct contour plots to assist in interpret-
ing the results of the experiment.

(d) In part (a), you probably noticed that there was an
interaction term that was borderline significant. If
you did not include the interaction term in your
model, include it now and repeat the analysis. What
difference did this make? If you elected to include
the interaction term in part (a), remove it and repeat
the analysis. What difference does the interaction
term make?
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6.21. I am always interested in improving my golf scores.
Since a typical golfer uses the putter for about 35–45 percent
of his or her strokes, it seems reasonable that improving one’s
putting is a logical and perhaps simple way to improve a golf
score (“The man who can putt is a match for any man.”—
Willie Parks, 1864–1925, two time winner of the British
Open). An experiment was conducted to study the effects of

four factors on putting accuracy. The design factors are length
of putt, type of putter, breaking putt versus straight putt, and
level versus downhill putt. The response variable is distance
from the ball to the center of the cup after the ball comes to
rest. One golfer performs the experiment, a 24 factorial design
with seven replicates was used, and all putts are made in ran-
dom order. The results are shown in Table P6.4.

■ TA B L E  P 6 . 4
The Putting Experiment from Problem 6.21

Design Factors Distance from Cup (replicates)

Length of Break Slope 
putt (ft) Type of putter of putt of putt 1 2 3 4 5 6 7

10 Mallet Straight Level 10.0 18.0 14.0 12.5 19.0 16.0 18.5
30 Mallet Straight Level 0.0 16.5 4.5 17.5 20.5 17.5 33.0
10 Cavity back Straight Level 4.0 6.0 1.0 14.5 12.0 14.0 5.0
30 Cavity back Straight Level 0.0 10.0 34.0 11.0 25.5 21.5 0.0
10 Mallet Breaking Level 0.0 0.0 18.5 19.5 16.0 15.0 11.0
30 Mallet Breaking Level 5.0 20.5 18.0 20.0 29.5 19.0 10.0
10 Cavity back Breaking Level 6.5 18.5 7.5 6.0 0.0 10.0 0.0
30 Cavity back Breaking Level 16.5 4.5 0.0 23.5 8.0 8.0 8.0
10 Mallet Straight Downhill 4.5 18.0 14.5 10.0 0.0 17.5 6.0
30 Mallet Straight Downhill 19.5 18.0 16.0 5.5 10.0 7.0 36.0
10 Cavity back Straight Downhill 15.0 16.0 8.5 0.0 0.5 9.0 3.0
30 Cavity back Straight Downhill 41.5 39.0 6.5 3.5 7.0 8.5 36.0
10 Mallet Breaking Downhill 8.0 4.5 6.5 10.0 13.0 41.0 14.0
30 Mallet Breaking Downhill 21.5 10.5 6.5 0.0 15.5 24.0 16.0
10 Cavity back Breaking Downhill 0.0 0.0 0.0 4.5 1.0 4.0 6.5
30 Cavity back Breaking Downhill 18.0 5.0 7.0 10.0 32.5 18.5 8.0 

(a) Analyze the data from this experiment. Which factors
significantly affect putting performance?

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy?

6.22. Semiconductor manufacturing processes have long
and complex assembly flows, so matrix marks and automated
2d-matrix readers are used at several process steps throughout
factories. Unreadable matrix marks negatively affect factory
run rates because manual entry of part data is required before
manufacturing can resume. A 24 factorial experiment was con-
ducted to develop a 2d-matrix laser mark on a metal cover that
protects a substrate-mounted die. The design factors are A �
laser power (9 and 13 W), B � laser pulse frequency (4000 and
12,000 Hz), C � matrix cell size (0.07 and 0.12 in.), and D �
writing speed (10 and 20 in./sec), and the response variable is
the unused error correction (UEC). This is a measure of the
unused portion of the redundant information embedded in the
2d-matrix. A UEC of 0 represents the lowest reading that still
results in a decodable matrix, while a value of 1 is the highest
reading. A DMX Verifier was used to measure UEC. The data
from this experiment are shown in Table P6.5.

(a) Analyze the data from this experiment. Which factors
significantly affect UEC?

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy?

6.23. Reconsider the experiment described in Problem 6.20.
Suppose that four center points are available and that the UEC
response at these four runs is 0.98, 0.95, 0.93, and 0.96, respec-
tively. Reanalyze the experiment incorporating a test for curva-
ture into the analysis. What conclusions can you draw? What
recommendations would you make to the experimenters?

6.24. A company markets its products by direct mail. An
experiment was conducted to study the effects of three factors
on the customer response rate for a particular product. The three
factors are A � type of mail used (3rd class, 1st class), B � type
of descriptive brochure (color, black-and-white), and C �
offered price ($19.95, $24.95). The mailings are made to two
groups of 8000 randomly selected customers, with 1000 cus-
tomers in each group receiving each treatment combination.
Each group of customers is considered as a replicate. The
response variable is the number of orders placed. The experi-
mental data are shown in Table P6.6.
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(a) Analyze the data from this experiment. Which factors
significantly affect the customer response rate?

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy?

(c) What would you recommend to the company?

6.25. Consider the single replicate of the 24 design in
Example 6.2. Suppose that we had arbitrarily decided to ana-
lyze the data assuming that all three- and four-factor interac-
tions were negligible. Conduct this analysis and compare your
results with those obtained in the example. Do you think that
it is a good idea to arbitrarily assume interactions to be negli-
gible even if they are relatively high-order ones?

6.26. An experiment was run in a semiconductor fabrication
plant in an effort to increase yield. Five factors, each at two
levels, were studied. The factors (and levels) were A � aperture

setting (small, large), B � exposure time (20% below nominal,
20% above nominal), C � development time (30 and 45 s), D �
mask dimension (small, large), and E � etch time (14.5 and 15.5
min). The unreplicated 25 design shown below was run.

(1) � 7 d � 8 e � 8 de � 6

a � 9 ad � 10 ae � 12 ade � 10

b � 34 bd � 32 be � 35 bde � 30

ab � 55 abd � 50 abe � 52 abde � 53

c � 16 cd � 18 ce � 15 cde � 15

ac � 20 acd � 21 ace � 22 acde � 20

bc � 40 bcd � 44 bce � 45 bcde � 41

abc � 60 abcd � 61 abce � 65 abcde � 63

■ TA B L E  P 6 . 5
The 24 Experiment for Problem 6.22

Standard Run Laser Pulse Cell Writing 
Order Order Power Frequency Size Speed UEC

8 1 1.00 1.00 1.00 �1.00 0.8
10 2 1.00 �1.00 �1.00 1.00 0.81
12 3 1.00 1.00 �1.00 1.00 0.79
9 4 �1.00 �1.00 �1.00 1.00 0.6
7 5 �1.00 1.00 1.00 �1.00 0.65

15 6 –1.00 1.00 1.00 1.00 0.55
2 7 1.00 �1.00 �1.00 �1.00 0.98
6 8 1.00 �1.00 1.00 �1.00 0.67

16 9 1.00 1.00 1.00 1.00 0.69
13 10 �1.00 �1.00 1.00 1.00 0.56

5 11 �1.00 �1.00 1.00 �1.00 0.63
14 12 1.00 �1.00 1.00 1.00 0.65
1 13 �1.00 �1.00 �1.00 �1.00 0.75
3 14 �1.00 1.00 �1.00 �1.00 0.72
4 15 1.00 1.00 �1.00 �1.00 0.98

11 16 �1.00 1.00 �1.00 1.00 0.63

■ TA B L E  P 6 . 6
The Direct Mail Experiment from Problem 6.24

Coded Factors Number of Orders Factor Levels

Run A B C Replicate 1 Replicate 2 Low (�1) High (�1)

1 � � � 50 54 A (class) 3rd 1st
2 � � � 44 42 B (type) BW Color
3 � � � 46 48 C ($) $19.95 $24.95
4 � � � 42 43
5 � � � 49 46
6 � � � 48 45
7 � � � 47 48
8 � � � 56 54 
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(a) Construct a normal probability plot of the effect esti-
mates. Which effects appear to be large?

(b) Conduct an analysis of variance to confirm your find-
ings for part (a).

(c) Write down the regression model relating yield to the
significant process variables.

(d) Plot the residuals on normal probability paper. Is the
plot satisfactory?

(e) Plot the residuals versus the predicted yields and ver-
sus each of the five factors. Comment on the plots.

(f) Interpret any significant interactions.
(g) What are your recommendations regarding process

operating conditions?
(h) Project the 25 design in this problem into a 2k design

in the important factors. Sketch the design and show

the average and range of yields at each run. Does
this sketch aid in interpreting the results of this
experiment?

6.27. Continuation of Problem 6.26. Suppose that the
experimenter had run four center points in addition to the 32
trials in the original experiment. The yields obtained at the
center point runs were 68, 74, 76, and 70.

(a) Reanalyze the experiment, including a test for pure
quadratic curvature.

(b) Discuss what your next step would be.

6.28. In a process development study on yield, four fac-
tors were studied, each at two levels: time (A), concentra-
tion (B), pressure (C), and temperature (D). A single repli-
cate of a 24 design was run, and the resulting data are shown
in Table P6.7.

■ TA B L E  P 6 . 7
Process Development Experiment from Problem 6.28

Actual
Run Run Yield Factor Levels

Number Order A B C D (lbs) Low (�) High (�)

1 5 � � � � 12 A (h) 2.5 3
2 9 � � � � 18 B (%) 14 18
3 8 � � � � 13 C (psi) 60 80
4 13 � � � � 16 D (�C) 225 250
5 3 � � � � 17
6 7 � � � � 15
7 14 � � � � 20
8 1 � � � � 15
9 6 � � � � 10

10 11 � � � � 25
11 2 � � � � 13
12 15 � � � � 24
13 4 � � � � 19
14 16 � � � � 21
15 10 � � � � 17
16 12 � � � � 23

(a) Construct a normal probability plot of the effect esti-
mates. Which factors appear to have large effects?

(b) Conduct an analysis of variance using the normal
probability plot in part (a) for guidance in forming an
error term. What are your conclusions?

(c) Write down a regression model relating yield to the
important process variables.

(d) Analyze the residuals from this experiment. Does your
analysis indicate any potential problems?

(e) Can this design be collapsed into a 23 design with two
replicates? If so, sketch the design with the average
and range of yield shown at each point in the cube.
Interpret the results.

6.29. Continuation of Problem 6.28. Use the regression
model in part (c) of Problem 6.28 to generate a response sur-
face contour plot of yield. Discuss the practical value of this
response surface plot.

6.30. The scrumptious brownie experiment. The author is
an engineer by training and a firm believer in learning by
doing. I have taught experimental design for many years to a
wide variety of audiences and have always assigned the plan-
ning, conduct, and analysis of an actual experiment to the class
participants. The participants seem to enjoy this practical expe-
rience and always learn a great deal from it. This problem uses
the results of an experiment performed by Gretchen Krueger
at Arizona State University.
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There are many different ways to bake brownies. The
purpose of this experiment was to determine how the pan
material, the brand of brownie mix, and the stirring method
affect the scrumptiousness of brownies. The factor levels
were

Factor Low (�) High (�)

A � pan material Glass Aluminum

B � stirring method Spoon Mixer

C � brand of mix Expensive Cheap

The response variable was scrumptiousness, a subjective
measure derived from a questionnaire given to the subjects
who sampled each batch of brownies. (The questionnaire
dealt with such issues as taste, appearance, consistency,
aroma, and so forth.) An eight-person test panel sampled each
batch and filled out the questionnaire. The design matrix and
the response data are as follows.

(a) Analyze the data from this experiment as if there were
eight replicates of a 23 design. Comment on the results.

(b) Is the analysis in part (a) the correct approach? There
are only eight batches; do we really have eight repli-
cates of a 23 factorial design?

(c) Analyze the average and standard deviation of the
scrumptiousness ratings. Comment on the results. Is
this analysis more appropriate than the one in part (a)?
Why or why not?

Brownie Test Panel Results

Batch A B C 1 2 3 4 5 6 7 8

1 � � � 11 9 10 10 11 10 8 9

2 � � � 15 10 16 14 12 9 6 15

3 � � � 9 12 11 11 11 11 11 12

4 � � � 16 17 15 12 13 13 11 11

5 � � � 10 11 15 8 6 8 9 14

6 � � � 12 13 14 13 9 13 14 9

7 � � � 10 12 13 10 7 7 17 13

9 � � � 15 12 15 13 12 12 9 14

6.31. An experiment was conducted on a chemical process
that produces a polymer. The four factors studied were temper-
ature (A), catalyst concentration (B), time (C), and pressure
(D). Two responses, molecular weight and viscosity, were
observed. The design matrix and response data are shown in
Table P6.8.

■ TA B L E  P 6 . 8
The 24 Experiment for Problem 6.31

Actual
Run Run Molecular Factor Levels

Number Order A B C D Weight Viscosity Low (�) High (�)

1 18 � � � � 2400 1400 A (�C) 100 120
2 9 � � � � 2410 1500 B (%) 4 8
3 13 � � � � 2315 1520 C (min) 20 30
4 8 � � � � 2510 1630 D (psi) 60 75
5 3 � � � � 2615 1380
6 11 � � � � 2625 1525
7 14 � � � � 2400 1500
8 17 � � � � 2750 1620
9 6 � � � � 2400 1400

10 7 � � � � 2390 1525
11 2 � � � � 2300 1500
12 10 � � � � 2520 1500
13 4 � � � � 2625 1420
14 19 � � � � 2630 1490
15 15 � � � � 2500 1500
16 20 � � � � 2710 1600
17 1 0 0 0 0 2515 1500
18 5 0 0 0 0 2500 1460
19 16 0 0 0 0 2400 1525
20 12 0 0 0 0 2475 1500



(a) Consider only the molecular weight response. Plot the
effect estimates on a normal probability scale. What
effects appear important?

(b) Use an analysis of variance to confirm the results from
part (a). Is there indication of curvature?

(c) Write down a regression model to predict molecular
weight as a function of the important variables.

(d) Analyze the residuals and comment on model adequacy.

(e) Repeat parts (a)–(d) using the viscosity response.

6.32. Continuation of Problem 6.31. Use the regression
models for molecular weight and viscosity to answer the fol-
lowing questions.

(a) Construct a response surface contour plot for molecu-
lar weight. In what direction would you adjust the
process variables to increase molecular weight?

(b) Construct a response surface contour plot for viscosi-
ty. In what direction would you adjust the process vari-
ables to decrease viscosity?

(c) What operating conditions would you recommend if it
was necessary to produce a product with molecular
weight between 2400 and 2500 and the lowest possi-
ble viscosity?

6.33. Consider the single replicate of the 24 design in
Example 6.2. Suppose that we ran five points at the center 
(0, 0, 0, 0) and observed the responses 93, 95, 91, 89, and
96. Test for curvature in this experiment. Interpret the
results.

6.34. A missing value in a 2k factorial. It is not unusual to
find that one of the observations in a 2k design is missing due
to faulty measuring equipment, a spoiled test, or some other
reason. If the design is replicated n times (n 
 1), some of the
techniques discussed in Chapter 5 can be employed. However,
for an unreplicated factorial (n � 1) some other method must
be used. One logical approach is to estimate the missing value
with a number that makes the highest order interaction con-
trast zero. Apply this technique to the experiment in Example
6.2 assuming that run ab is missing. Compare the results with
the results of Example 6.2.

6.35. An engineer has performed an experiment to study
the effect of four factors on the surface roughness of a
machined part. The factors (and their levels) are A � tool
angle (12, 15°), B � cutting fluid viscosity (300, 400), C �
feed rate (10 and 15 in./min), and D � cutting fluid cooler
used (no, yes). The data from this experiment (with the factors
coded to the usual �1, �1 levels) are shown in Table P6.9.

(a) Estimate the factor effects. Plot the effect estimates
on a normal probability plot and select a tentative
model.

(b) Fit the model identified in part (a) and analyze the
residuals. Is there any indication of model inadequacy?

(c) Repeat the analysis from parts (a) and (b) using 1/y as
the response variable. Is there an indication that the
transformation has been useful?

(d) Fit a model in terms of the coded variables that can be
used to predict the surface roughness. Convert this pre-
diction equation into a model in the natural variables.

■ TA B L E  P 6 . 9
The Surface Roughness Experiment from Problem 6.35

Surface
Run A B C D Roughness

1 � � � � 0.00340

2 � � � � 0.00362

3 � � � � 0.00301

4 � � � � 0.00182

5 � � � � 0.00280

6 � � � � 0.00290

7 � � � � 0.00252

8 � � � � 0.00160

9 � � � � 0.00336

10 � � � � 0.00344

11 � � � � 0.00308

12 � � � � 0.00184

13 � � � � 0.00269

14 � � � � 0.00284

15 � � � � 0.00253

16 � � � � 0.00163

6.36. Resistivity on a silicon wafer is influenced by sever-
al factors. The results of a 24 factorial experiment performed
during a critical processing step is shown in Table P6.10.

■ TA B L E  P 6 . 1 0
The Resistivity Experiment from Problem 6.36

Run A B C D Resistivity

1 � � � � 1.92

2 � � � � 11.28

3 � � � � 1.09

4 � � � � 5.75

5 � � � � 2.13

6 � � � � 9.53

7 � � � � 1.03

8 � � � � 5.35

9 � � � � 1.60

10 � � � � 11.73

11 � � � � 1.16

12 � � � � 4.68

13 � � � � 2.16

14 � � � � 9.11

15 � � � � 1.07

16 � � � � 5.30
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(a) Estimate the factor effects. Plot the effect estimates on
a normal probability plot and select a tentative model.

(b) Fit the model identified in part (a) and analyze the
residuals. Is there any indication of model inadequacy?

(c) Repeat the analysis from parts (a) and (b) using ln (y)
as the response variable. Is there an indication that the
transformation has been useful?

(d) Fit a model in terms of the coded variables that can be
used to predict the resistivity.

6.37. Continuation of Problem 6.36. Suppose that the
experimenter had also run four center points along with the 16
runs in Problem 6.36. The resistivity measurements at the cen-
ter points are 8.15, 7.63, 8.95, and 6.48. Analyze the experi-
ment again incorporating the center points. What conclusions
can you draw now?

6.38. The book by Davies (Design and Analysis of Industrial
Experiments) describes an experiment to study the yield of
isatin. The factors studied and their levels are as follows:

Factor Low (�) High (�)

A: Acid strength (%) 87 93

B: Reaction time (min) 15 30

C: Amount of acid (mL) 35 45

D: Reaction temperature (�C) 60 70

The data from the 24 factorial is shown in Table P6.11.  

(a) Fit a main-effects-only model to the data from this
experiment. Are any of the main effects significant?  

(b) Analyze the residuals. Are there any indications of
model inadequacy or violation of the assumptions?

(c) Find an equation for predicting the yield of isatin over
the design space. Express the equation in both coded
and engineering units.

(d) Is there any indication that adding interactions to the
model would improve the results that you have
obtained?

■ TA B L E  P 6 . 1 1
The 24 Factorial Experiment in Problem 6.38

A B C D Yield

�1 �1 �1 �1 6.08

1 �1 �1 �1 6.04

�1 1 �1 �1 6.53

1 1 �1 �1 6.43

�1 �1 1 �1 6.31

1 �1 1 �1 6.09

�1 1 1 �1 6.12

1 1 1 �1 6.36

�1 �1 �1 1 6.79

1 �1 �1 1 6.68

�1 1 �1 1 6.73

1 1 �1 1 6.08

�1 �1 1 1 6.77

1 �1 1 1 6.38

�1 1 1 1 6.49

1 1 1 1 6.23

6.39. An article in Quality and Reliability Engineering
International (2010, Vol. 26, pp. 223–233) presents a 25 fac-
torial design. The experiment is shown in Table P6.12.

■ TA B L E  P 6 . 1 2
The 25 Design in Problem 6.39

A B C D E y

�1.00 �1.00 �1.00 �1.00 �1.00 8.11

1.00 �1.00 �1.00 �1.00 �1.00 5.56

�1.00 1.00 �1.00 �1.00 �1.00 5.77

1.00 1.00 �1.00 �1.00 �1.00 5.82

�1.00 �1.00 1.00 �1.00 �1.00 9.17

1.00 �1.00 1.00 �1.00 �1.00 7.8

�1.00 1.00 1.00 �1.00 �1.00 3.23

1.00 1.00 1.00 �1.00 �1.00 5.69

�1.00 �1.00 �1.00 1.00 �1.00 8.82

1.00 �1.00 �1.00 1.00 �1.00 14.23

�1.00 1.00 �1.00 1.00 �1.00 9.2

1.00 1.00 �1.00 1.00 �1.00 8.94

�1.00 �1.00 1.00 1.00 �1.00 8.68

1.00 �1.00 1.00 1.00 �1.00 11.49

�1.00 1.00 1.00 1.00 �1.00 6.25

1.00 1.00 1.00 1.00 �1.00 9.12

�1.00 �1.00 �1.00 �1.00 1.00 7.93

1.00 �1.00 �1.00 �1.00 1.00 5

�1.00 1.00 �1.00 �1.00 1.00 7.47

1.00 1.00 �1.00 �1.00 1.00 12

�1.00 �1.00 1.00 �1.00 1.00 9.86

1.00 �1.00 1.00 �1.00 1.00 3.65

�1.00 1.00 1.00 �1.00 1.00 6.4

1.00 1.00 1.00 �1.00 1.00 11.61

�1.00 �1.00 �1.00 1.00 1.00 12.43

1.00 �1.00 �1.00 1.00 1.00 17.55

�1.00 1.00 �1.00 1.00 1.00 8.87

1.00 1.00 �1.00 1.00 1.00 25.38

�1.00 �1.00 1.00 1.00 1.00 13.06

1.00 �1.00 1.00 1.00 1.00 18.85

�1.00 1.00 1.00 1.00 1.00 11.78

1.00 1.00 1.00 1.00 1.00 26.05
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(a) Analyze the data from this experiment. Identify the
significant factors and interactions.

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy or violations of
the assumptions?

(c) One of the factors from this experiment does not seem
to be important. If you drop this factor, what type of
design remains? Analyze the data using the full facto-
rial model for only the four active factors. Compare
your results with those obtained in part (a). 

(d) Find settings of the active factors that maximize the
predicted response.

6.40. A paper in the Journal of Chemical Technology and
Biotechnology (“Response Surface Optimization of the
Critical Media Components for the Production of Surfactin,”
1997, Vol. 68, pp. 263–270) describes the use of a designed
experiment to maximize surfactin production. A portion of
the data from this experiment is shown in Table P6.13.
Surfactin was assayed by an indirect method, which involves
measurement of surface tensions of the diluted broth sam-
ples. Relative surfactin concentrations were determined by
serially diluting the broth until the critical micelle concentra-
tion (CMC) was reached. The dilution at which the surface
tension starts rising abruptly was denoted by CMC�1 and was
considered proportional to the amount of surfactant present
in the original sample.

■ TA B L E  P 6 . 1 3
The Factorial Experiment in Problem 6.40

Glucose NH4NO3 FeSO4 MnSO4 y
Run (g dm�3) (g dm�3) (g dm�3 �10�4) (g dm�3 �10�2) (CMC)�1

1 20.00 2.00 6.00 4.00 23

2 60.00 2.00 6.00 4.00 15

3 20.00 6.00 6.00 4.00 16

4 60.00 6.00 6.00 4.00 18

5 20.00 2.00 30.00 4.00 25

6 60.00 2.00 30.00 4.00 16

7 20.00 6.00 30.00 4.00 17

8 60.00 6.00 30.00 4.00 26

9 20.00 2.00 6.00 20.00 28

10 60.00 2.00 6.00 20.00 16

11 20.00 6.00 6.00 20.00 18

12 60.00 6.00 6.00 20.00 21

13 20.00 2.00 30.00 20.00 36

14 60.00 2.00 30.00 20.00 24

15 20.00 6.00 30.00 20.00 33

16 60.00 6.00 30.00 20.00 34

(a) Analyze the data from this experiment. Identify the
significant factors and interactions.

(b) Analyze the residuals from this experiment. Are there
any indications of model inadequacy or violations of
the assumptions?

(c) What conditions would optimize the surfactin 
production?

6.41. Continuation of Problem 6.40. The experiment in
Problem 6.40 actually included six center points. The
responses at these conditions were 35, 35, 35, 36, 36, and 34.
Is there any indication of curvature in the response function?
Are additional experiments necessary? What would you rec-
ommend doing now?

6.42. An article in the Journal of Hazardous Materials
(“Feasibility of Using Natural Fishbone Apatite as a Substitute
for Hydroxyapatite in Remediating Aqueous Heavy Metals,”
Vol. 69, Issue 2, 1999, pp. 187–196) describes an experiment to
study the suitability of fishbone, a natural, apatite rich substance,
as a substitute for hydroxyapatite in the sequestering of aqueous
divalent heavy metal ions. Direct comparison of hydroxyapatite
and fishbone apatite was performed using a three-factor two-
level full factorial design. Apatite (30 or 60 mg) was added to
100 mL deionized water and gently agitated overnight in a 
shaker. The pH was then adjusted to 5 or 7 using nitric acid.
Sufficient concentration of lead nitrate solution was added to
each flask to result in a final volume of 200 mL and a lead con-
centration of 0.483 or 2.41 mM, respectively. The experiment
was a 23 replicated twice and it was performed for both fishbone
and synthetic apatite. Results are shown in Table P6.14.

■ TA B L E  P 6 . 1 4
The Experiment for Problem 6.42. For apatite, � is
60 mg and � is 30 mg per 200 mL metal solution. 
For initial pH, � is 7 and � is 4. For Pb � is 2.41 mM
(500 ppm) and � is 0.483 mM (100 ppm)

Fishbone Hydroxyapatite

Apatite pH Pb Pb, mM pH Pb, mM pH

� � � 1.82 5.22 0.11 3.49
� � � 1.81 5.12 0.12 3.46
� � � 0.01 6.84 0.00 5.84
� � � 0.00 6.61 0.00 5.90
� � � 1.11 3.35 0.80 2.70
� � � 1.04 3.34 0.76 2.74
� � � 0.00 5.77 0.03 3.36
� � � 0.01 6.25 0.05 3.24
� � � 2.11 5.29 1.03 3.22
� � � 2.18 5.06 1.05 3.22
� � � 0.03 5.93 0.00 5.53
� � � 0.05 6.02 0.00 5.43
� � � 1.70 3.39 1.34 2.82
� � � 1.69 3.34 1.26 2.79
� � � 0.05 4.50 0.06 3.28
� � � 0.05 4.74 0.07 3.28



6.10 Problems 303

(a) Analyze the lead response for fishbone apatite. What
factors are important?

(b) Analyze the residuals from this response and comment
on model adequacy.

(c) Analyze the pH response for fishbone apatite. What
factors are important?

(d) Analyze the residuals from this response and comment
on model adequacy.

(e) Analyze the lead response for hydroxyapatite apatite.
What factors are important?

(f) Analyze the residuals from this response and comment
on model adequacy.

(g) Analyze the pH response for hydroxyapatite apatite.
What factors are important?

(h) Analyze the residuals from this response and comment
on model adequacy.

(i) What differences do you see between fishbone and
hydroxyapatite apatite? The authors of this paper con-
cluded that that fishbone apatite was comparable to
hydroxyapatite apatite. Because the fishbone apatite is
cheaper, it was recommended for adoption. Do you
agree with these conclusions?

6.43. Often the fitted regression model from a 2k factorial
design is used to make predictions at points of interest in the
design space. Assume that the model contains all main effects
and two-factor interactions.

(a) Find the variance of the predicted response at a point
x1, x2, . . . , xk in the design space. Hint: Remember that
the x’s are coded variables and assume a 2k design with

ŷ

an equal number of replicates n at each design point so
that the variance of a regression coefficient is
�2/(n2k) and that the covariance between any pair of
regression coefficients is zero.

(b) Use the result in part (a) to find an equation for a 100(1
� 	) percent confidence interval on the true mean
response at the point x1, x2, . . . , xk in design space.

6.44. Hierarchical models. Several times we have used the
hierarchy principle in selecting a model; that is, we have
included nonsignificant lower order terms in a model because
they were factors involved in significant higher order terms.
Hierarchy is certainly not an absolute principle that must be
followed in all cases. To illustrate, consider the model result-
ing from Problem 6.1, which required that a nonsignificant
main effect be included to achieve hierarchy. Using the data
from Problem 6.1.

(a) Fit both the hierarchical and the nonhierarchical models.

(b) Calculate the PRESS statistic, the adjusted R2, and the
mean square error for both models.

(c) Find a 95 percent confidence interval on the estimate
of the mean response at a cube corner (x1 � x2 � x3 �

 1). Hint: Use the results of Problem 6.36.

(d) Based on the analyses you have conducted, which
model do you prefer?

6.45. Suppose that you want to run a 23 factorial design. The
variance of an individual observation is expected to be about 4.
Suppose that you want the length of a 95 percent confidence
interval on any effect to be less than or equal to 1.5. How many
replicates of the design do you need to run?

�̂
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C H A P T E R 7

B l o c k i n g  a n d
C o n f o u n d i n g  i n  t h e
2 k F a c t o r i a l  D e s i g n

CHAPTER OUTLINE
7.1 INTRODUCTION

7.2 BLOCKING A REPLICATED 2k FACTORIAL
DESIGN

7.3 CONFOUNDING IN THE 2k FACTORIAL 
DESIGN

7.4 CONFOUNDING THE 2k FACTORIAL DESIGN IN
TWO BLOCKS

7.5 ANOTHER ILLUSTRATION OF WHY BLOCKING
IS IMPORTANT

7.1 Introduction

In many situations it is impossible to perform all of the runs in a 2k factorial experiment under
homogeneous conditions. For example, a single batch of raw material might not be large
enough to make all of the required runs. In other cases, it might be desirable to deliberately
vary the experimental conditions to ensure that the treatments are equally effective (i.e.,
robust) across many situations that are likely to be encountered in practice. For example, a
chemical engineer may run a pilot plant experiment with several batches of raw material
because he knows that different raw material batches of different quality grades are likely to
be used in the actual full-scale process.

The design technique used in these situations is blocking. Chapter 4 was an introduc-
tion to the blocking principle, and you may find it helpful to read the introductory material
in that chapter again. We also discussed blocking general factorial experiments in Chapter 5.
In this chapter, we will build on the concepts introduced in Chapter 4, focusing on some spe-
cial techniques for blocking in the 2k factorial design.

7.6 CONFOUNDING THE 2k FACTORIAL DESIGN IN
FOUR BLOCKS

7.7 CONFOUNDING THE 2k FACTORIAL DESIGN IN 2p

BLOCKS

7.8 PARTIAL CONFOUNDING

SUPPLEMENTAL MATERIAL FOR CHAPTER 7
S7.1 The Error Term in a Blocked Design
S7.2 The Prediction Equation for a Blocked Design
S7.3 Run Order Is Important

The supplemental material is on the textbook website www.wiley.com/college/montgomery.
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7.2 Blocking a Replicated 2k Factorial Design

Suppose that the 2k factorial design has been replicated n times. This is identical to the situation
discussed in Chapter 5, where we showed how to run a general factorial design in blocks. If there
are n replicates, then each set of nonhomogeneous conditions defines a block, and each replicate
is run in one of the blocks. The runs in each block (or replicate) would be made in random order.
The analysis of the design is similar to that of any blocked factorial experiment; for example, see
the discussion in Section 5.6. If blocks are random, the REML method can be used to find both
a point estimate and an approximate confidance interval for the variance component for blocks.

E X A M P L E  7 . 1

Consider the chemical process experiment first described in
Section 6.2. Suppose that only four experimental trials can
be made from a single batch of raw material. Therefore,
three batches of raw material will be required to run all
three replicates of this design. Table 7.1 shows the design,
where each batch of raw material corresponds to a block.

The ANOVA for this blocked design is shown in Table
7.2. All of the sums of squares are calculated exactly as in
a standard, unblocked 2k design. The sum of squares for
blocks is calculated from the block totals. Let B1, B2, and B3

represent the block totals (see Table 7.1). Then

There are two degrees of freedom among the three blocks.
Table 7.2 indicates that the conclusions from this analysis,
had the design been run in blocks, are identical to those in
Section 6.2 and that the block effect is relatively small.

� 6.50

�
(113)2 � (106)2 � (111)2

4
�

(330)2

12

SSBlocks � �
3

i�1

B2
i

4
�

y2
. . .

12

■ TA B L E  7 . 1
Chemical Process Experiment in Three Blocks

Block 1 Block 2 Block 3

Block totals: B3 � 111B2 � 106B1 � 113

ab � 29ab � 30ab � 31

b � 23b � 19b � 18

a � 32a � 32a � 36

(1) � 27(1) � 25(1) � 28

■ TA B L E  7 . 2
Analysis of Variance for the Chemical Process Experiment in Three Blocks

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F0 P-Value

Blocks 6.50 2 3.25

A (concentration) 208.33 1 208.33 50.32 0.0004

B (catalyst) 75.00 1 75.00 18.12 0.0053

AB 8.33 1 8.33 2.01 0.2060

Error 24.84 6 4.14

Total 323.00 11
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7.3 Confounding in the 2k Factorial Design

In many problems it is impossible to perform a complete replicate of a factorial design in one
block. Confounding is a design technique for arranging a complete factorial experiment in
blocks, where the block size is smaller than the number of treatment combinations in one
replicate. The technique causes information about certain treatment effects (usually high-
order interactions) to be indistinguishable from, or confounded with, blocks. In this chap-
ter we concentrate on confounding systems for the 2k factorial design. Note that even though
the designs presented are incomplete block designs because each block does not contain all
the treatments or treatment combinations, the special structure of the 2k factorial system
allows a simplified method of analysis.

We consider the construction and analysis of the 2k factorial design in 2p incomplete
blocks, where p � k. Consequently, these designs can be run in two blocks ( p � 1), four
blocks ( p � 2), eight blocks ( p � 3), and so on.

7.4 Confounding the 2k Factorial Design in Two Blocks

Suppose that we wish to run a single replicate of the 22 design. Each of the 22 � 4 treatment
combinations requires a quantity of raw material, for example, and each batch of raw materi-
al is only large enough for two treatment combinations to be tested. Thus, two batches of raw
material are required. If batches of raw material are considered as blocks, then we must assign
two of the four treatment combinations to each block.

Figure 7.1 shows one possible design for this problem. The geometric view, Figure
7.1a, indicates that treatment combinations on opposing diagonals are assigned to different
blocks. Notice from Figure 7.1b that block 1 contains the treatment combinations (1) and ab
and that block 2 contains a and b. Of course, the order in which the treatment combinations
are run within a block is randomly determined. We would also randomly decide which block
to run first. Suppose we estimate the main effects of A and B just as if no blocking had
occurred. From Equations 6.1 and 6.2, we obtain

Note that both A and B are unaffected by blocking because in each estimate there is one plus
and one minus treatment combination from each block. That is, any difference between block
1 and block 2 will cancel out.

B �
1
2[ab � b � a � (1)]

A �
1
2[ab � a � b � (1)]

–

–

–
+

+

(a) Geometric view

(b) Assignment of the four
runs to two blocks

= Run in block 1

Block 1 Block 2

= Run in block 2

A

B
(1)

ab

a

b

■ F I G U R E 7 . 1 A 22 design in two blocks
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Now consider the AB interaction

Because the two treatment combinations with the plus sign [ab and (1)] are in block 1 and the
two with the minus sign (a and b) are in block 2, the block effect and the AB interaction are
identical. That is, AB is confounded with blocks.

The reason for this is apparent from the table of plus and minus signs for the 22 design.
This was originally given as Table 6.2, but for convenience it is reproduced as Table 7.3 here.
From this table, we see that all treatment combinations that have a plus sign on AB are
assigned to block 1, whereas all treatment combinations that have a minus sign on AB are
assigned to block 2. This approach can be used to confound any effect (A, B, or AB) with
blocks. For example, if (1) and b had been assigned to block 1 and a and ab to block 2, the
main effect A would have been confounded with blocks. The usual practice is to confound the
highest order interaction with blocks.

This scheme can be used to confound any 2k design in two blocks. As a second exam-
ple, consider a 23 design run in two blocks. Suppose we wish to confound the three-factor
interaction ABC with blocks. From the table of plus and minus signs shown in Table 7.4, we
assign the treatment combinations that are minus on ABC to block 1 and those that are plus
on ABC to block 2. The resulting design is shown in Figure 7.2. Once again, we emphasize
that the treatment combinations within a block are run in random order.

Other Methods for Constructing the Blocks. There is another method for con-
structing these designs. The method uses the linear combination

(7.1)L � 	1x1 � 	2x2 � Á � akxk

AB �
1
2[ab � (1) � a � b]

■ TA B L E  7 . 3
Table of Plus and Minus Signs for the 22 Design

Treatment
Factorial Effect

Combination I A B AB Block

(1) � � � � 1

a � � � � 2

b � � � � 2

ab � � � � 1

■ TA B L E  7 . 4
Table of Plus and Minus Signs for the 23 Design

Treatment
Factorial Effect

Combination I A B AB C AC BC ABC Block

(1) � � � � � � � � 1

a � � � � � � � � 2

b � � � � � � � � 2

ab � � � � � � � � 1

c � � � � � � � � 2

ac � � � � � � � � 1

bc � � � � � � � � 1

abc � � � � � � � � 2



where xi is the level of the ith factor appearing in a particular treatment combination and 	i is
the exponent appearing on the ith factor in the effect to be confounded. For the 2k system, we
have 	i � 0 or 1 and xi � 0 (low level) or xi � 1 (high level). Equation 7.1 is called a defin-
ing contrast. Treatment combinations that produce the same value of L (mod 2) will be
placed in the same block. Because the only possible values of L (mod 2) are 0 and 1, this will
assign the 2k treatment combinations to exactly two blocks.

To illustrate the approach, consider a 23 design with ABC confounded with blocks. Here
x1 corresponds to A, x2 to B, x3 to C, and 	1 � 	2 � 	3 � 1. Thus, the defining contrast cor-
responding to ABC is

The treatment combination (1) is written 000 in the (0, 1) notation; therefore,

Similarly, the treatment combination a is 100, yielding

Thus, (1) and a would be run in different blocks. For the remaining treatment combinations,
we have

Thus (1), ab, ac, and bc are run in block 1 and a, b, c, and abc are run in block 2. This is the
same design shown in Figure 7.2, which was generated from the table of plus and minus
signs.

Another method may be used to construct these designs. The block containing the treat-
ment combination (1) is called the principal block. The treatment combinations in this block
have a useful group-theoretic property; namely, they form a group with respect to multipli-
cation modulus 2. This implies that any element [except (1)] in the principal block may be
generated by multiplying two other elements in the principal block modulus 2. For example,
consider the principal block of the 23 design with ABC confounded, as shown in Figure 7.2.

abc� L � 1(1) � 1(1) � 1(1) � 3 � 1 (mod 2)

bc� L � 1(0) � 1(1) � 1(1) � 2 � 0 (mod 2)

ac� L � 1(1) � 1(0) � 1(1) � 2 � 0 (mod 2)

c� L � 1(0) � 1(0) � 1(1) � 1 � 1 (mod 2)

ab� L � 1(1) � 1(1) � 1(0) � 2 � 0 (mod 2)

b� L � 1(0) � 1(1) � 1(0) � 1 � 1 (mod 2)

L � 1(1) � 1(0) � 1(0) � 1 � 1 (mod 2)

L � 1(0) � 1(0) � 1(0) � 0 � 0 (mod 2)

L � x1 � x2 � x3
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(a) Geometric view (b) Assignment of the eight
runs to two blocks

= Run in block 1
Block 1 Block 2

= Run in block 2

(1)

ab

a

b

ac c

bc abc
B

C

A

■ F I G U R E  7 . 2 The 23 design in two blocks with ABC confounded
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Note that

Treatment combinations in the other block (or blocks) may be generated by multiplying one
element in the new block by each element in the principal block modulus 2. For the 23 with
ABC confounded, because the principal block is (1), ab, ac, and bc, we know that b is in the
other block. Thus, the elements of this second block are

This agrees with the results obtained previously.

Estimation of Error. When the number of variables is small, say k � 2 or 3, it is usu-
ally necessary to replicate the experiment to obtain an estimate of error. For example, suppose
that a 23 factorial must be run in two blocks with ABC confounded, and the experimenter
decides to replicate the design four times. The resulting design might appear as in Figure 7.3.
Note that ABC is confounded in each replicate.

The analysis of variance for this design is shown in Table 7.5. There are 32 observa-
tions and 31 total degrees of freedom. Furthermore, because there are eight blocks, seven
degrees of freedom must be associated with these blocks. One breakdown of those seven
degrees of freedom is shown in Table 7.5. The error sum of squares actually consists of the
interactions between replicates and each of the effects (A, B, C, AB, AC, BC). It is usually
safe to consider these interactions to be zero and to treat the resulting mean square as an esti-
mate of error. Main effects and two-factor interactions are tested against the mean square
error. Cochran and Cox (1957) observe that the block or ABC mean square could be com-
pared to the error for the ABC mean square, which is really replicates � blocks. This test is
usually very insensitive.

If resources are sufficient to allow the replication of confounded designs, it is generally
better to use a slightly different method of designing the blocks in each replicate. This approach
consists of confounding a different effect in each replicate so that some information on all effects
is obtained. Such a procedure is called partial confounding and is discussed in Section 7.8.

If k is moderately large, say k � 4, we can frequently afford only a single replicate. The
experimenter usually assumes higher order interactions to be negligible and combines their sums
of squares as error. The normal probability plot of factor effects can be very helpful in this regard.

b � bc � b2c � c

b � ac � abc

b � ab � ab2 � a

b � (1)  � b

ac � bc � abc2 � ab

ab � bc � ab2c � ac

ab � ac � a2bc � bc

■ F I G U R E  7 . 3 Four replicates of the 23 design with ABC confounded
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■ TA B L E  7 . 5
Analysis of Variance for Four Replicates
of a 23 Design with ABC Confounded

Degrees of
Source of Variation Freedom

Replicates 3

Blocks (ABC) 1

Error for ABC (replicates � blocks) 3

A 1

B 1

C 1

AB 1

AC 1

BC 1

Error (or replicates � effects) 18

Total 31

E X A M P L E  7 . 2

Consider the situation described in Example 6.2. Recall that
four factors—temperature (A), pressure (B), concentration
of formaldehyde (C), and stirring rate (D)—are studied in a
pilot plant to determine their effect on product filtration rate.
We will use this experiment to illustrate the ideas of block-
ing and confounding in an unreplicated design. We will
make two modifications to the original experiment. First,
suppose that the 24 � 16 treatment combinations cannot all
be run using one batch of raw material. The experimenter
can run eight treatment combinations from a single batch of
material, so a 24 design confounded in two blocks seems
appropriate. It is logical to confound the highest order inter-
action ABCD with blocks. The defining contrast is

and it is easy to verify that the design is as shown in Figure
7.4. Alternatively, one may examine Table 6.11 and observe
that the treatment combinations that are � in the ABCD
column are assigned to block 1 and those that are � in
ABCD column are in block 2.

The second modification that we will make is to intro-
duce a block effect so that the utility of blocking can be
demonstrated. Suppose that when we select the two batches
of raw material required to run the experiment, one of them
is of much poorer quality and, as a result, all responses will
be 20 units lower in this material batch than in the other. The

L � x1 � x2 � x3 � x4

D

C
B

A

– +

= Runs in block 1
= Runs in block 2

Block 1

= 25(1)

= 45ab

= 40ac

= 60bc

= 80ad

= 25bd

= 55cd

= 76abcd

= 71a

= 48b

= 68c

= 43d

= 65abc

= 70bcd

= 86acd

= 104abd

Block 2

(a) Geometric view

(b) Assignment of the 16 runs
to two blocks

■ F I G U R E  7 . 4 The 24 design in two blocks for Example 7.2
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poor quality batch becomes block 1 and the good quality
batch becomes block 2 (it doesn’t matter which batch is
called block 1 or which batch is called block 2). Now all
the tests in block 1 are performed first (the eight runs in the
block are, of course, performed in random order), but the
responses are 20 units lower than they would have been if
good quality material had been used. Figure 7.4b shows the
resulting responses—note that these have been found by
subtracting the block effect from the original observations
given in Example 6.2. That is, the original response for treat-
ment combination (1) was 45, and in Figure 7.4b it is report-
ed as (1) � 25 (� 45 � 20). The other responses in this
block are obtained similarly. After the tests in block 1 are
performed, the eight tests in block 2 follow. There is no
problem with the raw material in this batch, so the responses
are exactly as they were originally in Example 6.2.

The effect estimates for this “modified” version of
Example 6.2 are shown in Table 7.6. Note that the estimates
of the four main effects, the six two-factor interactions, and
the four three-factor interactions are identical to the effect
estimates obtained in Example 6.2 where there was no
block effect. When a normal probability of these effect esti-
mates is constructed, factors A, C, D, and the AC and AD
interactions emerge as the important effects, just as in the
original experiment. (The reader should verify this.)

What about the ABCD interaction effect? The estimate
of this effect in the original experiment (Example 6.2) was
ABCD � 1.375. In the present example, the estimate of the

ABCD interaction effect is ABCD � �18.625. Because
ABCD is confounded with blocks, the ABCD interaction
estimates the original interaction effect (1.375) plus the
block effect (�20), so ABCD � 1.375 � (�20) � �18.625.
(Do you see why the block effect is �20?) The block effect
may also be calculated directly as the difference in average
response between the two blocks, or

Of course, this effect really estimates Blocks � ABCD.
Table 7.7 summarizes the ANOVA for this experiment.

The effects with large estimates are included in the model,
and the block sum of squares is

The conclusions from this experiment exactly match those
from Example 6.2, where no block effect was present. Notice
that if the experiment had not been run in blocks, and if an
effect of magnitude �20 had affected the first 8 trials (which
would have been selected in a random fashion, because the
16 trials would be run in random order in an unblocked
design), the results could have been very different.

SSBlocks �
(406)2 � (555)2

8
�

(961)2

16
� 1387.5625

� �18.625

�
�149

8

�
406

8
�

555
8

Block effect � yBlock 1 � yBlock 2

■ TA B L E  7 . 6
Effect Estimates for the Blocked 24 Design in Example 7.2

Regression Effect Sum of Percent
Model Term Coefficient Estimate Squares Contribution

A 10.81 21.625 1870.5625 26.30

B 1.56 3.125 39.0625 0.55

C 4.94 9.875 390.0625 5.49

D 7.31 14.625 855.5625 12.03

AB 0.062 0.125 0.0625 �0.01

AC �9.06 �18.125 1314.0625 18.48

AD 8.31 16.625 1105.5625 15.55

BC 1.19 2.375 22.5625 0.32

BD �0.19 �0.375 0.5625 �0.01

CD �0.56 �1.125 5.0625 0.07

ABC 0.94 1.875 14.0625 0.20

ABD 2.06 4.125 68.0625 0.96

ACD �0.81 �1.625 10.5625 0.15

BCD �1.31 �2.625 27.5625 0.39

Block (ABCD) �18.625 1387.5625 19.51



7.5 Another Illustration of Why Blocking Is Important

Blocking is a very useful and important design technique. In Chapter 4 we pointed out that
blocking has such dramatic potential to reduce the noise in an experiment that an experimenter
should always consider the potential impact of nuisance factors, and when in doubt, block.

To illustrate what can happen if an experimenter doesn’t block when he or she should
have, consider a variation of Example 7.2 from the previous section. In this example we
utilized a 24 unreplicated factorial experiment originally presented as Example 6.2. We
constructed the design in two blocks of eight runs each, and we inserted a “block effect” or
nuisance factor effect of magnitude �20 that affects all of the observations in block 1 (refer to
Figure 7.4). Now suppose that we had not run this design in blocks and that the �20 nuisance
factor effect impacted the first eight observations that were taken (in random or run order).
The modified data are shown in Table 7.8.

Figure 7.5 is a normal probability plot of the factor effects from this modified version
of the experiment. Notice that although the appearance of this plot is not too dissimilar from
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■ TA B L E  7 . 7
Analysis of Variance for Example 7.2

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Blocks (ABCD) 1387.5625 1

A 1870.5625 1 1870.5625 89.76 �0.0001

C 390.0625 1 390.0625 18.72 0.0019

D 855.5625 1 855.5625 41.05 0.0001

AC 1314.0625 1 1314.0625 63.05 �0.0001

AD 1105.5625 1 1105.5625 53.05 �0.0001

Error 187.5625 9 20.8403

Total 7110.9375 15

–15.62 –5.69 4.25
Effect
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Table 7.8



7.6 Confounding the 2k Factorial Design in Four Blocks 313

the one given with the original analysis of the experiment in Chapter 6 (refer to Figure 6.11),
one of the important interactions, AD, is not identified. Consequently, we will not discover
this important effect that turns out to be one of the keys to solving the original problem. We
remarked in Chapter 4 that blocking is a noise reduction technique. If we don’t block, then
the added variability from the nuisance variable effect ends up getting distributed across the
other design factors.

Some of the nuisance variability also ends up in the error estimate as well. The resid-
ual mean square for the model based on the data in Table 7.8 is about 109, which is several
times larger than the residual mean square based on the original data (see Table 6.13).

7.6 Confounding the 2k Factorial Design in Four Blocks

It is possible to construct 2k factorial designs confounded in four blocks of 2k�2 observations
each. These designs are particularly useful in situations where the number of factors is mod-
erately large, say k � 4, and block sizes are relatively small.

As an example, consider the 25 design. If each block will hold only eight runs, then four
blocks must be used. The construction of this design is relatively straightforward. Select two
effects to be confounded with blocks, say ADE and BCE. These effects have the two defining
contrasts

L2 � x2 � x3 � x5

L1 � x1 � x4 � x5

■ TA B L E  7 . 8
The Modified Data from Example 7.2

Run Std. Factor A: Factor B: Factor C: Factor D: Response
Order Order Temperature Pressure Concentration Stirring Rate Filtration Rate

8 1 �1 �1 �1 �1 25

11 2 1 �1 �1 �1 71

1 3 �1 1 �1 �1 28

3 4 1 1 �1 �1 45

9 5 �1 �1 1 �1 68

12 6 1 �1 1 �1 60

2 7 �1 1 1 �1 60

13 8 1 1 1 �1 65

7 9 �1 �1 �1 1 23

6 10 1 �1 �1 1 80

16 11 �1 1 �1 1 45

5 12 1 1 �1 1 84

14 13 �1 �1 1 1 75

15 14 1 �1 1 1 86

10 15 �1 1 1 1 70

4 16 1 1 1 1 76



associated with them. Now every treatment combination will yield a particular pair of values
of L1 (mod 2) and L2 (mod 2), that is, either (L1, L2) � (0, 0), (0, 1), (1, 0), or (1, 1). Treatment
combinations yielding the same values of (L1, L2) are assigned to the same block. In our
example we find

These treatment combinations would be assigned to different blocks. The complete design is
as shown in Figure 7.6.

With a little reflection we realize that another effect in addition to ADE and BCE
must be confounded with blocks. Because there are four blocks with three degrees of
freedom between them, and because ADE and BCE have only one degree of freedom
each, clearly an additional effect with one degree of freedom must be confounded. This
effect is the generalized interaction of ADE and BCE, which is defined as the product
of ADE and BCE modulus 2. Thus, in our example the generalized interaction
(ADE)(BCE) � ABCDE2 � ABCD is also confounded with blocks. It is easy to verify
this by referring to a table of plus and minus signs for the 25 design, such as in Davies
(1956). Inspection of such a table reveals that the treatment combinations are assigned to
the blocks as follows:

Treatment Combinations in Sign on ADE Sign on BCE Sign on ABCD

Block 1 � � �

Block 2 � � �

Block 3 � � �

Block 4 � � �

Notice that the product of signs of any two effects for a particular block (e.g., ADE and BCE)
yields the sign of the other effect for that block (in this case, ABCD). Thus, ADE, BCE, and
ABCD are all confounded with blocks.

The group-theoretic properties of the principal block mentioned in Section 7.4 still
hold. For example, we see that the product of two treatment combinations in the principal
block yields another element of the principal block. That is,

ad � bc � abcd  and  abe � bde � ab2de2 � ad

L1 � 1, L2 � 1  for  e, ade, bce, abcde, ab, bd, ac, cd

L1 � 0, L2 � 1  for  b, abd, c, acd, ae, de abce, bcde

L1 � 1, L2 � 0  for  a, d, abc, bcd, be, abde, ce, acde

L1 � 0, L2 � 0  for  (1), ad, bc, abcd, abe, ace, cde, bde
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■ F I G U R E  7 . 6 The 25 design in 
four blocks with ADE, BCE, and ABCD
confounded
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and so forth. To construct another block, select a treatment combination that is not in the prin-
cipal block (e.g., b) and multiply b by all the treatment combinations in the principal block.
This yields

and so forth, which will produce the eight treatment combinations in block 3. In practice, the
principal block can be obtained from the defining contrasts and the group-theoretic property,
and the remaining blocks can be determined from these treatment combinations by the method
shown above.

The general procedure for constructing a 2k design confounded in four blocks is to
choose two effects to generate the blocks, automatically confounding a third effect that is the
generalized interaction of the first two. Then, the design is constructed by using the two defin-
ing contrasts (L1, L2) and the group-theoretic properties of the principal block. In selecting
effects to be confounded with blocks, care must be exercised to obtain a design that does not
confound effects that may be of interest. For example, in a 25 design we might choose to con-
found ABCDE and ABD, which automatically confounds CE, an effect that is probably of
interest. A better choice is to confound ADE and BCE, which automatically confounds ABCD.
It is preferable to sacrifice information on the three-factor interactions ADE and BCE instead
of the two-factor interaction CE.

7.7 Confounding the 2k Factorial Design in 2 p Blocks

The methods described above may be extended to the construction of a 2k factorial design
confounded in 2p blocks ( p � k), where each block contains exactly 2k�p runs. We select p
independent effects to be confounded, where by “independent” we mean that no effect cho-
sen is the generalized interaction of the others. The blocks may be generated by use of the p
defining contrasts L1, L2, . . . , Lp associated with these effects. In addition, exactly 2p � p �
1 other effects will be confounded with blocks, these being the generalized interactions of
those p independent effects initially chosen. Care should be exercised in selecting effects to
be confounded so that information on effects that may be of potential interest is not sacrificed.

The statistical analysis of these designs is straightforward. Sums of squares for all the
effects are computed as if no blocking had occurred. Then, the block sum of squares is found
by adding the sums of squares for all the effects confounded with blocks.

Obviously, the choice of the p effects used to generate the block is critical because the
confounding structure of the design directly depends on them. Table 7.9 presents a list of use-
ful designs. To illustrate the use of this table, suppose we wish to construct a 26 design con-
founded in 23 � 8 blocks of 23 � 8 runs each. Table 7.9 indicates that we would choose
ABEF, ABCD, and ACE as the p � 3 independent effects to generate the blocks. The remain-
ing 2p � p � 1 � 23 � 3 � 1 � 4 effects that are confounded are the generalized interactions
of these three; that is,

The reader is asked to generate the eight blocks for this design in Problem 7.11.

 (ABEF)(ABCD)(ACE) � A3B2C 2DE 2F � ADF

 (ABCD)(ACE) � A2BC 2ED � BDE

 (ABEF)(ACE) � A2BCE 2F � BCF

 (ABEF)(ABCD) � A2B2CDEF � CDEF

b � (1) � b  b � ad � abd  b � bc � b2c � c  b � abcd � ab2cd � acd



7.8 Partial Confounding

We remarked in Section 7.4 that, unless experimenters have a prior estimate of error or are
willing to assume certain interactions to be negligible, they must replicate the design to
obtain an estimate of error. Figure 7.3 shows a 23 factorial in two blocks with ABC con-
founded, replicated four times. From the analysis of variance for this design, shown in
Table 7.5, we note that information on the ABC interaction cannot be retrieved because
ABC is confounded with blocks in each replicate. This design is said to be completely
confounded.

Consider the alternative shown in Figure 7.7. Once again, there are four replicates of
the 23 design, but a different interaction has been confounded in each replicate. That is, ABC is
confounded in replicate I, AB is confounded in replicate II, BC is confounded in replicate III,
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■ TA B L E  7 . 9
Suggested Blocking Arrangements for the 2k Factorial Design

Number of Number of Block Effects Chosen to
Factors, k Blocks, 2p Size, 2k�p Generate the Blocks Interactions Confounded with Blocks

3 2 4 ABC ABC

4 2 AB, AC AB, AC, BC

4 2 8 ABCD ABCD

4 4 ABC, ACD ABC, ACD, BD

8 2 AB, BC, CD AB, BC, CD, AC, BD, AD, ABCD

5 2 16 ABCDE ABCDE

4 8 ABC, CDE ABC, CDE, ABDE

8 4 ABE, BCE, CDE ABE, BCE, CDE, AC, ABCD, BD, ADE

16 2 AB, AC, CD, DE All two- and four-factor interactions (15 effects)

6 2 32 ABCDEF ABCDEF

4 16 ABCF, CDEF ABCF, CDEF, ABDE

8 8 ABEF, ABCD, ACE ABEF, ABCD, ACE, BCF, BDE, CDEF, ADF

16 4 ABF, ACF, BDF, DEF ABF, ACF, BDF, DEF, BC, ABCD, ABDE, AD,
ACDE, CE, CDF, BCDEF, ABCEF, AEF, BE

32 2 AB, BC, CD, DE, EF All two-, four-, and six-factor interactions (31 effects)

7 2 64 ABCDEFG ABCDEFG

4 32 ABCFG, CDEFG ABCFG, CDEFG, ABDE

8 16 ABCD, CDEF, ADFG ABC, DEF, AFG, ABCDEF, BCFG, ADEG, BCDEG

16 8 ABCD, EFG, CDE, ADG ABCD, EFG, CDE, ADG, ABCDEFG, ABE, BCG,
CDFG, ADEF, ACEG, ABFG, BCEF, BDEG, ACF,
BDF

32 4 ABG, BCG, CDG, ABG, BCG, CDG, DEG, EFG, AC, BD, CE, DF, AE,

DEG, EFG BF, ABCD, ABDE, ABEF, BCDE, BCEF, CDEF,
ABCDEFG, ADG, ACDEG, ACEFG, ABDFG, ABCEG,
BEG, BDEFG, CFG, ADEF, ACDF, ABCF,
AFG, BCDFG

64 2 AB, BC, CD, DE, EF, FG All two-, four-, and six-factor interactions (63 effects)
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and AC is confounded in replicate IV. As a result, information on ABC can be obtained from
the data in replicates II, III, and IV; information on AB can be obtained from replicates I, III,
and IV; information on AC can be obtained from replicates I, II, and III; and information on
BC can be obtained from replicates I, II, and IV. We say that three-quarters information can
be obtained on the interactions because they are unconfounded in only three replicates. Yates
(1937) calls the ratio 3/4 the relative information for the confounded effects. This design
is said to be partially confounded.

The analysis of variance for this design is shown in Table 7.10. In calculating the inter-
action sums of squares, only data from the replicates in which an interaction is unconfound-
ed are used. The error sum of squares consists of replicates � main effect sums of squares
plus replicates � interaction sums of squares for each replicate in which that interaction is
unconfounded (e.g., replicates � ABC for replicates II, III, and IV). Furthermore, there are
seven degrees of freedom among the eight blocks. This is usually partitioned into three
degrees of freedom for replicates and four degrees of freedom for blocks within replicates.
The composition of the sum of squares for blocks is shown in Table 7.10 and follows directly
from the choice of the effect confounded in each replicate.

■ F I G U R E  7 . 7 Partial confounding in the 23 design

■ TA B L E  7 . 1 0
Analysis of Variance for a Partially Confounded 23 Design

Degrees of
Source of Variation Freedom

Replicates 3

Blocks within replicates [or ABC (rep. I) � AB (rep. II)

� BC (rep. III) � AC (rep. IV)] 4

A 1

B 1

C 1

AB (from replicates I, III, and IV) 1

AC (from replicates I, II, and III) 1

BC (from replicates I, II, and IV) 1

ABC (from replicates II, III, and IV) 1

Error 17

Total 31
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E X A M P L E  7 . 3 A 23 Design with Partial Confounding

Consider Example 6.1, in which an experiment was con-
ducted to develop a plasma etching process. There were
three factors, A � gap, B � gas flow, and C � RF power,
and the response variable is the etch rate. Suppose that only
four treatment combinations can be tested during a shift,
and because there could be shift-to-shift differences in etch-

ing tool performance, the experimenters decide to use shifts
as a blocking factor. Thus, each replicate of the 23 design
must be run in two blocks. Two replicates are run, with
ABC confounded in replicate I and AB confounded in repli-
cate II. The data are as follows:

The sums of squares for A, B, C, AC, and BC may be
calculated in the usual manner, using all 16 observations.

However, we must find SSABC using only the data in repli-
cate II and SSAB using only the data in replicate I as follows:

�
[550 � 729 � 749 � 1037 � 669 � 633 � 642 � 1075]2

(1)(8)
� 3528.0

SSAB �
[(1) � abc � ac � c � a � b � ab � bc]2

n2k

�
[650 � 601 � 1052 � 860 � 635 � 868 � 1063 � 604]2

(1)(8)
� 6.1250

SSABC �
[a � b � c � abc � ab � ac � bc � (1)]2

n2k

The sum of squares for the replicates is, in general,

�
(6084)2 � (6333)2

8
�

(12,417)2

16
� 3875.0625

SSRep � �
n

h�1

R2
h

2k
�

y2
...

N

where Rh is the total of the observations in the hth replicate.
The block sum of squares is the sum of SSABC from replicate
I and SSAB from replicate II, or SSBlocks � 458.1250.

The analysis of variance is summarized in Table 7.11.
The main effects of A and C and the AC interaction are
important.

■ TA B L E  7 . 1 1
Analysis of Variance for Example 7.3

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F0 P-Value

Replicates 3875.0625 1 3875.0625 —

Blocks within replicates 458.1250 2 229.0625 —

A 41,310.5625 1 41,310.5625 16.20 0.01

B 217.5625 1 217.5625 0.08 0.78

C 374,850.5625 1 374,850.5625 146.97 �0.001

AB (rep. I only) 3528.0000 1 3528.0000 1.38 0.29

AC 94,404.5625 1 94,404.5625 37.01 �0.001

BC 18.0625 1 18.0625 0.007 0.94

ABC (rep. II only) 6.1250 1 6.1250 0.002 0.96

Error 12,752.3125 5 2550.4625

Total 531,420.9375 15
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7.9 Problems

7.1. Consider the experiment described in Problem 6.1.
Analyze this experiment assuming that each replicate repre-
sents a block of a single production shift.

7.2. Consider the experiment described in Problem 6.5.
Analyze this experiment assuming that each one of the four
replicates represents a block.

7.3. Consider the alloy cracking experiment described in
Problem 6.15. Suppose that only 16 runs could be made on a
single day, so each replicate was treated as a block. Analyze
the experiment and draw conclusions.

7.4. Consider the data from the first replicate of Problem
6.1. Suppose that these observations could not all be run using
the same bar stock. Set up a design to run these observations
in two blocks of four observations each with ABC confounded.
Analyze the data.

7.5. Consider the data from the first replicate of Problem
6.7. Construct a design with two blocks of eight observations
each with ABCD confounded. Analyze the data.

7.6. Repeat Problem 7.5 assuming that four blocks are
required. Confound ABD and ABC (and consequently CD)
with blocks.

7.7. Using the data from the 25 design in Problem 6.26,
construct and analyze a design in two blocks with ABCDE
confounded with blocks.

7.8. Repeat Problem 7.7 assuming that four blocks are
necessary. Suggest a reasonable confounding scheme.

7.9. Consider the data from the 25 design in Problem 6.26.
Suppose that it was necessary to run this design in four blocks
with ACDE and BCD (and consequently ABE) confounded.
Analyze the data from this design.

7.10. Consider the fill height deviation experiment in Problem
6.18. Suppose that each replicate was run on a separate day.
Analyze the data assuming that days are blocks.

7.11. Consider the fill height deviation experiment in
Problem 6.20. Suppose that only four runs could be made on
each shift. Set up a design with ABC confounded in replicate
1 and AC confounded in replicate 2. Analyze the data and
comment on your findings.

7.12. Consider the potting experiment in Problem 6.21.
Analyze the data considering each replicate as a block.

7.13. Using the data from the 24 design in Problem 6.22,
construct and analyze a design in two blocks with ABCD con-
founded with blocks.

7.14. Consider the direct mail experiment in Problem 
6.24. Suppose that each group of customers is in a different
part of the country. Suggest an appropriate analysis for the
experiment.

7.15. Consider the isatin yield experiment in Problem 6.38.
Set up the 24 experiment in this problem in two blocks with
ABCD confounded. Analyze the data from this design. Is the
block effect large?

7.16. The experiment in Problem 6.39 is a 25 factorial.
Suppose that this design had been run in four blocks of eight
runs each.

(a) Recommend a blocking scheme and set up the design.

(b) Analyze the data from this blocked design. Is blocking
important?

7.17. Repeat Problem 6.16 using a design in two blocks.

7.18. The design in Problem 6.40 is a 24 factorial. Set up
this experiment in two blocks with ABCD confounded.
Analyze the data from this design. Is the block effect large?

7.19. The design in Problem 6.42 is a 23 factorial replicated
twice. Suppose that each replicate was a block. Analyze all of
the responses from this blocked design. Are the results com-
parable to those from Problem 6.42? Is the block effect large?

7.20. Design an experiment for confounding a 26 factorial
in four blocks. Suggest an appropriate confounding scheme,
different from the one shown in Table 7.8.

7.21. Consider the 26 design in eight blocks of eight runs
each with ABCD, ACE, and ABEF as the independent effects
chosen to be confounded with blocks. Generate the design.
Find the other effects confounded with blocks.

7.22. Consider the 22 design in two blocks with AB con-
founded. Prove algebraically that SSAB � SSBlocks.

7.23. Consider the data in Example 7.2. Suppose that all the
observations in block 2 are increased by 20. Analyze the data
that would result. Estimate the block effect. Can you explain
its magnitude? Do blocks now appear to be an important fac-
tor? Are any other effect estimates impacted by the change
you made to the data?

7.24. Suppose that in Problem 6.1 we had confounded ABC
in replicate I, AB in replicate II, and BC in replicate III.
Calculate the factor effect estimates. Construct the analysis of
variance table.

7.25. Repeat the analysis of Problem 6.1 assuming that
ABC was confounded with blocks in each replicate.

7.26. Suppose that in Problem 6.7 ABCD was confounded
in replicate I and ABC was confounded in replicate II.
Perform the statistical analysis of this design.

7.27. Construct a 23 design with ABC confounded in the
first two replicates and BC confounded in the third. Outline
the analysis of variance and comment on the information
obtained.
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8.1 Introduction

As the number of factors in a 2k factorial design increases, the number of runs required for a
complete replicate of the design rapidly outgrows the resources of most experimenters. For
example, a complete replicate of the 26 design requires 64 runs. In this design only 6 of the
63 degrees of freedom correspond to main effects, and only 15 degrees of freedom correspond
to two-factor interactions. There are only 21 degrees of freedom associated with effects that
are likely to be of major interest. The remaining 42 degrees of freedom are associated with
three-factor and higher interactions.

If the experimenter can reasonably assume that certain high-order interactions are neg-
ligible, information on the main effects and low-order interactions may be obtained by run-
ning only a fraction of the complete factorial experiment. These fractional factorial designs
are among the most widely used types of designs for product and process design, process
improvement, and industrial/business experimentation.

The supplemental material is on the textbook website www.wiley.com/college/montgomery.



A major use of fractional factorials is in screening experiments—experiments in
which many factors are considered and the objective is to identify those factors (if any) that
have large effects. Screening experiments are usually performed in the early stages of a proj-
ect when many of the factors initially considered likely have little or no effect on the response.
The factors identified as important are then investigated more thoroughly in subsequent
experiments.

The successful use of fractional factorial designs is based on three key ideas:

1. The sparsity of effects principle. When there are several variables, the system or
process is likely to be driven primarily by some of the main effects and low-order
interactions.

2. The projection property. Fractional factorial designs can be projected into stronger
(larger) designs in the subset of significant factors.

3. Sequential experimentation. It is possible to combine the runs of two (or more)
fractional factorials to construct sequentially a larger design to estimate the factor
effects and interactions of interest.

We will focus on these principles in this chapter and illustrate them with several examples.

8.2 The One-Half Fraction of the 2k Design

8.2.1 Definitions and Basic Principles

Consider a situation in which three factors, each at two levels, are of interest, but the experi-
menters cannot afford to run all 23 � 8 treatment combinations. They can, however, afford
four runs. This suggests a one-half fraction of a 23 design. Because the design contains 
23�1 � 4 treatment combinations, a one-half fraction of the 23 design is often called a 23�1

design.
The table of plus and minus signs for the 23 design is shown in Table 8.1. Suppose we

select the four treatment combinations a, b, c, and abc as our one-half fraction. These runs
are shown in the top half of Table 8.1 and in Figure 8.1a.

Notice that the 23�1 design is formed by selecting only those treatment combinations
that have a plus in the ABC column. Thus, ABC is called the generator of this particular 
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■ TA B L E  8 . 1
Plus and Minus Signs for the 23 Factorial Design

Treatment
Factorial Effect

Combination I A B C AB AC BC ABC

a � � � � � � � �

b � � � � � � � �

c � � � � � � � �

abc � � � � � � � �

ab � � � � � � � �

ac � � � � � � � �

bc � � � � � � � �

(1) � � � � � � � �
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fraction. Usually we will refer to a generator such as ABC as a word. Furthermore, the iden-
tity column I is also always plus, so we call

the defining relation for our design. In general, the defining relation for a fractional factorial
will always be the set of all columns that are equal to the identity column I.

The treatment combinations in the 23�1 design yield three degrees of freedom that we
may use to estimate the main effects. Referring to Table 8.1, we note that the linear combina-
tions of the observations used to estimate the main effects of A, B, and C are

Where the notation [A], [B], and [C] is used to indicate the linear combinations associated
with the main effects. It is also easy to verify that the linear combinations of the observations
used to estimate the two-factor interactions are

Thus, [A] � [BC], [B] � [AC], and [C] � [AB]; consequently, it is impossible to differentiate
between A and BC, B and AC, and C and AB. In fact, when we estimate A, B, and C we are really
estimating A � BC, B � AC, and C � AB. Two or more effects that have this property are called
aliases. In our example, A and BC are aliases, B and AC are aliases, and C and AB are aliases.
We indicate this by the notation [A] : A � BC, [B] : B � AC, and [C] : C � AB.

The alias structure for this design may be easily determined by using the defining rela-
tion I � ABC. Multiplying any column (or effect) by the defining relation yields the aliases
for that column (or effect). In our example, this yields as the alias of A

or, because the square of any column is just the identity I,

Similarly, we find the aliases of B and C as

B � AB2C � AC

B � I � B � ABC

A � BC

A � I � A � ABC � A2BC

 [AB] �
1
2 (�a � b � c � abc)

 [AC] �
1
2 (�a � b � c � abc)

 [BC] �
1
2 (a � b � c � abc)

 [C] �
1
2 (�a � b � c � abc)

 [B] �
1
2 (�a � b � c � abc)

 [A] �
1
2 (a � b � c � abc)

I � ABC

(a) The principal fraction, I = +ABC

(1)

(b) The alternate fraction, I = –ABC

abc

c

b

a BC

A

ab

bc

ac

■ F I G U R E  8 . 1 The two one-half fractions of the 23 design



and

This one-half fraction, with I � � ABC, is usually called the principal fraction.
Now suppose that we had chosen the other one-half fraction, that is, the treatment com-

binations in Table 8.1 associated with minus in the ABC column. This alternate, or comple-
mentary, one-half fraction (consisting of the runs (1), ab, ac, and bc) is shown in Figure 8.1b.
The defining relation for this design is

The linear combination of the observations, say [A] , [B] , and [C] , from the alternate frac-
tion gives us

Thus, when we estimate A, B, and C with this particular fraction, we are really estimating 
A � BC, B � AC, and C � AB.

In practice, it does not matter which fraction is actually used. Both fractions belong to
the same family; that is, the two one-half fractions form a complete 23 design. This is easily
seen by reference to parts a and b of Figure 8.1.

Suppose that after running one of the one-half fractions of the 23 design, the other frac-
tion was also run. Thus, all eight runs associated with the full 23 are now available. We may
now obtain de-aliased estimates of all the effects by analyzing the eight runs as a full 23

design in two blocks of four runs each. This could also be done by adding and subtracting the
linear combination of effects from the two individual fractions. For example, consider [A] :
A � BC and : A � BC. This implies that

and that

Thus, for all three pairs of linear combinations, we would obtain the following:

i From ([i] � [i]�) From ([i] � [i]�)

A A BC

B B AC

C C AB

Furthermore, by assembling the full 23 in this fashion with I � �ABC in the first group
of runs and I � �ABC in the second, the 23 confounds ABC with blocks.

8.2.2 Design Resolution

The preceding 23�1 design is called a resolution III design. In such a design, main effects are
aliased with two-factor interactions. A design is of resolution R if no p-factor effect is aliased

1
2

1
2

1
2 ([A] � [A]�) �

1
2 (A � BC � A � BC) l BC

1
2 ([A] � [A]�) �

1
2 (A � BC � A � BC) l A

[A]�

 [C]� l C � AB

 [B]� l B � AC

 [A]� l A � BC

���

I � �ABC

C � ABC 2 � AB
C � I � C � ABC
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with another effect containing less than R � p factors. We usually employ a Roman numeral
subscript to denote design resolution; thus, the one-half fraction of the 23 design with the
defining relation I � ABC (or I � �ABC) is a design.

Designs of resolution III, IV, and V are particularly important. The definitions of these
designs and an example of each follow:

1. Resolution III designs. These are designs in which no main effects are aliased with
any other main effect, but main effects are aliased with two-factor interactions and
some two-factor interactions may be aliased with each other. The 23�1 design in
Table 8.1 is of resolution III .

2. Resolution IV designs. These are designs in which no main effect is aliased with
any other main effect or with any two-factor interaction, but two-factor interactions
are aliased with each other. A 24�1 design with I � ABCD is a resolution IV design

.

3. Resolution V designs. These are designs in which no main effect or two-factor
interaction is aliased with any other main effect or two-factor interaction, but two-
factor interactions are aliased with three-factor interactions. A 25�1 design with 
I � ABCDE is a resolution V design .

In general, the resolution of a two-level fractional factorial design is equal to the 
number of letters in the shortest word in the defining relation. Consequently, we could call the
preceding design types three-, four-, and five-letter designs, respectively. We usually like to
employ fractional designs that have the highest possible resolution consistent with the degree
of fractionation required. The higher the resolution, the less restrictive the assumptions that
are required regarding which interactions are negligible to obtain a unique interpretation of
the results.

8.2.3 Construction and Analysis of the 
One-Half Fraction

A one-half fraction of the 2k design of the highest resolution may be constructed by writing
down a basic design consisting of the runs for a full 2k�1 factorial and then adding the kth fac-
tor by identifying its plus and minus levels with the plus and minus signs of the highest order
interaction ABC � � � (K � 1). Therefore, the fractional factorial is obtained by writing
down the full 22 factorial as the basic design and then equating factor C to the AB interaction.
The alternate fraction would be obtained by equating factor C to the �AB interaction. This
approach is illustrated in Table 8.2. Notice that the basic design always has the right number

23�1
III

(25�1
V )

(24�1
IV )

(23�1
III )

23�1
III

■ TA B L E  8 . 2
The Two One-Half Fractions of the 23 Design

Full 22

Factorial
(Basic Design) , I � ABC , I � �ABC

Run A B A B C � AB A B C � � AB

1 � � � � � � � �

2 � � � � � � � �

3 � � � � � � � �

4 � � � � � � � �

23�1
III23�1

III



of runs (rows), but it is missing one column. The generator I � ABC � � � K is then solved for
the missing column (K) so that K � ABC � � � (K � 1) defines the product of plus and minus
signs to use in each row to produce the levels for the kth factor.

Note that any interaction effect could be used to generate the column for the kth factor.
However, using any effect other than ABC � � � (K � 1) will not produce a design of the high-
est possible resolution.

Another way to view the construction of a one-half fraction is to partition the runs into
two blocks with the highest order interaction ABC � � � K confounded. Each block is a 2k�1

fractional factorial design of the highest resolution.

Projection of Fractions into Factorials. Any fractional factorial design of resolu-
tion R contains complete factorial designs (possibly replicated factorials) in any subset of 
R � 1 factors. This is an important and useful concept. For example, if an experimenter has
several factors of potential interest but believes that only R � 1 of them have important
effects, then a fractional factorial design of resolution R is the appropriate choice of design.
If the experimenter is correct, the fractional factorial design of resolution R will project into
a full factorial in the R � 1 significant factors. This property is illustrated in Figure 8.2 for the

design, which projects into a 22 design in every subset of two factors.
Because the maximum possible resolution of a one-half fraction of the 2k design is 

R � k, every 2k�1 design will project into a full factorial in any (k � 1) of the original k factors.
Furthermore, a 2k�1 design may be projected into two replicates of a full factorial in any subset
of k � 2 factors, four replicates of a full factorial in any subset of k � 3 factors, and so on.

23�1
III
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C

A

b

c

a

B

abc

■ F I G U R E  8 . 2 Projection of a 
design into three 22 designs

23�1
III

E X A M P L E  8 . 1

Consider the filtration rate experiment in Example 6.2. The
original design, shown in Table 6.10, is a single replicate of
the 24 design. In that example, we found that the main
effects A, C, and D and the interactions AC and AD were
different from zero. We will now return to this experiment
and simulate what would have happened if a half-fraction
of the 24 design had been run instead of the full factorial.

We will use the 24�1 design with I � ABCD, because
this choice of generator will result in a design of the high-
est possible resolution (IV). To construct the design, we
first write down the basic design, which is a 23 design, as
shown in the first three columns of Table 8.3. This basic

design has the necessary number of runs (eight) but only
three columns (factors). To find the fourth factor levels,
solve I � ABCD for D, or D � ABC. Thus, the level of D
in each run is the product of the plus and minus signs in
columns A, B, and C. The process is illustrated in Table 8.3.
Because the generator ABCD is positive, this design is
the principal fraction. The design is shown graphically in
Figure 8.3.

Using the defining relation, we note that each main
effect is aliased with a three-factor interaction; that is,
A � A2BCD � BCD, B � AB2CD � ACD, C � ABC2D �
ABD, and D � ABCD2 � ABC. Furthermore, every two-factor

24�1
IV
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interaction is aliased with another two-factor interaction.
These alias relationships are AB � CD, AC � BD, and 
BC � AD. The four main effects plus the three two-factor
interaction alias pairs account for the seven degrees of free-
dom for the design.

At this point, we would normally randomize the eight
runs and perform the experiment. Because we have already
run the full 24 design, we will simply select the eight
observed filtration rates from Example 6.2 that correspond
to the runs in the design. These observations are shown
in the last column of Table 8.3 as well as in Figure 8.3.

The estimates of the effects obtained from this 
design are shown in Table 8.4. To illustrate the calculations,
the linear combination of observations associated with the
A effect is

whereas for the AB effect, we would obtain

� �1.00 l AB � CD

[AB] �
1

4 (45 � 100 � 45 � 65 � 75 � 60 � 80 � 96)

� 60 � 80 � 96) � 19.00 l A � BCD

[A] �
1

4 (�45 � 100 � 45 � 65 � 75

24�1
IV

24�1
IV

From inspection of the information in Table 8.4, it is not
unreasonable to conclude that the main effects A, C, and D
are large. The AB � CD alias chain has a small estimate, so
the simplest interpretation is that both the AB and CD inter-
actions are negligible (otherwise, both AB and CD are large,
but they have nearly identical magnitudes and opposite
signs—this is fairly unlikely). Furthermore, if A, C, and D
are the important main effects, then it is logical to conclude
that the two interaction alias chains AC � BD and AD � BC
have large effects because the AC and AD interactions are
also significant. In other words, if A, C, and D are significant
then the significant interactions are most likely AC and AD.
This is an application of Ockham’s razor (after William of
Ockham), a scientific principle that when one is confronted
with several different possible interpretations of a phenom-
ena, the simplest interpretation is usually the correct one.
Note that this interpretation agrees with the conclusions
from the analysis of the complete 24 design in Example 6.2.

Another way to view this interpretation is from the
standpoint of effect heredity. Suppose that AB is signifi-
cant and that both main effects A and B are significant.
This is called strong heredity, and it is the usual situation
(if an intraction is significant and only one of the main

■ TA B L E  8 . 3
The Design with the Defining Relation I � ABCD

Basic Design
Treatment Filtration

Run A B C D � ABC Combination Rate

1 � � � � (1) 45

2 � � � � ad 100

3 � � � � bd 45

4 � � � � ab 65

5 � � � � cd 75

6 � � � � ac 60

7 � � � � bc 80

8 � � � � abcd 96

24�1
IV

(1) = 45 

abcd = 96

BC

A

ab = 65

bc = 80

– +D

ac = 60
cd = 75

ad = 100

bd = 45

■ F I G U R E  8 . 3 The
design for the filtration rate
experiment of Example 8.1

24�1
IV
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effects is significant this is called weak heredity; and this
is relatively less common). So in this example, with A sig-
nificant and B not significant this support the assumption
that AB is not significant. 

Because factor B is not significant, we may drop it from
consideration. Consequently, we may project this 
design into a single replicate of the 23 design in factors A,
C, and D, as shown in Figure 8.4. Visual examination of
this cube plot makes us more comfortable with the conclu-
sions reached above. Notice that if the temperature (A) is at
the low level, the concentration (C) has a large positive
effect, whereas if the temperature is at the high level, the
concentration has a very small effect. This is probably due
to an AC interaction. Furthermore, if the temperature is at
the low level, the effect of the stirring rate (D) is negligible,
whereas if the temperature is at the high level, the stirring
rate has a large positive effect. This is probably due to the
AD interaction tentatively identified previously.

Based on the above analysis, we can now obtain a model
to predict filtration rate over the experimental region. This
model is

�̂3 x3 � �̂4 x4 � �̂13 x1x3 � �̂14 x1x4ŷ � �̂0 � �̂1x1 �

24�1
IV

where x1, x3, and x4 are coded variables (�1 � xi � �1)
that represent A, C, and D, and the ’s are regression coef-
ficients that can be obtained from the effect estimates as we
did previously. Therefore, the prediction equation is

Remember that the intercept is the average of all
responses at the eight runs in the design. This model is very
similar to the one that resulted from the full 2k factorial
design in Example 6.2.

�̂0

� � � 18.50
2 � x1x3 � �19.00

2 � x1x4

ŷ � 70.75 � �19.00
2 � x1 � �14.00

2 � x3 � �16.50
2 � x4

�̂

■ TA B L E  8 . 4
Estimates of Effects and Aliases from Example 8.1a

Estimate Alias Structure

[A] � 19.00 [A] : A � BCD

[B] � 1.50 [B] : B � ACD

[C] � 14.00 [C] : C � ABD

[D] � 16.50 [D] : D � ABC

[AB] � �1.00 [AB] : AB � CD

[AC] ��18.50 [AC] : AC � BD

[AD] � 19.00 [AD] : AD � BC

a Significant effects are shown in boldface type.
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■ F I G U R E  8 . 4 Projection of the design
into a 23 design in A, C, and D for Example 8.1

24�1
IV

E X A M P L E  8 . 2 A 25�1 Design Used for Process Improvement

Five factors in a manufacturing process for an integrated
circuit were investigated in a 25�1 design with the objective
of improving the process yield. The five factors were A �
aperture setting (small, large), B � exposure time (20 per-
cent below nominal, 20 percent above nominal), C �
develop time (30 and 45 sec), D � mask dimension (small,
large), and E � etch time (14.5 and 15.5 min). The con-
struction of the 25�1 design is shown in Table 8.5. Notice
that the design was constructed by writing down the basic
design having 16 runs (a 24 design in A, B, C, and D),

selecting ABCDE as the generator, and then setting the
levels of the fifth factor E � ABCD. Figure 8.5 gives a pic-
torial representation of the design.

The defining relation for the design is I � ABCDE.
Consequently, every main effect is aliased with a four-factor
interaction (for example, [A] : A � BCDE), and every two-
factor interaction is aliased with a three-factor interaction (e.g.,
[AB] : AB � CDE). Thus, the design is of resolution V. We
would expect this 25�1 design to provide excellent information
concerning the main effects and two-factor interactions.
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■ TA B L E  8 . 5
A 25�1 Design for Example 8.2

Basic Design
Treatment

Run A B C D E � ABCD Combination Yield

1 � � � � � e 8

2 � � � � � a 9

3 � � � � � b 34

4 � � � � � abe 52

5 � � � � � c 16

6 � � � � � ace 22

7 � � � � � bce 45

8 � � � � � abc 60

9 � � � � � d 6

10 � � � � � ade 10

11 � � � � � bde 30

12 � � � � � abd 50

13 � � � � � cde 15

14 � � � � � acd 21

15 � � � � � bcd 44

16 � � � � � abcde 63

e = 8 

abcde = 63

abe = 52

abc = 60 bcb = 44

acd = 21

bce = 45

ace = 22

–

+

E

cde = 15

ade = 10

bde = 30

abd = 50

a = 9

c = 16

b = 34

d = 6

– +D

BC

A

■ F I G U R E  8 . 5 The
design for Example 8.2

25�1
V
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Table 8.6 contains the effect estimates, sums of squares,
and model regression coefficients for the 15 effects from
this experiment. Figure 8.6 presents a normal probability
plot of the effect estimates from this experiment. The main
effects of A, B, and C and the AB interaction are large.
Remember that, because of aliasing, these effects are really
A � BCDE, B � ACDE, C � ABDE, and AB � CDE.
However, because it seems plausible that three-factor and
higher interactions are negligible, we feel safe in conclud-
ing that only A, B, C, and AB are important effects.

Table 8.7 summarizes the analysis of variance for this
experiment. The model sum of squares is SSModel � SSA �
SSB � SSC � SSAB � 5747.25, and this accounts for over
99 percent of the total variability in yield. Figure 8.7 pres-
ents a normal probability plot of the residuals, and Figure 8.8
is a plot of the residuals versus the predicted values. Both
plots are satisfactory.

■ TA B L E  8 . 6
Effects, Regression Coefficients, and Sums of Squares for Example 8.2

Variable Name � 1 Level � 1 Level

A Aperture Small Large

B Exposure time �20% �20%

C Develop time 30 sec 40 sec

D Mask dimension Small Large

E Etch time 14.5 min 15.5 min

Variable Regression Coefficient Estimated Effect Sum of Squares

Overall Average 30.3125

A 5.5625 11.1250 495.062

B 16.9375 33.8750 4590.062

C 5.4375 10.8750 473.062

D �0.4375 �0.8750 3.063

E 0.3125 0.6250 1.563

AB 3.4375 6.8750 189.063

AC 0.1875 0.3750 0.563

AD 0.5625 1.1250 5.063

AE 0.5625 1.1250 5.063

BC 0.3125 0.6250 1.563

BD �0.0625 �0.1250 0.063

BE �0.0625 �0.1250 0.063

CD 0.4375 0.8750 3.063

CE 0.1875 0.3750 0.563

DE �0.6875 �1.3750 7.563
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■ F I G U R E  8 . 6 Normal probability plot of
effects for Example 8.2
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Residuals
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■ F I G U R E  8 . 7 Normal probability plot of the
residuals for Example 8.2

■ F I G U R E  8 . 8 Plot of residuals
versus predicted yield for Example 8.2

■ F I G U R E  8 . 9 Aperture–exposure
time interaction for Example 8.2

The three factors A, B, and C have large positive effects.
The AB or aperture–exposure time interaction is plotted in
Figure 8.9. This plot confirms that the yields are higher
when both A and B are at the high level.

The 25�1 design will collapse into two replicates of a
23 design in any three of the original five factors.
(Looking at Figure 8.5 will help you visualize this.)
Figure 8.10 is a cube plot in the factors A, B, and C with
the average yields superimposed on the eight corners. It is
clear from inspection of the cube plot that highest yields
are achieved with A, B, and C all at the high level. Factors
D and E have little effect on average process yield and
may be set to values that optimize other objectives (such
as cost).

■ TA B L E  8 . 7
Analysis of Variance for Example 8.2

Source of Variation Sum of Squares Degrees of Freedom Mean Square F0 P-Value

A (Aperture) 495.0625 1 495.0625 193.20 �0.0001

B (Exposure time) 4590.0625 1 4590.0625 1791.24 �0.0001

C (Develop time) 473.0625 1 473.0625 184.61 �0.0001

AB 189.0625 1 189.0625 73.78 �0.0001

Error 28.1875 11 2.5625

Total 5775.4375 15



Sequences of Fractional Factorials. Using fractional factorial designs often leads
to great economy and efficiency in experimentation, particularly if the runs can be made
sequentially. For example, suppose that we are investigating k � 4 factors (24 � 16 runs). It
is almost always preferable to run a fractional design (eight runs), analyze the results,
and then decide on the best set of runs to perform next. If it is necessary to resolve ambiguities,

24�1
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■ F I G U R E  8 . 1 0 Projection of the 
design in Example 8.2 into two replicates of a 23

design in the factors A, B, and C

25�1
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(b)
Add more runs

to clarify results—
resolve aliasing

(f)
Add runs

to allow modeling additional
terms, such as quadratic

effects needed because of
curvature

(a)
Perform one or

more confirmation runs
to verify conclusions

from the initial experiment

(g)
Move to a new

experimental region that
is more likely to contain

desirable response values

(c)
Change the

 scale on one
or more factors

(d)
Replicate some runs

to improve
precision of estimation
 or to verify that runs
were made correctly

(e)
Drop/add
factors 

– +
D

BC

A

■ F I G U R E  8 . 1 1 Possibilities
for follow-up experimentation after an
initial fractional factorial experiment



332 Chapter 8 ■ Two-Level Fractional Factorial Designs

we can always run the alternate fraction and complete the 24 design. When this method is used
to complete the design, both one-half fractions represent blocks of the complete design with
the highest order interaction confounded with blocks (here ABCD would be confounded).
Thus, sequential experimentation has the result of losing information only on the highest
order interaction. Its advantage is that in many cases we learn enough from the one-half frac-
tion to proceed to the next stage of experimentation, which might involve adding or remov-
ing factors, changing responses, or varying some of the factors over new ranges. Some of
these possibilities are illustrated graphically in Figure 8.11.

E X A M P L E  8 . 3

Reconsider the experiment in Example 8.1. We have used a
design and tentatively identified three large main

effects—A, C, and D. There are two large effects associated
with two-factor interactions, AC � BD and AD � BC.
In Example 8.2, we used the fact that the main effect of B
was negligible to tentatively conclude that the important

24�1
IV

The effect estimates (and their aliases) obtained from this
alternate fraction are

These estimates may be combined with those obtained
from the original one-half fraction to yield the following
estimates of the effects:

 [AD]� �  14.25 l AD � BC

 [AC]� � � 17.75 l AC � BD

 [AB]� �  1.25 l AB � CD

 [D]� �  12.75 l D � ABC

 [C]� �  5.75 l C � ABD

 [B]� �  4.75 l B � ACD

 [A]� �  24.25 l A � BCD

i From ([i] � [i]�) From ([i] � [i]�)

A 21.63 : A �2.63 : BCD
B 3.13 : B �1.63 : ACD
C 9.88 : C 4.13 : ABD
D 14.63 : D 1.88 : ABC
AB 0.13 : AB �1.13 : CD
AC �18.13 : AC �0.38 : BD
AD 16.63 : AD 2.38 : BC

These estimates agree exactly with those from the original
analysis of the data as a single replicate of a 24 factorial
design, as reported in Example 6.2. Clearly, it is the AC and
AD interactions that are large.

1
2

1
2

interactions were AC and AD. Sometimes the experimenter
will have process knowledge that can assist in discriminating
between interactions likely to be important. However, we can
always isolate the significant interaction by running the alter-
nate fraction, given by I � �ABCD. It is straightforward to
show that the design and the responses are as follows:

Basic Design

Run A B C D � �ABC Treatment Combination Filtration Rate

1 � � � � d 43

2 � � � � a 71

3 � � � � b 48

4 � � � � abd 104

5 � � � � c 68

6 � � � � acd 86

7 � � � � bcd 70

8 � � � � abc 65



Confirmation Experiments. Adding the alternate fraction to the principal fraction
may be thought of as a type of confirmation experiment in that it provides information that
will allow us to strengthen our initial conclusions about the two-factor interaction effects. We
will investigate some other aspects of combining fractional factorials to isolate interactions in
Sections 8.5 and 8.6.

A confirmation experiment need not be this elaborate. A very simple confirmation exper-
iment is to use the model equation to predict the response at a point of interest in the design
space (this should not be one of the runs in the current design) and then actually run that treat-
ment combination (perhaps several times), comparing the predicted and observed responses.
Reasonably close agreement indicates that the interpretation of the fractional factorial was
correct, whereas serious discrepancies mean that the interpretation was problematic. This
would be an indication that additional experimentation is required to resolve ambiguities.

To illustrate, consider the 24�1 fractional factorial in Example 8.1. The experimenters
are interested in finding a set of conditions where the response variable filtration rate is high,
but low concentrations of formaldehyde (factor C) are desirable. This would suggest that fac-
tors A and D should be at the high level and factor C should be at the low level. Examining
Figure 8.3, we note that when B is at the low level, this treatment combination was run in the
fractional factorial, producing an observed response of 100. The treatment combination with
B at the high level was not in the original fraction, so this would be a reasonable confirmation
run. With A, B, and D at the high level and C at the low level, we use the model equation from
Example 8.1 to calculate the predicted response as follows:

The observed response at this treatment combination is 104 (refer to Figure 6.10 where the
response data for the complete 24 factorial design are presented). Since the observed and pre-
dicted values of filtration rate are very similar, we have a successful confirmation run. This is
additional evidence that our interpretation of the fractional factorial was correct.

There will be situations where the predicted and observed values in a confirmation
experiment will not be this close together, and it will be necessary to answer the question of
whether the two values are sufficiently close to reasonably conclude that the interpretation of
the fractional design was correct. One way to answer this question is to construct a predic-
tion interval on the future observation for the confirmation run and then see if the actual
observation falls inside the prediction interval. We show how to do this using this example in
Section 10.6, where prediction intervals for a regression model are introduced.

8.3 The One-Quarter Fraction of the 2k Design

For a moderately large number of factors, smaller fractions of the 2k design are frequently
useful. Consider a one-quarter fraction of the 2k design. This design contains 2k�2 runs and is
usually called a 2k�2 fractional factorial.

The 2k�2 design may be constructed by first writing down a basic design consisting of the
runs associated with a full factorial in k � 2 factors and then associating the two additional
columns with appropriately chosen interactions involving the first k � 2 factors. Thus, a 

� 100.25

� �19.00
2 �(1)(1)

� 70.75 � �19.00
2 �(1) � �14.00

2 �(�1) � �16.50
2 �(1) � � � 18.50

2 �(1)(�1)

ŷ � 70.75 � �19.00
2 �x1 � �14.00

2 �x3 � �16.50
2 �x4 � ��18.50

2 �x1x3 � �19.00
2 �x1x4
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one-quarter fraction of the 2k design has two generators. If P and Q represent the generators cho-
sen, then I � P and I � Q are called the generating relations for the design. The signs of P and
Q (either � or �) determine which one of the one-quarter fractions is produced. All four frac-
tions associated with the choice of generators 
 P and 
 Q are members of the same family.
The fraction for which both P and Q are positive is the principal fraction.

The complete defining relation for the design consists of all the columns that are equal
to the identity column I. These will consist of P, Q, and their generalized interaction PQ;
that is, the defining relation is I � P � Q � PQ.  We call the elements P, Q, and PQ in the
defining relation words. The aliases of any effect are produced by the multiplication of the
column for that effect by each word in the defining relation. Clearly, each effect has three
aliases. The experimenter should be careful in choosing the generators so that potentially
important effects are not aliased with each other.

As an example, consider the 26�2 design. Suppose we choose I � ABCE and I � BCDF
as the design generators. Now the generalized interaction of the generators ABCE and BCDF
is ADEF; therefore, the complete defining relation for this design is

Consequently, this is a resolution IV design. To find the aliases of any effect (e.g., A), multi-
ply that effect by each word in the defining relation. For A, this produces

It is easy to verify that every main effect is aliased by three- and five-factor interactions,
whereas two-factor interactions are aliased with each other and with higher order interactions.
Thus, when we estimate A, for example, we are really estimating A � BCE � DEF �
ABCDF. The complete alias structure of this design is shown in Table 8.8. If three-factor and
higher interactions are negligible, this design gives clear estimates of the main effects.

To construct the design, first write down the basic design, which consists of the 16 runs
for a full 26�2 � 24 design in A, B, C, and D. Then the two factors E and F are added by asso-
ciating their plus and minus levels with the plus and minus signs of the interactions ABC and
BCD, respectively. This procedure is shown in Table 8.9.

Another way to construct this design is to derive the four blocks of the 26 design with
ABCE and BCDF confounded and then choose the block with treatment combinations that are
positive on ABCE and BCDF. This would be a 26�2 fractional factorial with generating rela-
tions I � ABCE and I � BCDF, and because both generators ABCE and BCDF are positive,
this is the principal fraction.

A � BCE � ABCDF � DEF

I � ABCE � BCDF � ADEF

■ TA B L E  8 . 8
Alias Structure for the Design with I � ABCE � BCDF � ADEF

A � BCE � DEF � ABCDF AB � CE � ACDF � BDEF

B � ACE � CDF � ABDEF AC � BE � ABDF � CDEF

C � ABE � BDF � ACDEF AD � EF � BCDE � ABCF

D � BCF � AEF � ABCDE AE � BC � DF � ABCDEF

E � ABC � ADF � BCDEF AF � DE � BCEF � ABCD

F � BCD � ADE � ABCEF BD � CF � ACDE � ABEF

BF � CD � ACEF � ABDE

ABD � CDE � ACF � BEF

ACD � BDE � ABF � CEF

26�2
IV



There are, of course, three alternate fractions of this particular design. They are
the fractions with generating relationships I � ABCE and I � �BCDF; I � � ABCE and I �
BCDF; and I � �ABCE and I � �BCDF. These fractions may be easily constructed by the
method shown in Table 8.9. For example, if we wish to find the fraction for which 
I � ABCE and I � �BCDF, then in the last column of Table 8.9 we set F � �BCD, and the
column of levels for factor F becomes

The complete defining relation for this alternate fraction is I � ABCE � � BCDF �
� ADEF. Certain signs in the alias structure in Table 8.9 are now changed; for instance, the
aliases of A are A � BCE � �DEF � �ABCDF. Thus, the linear combination of the obser-
vations [A] actually estimates A � BCE � DEF � ABCDF.

Finally, note that the fractional factorial will project into a single replicate of a 24

design in any subset of four factors that is not a word in the defining relation. It also collaps-
es to a replicated one-half fraction of a 24 in any subset of four factors that is a word in the
defining relation. Thus, the design in Table 8.9 becomes two replicates of a 24�1 in the fac-
tors ABCE, BCDF, and ADEF, because these are the words in the defining relation. There
are 12 other combinations of the six factors, such as ABCD, ABCF, for which the design
projects to a single replicate of the 24. This design also collapses to two replicates of a 23 in
any subset of three of the six factors or four replicates of a 22 in any subset of two factors.

In general, any 2k�2 fractional factorial design can be collapsed into either a full facto-
rial or a fractional factorial in some subset of r � k � 2 of the original factors. Those subsets
of variables that form full factorials are not words in the complete defining relation.

26�2
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■ TA B L E  8 . 9
Construction of the Design with the Generators I � ABCE and I � BCDF

Basic Design

Run A B C D E � ABC F � BCD

1 � � � � � �

2 � � � � � �

3 � � � � � �

4 � � � � � �

5 � � � � � �

6 � � � � � �

7 � � � � � �

8 � � � � � �

9 � � � � � �

10 � � � � � �

11 � � � � � �

12 � � � � � �

13 � � � � � �

14 � � � � � �

15 � � � � � �

16 � � � � � �

26�2
IV
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E X A M P L E  8 . 4

Parts manufactured in an injection molding process are
showing excessive shrinkage. This is causing problems in
assembly operations downstream from the injection mold-
ing area. A quality improvement team has decided to use
a designed experiment to study the injection molding
process so that shrinkage can be reduced. The team
decides to investigate six factors—mold temperature (A),
screw speed (B), holding time (C), cycle time (D), gate
size (E), and holding pressure (F)—each at two levels,
with the objective of learning how each factor affects
shrinkage and also, something about how the factors 
interact.

The team decides to use the 16-run two-level fractional
factorial design in Table 8.9. The design is shown again in
Table 8.10, along with the observed shrinkage (�10)
for the test part produced at each of the 16 runs in the
design. Table 8.11 shows the effect estimates, sums 
of squares, and the regression coefficients for this
experiment.

A normal probability plot of the effect estimates from
this experiment is shown in Figure 8.12. The only large

effects are A (mold temperature), B (screw speed), and the
AB interaction. In light of the alias relationships in Table 8.8,
it seems reasonable to adopt these conclusions tentatively.
The plot of the AB interaction in Figure 8.13 shows that the
process is very insensitive to temperature if the screw speed
is at the low level but very sensitive to temperature if the
screw speed is at the high level. With the screw speed at the
low level, the process should produce an average shrinkage
of around 10 percent regardless of the temperature level
chosen.

Based on this initial analysis, the team decides to set
both the mold temperature and the screw speed at the low
level. This set of conditions will reduce the mean shrinkage
of parts to around 10 percent. However, the variability in
shrinkage from part to part is still a potential problem. In
effect, the mean shrinkage can be adequately reduced by
the above modifications; however, the part-to-part variabil-
ity in shrinkage over a production run could still cause
problems in assembly. One way to address this issue is to
see if any of the process factors affect the variability in
parts shrinkage.

■ TA B L E  8 . 1 0
A Design for the Injection Molding Experiment in Example 8.4

Basic Design Observed
Shrinkage

Run A B C D E � ABC F � BCD (
 10)

1 � � � � � � 6 (1)

2 � � � � � � 10 ae

3 � � � � � � 32 bef

4 � � � � � � 60 abf

5 � � � � � � 4 cef

6 � � � � � � 15 acf

7 � � � � � � 26 bc

8 � � � � � � 60 abce

9 � � � � � � 8 df

10 � � � � � � 12 adef

11 � � � � � � 34 bde

12 � � � � � � 60 abd

13 � � � � � � 16 cde

14 � � � � � � 5 acd

15 � � � � � � 37 bcdf

16 � � � � � � 52 abcdef

26�2
IV
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■ TA B L E  8 . 1 1
Effects, Sums of Squares, and Regression Coefficients for Example 8.4

Variable Name �1 Level �1 Level

A Mold temperature �1.000 1.000

B Screw speed �1.000 1.000

C Holding time �1.000 1.000

D Cycle time �1.000 1.000

E Gate size �1.000 1.000

F Hold pressure �1.000 1.000

Variablea Regression Coefficient Estimated Effect Sum of Squares

Overall Average 27.3125

A 6.9375 13.8750 770.062

B 17.8125 35.6250 5076.562

C �0.4375 �0.8750 3.063

D 0.6875 1.3750 7.563

E 0.1875 0.3750 0.563

F 0.1875 0.3750 0.563

AB � CE 5.9375 11.8750 564.063

AC � BE �0.8125 �1.6250 10.562

AD � EF �2.6875 �5.3750 115.562

AE � BC � DF �0.9375 �1.8750 14.063

AF � DE 0.3125 0.6250 1.563

BD � CF �0.0625 �0.1250 0.063

BF � CD �0.0625 �0.1250 0.063

ABD 0.0625 0.1250 0.063

ABF �2.4375 �4.8750 95.063

aOnly main effects and two-factor interactions.
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Figure 8.14 presents the normal probability plot of the
residuals. This plot appears satisfactory. The plots of
residuals versus each factor were then constructed. One of
these plots, that for residuals versus factor C (holding
time), is shown in Figure 8.15. The plot reveals that there
is much less scatter in the residuals at the low holding
time than at the high holding time. These residuals were
obtained in the usual way from a model for predicted
shrinkage:

where x1, x2, and x1x2 are coded variables that correspond to
the factors A and B and the AB interaction. The residuals are
then

The regression model used to produce the residuals
essentially removes the location effects of A, B, and AB
from the data; the residuals therefore contain information
about unexplained variability. Figure 8.15 indicates that
there is a pattern in the variability and that the variabili-
ty in the shrinkage of parts may be smaller when the
holding time is at the low level. (Please recall that we
observed in Chapter 6 that residuals only convey infor-
mation about dispersion effects when the location or
mean model is correct.)

This is further amplified by the analysis of residuals
shown in Table 8.12. In this table, the residuals are arranged
at the low (�) and high (�) levels of each factor, and the
standard deviations of the residuals at the low and high
levels of each factor have been calculated. Note that the
standard deviation of the residuals with C at the low level

e � y � ŷ

� 27.3125 � 6.9375x1 � 17.8125x2 � 5.9375x1x2

ŷ � �̂0 � �̂1x1 � �̂2x2 � �̂12 x1x2

[S(C�) � 1.63] is considerably smaller than the standard
deviation of the residuals with C at the high level 
[S(C�) � 5.70].

The bottom line of Table 8.12 presents the statistic

Recall that if the variances of the residuals at the high 
(�) and low (�) levels of factor i are equal, then this ratio
is approximately normally distributed with mean zero, and
it can be used to judge the difference in the response vari-
ability at the two levels of factor i. Because the ratio is
relatively large, we would conclude that the apparent dis-
persion or variability effect observed in Figure 8.15 is
real. Thus, setting the holding time at its low level would
contribute to reducing the variability in shrinkage from part
to part during a production run. Figure 8.16 presents a nor-
mal probability plot of the values in Table 8.12; this also
indicates that factor C has a large dispersion effect.

Figure 8.17 shows the data from this experiment pro-
jected onto a cube in the factors A, B, and C. The average
observed shrinkage and the range of observed shrinkage are
shown at each corner of the cube. From inspection of this
figure, we see that running the process with the screw speed
(B) at the low level is the key to reducing average parts
shrinkage. If B is low, virtually any combination of temper-
ature (A) and holding time (C) will result in low values of
average parts shrinkage. However, from examining the
ranges of the shrinkage values at each corner of the cube, it
is immediately clear that setting the holding time (C) at 
the low level is the only reasonable choice if we wish to
keep the part-to-part variability in shrinkage low during a
production run.

F*i

F*C

F*i � ln
S2(i�)
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8.4 The General 2k�p Fractional Factorial Design

8.4.1 Choosing a Design

A 2k fractional factorial design containing 2k�p runs is called a 1/2p fraction of the 2k design
or, more simply, a 2k�p fractional factorial design. These designs require the selection of p
independent generators. The defining relation for the design consists of the p generators ini-
tially chosen and their 2p � p � 1 generalized interactions. In this section, we discuss the
construction and analysis of these designs.

The alias structure may be found by multiplying each effect column by the defining
relation. Care should be exercised in choosing the generators so that effects of potential inter-
est are not aliased with each other. Each effect has 2p � 1 aliases. For moderately large val-
ues of k, we usually assume higher order interactions (say, third- or fourth-order and higher)
to be negligible, and this greatly simplifies the alias structure.

It is important to select the p generators for a 2k�p fractional factorial design in such a
way that we obtain the best possible alias relationships. A reasonable criterion is to select 
the generators such that the resulting 2k�p design has the highest possible resolution. To
illustrate, consider the design in Table 8.9, where we used the generators E � ABC and
F � BCD, thereby producing a design of resolution IV. This is the maximum resolution
design. If we had selected E � ABC and F � ABCD, the complete defining relation would
have been I � ABCE � ABCDF � DEF, and the design would be of resolution III. Clearly,
this is an inferior choice because it needlessly sacrifices information about interactions.

Sometimes resolution alone is insufficient to distinguish between designs. For example,
consider the three designs in Table 8.13. All of these designs are of resolution IV, but they
have rather different alias structures (we have assumed that three-factor and higher interac-
tions are negligible) with respect to the two-factor interactions. Clearly, design A has more
extensive aliasing and design C the least, so design C would be the best choice for a .

The three word lengths in design A are all 4; that is, the word length pattern is {4, 4,
4}. For design B it is {4, 4, 6}, and for design C it is {4, 5, 5}. Notice that the defining rela-
tion for design C has only one four-letter word, whereas the other designs have two or three.

27�2
IV

27�2
IV

26�2
IV



Thus, design C minimizes the number of words in the defining relation that are of minimum
length. We call such a design a minimum aberration design. Minimizing aberration in a
design of resolution R ensures that the design has the minimum number of main effects
aliased with interactions of order R � 1, the minimum number of two-factor interactions
aliased with interactions of order R � 2, and so forth. Refer to Fries and Hunter (1980) for
more details.

Table 8.14 presents a selection of 2k�p fractional factorial designs for k � 15 factors and
up to n � 128 runs. The suggested generators in this table will result in a design of the high-
est possible resolution. These are also the minimum aberration designs.

The alias relationships for all of the designs in Table 8.14 for which n � 64 are given
in Appendix Table X(a–w). The alias relationships presented in this table focus on main
effects and two- and three-factor interactions. The complete defining relation is given for each
design. This appendix table makes it very easy to select a design of sufficient resolution to
ensure that any interactions of potential interest can be estimated.
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Three Choices of Generators for the Design

Design A Generators: Design B Generators: Design C Generators:
F � ABC, G � BCD F � ABC, G � ADE F � ABCD, G � ABDE

I � ABCF � BCDG � ADFG I � ABCF � ADEG � BCDEFG I � ABCDF � ABDEG � CEFG

Aliases (two-factor interactions) Aliases (two-factor interactions) Aliases (two-factor interactions)

AB � CF AB � CF CE � FG

AC � BF AC � BF CF � EG

AD � FG AD � EG CG � EF

AG � DF AE � DG

BD � CG AF � BC

BG � CD AG � DE

AF � BC � DG

27�2
IV

E X A M P L E  8 . 5

To illustrate the use of Table 8.14, suppose that we have seven
factors and that we are interested in estimating the seven main
effects and getting some insight regarding the two-factor
interactions. We are willing to assume that three-factor and
higher interactions are negligible. This information suggests
that a resolution IV design would be appropriate.

Table 8.14 shows that there are two resolution IV frac-
tions available: the with 32 runs and the with 
16 runs. Appendix Table X contains the complete alias rela-
tionships for these two designs. The aliases for the 
16-run design are in Appendix Table X(i). Notice that all
seven main effects are aliased with three-factor interac-
tions. The two-factor interactions are all aliased in groups
of three. Therefore, this design will satisfy our objectives;
that is, it will allow the estimation of the main effects, and

27�3
IV

27�3
IV27�2

IV

it will give some insight regarding two-factor interactions.
It is not necessary to run the design, which would
require 32 runs. Appendix Table X(j) shows that this design
would allow the estimation of all seven main effects and
that 15 of the 21 two-factor interactions could also be
uniquely estimated. (Recall that three-factor and higher
interactions are negligible.) This is probably more informa-
tion about interactions than is necessary. The complete 
design is shown in Table 8.15. Notice that it was construct-
ed by starting with the 16-run 24 design in A, B, C, and D
as the basic design and then adding the three columns E �
ABC, F � BCD, and G � ACD. The generators are I �
ABCE, I � BCDF, and I � ACDG (Table 8.14). The com-
plete defining relation is I � ABCE � BCDF � ADEF �
ACDG � BDEG � CEFG � ABFG.

2IV
7�3

27�2
IV

(Continued on p. 343)
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8.4.2 Analysis of 2k�p Fractional Factorials

There are many computer programs that can be used to analyze the 2k � p fractional factorial
design. For example, Design-Expert JMP, and Minitab all have this capability.

The design may also be analyzed by resorting to first principles; the ith effect is esti-
mated by

where the Contrasti is found using the plus and minus signs in column i and N � 2k�p is the
total number of observations. The 2k�p design allows only 2k�p � 1 effects (and their aliases)
to be estimated. Normal probability plots of the effect estimates and Lenth’s method are very
useful analysis tools.

Projection of the 2k�p Fractional Factorial. The 2k�p design collapses into either
a full factorial or a fractional factorial in any subset of r � k � p of the original factors. Those
subsets of factors providing fractional factorials are subsets appearing as words in the com-
plete defining relation. This is particularly useful in screening experiments when we suspect
at the outset of the experiment that most of the original factors will have small effects. The
original 2k�p fractional factorial can then be projected into a full factorial, say, in the most
interesting factors. Conclusions drawn from designs of this type should be considered tenta-
tive and subject to further analysis. It is usually possible to find alternative explanations of the
data involving higher order interactions.

As an example, consider the design from Example 8.5. This is a 16-run design
involving seven factors. It will project into a full factorial in any four of the original seven factors

27�3
IV

Effecti �
2(Contrasti)

N
�

Contrasti

(N/2)
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A Fractional Factorial Design

Basic Design

Run A B C D E � ABC F � BCD G � ACD

1 � � � � � � �

2 � � � � � � �

3 � � � � � � �

4 � � � � � � �

5 � � � � � � �

6 � � � � � � �

7 � � � � � � �

8 � � � � � � �

9 � � � � � � �

10 � � � � � � �

11 � � � � � � �

12 � � � � � � �

13 � � � � � � �

14 � � � � � � �

15 � � � � � � �

16 � � � � � � �

27�3
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that is not a word in the defining relation. There are 35 subsets of four factors, seven of which
appear in the complete defining relation (see Table 8.15). Thus, there are 28 subsets of four
factors that would form 24 designs. One combination that is obvious upon inspecting Table
8.15 is A, B, C, and D.

To illustrate the usefulness of this projection properly, suppose that we are conducting
an experiment to improve the efficiency of a ball mill and the seven factors are as follows:

1. Motor speed

2. Gain

3. Feed mode

4. Feed sizing

5. Material type

6. Screen angle

7. Screen vibration level

We are fairly certain that motor speed, feed mode, feed sizing, and material type will affect
efficiency and that these factors may interact. The role of the other three factors is less well
known, but it is likely that they are negligible. A reasonable strategy would be to assign motor
speed, feed mode, feed sizing, and material type to columns A, B, C, and D, respectively, in
Table 8.15. Gain, screen angle, and screen vibration level would be assigned to columns E, F,
and G, respectively. If we are correct and the “minor variables” E, F, and G are negligible, we
will be left with a full 24 design in the key process variables.

8.4.3 Blocking Fractional Factorials

Occasionally, a fractional factorial design requires so many runs that all of them cannot be
made under homogeneous conditions. In these situations, fractional factorials may be con-
founded in blocks. Appendix Table X contains recommended blocking arrangements for
many of the fractional factorial designs in Table 8.14. The minimum block size for these
designs is eight runs.

To illustrate the general procedure, consider the fractional factorial design with the
defining relation I � ABCE � BCDF � ADEF shown in Table 8.10. This fractional design
contains 16 treatment combinations. Suppose we wish to run the design in two blocks of eight
treatment combinations each. In selecting an interaction to confound with blocks, we note
from examining the alias structure in Appendix Table X(f) that there are two alias sets involv-
ing only three-factor interactions. The table suggests selecting ABD (and its aliases) to be con-
founded with blocks. This would give the two blocks shown in Figure 8.18. Notice that the

26�2
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Block 1 Block 2

(1) ae

abf acf

cef bef

abce bc

adef df

bde abd

acd cde

bcdf abcdef

■ F I G U R E 8 . 1 8 The design 
in two blocks with ABD confounded

26�2
IV
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E X A M P L E  8 . 6

A five-axis CNC machine is used to produce an impeller for
a jet turbine engine. The blade profiles are an important
quality characteristic. Specifically, the deviation of the
blade profile from the profile specified on the engineering
drawing is of interest. An experiment is run to determine
which machine parameters affect profile deviation. The
eight factors selected for the design are as follows:

Factor Low Level (�) High Level (�)

A � x-Axis shift 0 15
(0.001 in.)

B � y-Axis shift 0 15
(0.001 in.)

C � z-Axis shift (0.001 in.) 0 15

D � Tool supplier 1 2

E � a-Axis shift (0.001 deg) 0 30

F � Spindle speed (%) 90 110

G � Fixture height (0.001 in.) 0 15

H � Feed rate (%) 90 110

One test blade on each part is selected for inspection. The
profile deviation is measured using a coordinate measuring
machine, and the standard deviation of the difference
between the actual profile and the specified profile is used
as the response variable.

The machine has four spindles. Because there may be
differences in the spindles, the process engineers feel that
the spindles should be treated as blocks.

The engineers feel confident that three-factor and high-
er interactions are not too important, but they are reluctant
to ignore the two-factor interactions. From Table 8.14, two
designs initially appear appropriate: the design with 16
runs and the design with 32 runs. Appendix Table X(1)
indicates that if the 16-run design is used, there will be
fairly extensive aliasing of two-factor interactions.
Furthermore, this design cannot be run in four blocks with-
out confounding four two-factor interactions with blocks.
Therefore, the experimenters decide to use the design
in four blocks. This confounds one three-factor interaction
alias chain and one two-factor interaction (EH) and its
three-factor interaction aliases with blocks. The EH interac-

28�3
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28�3
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28�4
IV

tion is the interaction between the a-axis shift and the feed
rate, and the engineers consider an interaction between
these two variables to be fairly unlikely.

Table 8.16 contains the design and the resulting
responses as standard deviation � 103 in.. Because the
response variable is a standard deviation, it is often best to
perform the analysis following a log transformation. The
effect estimates are shown in Table 8.17. Figure 8.19 is a
normal probability plot of the effect estimates, using ln
(standard deviation � 103) as the response variable. The
only large effects are A � x-axis shift, B � y-axis shift,
and the alias chain involving AD � BG. Now AD is the 
x-axis shift-tool supplier interaction, and BG is the y-axis
shift-fixture height interaction, and since these two interac-
tions are aliased it is impossible to separate them based on
the data from the current experiment. Since both interac-
tions involve one large main effect it is also difficult to
apply any “obvious” simplifying logic such as effect heredity
to the situation either. If there is some engineering knowl-
edge or process knowledge available that sheds light on the
situation, then perhaps a choice could be made between the
two interactions; otherwise, more data will be required to
separate these two effects. (The problem of adding runs to
a fractional factorial to de-alias interactions is discussed in
Sections 8.6 and 8.7.)

Suppose that process knowledge suggests that the
appropriate interaction is likely to be AD. Table 8.18 is the
resulting analysis of variance for the model with factors A,
B, D, and AD (factor D was included to preserve the hierar-
chy principle). Notice that the block effect is small, sug-
gesting that the machine spindles are not very different.

Figure 8.20 is a normal probability plot of the residuals
from this experiment. This plot is suggestive of slightly
heavier than normal tails, so possibly other transformations
should be considered. The AD interaction plot is in Figure
8.21. Notice that tool supplier (D) and the magnitude of the
x-axis shift (A) have a profound impact on the variability of
the blade profile from design specifications. Running A at
the low level (0 offset) and buying tools from supplier 1
gives the best results. Figure 8.22 shows the projection of
this design into four replicates of a 23 design in factors
A, B, and D. The best combination of operating conditions
is A at the low level (0 offset), B at the high level (0.015 in
offset), and D at the low level (tool supplier 1).

28�3
IV

principal block contains those treatment combinations that have an even number of letters in
common with ABD. These are also the treatment combinations for which L � x1 � x2 � x4 �
0 (mod 2).
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■ TA B L E  8 . 1 6
The 28�3 Design in Four Blocks for Example 8.6

Actual Standard
Basic Design Run Deviation

Run A B C D E F � ABC G � ABD H � BCDE Block Order (
 103 in)

1 � � � � � � � � 3 18 2.76

2 � � � � � � � � 2 16 6.18

3 � � � � � � � � 4 29 2.43

4 � � � � � � � � 1 4 4.01

5 � � � � � � � � 1 6 2.48

6 � � � � � � � � 4 26 5.91

7 � � � � � � � � 2 14 2.39

8 � � � � � � � � 3 22 3.35

9 � � � � � � � � 1 8 4.40

10 � � � � � � � � 4 32 4.10

11 � � � � � � � � 2 15 3.22

12 � � � � � � � � 3 19 3.78

13 � � � � � � � � 3 24 5.32

14 � � � � � � � � 2 11 3.87

15 � � � � � � � � 4 27 3.03

16 � � � � � � � � 1 3 2.95

17 � � � � � � � � 2 10 2.64

18 � � � � � � � � 3 21 5.50

19 � � � � � � � � 1 7 2.24

20 � � � � � � � � 4 28 4.28

21 � � � � � � � � 4 30 2.57

22 � � � � � � � � 1 2 5.37

23 � � � � � � � � 3 17 2.11

24 � � � � � � � � 2 13 4.18

25 � � � � � � � � 4 25 3.96

26 � � � � � � � � 1 1 3.27

27 � � � � � � � � 3 23 3.41

28 � � � � � � � � 2 12 4.30

29 � � � � � � � � 2 9 4.44

30 � � � � � � � � 3 20 3.65

31 � � � � � � � � 1 5 4.41

32 � � � � � � � � 4 31 3.40 



■ TA B L E  8 . 1 7
Effect Estimates, Regression Coefficients, and Sums of Squares for Example 8.6

Variable Name �1 Level �1 Level

A x-Axis shift 0 15

B y-Axis shift 0 15

C z-Axis shift 0 15

D Tool supplier 1 2

E a-Axis shift 0 30

F Spindle speed 90 110

G Fixture height 0 15

H Feed rate 90 110

Variable Regression Coefficient Estimated Effect Sum of Squares

Overall average 1.28007

A 0.14513 0.29026 0.674020

B �0.10027 �0.20054 0.321729

C �0.01288 �0.02576 0.005310

D 0.05407 0.10813 0.093540

E �2.531E-04 �5.063E-04 2.050E-06

F �0.01936 �0.03871 0.011988

G 0.05804 0.11608 0.107799

H 0.00708 0.01417 0.001606

AB � CF � DG �0.00294 �0.00588 2.767E-04

AC � BF �0.03103 �0.06206 0.030815

AD � BG �0.18706 �0.37412 1.119705

AE 0.00402 0.00804 5.170E-04

AF � BC �0.02251 �0.04502 0.016214

AG � BD 0.02644 0.05288 0.022370

AH �0.02521 �0.05042 0.020339

BE 0.04925 0.09851 0.077627

BH 0.00654 0.01309 0.001371

CD � FG 0.01726 0.03452 0.009535

CE 0.01991 0.03982 0.012685

CG � DF �0.00733 �0.01467 0.001721

CH 0.03040 0.06080 0.029568

DE 0.00854 0.01708 0.002334

DH 0.00784 0.01569 0.001969

EF �0.00904 �0.01808 0.002616

EG �0.02685 �0.05371 0.023078

EH �0.01767 �0.03534 0.009993

FH �0.01404 �0.02808 0.006308

GH 0.00245 0.00489 1.914E-04

ABE 0.01665 0.03331 0.008874

ABH �0.00631 �0.01261 0.001273

ACD �0.02717 �0.05433 0.023617
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Effect estimates
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■ F I G U R E  8 . 1 9 Normal
probability plot of the effect estimates
for Example 8.6

■ TA B L E  8 . 1 8
Analysis of Variance for Example 8.6

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

A 0.6740 1 0.6740 39.42 �0.0001

B 0.3217 1 0.3217 18.81 0.0002

D 0.0935 1 0.0935 5.47 0.0280

AD 1.1197 1 1.1197 65.48 �0.0001

Blocks 0.0201 3 0.0067

Error 0.4099 24 0.0171

Total 2.6389 31
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■ F I G U R E  8 . 2 0 Normal probability plot of
the residuals for Example 8.6

■ F I G U R E  8 . 2 1 Plot of AD interaction
for Example 8.6



8.5 Alias Structures in Fractional Factorials and Other Designs

In this chapter, we show how to find the alias relationships in a 2k�p fractional factorial design
by use of the complete defining relation. This method works well in simple designs, such as
the regular fractions we use most frequently, but it does not work as well in more complex
settings, such as some of the nonregular fractions and partial fold-over designs that we will
discuss subsequently. Furthermore, there are some fractional factorials that do not have defin-
ing relations, such as the Plackett–Burman designs in Section 8.6.3, so the defining relation
method will not work for these types of designs at all.

Fortunately, there is a general method available that works satisfactorily in many situa-
tions. The method uses the polynomial or regression model representation of the model, say

where y is an vector of the responses, X1 is an n � p1 matrix containing the design matrix
expanded to the form of the model that the experimenter is fitting, �1 is a p1 � 1 vector of the
model parameters, and is an n � 1 vector of errors. The least squares estimate of �1 is

Suppose that the true model is 

where X2 is an n � p2 matrix containing additional variables that are not in the fitted model and
�2 is a p2 � 1 vector of the parameters associated with these variables. It can be shown that

(8.1)

The matrix is called the alias matrix. The elements of this matrix oper-
ating on �2 identify the alias relationships for the parameters in the vector �1.

We illustrate the application of this procedure with a familiar example. Suppose that we
have conducted a 23�1 design with defining relation I � ABC or I � x1x2x3. The model that the
experimenter plans to fit is the main-effects-only model

y � �0 � �1x1 � �2x2 � �3x3 � �

A � (X1� X1)
�1X1� X2

� �1 � A�2

E(�̂1) � �1 � (X1�X1)
�1X1�X2�2

y � X1�1 � X2�2 � �

�̂1 � (X�1X1)
�1X�1y

�

n � 1

y � X1�1 � 	
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■ F I G U R E  8 . 2 2 The design in Example 
8.6 projected into four replicates of a 23 design in 
factors A, B, and D

28�3
IV1.247 1.273

1.370

1.3101.504

0.9595 1.745

0.8280

0 +15
1

2

+15

0

B, y-Axis shift

A, x-Axis shift

D, Tool supplier
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In the notation defined above

Suppose that the true model contains all the two-factor interactions, so that

and

Now

Therefore,

and

The interpretation of this, of course, is that each of the main effects is aliased with one of
the two-factor interactions, which we know to be the case for this design. Notice that every
row of the alias matrix represents one of the factors in �1 and every column represents one

� �
�0

�1 � �23

�2 � �13

�3 � �12
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of the factors in �2. While this is a very simple example, the method is very general and can
be applied to much more complex designs.

8.6 Resolution III Designs

8.6.1 Constructing Resolution III Designs

As indicated earlier, the sequential use of fractional factorial designs is very useful, often
leading to great economy and efficiency in experimentation. This application of fractional
factorials occurs frequently in situations of pure factor screening; that is, there are relatively
many factors but only a few of them are expected to be important. Resolution III designs can
be very useful in these situations.

It is possible to construct resolution III designs for investigating up to k � N � 1
factors in only N runs, where N is a multiple of 4. These designs are frequently useful in
industrial experimentation. Designs in which N is a power of 2 can be constructed by the
methods presented earlier in this chapter, and these are presented first. Of particular
importance are designs requiring 4 runs for up to 3 factors, 8 runs for up to 7 factors, and
16 runs for up to 15 factors. If k � N � 1, the fractional factorial design is said to be
saturated.

A design for analyzing up to three factors in four runs is the design, presented in
Section 8.2. Another very useful saturated fractional factorial is a design for studying seven
factors in eight runs, that is, the design. This design is a one-sixteenth fraction of the 27.
It may be constructed by first writing down as the basic design the plus and minus levels for
a full 23 design in A, B, and C and then associating the levels of four additional factors with
the interactions of the original three as follows: D � AB, E � AC, F � BC, and G � ABC.
Thus, the generators for this design are I � ABD, I � ACE, I � BCF, and I � ABCG. The
design is shown in Table 8.19.

The complete defining relation for this design is obtained by multiplying the four gen-
erators ABD, ACE, BCF, and ABCG together two at a time, three at a time, and four at a time,
yielding

� ABEF � BEG � AFG � DEF � ADEG � CEFG � BDFG � ABCDEFG

I � ABD � ACE � BCF � ABCG � BCDE � ACDF � CDG

27�4
III

23�1
III
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■ TA B L E  8 . 1 9
The Design with the Generators I � ABD, I � ACE, I � BCF, and I � ABCG

Basic Design

Run A B C D � AB E � AC F � BC G � ABC

1 � � � � � � � def

2 � � � � � � � afg

3 � � � � � � � beg

4 � � � � � � � abd

5 � � � � � � � cdg

6 � � � � � � � ace

7 � � � � � � � bcf

8 � � � � � � � abcdefg

27�4
III
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To find the aliases of any effect, simply multiply the effect by each word in the defining rela-
tion. For example, the aliases of B are

This design is a one-sixteenth fraction, and because the signs chosen for the generators
are positive, this is the principal fraction. It is also a resolution III design because the small-
est number of letters in any word of the defining contrast is three. Any one of the 16 different

designs in this family could be constructed by using the generators with one of the 16
possible arrangements of signs in I � 
 ABD, I � 
 ACE, I � 
 BCF, I � 
 ABCG.

The seven degrees of freedom in this design may be used to estimate the seven main
effects. Each of these effects has 15 aliases; however, if we assume that three-factor and high-
er interactions are negligible, then considerable simplification in the alias structure results.
Making this assumption, each of the linear combinations associated with the seven main
effects in this design actually estimates the main effect and three two-factor interactions:

(8.2)

These aliases are found in Appendix Table X(h), ignoring three-factor and higher interactions.
The saturated design in Table 8.19 can be used to obtain resolution III designs for

studying fewer than seven factors in eight runs. For example, to generate a design for six fac-
tors in eight runs, simply drop any one column in Table 8.19, for example, column G. This
produces the design shown in Table 8.20.

27�4
III

[G] l G � CD � BE � AF

[F] l F � BC � AG � DE

[E] l E � AC � BG � DF

[D] l D � AB � CG � EF

[C] l C � AE � BF � DG

[B] l B � AD � CF � EG

[A] l A � BD � CE � FG

27�4
III

� ABFG � BDEF � ABDEG � BCEFG � DFG � ACDEFG

B � AD � ABCE � CF � ACG � CDE � ABCDF � BCDG � AEF � EG

■ TA B L E  8 . 2 0
A Design with the Generators I � ABD, I � ACE, and I � BCF

Basic Design

Run A B C D � AB E � AC F � BC

1 � � � � � � def

2 � � � � � � af

3 � � � � � � be

4 � � � � � � abd

5 � � � � � � cd

6 � � � � � � ace

7 � � � � � � bcf

8 � � � � � � abcdef

26�3
III



It is easy to verify that this design is also of resolution III; in fact, it is a , or a one-
eighth fraction, of the 26 design. The defining relation for the design is equal to the defin-
ing relation for the original design with any words containing the letter G deleted. Thus,
the defining relation for our new design is

In general, when d factors are dropped to produce a new design, the new defining relation is
obtained as those words in the original defining relation that do not contain any dropped let-
ters. When constructing designs by this method, care should be exercised to obtain the best
arrangement possible. If we drop columns B, D, F, and G from Table 8.19, we obtain a design
for three factors in eight runs, yet the treatment combinations correspond to two replicates of
a 23�1 design. The experimenter would probably prefer to run a full 23 design in A, C, and E.

It is also possible to obtain a resolution III design for studying up to 15 factors in 16
runs. This saturated design can be generated by first writing down the 16 treatment
combinations associated with a 24 design in A, B, C, and D and then equating 11 new factors
with the two-, three-, and four-factor interactions of the original four. In this design, each of
the 15 main effects is aliased with seven two-factor interactions. A similar procedure can be
used for the design, which allows up to 31 factors to be studied in 32 runs.

8.6.2 Fold Over of Resolution III Fractions to Separate
Aliased Effects

By combining fractional factorial designs in which certain signs are switched, we can system-
atically isolate effects of potential interest. This type of sequential experiment is called a fold
over of the original design. The alias structure for any fraction with the signs for one or more
factors reversed is obtained by making changes of sign on the appropriate factors in the alias
structure of the original fraction.

Consider the design in Table 8.19. Suppose that along with this principal fraction
a second fractional design with the signs reversed in the column for factor D is also run. That
is, the column for D in the second fraction is

The effects that may be estimated from the first fraction are shown in Equation 8.2, and from
the second fraction we obtain

(8.3)

 [G]� l G � CD � BE � AF

 [F]� l F � BC � AG � DE

 [E]� l E � AC � BG � DF

 [�D]� l � D � AB � CG � EF

 [D]� l D � AB � CG � EF

 [C]� l C � AE � BF � DG

 [B]� l B � AD � CF � EG

 [A]� l A � BD � CE � FG

��������

27�4
III

231�26
III

215�11
III

I � ABD � ACE � BCF � BCDE � ACDF � ABEF � DEF

27�4
III

26�3
III

26�3
III
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assuming that three-factor and higher interactions are insignificant. Now from the two linear
combinations of effects ([i] � [i]�) and ([i] � [i]�) we obtain

i From ([i] � [i]�) From ([i] � [i]�)

A A � CE � FG BD

B B � CF � EG AD

C C � AE � BF DG

D D AB � CG � EF

E E � AC � BG DF

F F � BC � AG DE

G G � BE � AF CD

Thus, we have isolated the main effect of D and all of its two-factor interactions. In gen-
eral, if we add to a fractional design of resolution III or higher a further fraction with the signs
of a single factor reversed, then the combined design will provide estimates of the main effect
of that factor and its two-factor interactions. This is sometimes called a single-factor fold over.

Now suppose we add to a resolution III fractional a second fraction in which the signs
for all the factors are reversed. This type of fold over (sometimes called a full fold over or a
reflection) breaks the alias links between all main effects and their two-factor interactions.
That is, we may use the combined design to estimate all of the main effects clear of any two-
factor interactions. The following example illustrates the full fold-over technique.

1
2

1
2

1
2

1
2

E X A M P L E  8 . 7

A human performance analyst is conducting an experiment
to study eye focus time and has built an apparatus in which
several factors can be controlled during the test. The factors
he initially regards as important are acuity or sharpness of
vision (A), distance from target to eye (B), target shape (C),
illumination level (D), target size (E), target density (F),
and subject (G). Two levels of each factor are considered.
He suspects that only a few of these seven factors are of

major importance and that high-order interactions between
the factors can be neglected. On the basis of this assump-
tion, the analyst decides to run a screening experiment to
identify the most important factors and then to concentrate
further study on those. To screen these seven factors, he
runs the treatment combinations from the design in
Table 8.19 in random order, obtaining the focus times in
milliseconds, as shown in Table 8.21.

27�4
III

■ TA B L E  8 . 2 1
A Design for the Eye Focus Time Experiment

Basic Design

Run A B C D � AB E � AC F � BC G � ABC Time

1 � � � � � � � def 85.5

2 � � � � � � � afg 75.1

3 � � � � � � � beg 93.2

4 � � � � � � � abd 145.4

5 � � � � � � � cdg 83.7

6 � � � � � � � ace 77.6

7 � � � � � � � bcf 95.0

8 � � � � � � � abcdefg 141.8

27�4
III



8.6 Resolution III Designs 355

Seven main effects and their aliases may be estimated
from these data. From Equation 8.2, we see that the effects
and their aliases are

For example, the estimate of the main effect of A and its
aliases is

The three largest effects are [A], [B], and [D]. The simplest
interpretation of the results of this experiment is that the
main effects of A, B, and D are all significant. However, this
interpretation is not unique, because one could also logical-
ly conclude that A, B, and the AB interaction, or perhaps B,
D, and the BD interaction, or perhaps A, D, and the AD
interaction are the true effects.

Notice that ABD is a word in the defining relation for
this design. Therefore, this design does not project into
a full 23 factorial in ABD; instead, it projects into two repli-
cates of a 23�1 design, as shown in Figure 8.23. Because the
23�1 design is a resolution III design, A will be aliased with
BD, B will be aliased with AD, and D will be aliased with

27�4
III

� 77.6 � 95.0 � 141.8) � 20.63
[A] �

1

4 (�85.5 � 75.1 � 93.2 � 145.4 � 83.7

 [G] � �2.43 l G � CD � BE � AF

 [F] � �0.63 l F � BC � AG � DE

 [E] � �0.28 l E � AC � BG � DF

 [D] �  28.88 l D � AB � CG � EF

 [C] � �0.28 l C � AE � BF � DG

 [B] �  38.38 l B � AD � CF � EG

 [A] �  20.63 l A � BD � CE � FG

AB, so the interactions cannot be separated from the main
effects. The experimenter here may have been unlucky. If
he had assigned the factor illumination level to C instead of
D, the design would have projected into a full 23 design,
and the interpretation could have been simpler.

To separate the main effects and the two-factor interac-
tions, the full fold-over technique is used, and a second
fraction is run with all the signs reversed. This fold-over
design is shown in Table 8.22 along with the observed
responses. Notice that when we construct a full fold over of
a resolution III design, we (in effect) change the signs on
the generators that have an odd number of letters. The
effects estimated by this fraction are

A

2

2

2

2

–

+

D

–

–

+

+

B

■ F I G U R E  8 . 2 3 The design
projected into two replicates of a 
design in A, B, and D

23�1
III

27�4
III

■ TA B L E  8 . 2 2
A Fold-Over Design for the Eye Focus Experiment

Basic Design

Run A B C D � �AB E � �AC F � �BC G � ABC Time

1 � � � � � � � abcg 91.3

2 � � � � � � � bcde 136.7

3 � � � � � � � acdf 82.4

4 � � � � � � � cefg 73.4

5 � � � � � � � abef 94.1

6 � � � � � � � bdfg 143.8

7 � � � � � � � adeg 87.3

8 � � � � � � � (1) 71.9

27�4
III
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By combining this second fraction with the original one, we
obtain the following estimates of the effects:

i From ([i] � [i]�) From ([i] � [i]�)

A A � 1.48 BD � CE � FG � 19.15

B B � 38.05 AD � CF � EG � 0.33

C C � � 1.80 AE � BF � DG � 1.53

1
2

1
2

 [G]� �  2.68lG � CD � BE � AF

 [F]� �  1.63lF � BC � AG � DE

 [E]� �  0.53lE � AC � BG � DF

 [D]� �  29.88lD � AB � CG � EF

 [C]� � �3.33lC � AE � BF � DG

 [B]� �  37.73lB � AD � CF � EG

 [A]� � �17.68lA � BD � CE � FG D D � 29.38 AB � CG � EF � �0.50

E E � 0.13 AC � BG � DF ��0.40

F F � 0.50 BC � AG � DE ��1.13

G G � 0.13 CD � BE � AF � �2.55

The two largest effects are B and D. Furthermore, the
third largest effect is BD � CE � FG, so it seems reason-
able to attribute this to the BD interaction. The experi-
menter used the two factors distance (B) and illumination
level (D) in subsequent experiments with the other factors
A, C, E, and F at standard settings and verified the results
obtained here. He decided to use subjects as blocks in these
new experiments rather than ignore a potential subject
effect because several different subjects had to be used to
complete the experiment.

The Defining Relation for a Fold-Over Design. Combining fractional factorial
designs via fold over as demonstrated in Example 8.7 is a very useful technique. It is often of
interest to know the defining relation for the combined design. It can be easily determined.
Each separate fraction will have L � U words used as generators: L words of like sign and U
words of unlike sign. The combined design will have L � U � 1 words used as generators.
These will be the L words of like sign and the U � 1 words consisting of independent even
products of the words of unlike sign. (Even products are words taken two at a time, four at
a time, and so forth.)

To illustrate this procedure, consider the design in Example 8.7. For the first fraction,
the generators are

and for the second fraction, they are

Notice that in the second fraction we have switched the signs on the generators with an odd
number of letters. Also, notice that L � U � 1 � 3 � 4. The combined design will have I �
ABCG (the like sign word) as a generator and two words that are independent even products
of the words of unlike sign. For example, take I � ABD and I � ACE; then I � (ABD)(ACE) �
BCDE is a generator of the combined design. Also, take I � ABD and I � BCF; then I �
(ABD)(BCF) � ACDF is a generator of the combined design. The complete defining relation
for the combined design is

Blocking in a Fold-Over Design. Usually a fold-over design is conducted in two
distinct time periods. Following the initial fraction, some time usually elapses while the data
are analyzed and the fold-over runs are planned. Then the second set of runs is made, often
on a different day, or different shift, or using different operating personnel, or perhaps mate-
rial from a different source. This leads to a situation where blocking to eliminate potential

I � ABCG � BCDE � ACDF � ADEG � BDFG � ABEF � CEFG

I � �ABD,  I � �ACE,  I � �BCF,  and  I � ABCG

I � ABD,  I � ACE,  I � BCF,  and  I � ABCG



nuisance effects between the two time periods is of interest. Fortunately, blocking in the com-
bined experiment is easily accomplished.

To illustrate, consider the fold-over experiment in Example 8.7. In the initial group of
eight runs shown in Table 8.21, the generators are D � AB, E � AC, F � BC, and G � ABC.
In the fold-over set of runs, Table 8.22, the signs are changed on three of the generators so
that D � � AB, E � �AC, and F � �BC. Thus, in the first group of eight runs the signs on
the effects ABD, ACE, and BCF are positive, and in the second group of eight runs the signs
on ABD, ACE, and BCF are negative; therefore, these effects are confounded with blocks.
Actually, there is a single-degree-of-freedom alias chain confounded with blocks (remember
that there are two blocks, so there must be one degree of freedom for blocks), and the effects
in this alias chain may be found by multiplying any one of the effects ABD, ACE, and BCF
through the defining relation for the design. This yields

as the complete set of effects that are confounded with blocks. In general, a completed fold-
over experiment will always form two blocks with the effects whose signs are positive in one
block and negative in the other (and their aliases) confounded with blocks. These effects can
always be determined from the generators whose signs have been switched to form the fold
over.

8.6.3 Plackett–Burman Designs

These are two-level fractional factorial designs developed by Plackett and Burman (1946) for
studying k � N � 1 variables in N runs, where N is a multiple of 4. If N is a power of 2, these
designs are identical to those presented earlier in this section. However, for N � 12, 20, 24,
28, and 36, the Plackett–Burman designs are sometimes of interest. Because these designs
cannot be represented as cubes, they are sometimes called nongeometric designs.

The upper half of Table 8.23 presents rows of plus and minus signs that are used to con-
struct the Plackett–Burman designs for N � 12, 20, 24, and 36, whereas the lower half of the

ABD � CDG � ACE � BCF � BEG � AFG � DEF � ABCDEFG
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■ TA B L E  8 . 2 3
Plus and Minus Signs for the Plackett–Burman Designs

k � 11, N � 12 �  �  �  �  �  �  �  �  �  �  �

k � 19, N � 20 �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �

k � 23, N � 24 �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �

k � 35, N � 36 �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  � � � � � � � � � � � �

k � 27, N � 28

�  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  �

�  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  �

�  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  �

�  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  �

�  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  �

�  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  �

�  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  �

�  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  �

�  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  � �  �  �  �  �  �  �  �  �
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table presents blocks of plus and minus signs for constructing the design for N � 28. The
designs for N � 12, 20, 24, and 36 are obtained by writing the appropriate row in Table 8.23
as a column (or row). A second column (or row) is then generated from this first one by mov-
ing the elements of the column (or row) down (or to the right) one position and placing the
last element in the first position. A third column (or row) is produced from the second simi-
larly, and the process is continued until column (or row) k is generated. A row of minus signs
is then added, completing the design. For N � 28, the three blocks X, Y, and Z are written
down in the order

and a row of minus signs is added to these 27 rows. The design for N � 12 runs and k � 11
factors is shown in Table 8.24.

The nongeometric Plackett–Burman designs for N � 12, 20, 24, 28, and 36 have
complex alias structures. For example, in the 12-run design every main effect is partially
aliased with every two-factor interaction not involving itself. For example, the AB inter-
action is aliased with the nine main effects C, D, . . . , K and the AC interaction is aliased
with the nine main effects B, D, . . . , K. Furthermore, each main effect is partially aliased
with 45 two-factor interactions. As an example, consider the aliases of the main effect of
factor A:

Each one of the 45 two-factor interactions in the alias chain in weighed by the constant 
This weighting of the two-factor interactions occurs throughout the Plackett–Burman series 
of nongeometric designs. In other Plackett–Burman designs, the constant will be different
than �1

3.

�1
3.

[A] � A �
1
3

BC �
1
3

BD �
1
3

BE �
1
3

BF � Á �
1
3

KL

Y  Z  X

Z  X  Y

X  Y  Z

■ TA B L E  8 . 2 4
Plackett–Burman Design for N � 12, k � 11

Run A B C D E F G H I J K

1 � � � � � � � � � � �

2 � � � � � � � � � � �

3 � � � � � � � � � � �

4 � � � � � � � � � � �

5 � � � � � � � � � � �

6 � � � � � � � � � � �

7 � � � � � � � � � � �

8 � � � � � � � � � � �

9 � � � � � � � � � � �

10 � � � � � � � � � � �

11 � � � � � � � � � � �

12 � � � � � � � � � � �



Plackett–Burman designs are examples of nonregular designs. This term appears
frequently in the experimental design literature. Basically, a regular design is one in which
all effects can be estimated independently of the other effects and in the case of a fractional
factorial, the effects that cannot be estimated are completely aliased with the other effects.
Obviously, a full factorial such as the 2k is a regular design, and so are the 2k�p fractional fac-
torials because while all of the effects cannot be estimated the “constants” in the alias chains
for these designs are always either zero or plus or minus unity. That is, the effects that are not
estimable because of the fractionation are completely aliased (some say completely con-
founded) with the effects that can be estimated. In nonregular designs, because some of the
nonzero constants in the alias chains are not equal to 
1, there is always at least a chance that
some information on the aliased effects may be available.

The projection properties of the nongeometric Plackett–Burman designs are interesting, and
in many cases, useful. For example, consider the 12-run design in Table 8.24. This design will proj-
ect into three replicates of a full 22 design in any two of the original 11 factors. In three factors, the
projected design is a full 23 factorial plus a fractional factorial (see Figure 8.24a). All
Plackett–Burman designs will project into a full factorial plus some additional runs in any three
factors. Thus, the resolution III Plackett–Burman design has projectivity 3, meaning it will col-
lapse into a full factorial in any subset of three factors (actually, some of the larger
Plackett–Burman designs, such as those with 68, 72, 80, and 84 runs, have projectivity 4). In con-
trast, the design only has projectivity 2. The four-dimensional projections of the 12- run
design are shown in Figure 8.24b. Notice that there are 11 distinct runs. This design can fit all four
of the main effects and all 6 two-factor interactions, assuming that all other main effects and inter-
actions are negligible. The design in Fig. 8.24b needs 5 additional runs to form a complete 24 (with
one additional run) and only a single run to form a 24�1 (with 5 additional runs). Regression meth-
ods can be used to fit models involving main effects and interactions using those projected designs.

2k�p
III

23�1
III
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(a) Projection into three factors

(b) Projection into four factors

– +

■ F I G U R E  8 . 2 4 Projection of the 12-run Plackett–
Burman design into three- and four-factor designs
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E X A M P L E  8 . 8

We will illustrate the analysis of a Plackett–Burman design
with an example involving 12 factors. The smallest regular
fractional factorial for 12 factors is a 16-run 212�8 fractional
factorial design. In this design, all 12 main effects are aliased
with four two-factor interactions and three chains of two-
factor interactions each containing six two-factor interac-
tions (refer to Appendix 10, design w). If there are significant
two-factor interactions along with the main effects it is very
possible that additional runs will be required to dealias some
of these effects.

Suppose that we decide to use a 20-run Plackett–Burman
design for this problem. Now this has more runs that the
smallest regular fraction, but it contains fewer runs than
would be required by either a full fold-over or a partial fold-
over of the 16 run regular fraction. This design was created in
JMP and is shown in Table 8.25, along with the observed
response data obtained when the experiment was conducted.
The alias matrix for this design, also produced from JMP is in
Table 8.26. Note that the coefficients of the aliased two-factor
interactions are not either 0, �1 or �1 because this is a 

nonregular design). Hopefully this will provide some flexibil-
ity with which to estimate interactions if necessary.

Table 8.27 shows the JMP analysis of this design, using
a forward-stepwise regression procedure to fit the model. In
forward-stepwise regression, variables are entered into the
model one at a time, beginning with those that appear most
important, until no variables remain that are reasonable
candidates for entry. In this analysis, we consider all main
effects and two-factor interactions as possible variables of
interest for the model.

Considering the P-values for the variables in Table 8.27,
the most important factor is x2, so this factor is entered into
the model first. JMP then recalculates the P-values and the
next variable entered would be x4. Then the x1x4 interaction
is entered along with the main effect of x1 to preserve the
hierarchy of the model. This is followed by the x1x4 interac-
tions. The JMP output for these steps is not shown but is
summarized at the bottom of Table 8.28. Finally, the last
variable entered is x5. Table 8.28 summarizes the final
model.

■ TA B L E  8 . 2 5
Plackett–Burman Design for Example 8.8

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 y

1 1 1 1 1 1 1 1 1 1 1 1 1 221.5032

2 �1 1 �1 �1 1 1 1 1 �1 1 �1 1 213.8037

3 �1 �1 1 �1 �1 1 1 1 1 �1 1 �1 167.5424

4 1 �1 �1 1 �1 �1 1 1 1 1 �1 1 232.2071

5 1 1 �1 �1 1 �1 �1 1 1 1 1 �1 186.3883

6 �1 1 1 �1 �1 1 �1 �1 1 1 1 1 210.6819

7 �1 �1 1 1 �1 �1 1 �1 �1 1 1 1 168.4163

8 �1 �1 �1 1 1 �1 �1 1 �1 �1 1 1 180.9365

9 �1 �1 �1 �1 1 1 �1 �1 1 �1 �1 1 172.5698

10 1 �1 �1 �1 �1 1 1 �1 �1 1 �1 �1 181.8605

11 �1 1 �1 �1 �1 �1 1 1 �1 �1 1 �1 202.4022

12 1 �1 1 �1 �1 �1 �1 1 1 �1 �1 1 186.0079

13 �1 1 �1 1 �1 �1 �1 �1 1 1 �1 �1 216.4375

14 1 �1 1 �1 1 �1 �1 �1 �1 1 1 �1 192.4121

15 1 1 �1 1 �1 1 �1 �1 �1 �1 1 1 224.4362

16 1 1 1 �1 1 �1 1 �1 �1 �1 �1 1 190.3312

17 1 1 1 1 �1 1 �1 1 �1 �1 �1 �1 228.3411

18 �1 1 1 1 1 �1 1 �1 1 �1 �1 �1 223.6747

19 �1 �1 1 1 1 1 �1 1 �1 1 �1 �1 163.5351

20 1 �1 �1 1 1 1 1 �1 1 �1 1 �1 236.5124
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■ TA B L E  8 . 2 7
JMP Stepwise Regression Analysis of Example 8.8, Initial Solution

Stepwise Fit

Response:

Y

Stepwise Regression Control

Prob to Enter 0.250

Prob to Leave 0.100

Current Estimates

SSE DFE MSE RSquare RSquare Adj Cp

10732 19 564.84211 0.0000 0.0000 12

Parameter Estimate nDF SS “F Ratio” “Prob>F”

Intercept 200 1 0 0.000 1.0000

X1 0 1 1280 2.438 0.1359

X2 0 1 2784.8 6.307 0.0218

X3 0 1 452.279 0.792 0.3853

X4 0 1 1843.2 3.733 0.0693

X5 0 1 67.21943 0.113 0.7401

X6 0 1 86.41367 0.146 0.7068

X7 0 1 292.6697 0.505 0.4866

X8 0 1 60.08353 0.101 0.7539

X9 0 1 572.9881 1.015 0.3270

X10 0 1 32.53443 0.055 0.8177

X11 0 1 15.37763 0.026 0.8741

X12 0 1 0.159759 0.000 0.9871

X1*X2 0 3 5908 6.532 0.0043

X1*X3 0 3 1736.782 1.030 0.4058

X1*X4 0 3 5543.2 5.698 0.0075

X1*X5 0 3 1358.09 0.773 0.5261

X1*X6 0 3 2795.154 1.878 0.1740

X1*X7 0 3 1581.316 0.922 0.4528

X1*X8 0 3 1767.483 1.052 0.3970

X1*X9 0 3 1866.724 1.123 0.3692

X1*X10 0 3 1609.033 0.941 0.4441

X1*X11 0 3 1821.162 1.090 0.3818

X1*X12 0 3 1437.829 0.825 0.4991

X2*X3 0 3 4473.249 3.812 0.0309

X2*X4 0 3 4671.721 4.111 0.0243

X2*X5 0 3 3011.798 2.081 0.1431

X2*X6 0 3 3561.431 2.649 0.0842

X2*X7 0 3 3635.536 2.732 0.0781

X2*X8 0 3 2848.428 1.927 0.1659

X2*X9 0 3 3944.319 3.099 0.0564

X2*X10 0 3 2828.937 1.909 0.1688

X2*X11 0 3 2867.948 1.945 0.1631

X2*X12 0 3 2786.331 1.870 0.1753

X3*X4 0 3 2576.807 1.685 0.2102
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X3*X5 0 3 995.7837 0.545 0.6582

X3*X6 0 3 558.5936 0.293 0.8300

X3*X7 0 3 1201.228 0.672 0.5815

X3*X8 0 3 512.677 0.268 0.8478

X3*X9 0 3 1058.287 0.583 0.6344

X3*X10 0 3 626.2659 0.331 0.8034

X3*X11 0 3 569.497 0.299 0.8257

X3*X12 0 3 452.4973 0.235 0.8708

X4*X5 0 3 2038.876 1.251 0.3244

X4*X6 0 3 2132.749 1.323 0.3017

X4*X7 0 3 2320.382 1.471 0.2599

X4*X8 0 3 2034.576 1.248 0.3255

X4*X9 0 3 4886.816 4.459 0.0185

X4*X10 0 3 3125.433 2.191 0.1288

X4*X11 0 3 1970.181 1.199 0.3418

X4*X12 0 3 2194.402 1.371 0.2875

X5*X6 0 3 189.5188 0.096 0.9612

X5*X7 0 3 4964.273 4.590 0.0168

X5*X8 0 3 332.1148 0.170 0.9149

X5*X9 0 3 1065.334 0.588 0.6318

X5*X10 0 3 136.8974 0.069 0.9757

X5*X11 0 3 866.5116 0.468 0.7084

X5*X12 0 3 185.205 0.094 0.9625

X6*X7 0 3 434.1661 0.225 0.8777

X6*X8 0 3 185.7122 0.094 0.9623

X6*X9 0 3 1302.2 0.737 0.5455

X6*X10 0 3 246.5934 0.125 0.9437

X6*X11 0 3 2492.598 1.613 0.2256

X6*X12 0 3 913.7187 0.496 0.6900

X7*X8 0 3 935.8699 0.510 0.6813

X7*X9 0 3 1876.723 1.130 0.3665

X7*X10 0 3 345.5343 0.177 0.9101

X7*X11 0 3 577.8999 0.304 0.8224

X7*X12 0 3 328.611 0.168 0.9161

X8*X9 0 3 1111.212 0.616 0.6146

X8*X10 0 3 936.6248 0.510 0.6811

X8*X11 0 3 710.6107 0.378 0.7700

X8*X12 0 3 1517.358 0.878 0.4731

X9*X10 0 3 2360.154 1.504 0.2517

X9*X11 0 3 588.4157 0.309 0.8183

X9*X12 0 3 587.527 0.309 0.8186

X10*X11 0 3 125.3218 0.063 0.9786

X10*X12 0 3 2241.266 1.408 0.2770

X11*X12 0 3 94.12651 0.047 0.9859 

■ TA B L E  8 . 2 7 (Continued)

Parameter Estimate nDF SS “F Ratio” “Prob>F”
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■ TA B L E  8 . 2 8
JMP Final Stepwise Regression Solution, Example 8.8

Stepwise Fit

Response:

Y

Stepwise Regression Control

Prob to Enter 0.250

Prob to Leave 0.100

Direction:

Rules:

Current Estimates
SSE DFE MSE RSquare RSquare Adj Cp

381.79001 13 29.368462 0.9644 0.9480 72

Parameter Estimate nDF SS “F Ratio” “Prob>F”

Intercept 200 1 0 0.000 1.0000

X1 8 3 5654.991 64.184 0.0000

X2 9.89242251 2 4804.208 81.792 0.0000

X3 0 1 2.547056 0.081 0.7813

X4 12.1075775 2 4442.053 75.626 0.0000

X5 2.581897 1 122.21 4.161 0.0622

X6 0 1 44.86956 1.598 0.2302

X7 0 1 7.652516 0.245 0.6292

X8 0 1 28.02042 0.950 0.3488

X9 0 1 19.33012 0.640 0.4393

X10 0 1 76.73973 3.019 0.1079

X11 0 1 1.672382 0.053 0.8221

X12 0 1 10.36884 0.335 0.5734

X1*X2 �12.537887 1 2886.987 98.302 0.0000

X1*X3 0 2 6.20474 0.091 0.9138

X1*X4 9.53788744 1 1670.708 56.888 0.0000

X1*X5 0 1 1.889388 0.060 0.8111

X1*X6 0 2 45.6286 0.747 0.4966

X1*X7 0 2 10.10477 0.150 0.8628

X1*X8 0 2 41.24821 0.666 0.5332

X1*X9 0 2 90.27392 1.703 0.2268

X1*X10 0 2 76.84386 1.386 0.2905

X1*X11 0 2 27.15307 0.421 0.6665

X1*X12 0 2 37.51692 0.599 0.5662

X2*X3 0 2 54.47309 0.915 0.4288

X2*X4 0 1 3.403658 0.108 0.7482

X2*X5 0 1 0.216992 0.007 0.9355

X2*X6 0 2 46.47256 0.762 0.4897

X2*X7 0 2 37.44377 0.598 0.5668

X2*X8 0 2 65.97489 1.149 0.3522

X2*X9 0 2 69.32501 1.220 0.3322

X2*X10 0 2 98.35266 1.908 0.1943



X2*X11 0 2 141.1503 3.226 0.0790

X2*X12 0 2 52.05325 0.868 0.4466

X3*X4 0 2 111.3687 2.265 0.1500

X3*X5 0 2 80.40096 1.467 0.2724

X3*X6 0 3 67.40344 0.715 0.5653

X3*X7 0 3 99.64513 1.177 0.3667

X3*X8 0 3 66.19013 0.699 0.5737

X3*X9 0 3 29.41242 0.278 0.8399

X3*X10 0 3 120.8801 1.544 0.2632

X3*X11 0 3 4.678496 0.041 0.9881

X3*X12 0 3 56.41798 0.578 0.6426

X4*X5 0 1 49.01055 1.767 0.2084

X4*X6 0 2 148.7678 3.511 0.0662

X4*X7 0 2 10.61344 0.157 0.8564

X4*X8 0 2 29.55318 0.461 0.6420

X4*X9 0 2 25.40367 0.392 0.6847

X4*X10 0 2 112.0974 2.286 0.1478

X4*X11 0 2 1.673771 0.024 0.9761

X4*X12 0 2 24.16136 0.372 0.6980

X5*X6 0 2 169.9083 4.410 0.0392

X5*X7 0 2 31.18914 0.489 0.6258

X5*X8 0 2 90.33176 1.705 0.2265

X5*X9 0 2 34.4118 0.545 0.5948

X5*X10 0 2 154.654 3.745 0.0575

X5*X11 0 2 10.09686 0.149 0.8629

X5*X12 0 2 12.34385 0.184 0.8346

X6*X7 0 3 59.7591 0.619 0.6187

X6*X8 0 3 94.11651 1.091 0.3974

X6*X9 0 3 57.73503 0.594 0.6331

X6*X10 0 3 165.7402 2.557 0.1139

X6*X11 0 3 77.11154 0.844 0.5007

X6*X12 0 3 58.58914 0.604 0.6270

X7*X8 0 3 44.58254 0.441 0.7290

X7*X9 0 3 29.92824 0.284 0.8362

X7*X10 0 3 86.08846 0.970 0.4445

X7*X11 0 3 63.54514 0.666 0.5920

X7*X12 0 3 31.78299 0.303 0.8229

X8*X9 0 3 60.30138 0.625 0.6148

X8*X10 0 3 104.4506 1.255 0.3414

X8*X11 0 3 33.70238 0.323 0.8089

X8*X12 0 3 51.03759 0.514 0.6816

X9*X10 0 3 110.8786 1.364 0.3092

X9*X11 0 3 50.35583 0.506 0.6865

X9*X12 0 3 119.2043 1.513 0.2706

X10*X11 0 3 93.00237 1.073 0.4037

X10*X12 0 3 94.6634 1.099 0.3943

■ TA B L E  8 . 2 8 (Continued)

Parameter Estimate nDF SS “F Ratio” “Prob>F”
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The final model for this experiment contains the main
effects of factors x1, x2, x4, and x5, plus the two-factor inter-
actions x1x2 and x1x4. Now, it turns out that the data for this
experiment were simulated from a model. The model used
was

where the random error term was normal with mean zero
and standard deviation 5. The Plackett–Burman design was
able to correctly identify all of the significant main effects
and the two significant two-factor interactions. From Table
8.28 we observe that the model parameter estimates are
actually very close to the values chosen for the model.

The partial aliasing structure of the Plackett–Burman
design has been very helpful in identifying the significant
interactions. Another approach to the analysis would be to
realize that this design could be used to fit the main effects
in any four factors and all of their two factor interactions,
than use a normal probability plot to identify the four

y � 200 � 8x1 � 10x2 � 12x4 � 12x1x2 � 9x1x4 � �

largest main effects, and finally fit the four factorial model
in those four factors.

Notice that there is the main effect x5 is identified as sig-
nificant that was not in the simulation model used to gener-
ate the data. A type I error has been committed with respect
to this factor. In screening experiments type I errors are not
as serious as type II errors. A type I error results in a non-
significant factor being identified as important and retained
for subsequent experimentation and analysis. Eventually,
we will likely discover that this factor really isn’t impor-
tant. However, a type II error means that an important fac-
tor has not been discovered. This variable will be dropped
from subsequent studies and if it really turns out to be a
critical factor, product or process performance can be neg-
atively impacted. It is highly likely that the effect of this
factor will never be discovered because it was discarded
early in the research. In our example, all important factors
were discovered, including the interactions, and that is the
key point.

X11*X12 0 3 38.30184 0.372 0.7753

Step History

Step Parameter Action “Sig Prob” Seq SS RSquare Cp

1 X2 Entered 0.0218 2784.8 0.2595 .

2 X4 Entered 0.0368 1843.2 0.4312 .

3 X1*X2 Entered 0.0003 4044.8 0.8081 .

4 X1*X4 Entered 0.0000 1555.2 0.9530 .

5 X5 Entered 0.0622 122.21 0.9644 . 

8.7 Resolution IV and V Designs

8.7.1 Resolution IV Designs

A 2k�p fractional factorial design is of resolution IV if the main effects are clear of two-
factor interactions and some two-factor interactions are aliased with each other. Thus, if three-
factor and higher interactions are suppressed, the main effects may be estimated directly in a

design. An example is the design in Table 8.10. Furthermore, the two combined frac-
tions of the design in Example 8.7 yields a design. Resolution IV designs are used
extensively as screening experiments. The 24�1 with eight runs and the 16 run fractions with
6, 7, and 8 factors are very popular.

Any design must contain at least 2k runs. Resolution IV designs that contain exact-
ly 2k runs are called minimal designs. Resolution IV designs may be obtained from resolu-
tion III designs by the process of fold over. Recall that to fold over a design, simply add
to the original fraction a second fraction with all the signs reversed. Then the plus signs in the
identity column I in the first fraction could be switched in the second fraction, and a (k � 1)st

2k�p
III

2k�p
IV

27�3
IV27�4

III

26�2
IV2k�p

IV

■ TA B L E  8 . 2 8 (Continued)

Parameter Estimate nDF SS “F Ratio” “Prob>F”



factor could be associated with this column. The result is a fractional factorial design.
The process is demonstrated in Table 8.29 for the design. It is easy to verify that the
resulting design is a design with defining relation I � ABCD.

Table 8.30 provides a convenient summary of 2k � p fractional factorial designs with N �
4, 8, 16, and 32 runs. Notice that although 16-run resolution IV designs are available for 6 �
k � 8 factors, if there are nine or more factors the smallest resolution IV design in the 
29�p family is the 29�4, which requires 32 runs. Since this is a rather large number of runs,
many experimenters are interested in smaller designs. Recall that a resolution IV design must
contain at least 2k runs, so for example, a nine-factor resolution IV design must have at least
18 runs. A design with exactly N � 18 runs can be created by using an algorithm for con-
structing “optimal” designs. This design is a nonregular design, and it will be illustrated in
chapter 9 as part of a broader discussion of nonregular designs.

8.7.2 Sequential Experimentation with Resolution 
IV Designs

Because resolution IV designs are used as screening experiments, it is not unusual to find that
upon conducting and analyzing the original experiment, additional experimentation is necessary

24�1
IV

23�1
III

2k�1�p
IV
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■ TA B L E  8 . 2 9
A Design Obtained by Fold Over

D

I A B C

Original I � ABC

� � � �

� � � �

� � � �

� � � �

Second with Signs Switched

� � � �

� � � �

� � � �

� � � �

23�1
III

23�1
III

24�1
IV

■ TA B L E  8 . 3 0
Useful Factorial and Fractional Factorial Designs from the 2k�p System.
The Numbers in the Cells Are the Numbers of Factors in the Experiment

Number of Runs

Design Type 4 8 16 32

Full factorial 2 3 4 5

Half-fraction 3 4 5 6

Resolution IV fraction — 4 6–8 7–16

Resolution III fraction 3 5–7 9–15 17–31
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to completely resolve all of the effects. We discussed this in Section 8.6.2 for the case of 
resolution III designs and introduced fold over as a sequential experimentation strategy. In the
resolution III situation, main effects are aliased with two-factor interaction, so the purpose of the
fold over is to separate the main effects from the two-factor interactions. It is also possible to fold
over resolution IV designs to separate two-factor interactions that are aliased with each other.

Montgomery and Runger (1996) observe that an experimenter may have several objec-
tives in folding over a resolution IV design, such as

1. breaking as many two-factor interaction alias chains as possible,

2. breaking the two-factor interactions on a specific alias chain, or

3. breaking the two-factor interaction aliases involving a specific factor.

However, one has to be careful in folding over a resolution IV design. The full fold-over rule
that we used for resolution III designs, simply run another fraction with all of the signs
reversed, will not work for the resolution IV case. If this rule is applied to a resolution IV
design, the result will be to produce exactly the same design with the runs in a different order.
Try it! Use the in Table 8.9 and see what happens when you reverse all of the signs in
the test matrix.

The simplest way to fold over a resolution IV design is to switch the signs on a single
variable of the original design matrix. This single-factor fold over allows all the two-factor
interactions involving the factor whose signs are switched to be separated and accomplishes
the third objective listed above.

To illustrate how a single-factor fold over is accomplished for a resolution IV design,
consider the design in Table 8.31 (the runs are in standard order, not run order). This
experiment was conducted to study the effects of six factors on the thickness of photoresist
coating applied to a silicon wafer. The design factors are A � spin speed, B � acceleration,

26�2
IV

26�2
IV

■ TA B L E  8 . 3 1
The Initial Design for the Spin Coater Experiment

A B C D E F

Speed Vol Time Resist Exhaust Thickness 
RPM Acceleration (cc) (sec) Viscosity Rate (mil)

� � � � � � 4524

� � � � � � 4657

� � � � � � 4293

� � � � � � 4516

� � � � � � 4508

� � � � � � 4432

� � � � � � 4197

� � � � � � 4515

� � � � � � 4521

� � � � � � 4610

� � � � � � 4295

� � � � � � 4560

� � � � � � 4487

� � � � � � 4485

� � � � � � 4195

� � � � � � 4510

26�2
IV



C � volume of resist applied, D � spin time, E � resist viscosity, and F � exhaust rate. The
alias relationships for this design are given in Table 8.8. The half-normal probability plot of
the effects is shown in Figure 8.25. Notice that the largest main effects are A, B, C, and E, and
since these effects are aliased with three-factor or higher interactions, it is logical to assume
that these are real effects. However, the effect estimate for the AB � CE alias chain is also
large. Unless other process knowledge or engineering information is available, we do not
know whether this is AB, CE, or both of the interaction effects.

The fold-over design is constructed by setting up a new fractional factorial design
and changing the signs on factor A. The complete design following the addition of the fold-over
runs is shown (in standard order) in Table 8.32. Notice that the runs have been assigned to two
blocks; the runs from the initial design in Table 8.32 are in block 1, and the fold-over runs
are in block 2. The effects that are estimated from the combined set of runs are (ignoring inter-
actions involving three or more factors)

 [AD] � AD     [EF] � EF

 [AC] � AC     [DE] � DE

 [AB] � AB     [CE] � CE

 [F] � F     [BF] � BF � CD

 [E] � E     [BE] � BE

 [D] � D     [BD] � BD � CF

 [C] � C     [BC] � BC � DF

 [B] � B     [AF] � AF

 [A] � A     [AE] � AE

26�2
IV

26�2
IV
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Notice that all of the two-factor interactions involving factor A are now clear of other two-
factor interactions. Also, AB is no longer aliased with CE. The half-normal probability plot of
the effects from the combined design is shown in Figure 8.26. Clearly it is the CE interaction
that is significant.

It is easy to show that the completed fold-over design in Table 8.32 allows estimation
of the 6 main effects and 12 two-factor interaction alias chains shown previously, along with
estimation of 12 other alias chains involving higher order interactions and the block effect.

■ TA B L E  8 . 3 2
The Completed Fold Over for the Spin Coater Experiment

A B C D E F

Std. Speed Vol Time Resist Exhaust Thickness
Order Block (RPM) Acceleration (cc) (sec) Viscosity rate (mil)

1 1 � � � � � � 4524

2 1 � � � � � � 4657

3 1 � � � � � � 4293

4 1 � � � � � � 4516

5 1 � � � � � � 4508

6 1 � � � � � � 4432

7 1 � � � � � � 4197

8 1 � � � � � � 4515

9 1 � � � � � � 4521

10 1 � � � � � � 4610

11 1 � � � � � � 4295

12 1 � � � � � � 4560

13 1 � � � � � � 4487

14 1 � � � � � � 4485

15 1 � � � � � � 4195

16 1 � � � � � � 4510

17 2 � � � � � � 4615

18 2 � � � � � � 4445

19 2 � � � � � � 4475

20 2 � � � � � � 4285

21 2 � � � � � � 4610

22 2 � � � � � � 4325

23 2 � � � � � � 4330

24 2 � � � � � � 4425

25 2 � � � � � � 4655

26 2 � � � � � � 4525

27 2 � � � � � � 4485

28 2 � � � � � � 4310

29 2 � � � � � � 4620

30 2 � � � � � � 4335

31 2 � � � � � � 4345

32 2 � � � � � � 4305
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The generators for the original fractions are E � ABC and F � BCD, and because we
changed the signs in column A to create the fold over, the generators for the second group of
16 runs are E � �ABC and F � BCD. Since there is only one word of like sign (L � 1, U � 1)
and the combined design has only one generator (it is a one-half fraction), the generator for
the combined design is F � BCD. Furthermore, since ABCE is positive in block 1 and ABCE
is negative in block 2, ABCE plus its alias ADEF are confounded with blocks.

Examination of the alias chains involving the two-factor interactions for the original 16-
run design and the completed fold over reveals some troubling information. In the original
resolution IV fraction, every two-factor interaction was aliased with another two-factor inter-
action in six alias chains, and in one alias chain there were three two-factor interactions (refer
to Table 8.8). Thus, seven degrees of freedom were available to estimate two-factor interac-
tions. In the completed fold over, there are nine two-factor interactions that are estimated free
of other two-factor interactions and three alias chains involving two two-factor interactions,
resulting in 12 degrees of freedom for estimating two-factor interactions. Put another way, we
used 16 additional runs but only gained five additional degrees of freedom for estimating two-
factor interactions. This is not a terribly efficient use of experimental resources.

Fortunately, there is another alternative to using a complete fold over. In a partial fold over
(or semifold) we make only half of the runs required for a complete fold over, which for the spin
coater experiment would be eight runs. The following steps will produce a partial fold-over design:

1. Construct a single-factor fold over from the original design in the usual way by
changing the signs on a factor that is involved in a two-factor interaction of interest.

2. Select only half of the fold-over runs by choosing those runs where the chosen fac-
tor is either at its high or low level. Selecting the level that you believe will gener-
ate the most desirable response is usually a good idea.

Table 8.33 is the partial fold-over design for the spin coater experiment. Notice that we
selected the runs where A is at its low level because in the original set of 16 runs (Table 8.31),
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thinner coatings of photoresist (which are desirable in this case) were obtained with A at the
low level. (The estimate of the A effect is positive in the analysis of the original 16 runs, also
suggesting that A at the low level produces the desired results.)

The alias relations from the partial fold over (ignoring interactions involving three or
more factors) are

 [AD] � AD     [EF] � EF

 [AC] � AC     [DE] � DE

 [AB] � AB     [CE] � CE

 [F] � F     [BF] � BF � CD

 [E] � E     [BE] � BE

 [D] � D     [BD] � BD � CF

 [C] � C     [BC] � BC � DF

 [B] � B     [AF] � AF

 [A] � A     [AE] � AE

■ TA B L E  8 . 3 3
The Partial Fold Over for the Spin Coater Experiment

A B C D E F

Std. Speed Vol Time Resist Exhaust Thickness
Order Block (RPM) Acceleration (cc) (sec) Viscosity rate (mil)

1 1 � � � � � � 4524

2 1 � � � � � � 4657

3 1 � � � � � � 4293

4 1 � � � � � � 4516

5 1 � � � � � � 4508

6 1 � � � � � � 4432

7 1 � � � � � � 4197

8 1 � � � � � � 4515

9 1 � � � � � � 4521

10 1 � � � � � � 4610

11 1 � � � � � � 4295

12 1 � � � � � � 4560

13 1 � � � � � � 4487

14 1 � � � � � � 4485

15 1 � � � � � � 4195

16 1 � � � � � � 4510

17 2 � � � � � � 4445

18 2 � � � � � � 4285

19 2 � � � � � � 4325

20 2 � � � � � � 4425

21 2 � � � � � � 4525

22 2 � � � � � � 4310

23 2 � � � � � � 4335

24 2 � � � � � � 4305



Notice that there are 12 degrees of freedom available to estimate two-factor interactions,
exactly as in the complete fold over. Furthermore, AB is no longer aliased with CE. The half-
normal plot of the effects from the partial fold over is shown in Figure 8.27. As in the com-
plete fold over, CE is identified as the significant two-factor interaction.

The partial fold-over technique is very useful with resolution IV designs and usually leads
to an efficient use of experimental resources. Resolution IV designs always provide good esti-
mates of main effects (assuming that three-factor interactions are negligible), and usually the
number of possible two-factor interaction that need to be de-aliased is not large. A partial fold
over of a resolution IV design will usually support estimation of as many two-factor interactions
as a full fold over. One disadvantage of the partial fold over is that it is not orthogonal. This caus-
es parameter estimates to be correlated and leads to inflation in the standard errors of the effects
or regression model coefficients. For example, in the partial fold over of the spin coater experi-
ment, the standard errors of the regression model coefficients range from 0.20� to 0.25�, while
in the complete fold over, which is orthogonal, the standard errors of the model coefficients are
0.18�. For more information on partial fold overs, see Mee and Peralta (2000) and the supple-
mental material for this chapter.

8.7.3 Resolution V Designs

Resolution V designs are fractional factorials in which the main effects and the two-factor
interactions do not have other main effects and two-factor interactions as their aliases.
Consequently, these are very powerful designs, allowing unique estimation of all main effects
and two-factor interactions, provided of course that all interactions involving three or more fac-
tors are negligible. The shortest word in the defining relation of a resolution V design must
have five letters. The 25�1 design with I � ABCDE is perhaps the most widely used resolution
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V design, permitting study of five factors and estimation of all five main effects and all 10 two-
factor interactions in only 16 runs. We illustrated the use of this design in Example 8.2.

The smallest design of resolution at least V for k � 6 factors is the design with 32
runs, which is of resolution VI. For k � 7 factors, it is the 64-run which is of resolution VII,
and for k � 8 factors, it is the 64 run design. For k � 9 or more factors, all these designs
require at least 128 runs. These are very large designs, so statisticians have long been interest-
ed in smaller alternatives that maintain the desired resolution. Mee (2004) gives a survey of this
topic. Nonregular fractions can be very useful. This will be discussed further in chapter 9. 

8.8 Supersaturated Designs

A saturated design is defined as a fractional factorial in which the number of factors or design
variables k � N � 1, where N is the number of runs. In recent years, considerable interest has
been shown in developing and using supersaturated designs for factor screening experi-
ments. In a supersaturated design, the number of variables k 
 N � 1, and usually these
designs contain quite a few more variables than runs. The idea of using supersaturated designs
was first proposed by Satterthwaite (1959). He proposed generating these designs at random.
In an extensive discussion of this paper, some of the leading authorities in experimental
design of the day, including Jack Youden, George Box, J. Stuart Hunter, William Cochran,
John Tukey, Oscar Kempthorne, and Frank Anscombe, criticized random balanced designs.
As a result, supersaturated designs received little attention for the next 30 years. A notable
exception is the systematic supersaturated design developed by Booth and Cox (1962). Their
designs were not randomly generated, which was a significant departure from Satterthwaite’s
proposal. They generated their designs with elementary computer search methods. They also
developed the basic criteria by which supersaturated designs are judged.

Lin (1993) revisited the supersaturated design concept and stimulated much additional
research on the topic. Many authors have proposed methods to construct supersaturated
designs. A good survey is in Lin (2000). Most design construction techniques are limited
computer search procedures based on simple heuristics [see Lin (1995), Li and Wu (1997),
and Holcomb and Carlyle (2002), for example]. Others have proposed methods based on opti-
mal design construction techniques (we will discuss optimal designs in Chapter 11).

Another construction method for supersaturated designs is based on the structure of
existing orthogonal designs. These include using the half-fraction of Hadamard matrices [Lin
(1993)] and enumerating the two-factor interactions of certain Hadamard matrices [Wu (1997)].
A Hadamard matrix is a square orthogonal matrix whose elements are either � 1 or � 1.
When the number of factors in the experiment exceeds the number of runs, the design matrix
cannot be orthogonal. Consequently, the factor effect estimates are not independent. An
experiment with one dominant factor may contaminate and obscure the contribution of anoth-
er factor. Supersaturated designs are created to minimize this amount of nonorthogonality
between factors. Supersaturated designs can also be constructed using the optimal design
approach. The custom designer in JMP uses this approach to constructing supersaturated
designs.

The supersaturated designs that are based on the half fraction of a Hadamard matrix are
very easy to construct. Table 8.34 is the Plackett–Burman design for N � 12 runs and k � 11
factors. It is also a Hadamard matrix design. In the table, the design has been sorted by the
signs in the last column (Factor 11 or L). This is sometimes called the branching column.
Now retain only the runs that are positive (say) in column L from the design and delete col-
umn L from this group of runs. The resulting design is a supersaturated design for k � 10 fac-
tors in N � 6 runs. We could have used the runs that are negative in column L equally well.

28�2
V

27�1
VII

26�1
VI



This procedure will always produce a supersaturated design for k � N � 2 factors in N/2
runs. If there are fewer than N � 2 factors of interest, additional columns can be removed
from the complete design.

Supersaturated designs are typically analyzed by regression model-fitting methods,
such as the forward selection method we have illustrated previously. In this procedure, vari-
ables are selected one at a time for inclusion in the model until no other variables appear use-
ful in explaining the response. Abraham, Chipman, and Vijayan (1999) and Holcomb,
Montgomery, and Carlyle (2003) have studied analysis methods for supersaturated designs.
Generally, these designs can experience large type I and type II errors, but some analysis
methods can be tuned to emphasize type I errors so that the type II error rate will be moder-
ate. In a factor screening situation, it is usually more important not to exclude an active fac-
tor than it is to conclude that inactive factors are important, so type I errors are less critical
than type II errors. However, because both error rates can be large, the philosophy in using a
supersaturated design should be to eliminate a large portion of the inactive factors, and not to
clearly identify the few important or active factors. Holcomb, Montgomery, and Carlyle
(2003) found that some types of supersaturated designs perform better than others with
respect to type I and type II errors. Generally, the designs produced by search algorithms were
outperformed by designs constructed from standard orthogonal designs. Supersaturated
designs created using the D-optimality criterion also usually work well.

Supersaturated designs have not had widespread use. However, they are an interesting
and potentially useful method for experimentation with systems where there are many vari-
ables and only a very few of these are expected to produce large effects.

8.9 Summary

This chapter has introduced the 2k�p fractional factorial design. We have emphasized the
use of these designs in screening experiments to quickly and efficiently identify the subset
of factors that are active and to provide some information on interaction. The projective
property of these designs makes it possible in many cases to examine the active factors in
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■ TA B L E  8 . 3 4
A Supersaturated Design Derived from a 12-Run Hadamard Matrix (Plackett–Burman) Design

Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor
Run I 1 (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 (F) 7 (G) 8 (H) 9 (J) 10 (K) 11 (L)

1 � � � � � � � � � � � �

2 � � � � � � � � � � � �

3 � � � � � � � � � � � �

4 � � � � � � � � � � � �

5 � � � � � � � � � � � �

6 � � � � � � � � � � � �

7 � � � � � � � � � � � �

8 � � � � � � � � � � � �

9 � � � � � � � � � � � �

10 � � � � � � � � � � � �

11 � � � � � � � � � � � �

12 � � � � � � � � � � � �
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more detail. Sequential assembly of these designs via fold over is a very effective way to
gain additional information about interactions that an initial experiment may identify as
possibly important.

In practice, 2k�p fractional factorial designs with N � 4, 8, 16, and 32 runs are highly
useful. Table 8.28 summarizes these designs, identifying how many factors can be used with
each design to obtain various types of screening experiments. For example, the 16-run design
is a full factorial for 4 factors, a one-half fraction for 5 factors, a resolution IV fraction for 6
to 8 factors, and a resolution III fraction for 9 to 15 factors. All of these designs may be con-
structed using the methods discussed in this chapter, and many of their alias structures are
shown in Appendix Table X.

8.10 Problems

8.1. Suppose that in the chemical process development
experiment described in Problem 6.7, it was only possible to run
a one-half fraction of the 24 design. Construct the design and
perform the statistical analysis, using the data from replicate I.

8.2. Suppose that in Problem 6.15, only a one-half fraction
of the 24 design could be run. Construct the design and per-
form the analysis, using the data from replicate I.

8.3. Consider the plasma etch experiment described in
Example 6.1. Suppose that only a one-half fraction of the
design could be run. Set up the design and analyze the data.

8.4. Problem 6.24 describes a process improvement study
in the manufacturing process of an integrated circuit. Suppose
that only eight runs could be made in this process. Set up an
appropriate 25�2 design and find the alias structure. Use the
appropriate observations from Problem 6.24 as the observa-
tions in this design and estimate the factor effects. What con-
clusions can you draw?

8.5. Continuation of Problem 8.4. Suppose you have
made the eight runs in the 25�2 design in Problem 8.4. What
additional runs would be required to identify the factor effects
that are of interest? What are the alias relationships in the
combined design?

8.6. In Example 6.6, a 24 factorial design was used to
improve the response rate to a credit card mail marketing
offer. Suppose that the researchers had used the 24�1 fractional
factorial design with I � ABCD instead. Set up the design and
select the responses for the runs from the full factorial data in
Example 6.6. Analyze the data and draw conclusions.
Compare your findings with those from the full factorial in
Example 6.6.

8.7. Continuation of Problem 8.6. In Exercise 6.6, we
found that all four main effects and the two-factor AB interac-
tion were significant. Show that if the alternate fraction 
(I � �ABCD) is added to the 24�1 design in Problem 8.6 that
the analysis of the results from the combined design produce
results identical to those found in Exercise 6.6.

8.8. Continuation of Problem 8.6. Reconsider the 24�1

fractional factorial design with I � ABCD from Problem

8.6. Set a partial fold-over of this fraction to isolate the AB
interaction. Select the appropriate set of responses from the
full factorial data in Example 6.6 and analyze the resulting
data.

8.9. R. D. Snee (“Experimenting with a Large Number of
Variables,” in Experiments in Industry: Design, Analysis and
Interpretation of Results, by R. D. Snee, L. B. Hare, and J. B.
Trout, Editors, ASQC, 1985) describes an experiment in
which a 25�1 design with I � ABCDE was used to investigate
the effects of five factors on the color of a chemical product.
The factors are A � solvent/reactant, B � catalyst/reactant, C
� temperature, D � reactant purity, and E � reactant pH.
The responses obtained were as follows:

e � �0.63 d � 6.79
a �  2.51 ade � 5.47
b � �2.68 bde � 3.45

abe � 1.66 abd � 5.68
c � 2.06 cde � 5.22

ace � 1.22 acd � 4.38
bce � �2.09 bcd � 4.30

abc � 1.93 abcde � 4.05

(a) Prepare a normal probability plot of the effects. Which
effects seem active?

(b) Calculate the residuals. Construct a normal probabili-
ty plot of the residuals and plot the residuals versus the
fitted values. Comment on the plots.

(c) If any factors are negligible, collapse the 25�1 design
into a full factorial in the active factors. Comment on
the resulting design, and interpret the results.

8.10. An article by J. J. Pignatiello Jr. and J. S. Ramberg 
in the Journal of Quality Technology (Vol. 17, 1985, pp.
198–206) describes the use of a replicated fractional factorial
to investigate the effect of five factors on the free height of
leaf springs used in an automotive application. The factors are
A � furnace temperature, B � heating time, C � transfer
time, D � hold down time, and E � quench oil temperature.
The data are shown in Table P8.1



■ TA B L E  P 8 . 1
Leaf Spring Experiment

A B C D E Free Height

� � � � � 7.78 7.78 7.81
� � � � � 8.15 8.18 7.88
� � � � � 7.50 7.56 7.50
� � � � � 7.59 7.56 7.75
� � � � � 7.54 8.00 7.88
� � � � � 7.69 8.09 8.06
� � � � � 7.56 7.52 7.44
� � � � � 7.56 7.81 7.69
� � � � � 7.50 7.25 7.12
� � � � � 7.88 7.88 7.44
� � � � � 7.50 7.56 7.50
� � � � � 7.63 7.75 7.56
� � � � � 7.32 7.44 7.44
� � � � � 7.56 7.69 7.62
� � � � � 7.18 7.18 7.25
� � � � � 7.81 7.50 7.59

(a) Write out the alias structure for this design. What is
the resolution of this design?

(b) Analyze the data. What factors influence the mean free
height?

(c) Calculate the range and standard deviation of the free
height for each run. Is there any indication that any of
these factors affects variability in the free height?

(d) Analyze the residuals from this experiment, and com-
ment on your findings.

(e) Is this the best possible design for five factors in 16 runs?
Specifically, can you find a fractional design for five
factors in 16 runs with a higher resolution than this one?

8.11. An article in Industrial and Engineering Chemistry
(“More on Planning Experiments to Increase Research
Efficiency,” 1970, pp. 60–65) uses a 25�2 design to investigate
the effect of A � condensation temperature, B � amount of
material 1, C � solvent volume, D � condensation time, and
E � amount of material 2 on yield. The results obtained are as
follows:

(a) Verify that the design generators used were I � ACE
and I � BDE.

(b) Write down the complete defining relation and the
aliases for this design.

(c) Estimate the main effects.

(d) Prepare an analysis of variance table. Verify that the
AB and AD interactions are available to use as error.

(e) Plot the residuals versus the fitted values. Also construct
a normal probability plot of the residuals. Comment on
the results.

ab � 15.5  bc � 16.2  ace � 23.4  abcde � 18.1
e � 23.2  ad � 16.9  cd � 23.8  bde � 16.8
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8.12. Consider the leaf spring experiment in Problem 8.7.
Suppose that factor E (quench oil temperature) is very difficult
to control during manufacturing. Where would you set factors
A, B, C, and D to reduce variability in the free height as much
as possible regardless of the quench oil temperature used?

8.13. Construct a 27�2 design by choosing two four-factor
interactions as the independent generators. Write down the
complete alias structure for this design. Outline the analysis of
variance table. What is the resolution of this design?

8.14. Consider the 25 design in Problem 6.24. Suppose that
only a one-half fraction could be run. Furthermore, two days
were required to take the 16 observations, and it was neces-
sary to confound the 25�1 design in two blocks. Construct the
design and analyze the data.

8.15. Analyze the data in Problem 6.26 as if it came from a
design with I � ABCD. Project the design into a full fac-

torial in the subset of the original four factors that appear to
be significant.

8.16. Repeat Problem 8.15 using I � �ABCD. Does the
use of the alternate fraction change your interpretation of the
data?

8.17. Project the design in Example 8.1 into two repli-
cates of a 22 design in the factors A and B. Analyze the data
and draw conclusions.

8.18. Construct a design. Determine the effects that
may be estimated if a full fold over of this design is performed.

8.19. Construct a design. Determine the effects that
may be estimated if a full fold over of this design is per-
formed.

8.20. Consider the design in Problem 8.18. Determine
the effects that may be estimated if a single factor fold over of
this design is run with the signs for factor A reversed.

8.21. Fold over the design in Table 8.19 to produce an
eight-factor design. Verify that the resulting design is a 
design. Is this a minimal design?

8.22. Fold over a design to produce a six-factor design.
Verify that the resulting design is a design. Compare this
design to the design in Table 8.10.

8.23. An industrial engineer is conducting an experiment
using a Monte Carlo simulation model of an inventory system.
The independent variables in her model are the order quantity
(A), the reorder point (B), the setup cost (C), the backorder
cost (D), and the carrying cost rate (E). The response variable
is average annual cost. To conserve computer time, she
decides to investigate these factors using a design with 
I � ABD and I � BCE. The results she obtains are de � 95,
ae � 134, b � 158, abd � 190, cd � 92, ac � 187, bce �
155, and abcde � 185.

(a) Verify that the treatment combinations given are cor-
rect. Estimate the effects, assuming three-factor and
higher interactions are negligible.

(b) Suppose that a second fraction is added to the first, for
example, ade � 136, e � 93, ab � 187, bd � 153,

25�2
III

26�2
IV

26�2
IV

25�2
III

28�4
IV

27�4
III

26�3
III

26�3
III

25�2
III

24�1
IV

24�1
IV
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acd � 139, c � 99, abce � 191, and bcde � 150.
How was this second fraction obtained? Add this data
to the original fraction, and estimate the effects.

(c) Suppose that the fraction abc � 189, ce � 96, bcd �
154, acde � 135, abe � 193, bde � 152, ad � 137, and
(1) � 98 was run. How was this fraction obtained? Add
this data to the original fraction and estimate the effects.

8.24. Construct a 25�1 design. Show how the design may be
run in two blocks of eight observations each. Are any main
effects or two-factor interactions confounded with blocks?

8.25. Construct a 27�2 design. Show how the design may be
run in four blocks of eight observations each. Are any main
effects or two-factor interactions confounded with blocks?

8.26. Nonregular fractions of the 2k [John (1971)].
Consider a 24 design. We must estimate the four main effects
and the six two-factor interactions, but the full 24 factorial
cannot be run. The largest possible block size contains 12
runs. These 12 runs can be obtained from the four one-quarter
replicates defined by I � 
 AB � 
 ACD � 
 BCD by omit-
ting the principal fraction. Show how the remaining three 24�2

fractions can be combined to estimate the required effects,
assuming three-factor and higher interactions are negligible.
This design could be thought of as a three-quarter fraction.

8.27. Carbon anodes used in a smelting process are baked
in a ring furnace. An experiment is run in the furnace to determine
which factors influence the weight of packing material that is

stuck to the anodes after baking. Six variables are of interest,
each at two levels: A � pitch/fines ratio (0.45, 0.55), B �
packing material type (1, 2), C � packing material tempera-
ture (ambient, 325°C), D � flue location (inside, outside),
E � pit temperature (ambient, 195°C), and F � delay time
before packing (zero, 24 hours). A 26�3 design is run, and
three replicates are obtained at each of the design points. The
weight of packing material stuck to the anodes is measured in
grams. The data in run order are as follows: abd � (984, 826,
936); abcdef � (1275, 976, 1457); be � (1217, 1201, 890); af
� (1474, 1164, 1541); def � (1320, 1156, 913); cd � (765,
705, 821); ace � (1338, 1254, 1294); and bcf � (1325, 1299,
1253). We wish to minimize the amount of stuck packing
material.

(a) Verify that the eight runs correspond to a design.
What is the alias structure?

(b) Use the average weight as a response. What factors
appear to be influential?

(c) Use the range of the weights as a response. What fac-
tors appear to be influential?

(d) What recommendations would you make to the
process engineers?

8.28. A 16-run experiment was performed in a semiconduc-
tor manufacturing plant to study the effects of six factors on
the curvature or camber of the substrate devices produced.
The six variables and their levels are shown in Table P8.2.

26�3
III

■ TA B L E  P 8 . 2
Factor Levels for the Experiment in Problem 8.28

Firing Firing 
Lamination Lamination Lamination Firing Cycle Dew

Temperature Time Pressure Temperature Time Point
Run (°C) (sec) (tn) (°C) (h) (°C)

1 55 10 5 1580 17.5 20

2 75 10 5 1580 29 26

3 55 25 5 1580 29 20

4 75 25 5 1580 17.5 26

5 55 10 10 1580 29 26

6 75 10 10 1580 17.5 20

7 55 25 10 1580 17.5 26

8 75 25 10 1580 29 20

9 55 10 5 1620 17.5 26

10 75 10 5 1620 29 20

11 55 25 5 1620 29 26

12 75 25 5 1620 17.5 20

13 55 10 10 1620 29 20

14 75 10 10 1620 17.5 26

15 55 25 10 1620 17.5 20

16 75 25 10 1620 29 26



(a) What type of design did the experimenters use?

(b) What are the alias relationships in this design?

(c) Do any of the process variables affect average camber?

(d) Do any of the process variables affect the variability in
camber measurements?

(e) If it is important to reduce camber as much as possi-
ble, what recommendations would you make?

8.29. A spin coater is used to apply photoresist to a bare sil-
icon wafer. This operation usually occurs early in the semi-
conductor manufacturing process, and the average coating
thickness and the variability in the coating thickness have an
important impact on downstream manufacturing steps. Six
variables are used in the experiment. The variables and their
high and low levels are as follows:

Factor Low Level High Level

Final spin speed 7350 rpm 6650 rpm

Acceleration rate 5 20

Volume of resist applied 3 cc 5 cc

Time of spin 14 sec 6 sec

Resist batch variation Batch 1 Batch 2

Exhaust pressure Cover off Cover on
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The experimenter decides to use a 26�1 design and to make
three readings on resist thickness on each test wafer. The data
are shown in Table P8.4.

(a) Verify that this is a 26�1 design. Discuss the alias rela-
tionships in this design.

(b) What factors appear to affect average resist thickness?

(c) Because the volume of resist applied has little effect
on average thickness, does this have any important
practical implications for the process engineers?

(d) Project this design into a smaller design involving only
the significant factors. Graphically display the results.
Does this aid in interpretation?

(e) Use the range of resist thickness as a response variable.
Is there any indication that any of these factors affect the
variability in resist thickness?

(f) Where would you recommend that the engineers run
the process?

8.30. Harry Peterson-Nedry (a friend of the author) owns a
vineyard and winery in Newberg, Oregon. He grows several
varieties of grapes and produces wine. Harry has used factori-
al designs for process and product development in the wine-
making segment of the business. This problem describes the
experiment conducted for the 1985 Pinot Noir. Eight vari-
ables, shown in Table P8.5, were originally studied in this
experiment:

■ TA B L E  P 8 . 3
Data from the Experiment in Problem 8.28

Camber for Replicate (in./in.) Total Mean Standard 
Run 1 2 3 4 (10�4 in./in.) (10�4 in./in.) Deviation

1 0.0167 0.0128 0.0149 0.0185 629 157.25 24.418
2 0.0062 0.0066 0.0044 0.0020 192 48.00 20.976
3 0.0041 0.0043 0.0042 0.0050 176 44.00 4.083
4 0.0073 0.0081 0.0039 0.0030 223 55.75 25.025
5 0.0047 0.0047 0.0040 0.0089 223 55.75 22.410
6 0.0219 0.0258 0.0147 0.0296 920 230.00 63.639
7 0.0121 0.0090 0.0092 0.0086 389 97.25 16.029
8 0.0255 0.0250 0.0226 0.0169 900 225.00 39.42
9 0.0032 0.0023 0.0077 0.0069 201 50.25 26.725

10 0.0078 0.0158 0.0060 0.0045 341 85.25 50.341
11 0.0043 0.0027 0.0028 0.0028 126 31.50 7.681
12 0.0186 0.0137 0.0158 0.0159 640 160.00 20.083
13 0.0110 0.0086 0.0101 0.0158 455 113.75 31.12
14 0.0065 0.0109 0.0126 0.0071 371 92.75 29.51
15 0.0155 0.0158 0.0145 0.0145 603 150.75 6.75
16 0.0093 0.0124 0.0110 0.0133 460 115.00 17.45

Each run was replicated four times, and a camber measurement
was taken on the substrate. The data are shown in Table P8.3.
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■ TA B L E  P 8 . 4
Data for Problem 8.29

A B C D E F Resist Thickness

Run Volume Batch Time (sec) Speed Acc. Cover Left Center Right Avg. Range

1 5 Batch 2 14 7350 5 Off 4531 4531 4515 4525.7 16

2 5 Batch 1 6 7350 5 Off 4446 4464 4428 4446 36

3 3 Batch 1 6 6650 5 Off 4452 4490 4452 4464.7 38

4 3 Batch 2 14 7350 20 Off 4316 4328 4308 4317.3 20

5 3 Batch 1 14 7350 5 Off 4307 4295 4289 4297 18

6 5 Batch 1 6 6650 20 Off 4470 4492 4495 4485.7 25

7 3 Batch 1 6 7350 5 On 4496 4502 4482 4493.3 20

8 5 Batch 2 14 6650 20 Off 4542 4547 4538 4542.3 9

9 5 Batch 1 14 6650 5 Off 4621 4643 4613 4625.7 30

10 3 Batch 1 14 6650 5 On 4653 4670 4645 4656 25

11 3 Batch 2 14 6650 20 On 4480 4486 4470 4478.7 16

12 3 Batch 1 6 7350 20 Off 4221 4233 4217 4223.7 16

13 5 Batch 1 6 6650 5 On 4620 4641 4619 4626.7 22

14 3 Batch 1 6 6650 20 On 4455 4480 4466 4467 25

15 5 Batch 2 14 7350 20 On 4255 4288 4243 4262 45

16 5 Batch 2 6 7350 5 On 4490 4534 4523 4515.7 44

17 3 Batch 2 14 7350 5 On 4514 4551 4540 4535 37

18 3 Batch 1 14 6650 20 Off 4494 4503 4496 4497.7 9

19 5 Batch 2 6 7350 20 Off 4293 4306 4302 4300.3 13

20 3 Batch 2 6 7350 5 Off 4534 4545 4512 4530.3 33

21 5 Batch 1 14 6650 20 On 4460 4457 4436 4451 24

22 3 Batch 2 6 6650 5 On 4650 4688 4656 4664.7 38

23 5 Batch 1 14 7350 20 Off 4231 4244 4230 4235 14

24 3 Batch 2 6 7350 20 On 4225 4228 4208 4220.3 20

25 5 Batch 1 14 7350 5 On 4381 4391 4376 4382.7 15

26 3 Batch 2 6 6650 20 Off 4533 4521 4511 4521.7 22

27 3 Batch 1 14 7350 20 On 4194 4230 4172 4198.7 58

28 5 Batch 2 6 6650 5 Off 4666 4695 4672 4677.7 29

29 5 Batch 1 6 7350 20 On 4180 4213 4197 4196.7 33

30 5 Batch 2 6 6650 20 On 4465 4496 4463 4474.7 33

31 5 Batch 2 14 6650 5 On 4653 4685 4665 4667.7 32

32 3 Batch 2 14 6650 5 Off 4683 4712 4677 4690.7 35

■ TA B L E  P 8 . 5
Factors and Levels for the Winemaking Experiment

Variable Low Level (�) High Level (�)

A � Pinot Noir clone Pommard Wadenswil
B � Oak type Allier Troncais
C � Age of barrel Old New
D � Yeast/skin contact Champagne Montrachet
E � Stems None All
F � Barrel toast Light Medium
G � Whole cluster None 10%
H � Fermentation temperature Low (75°F max) High (92°F max) 



Harry decided to use a design with 16 runs. The wine was
tastetested by a panel of experts on March 8, 1986. Each
expert ranked the 16 samples of wine tasted, with rank 1 being
the best. The design and the taste-test panel results are shown
in Table P8.6.

(a) What are the alias relationships in the design selected
by Harry?

(b) Use the average ranks as a response variable.
Analyze the data and draw conclusions. You will find
it helpful to examine a normal probability plot of the
effect estimates.

(c) Use the standard deviation of the ranks (or some
appropriate transformation such as log s) as a res-
ponse variable. What conclusions can you draw about
the effects of the eight variables on variability in wine
quality?

(d) After looking at the results, Harry decides that one of
the panel members (DCM) knows more about beer
than he does about wine, so they decide to delete his

(y)

28�4
IV
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ranking. What effect would this have on the results and
conclusions from parts (b) and (c)?

(e) Suppose that just before the start of the experiment,
Harry and Judy discovered that the eight new barrels
they ordered from France for use in the experiment
would not arrive in time, and all 16 runs would have to
be made with old barrels. If Harry just drops column C
from their design, what does this do to the alias rela-
tionships? Does he need to start over and construct a
new design?

(f) Harry knows from experience that some treatment com-
binations are unlikely to produce good results. For exam-
ple, the run with all eight variables at the high level gen-
erally results in a poorly rated wine. This was confirmed
in the March 8, 1986 taste test. He wants to set up a new
design for their 1986 Pinot Noir using these same eight
variables, but he does not want to make the run with all
eight factors at the high level. What design would you
suggest?

■ TA B L E  P 8 . 6
Design and Results for Wine Tasting Experiment

Variable Panel Rankings Summary

Run A B C D E F G H HPN JPN CAL DCM RGB s

1 � � � � � � � � 12 6 13 10 7 9.6 3.05

2 � � � � � � � � 10 7 14 14 9 10.8 3.11

3 � � � � � � � � 14 13 10 11 15 12.6 2.07

4 � � � � � � � � 9 9 7 9 12 9.2 1.79

5 � � � � � � � � 8 8 11 8 10 9.0 1.41

6 � � � � � � � � 16 12 15 16 16 15.0 1.73

7 � � � � � � � � 6 5 6 5 3 5.0 1.22

8 � � � � � � � � 15 16 16 15 14 15.2 0.84

9 � � � � � � � � 1 2 3 3 2 2.2 0.84

10 � � � � � � � � 7 11 4 7 6 7.0 2.55

11 � � � � � � � � 13 3 8 12 8 8.8 3.96

12 � � � � � � � � 3 1 5 1 4 2.8 1.79

13 � � � � � � � � 2 10 2 4 5 4.6 3.29

14 � � � � � � � � 4 4 1 2 1 2.4 1.52

15 � � � � � � � � 5 15 9 6 11 9.2 4.02

16 � � � � � � � � 11 14 12 13 13 12.6 1.14 

y

8.31. Consider the isatin yield data from the experiment
described in Problem 6.38. The original experiment was a 24

full factorial. Suppose that the original experimenters could
only afford eight runs. Set up the 24�1 fractional factorial
design with I � ABCD and select the responses for the runs
from the full factorial data in Example 6.38. Analyze the data

and draw conclusions. Compare your findings with those from
the full factorial in Example 6.38.

8.32. Consider the 25 factorial in Problem 6.39. Suppose that
the experimenters could only afford 16 runs. Set up the 25�1 frac-
tional factorial design with I � ABCDE and select the responses
for the runs from the full factorial data in Example 6.39.
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(a) Analyze the data and draw conclusions.  

(b) Compare your findings with those from the full facto-
rial in Example 6.39. 

(c) Are there any potential interactions that need further
study? What additional runs do you recommend?
Select these runs from the full factorial design in
Problem 6.39 and analyze the new design. Discuss
your conclusions.

8.33. Consider the 24 factorial experiment for surfactin pro-
duction in Problem 6.40. Suppose that the experimenters
could only afford eight runs. Set up the 24�1 fractional facto-
rial design with I � ABCD and select the responses for the
runs from the full factorial data in Example 6.40.  

(a) Analyze the data and draw conclusions.  

(b) Compare your findings with those from the full facto-
rial in Example 6.40. 

8.34. Consider the 24 factorial experiment in Problem 6.42.
Suppose that the experimenters could only afford eight runs.
Set up the 24�1 fractional factorial design with I � ABCD and

select the responses for the runs from the full factorial data in
Example 6.42.

(a) Analyze the data for all of the responses and draw con-
clusions.

(b) Compare your findings with those from the full facto-
rial in Example 6.42. 

8.35. An article in the Journal of Chromatography A
(“Simultaneous Supercritical Fluid Derivatization and
Extraction of Formaldehyde by the Hantzsch Reaction,” 2000,
Vol. 896, pp. 51–59) describes an experiment where the
Hantzsch reaction is used to produce the chemical derivatiza-
tion of formaldehyde in a supercritical medium. Pressure,
temperature, and other parameters such as static and dynamic
extraction time must be optimized to increase the yield of this
kinetically controlled reaction. A 25�1 fractional factorial
design with one center run was used to study the significant
parameters affecting the supercritical process in terms of res-
olution and sensitivity. Ultraviolet–visible spectrophotometry
was used as the detection technique. The experimental design
and the responses are shown in Table P8.7.

■ TA B L E  P 8 . 7
The 25-1 Fractional Factorial Design for Problem 8.35

P T s d c
Experiment (MPa) (�C) (min) (min) (�l) Resolution Sensitivity

1 13.8 50 2 2 100 0.00025 0.057

2 55.1 50 2 2 10 0.33333 0.094

3 13.8 120 2 2 10 0.02857 0.017

4 55.1 120 2 2 100 0.20362 1.561

5 13.8 50 15 2 10 0.00027 0.010

6 55.1 50 15 2 100 0 52632 0.673

7 13.8 120 15 2 100 0.00026 0.028

8 55.1 120 15 2 10 0.52632 1.144

9 13.8 50 2 15 10 0 42568 0.142

10 55.1 50 2 15 100 0.60150 0.399

11 13.8 120 2 15 100 0.06098 0.767

12 55.1 120 2 15 10 0.74165 1.086

13 13.8 50 15 15 100 0.08780 0.252

14 55.1 50 15 15 10 0.40000 0.379

15 13.8 120 15 15 10 0.00026 0.028

16 55.1 120 15 15 100 0.28091 3.105

Central 34.5 85 8.5 8.5 55 0.75000 1.836

(a) Analyze the data from this experiment and draw con-
clusions.

(b) Analyze the residuals. Are there any concerns about
model adequacy or violations of assumptions?

(c) Does the single center point cause any concerns about
curvature or the possible need for second-order terms?

(d) Do you think that running one center point was a good
choice in this design?

8.36. An article in Thin Solid Films (504, “A Study of
Si/SiGe Selective Epitaxial Growth by Experimental Design
Approach,” 2006, Vol. 504, pp. 95–100) describes the use of
a fractional factorial design to investigate the sensitivity of
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low-temperature (740–760 �C) Si/SiGe selective epitaxial
growth to changes in five factors and their two-factor interac-
tions. The five factors are SiH2Cl2, GeH4, HCl, B2H6 and tem-
perature. The factor levels studied are:

Levels

Factors (�) (�)

SiH2Cl2 (sccm) 8 12

GeH4 (sccm) 7.2 10.8

HCl (sccm) 3.2 4.8

B2H6 (sccm) 4.4 6.6

Temperature (�C) 740 760

Table P8.8 contains the design matrix and the three measured
responses. Bede RADS Mercury software based on the
Takagi–Taupin dynamical scattering theory was used to

extract the Si cap thickness, SiGe thickness, and Ge concen-
tration of each sample.

(a) What design did the experimenters use? What is the
defining relation?

(b) Will the experimenters be able to estimate all main
effects and two-factor interactions with this experi-
mental design?

(c) Analyze all three responses and draw conclusions.

(d) Is there any indication of curvature in the responses?

(e) Analyze the residuals and comment on model adequacy.

8.37. An article in Soldering & Surface Mount
Technology (“Characterization of a Solder Paste Printing
Process and Its Optimization,” 1999, Vol. 11, No. 3,
pp. 23–26) describes the use of a 28�3 fractional factorial
experiment to study the effect of eight factors on two
responses; percentage volume matching (PVM) – the ratio
of the actual printed solder paste volume to the designed

■ TA B L E  P 8 . 8
The Epitaxial Growth Experiment in Problem 8.36

Factors Si cap SiGe Ge
Run thickness thickness concentration
order A B C D E (Å) (Å) (at.%)

7 � � � � � 371.18 475.05 8.53

17 � � � � � 152.36 325.21 9.74

6 � � � � � 91.69 258.60 9.78

10 � � � � � 234.48 392.27 9.14

16 � � � � � 151.36 440.37 12.13

2 � � � � � 324.49 623.60 10.68

15 � � � � � 215.91 518.50 11.42

4 � � � � � 97.91 356.67 12.96

9 � � � � � 186.07 320.95 7.87

13 � � � � � 388.69 487.16 7.14

18 � � � � � 277.39 422.35 6.40

5 � � � � � 131.25 241.51 8.54

14 � � � � � 378.41 630.90 9.17

3 � � � � � 192.65 437.53 10.35

1 � � � � � 128.99 346.22 10.95

12 � � � � � 298.40 526.69 9.73

8 0 0 0 0 0 215.70 416.44 9.78

11 0 0 0 0 0 212.21 419.24 9.80

volume; and non-conformities per unit (NPU) – the num-
ber of solder paste printing defects determined by visual
inspection (20� magnification) after printing according to

an industry workmanship standard. The factor levels are
shown below and the test matrix and response data are
shown in Table P8.9.
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Levels

Parameters Low (�) High (�)

A. Squeegee pressure, MPa 0.1 0.3

B. Printing speed, mm/s 24 32

C. Squeegee angle, deg 45 65

D. Temperature, �C 20 28

E. Viscosity, kCps 1,100-1,150 1,250-1,300

F. Cleaning interval, stroke 8 15

G. Separation speed, mm/s 0.4 0.8

H. Relative humidity, % 30 70

(a) Verify that the generators are I � ABCF, I � ABDG,
and I � BCDEH for this design.

(b) What are the aliases for the main effects and two-
factor interactions? You can ignore all interactions of
order three and higher.

(c) Analyze both the PVM and NPU responses.  

(d) Analyze the residual for both responses. Are there any
problems with model adequacy?

(e) The ideal value of PVM is unity and the NPU
response should be as small as possible. Recommend
suitable operating conditions for the process based on
the experimental results.

■ TA B L E  P 8 . 9
The Solder Paste Experiment

Run Parameters NPU
order A B C D E F G H PVM (%)

4 � � � � � � � � 1.00 5
13 � � � � � � � � 1.04 13
6 � � � � � � � � 1.02 16
3 � � � � � � � � 0.99 12

19 � � � � � � � � 1.02 15
25 � � � � � � � � 1.01 9
21 � � � � � � � � 1.01 12
14 � � � � � � � � 1.03 17
10 � � � � � � � � 1.04 21
22 � � � � � � � � 1.14 20
1 � � � � � � � � 1.20 25
2 � � � � � � � � 1.13 21

30 � � � � � � � � 1.14 25
8 � � � � � � � � 1.07 13
9 � � � � � � � � 1.06 20

20 � � � � � � � � 1.13 26
17 � � � � � � � � 1.02 10
18 � � � � � � � � 1.10 13
5 � � � � � � � � 1.09 17

26 � � � � � � � � 0.96 13
31 � � � � � � � � 1.02 14
11 � � � � � � � � 1.07 11
29 � � � � � � � � 0.98 10
23 � � � � � � � � 0.95 14
32 � � � � � � � � 1.10 28
7 � � � � � � � � 1.12 24

15 � � � � � � � � 1.19 22
27 � � � � � � � � 1.13 15
12 � � � � � � � � 1.20 21
28 � � � � � � � � 1.07 19
24 � � � � � � � � 1.12 21

16 � � � � � � � � 1.21 27



8.38. An article in the International Journal of Research in
Marketing (“Experimental design on the front lines of market-
ing: Testing new ideas to increase direct mail sales,” 2006,
Vol. 23, pp. 309–319) describes the use of a 20-run
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Plackett–Burman design to investigate the effects of 19 fac-
tors to improve the response rate to a direct mail sales cam-
paign to attract new customers to a credit card. The 19 factors
are as follows:

Factor (�) Control (�) New idea

A: Envelope teaser General offer Product-specific offer

B: Return address Blind Add company name

C: “Official” ink-stamp on envelope Yes No

D: Postage Pre-printed Stamp

E: Additional graphic on envelope Yes No

F: Price graphic on letter Small Large

G: Sticker Yes No

H: Personalize letter copy No Yes

I: Copy message Targeted Generic

J: Letter headline Headline 1 Headline 2

K: List of benefits Standard layout Creative layout

L: Postscript on letter Control version New P.S.

M: Signature Manager Senior executive

N: Product selection Many Few

O: Value of free gift High Low

P: Reply envelope Control New style

Q: Information on buckslip Product info Free gift info

R: 2nd buckslip No Yes

S: Interest rate Low High

The 20-run Plackett–Burman design is shown in Table P8.10.
Each test combination in Table P8.17 was mailed to 5,000
potential customers, and the response rate is the percentage of
customers who responded positively to the offer.

(a) Verify that in this design each main effect is aliased
with all two-factor interactions except those that
involve that main effect. That is, in the 19 factor
design, the main effect for each factor is aliased
with all two-factor interactions involving the 
other 18 factors, or 153 two-factor interactions
(18!/2!16!).

(b) Show that for the 20-run Plackett–Burman design in
Table P8.17, the weights (or correlations) that multiple
the two-factor interactions in each alias chain are
either �0.2, �0.2, or �0.6. Of the 153 interactions
that are aliased with each main effect, 144 have
weights of �0.2 or �0.2, while nine interactions have
weights of �0.6.

(c) Verify that the five largest main effects are S, G, R, I,
and J.

(d) Factors S (interest rate) and G (presence of a sticker)
are by far the largest main effects. The correlation
between the main effect of R (2nd buckslip) and the
SG interaction is �0.6. This means that a significant
SG interaction would bias the estimate of the main
effect of R by –0.6 times the value of the interaction.
This suggests that it may not be the main effect of fac-
tor R that is important, but the two-factor interaction
between S and G.

(e) Since this design projects into a full factorial in any
three factors, obtain the projection in factors S, G, and
R and verify that it is a full factorial with some runs
replicated. Fit a full factorial model involving all three
of these factors and the interactions (you will need to
use a regression program to do this). Show that S, G,
and the SG interaction are significant.
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■ TA B L E  P 8 . 1 0
The Plackett–Burman Design for the Direct Mail Experiment in Problem 8.38

“Official” Additional Price
Envelope Return ink-stamp graphic graphic Personalize Copy Letter

teaser address on envelope Postage on envelope on letter Sticker letter copy message headline

Test cell A B C D E F G H I J

1 � � � � � � � � � �
2 � � � � � � � � � �
3 � � � � � � � � � �
4 � � � � � � � � � �
5 � � � � � � � � � �
6 � � � � � � � � � �
7 � � � � � � � � � �
8 � � � � � � � � � �
9 � � � � � � � � � �

10 � � � � � � � � � �
11 � � � � � � � � � �
12 � � � � � � � � � �
13 � � � � � � � � � �
14 � � � � � � � � � �
15 � � � � � � � � � �
16 � � � � � � � � � �
17 � � � � � � � � � �
18 � � � � � � � � � �
19 � � � � � � � � � �
20 � � � � � � � � � �

List of Postscript Product Value of Reply Information 2nd Interest Response 
benefits on letter Signature selection free gift envelope on buckslip buckslip rate Orders rate

K L M N O P Q R S

� � � � � � � � � 52 1.04%
� � � � � � � � � 38 0.76%
� � � � � � � � � 42 0.84%
� � � � � � � � � 134 2.68%
� � � � � � � � � 104 2.08%
� � � � � � � � � 60 1.20%
� � � � � � � � � 61 1.22%
� � � � � � � � � 68 1.36%
� � � � � � � � � 57 1.14%
� � � � � � � � � 30 0.60%
� � � � � � � � � 108 2.16%
� � � � � � � � � 39 0.78%
� � � � � � � � � 40 0.80%
� � � � � � � � � 49 0.98%
� � � � � � � � � 37 0.74%
� � � � � � � � � 99 1.98%
� � � � � � � � � 86 1.72%
� � � � � � � � � 43 0.86%
� � � � � � � � � 47 0.94%
� � � � � � � � � 104 2.08%



8.39. Consider the following experiment:

Run Treatment combination

1 d

2 ae

3 b

4 abde

5 cde

6 ac

7 bce

8 abcd

Answer the following questions about this experiment:

(a) How many factors did this experiment investigate?  

(b) How many factors are in the basic design?  

(c) Assume that the factors in the experiment are repre-
sented by the initial letters of the alphabet (i.e., A, B,
etc.), what are the design generators for the factors
beyond the basic design?  

(d) Is this design a principal fraction?

(e) What is the complete defining relation? 

(f) What is the resolution of this design?

8.40. Consider the following experiment:

Run Treatment combination y

1 (1) 8

2 ad 10

3 bd 12

4 ab 7

5 cd 13

6 ac 6

7 bc 5

8 abcd 11

Answer the following questions about this experiment:

(a) How many factors did this experiment investigate? 

(b) What is the resolution of this design?

(c) Calculate the estimates of the main effects.

(d) What is the complete defining relation for this 
design?

8.41. An unreplicated 25�1 fractional factorial experiment
with four center points has been run in a chemical process.
The response variable is molecular weight. The experimenter
has used the following factors:

Factor Natural levels Coded levels (x’s)

A - time 20, 40 (minutes) �1, 1

B - temperature 160, 180 (deg C) �1, 1
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C - concentration 30, 60 (percent) �1, 1

D - stirring rate 100, 150 (RPM) �1, 1

E - catalyst type 1, 2 (Type) �1. 1

Suppose that the prediction equation that results from this exper-
iment is � 10 � 3x1 � 2x2 � 1x1x2. What is the predicted
response at A � 30, B � 165, C � 50, D � 135, and E � 1?

8.42. An unreplicated 24�1 fractional factorial experiment
with four center points has been run. The experimenter has
used the following factors:

Factor Natural levels Coded levels (x’s)

A - time 10, 50 (minutes) �1, 1

B - temperature 200, 300 (deg C) �1, 1

C - concentration 70, 90 (percent) �1, 1

D - pressure 260, 300 (psi) �1, 1

(a) Suppose that the average of the 16 factorial design
points is 100 and the average of the center points is
120, what is the sum of squares for pure quadratic
curvature?

(b) Suppose that the prediction equation that results from
this experiment is � 50 � 5x1 � 2x2 � 2x1x2. Find
the predicted response at A � 20, B � 250, C � 80,
and D � 275.

8.43. An unreplicated 24�1 fractional factorial experiment
has been run. The experimenter has used the following 
factors:

Factor Natural levels Coded levels (x’s)

A 20, 50 �1, 1

B 200, 280 �1, 1

C 50, 100 �1, 1

D 150, 200 �1, 1

(a) Suppose that this design has four center runs that
average 100. The average of the 16 factorial design
points is 95. What is the sum of squares for pure quad-
ratic curvature?

(b) Suppose that the prediction equation that results from
this experiment is � 100 � �2x1 � 10x2 � 4x1x2.

What is the predicted response at A � 41, B � 280,
C � 60, and D � 185?

8.44. A 26�2 factorial experiment with three replicates has
been run in a pharmaceutical drug manufacturing process.
The experimenter has used the following factors:

ŷ

ŷ

ŷ
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Factor Natural levels Coded levels (x’s)

A 50, 100 �1, 1

B 20, 60 �1, 1

C 10, 30 �1, 1

D 12, 18 �1, 1

E 15, 30 �1, 1

F 60, 100 �1, 1

(a) If two main effects and one two-factor interaction are
included in the final model, how many degrees of free-
dom for error will be available?

(b) Suppose that the significant factors are A, C, AB, and
AC. What other effects need to be included to obtain a
hierarchical model? 

8.45. Consider the following design:

Run A B C D E y

1 �1 �1 �1 �1 �1 63

2 1 �1 �1 �1 1 21

3 �1 1 �1 �1 1 36

4 1 1 �1 �1 �1 99

5 �1 �1 1 �1 1 24

6 1 �1 1 �1 �1 66

7 �1 1 1 �1 �1 71

8 1 1 1 �1 1 54

9 �1 �1 �1 1 �1 23

10 1 �1 �1 1 1 74

11 �1 1 �1 1 1 80

12 1 1 �1 1 �1 33

13 �1 �1 1 1 1 63

14 1 �1 1 1 �1 21

15 �1 1 1 1 �1 44

16 1 1 1 1 1 96

(a) What is the generator for column E? 

(b) If ABC is confounded with blocks, run 1 above goes in
the ______ block. Answer either � or �.

(c) What is the resolution of this design?

(d) (8 pts) Find the estimates of the main effects and their
aliases.

8.46. Consider the following design:

Run A B C D E y

1 �1 �1 �1 �1 �1 65

2 1 �1 �1 �1 1 25

3 �1 1 �1 �1 1 30

4 1 1 �1 �1 �1 89

5 �1 �1 1 �1 1 25

6 1 �1 1 �1 �1 60

7 �1 1 1 �1 �1 70

8 1 1 1 �1 1 50

9 �1 �1 �1 1 1 20

10 1 �1 �1 1 �1 70

11 �1 1 �1 1 �1 80

12 1 1 �1 1 1 30

13 �1 �1 1 1 �1 60

14 1 �1 1 1 1 20

15 �1 1 1 1 1 40

16 1 1 1 1 �1 90

(a) What is the generator for column E?

(b) If ABE is confounded with blocks, run 16 goes in
the ______ block. Answer either � or �.

(c) The resolution of this design is ______. 

(d) Find the estimates of the main effects and their aliases. 

8.47. Consider the following design:

Run A B C D E y

1 �1 �1 �1 1 �1 50

2 1 �1 �1 �1 �1 20

3 �1 1 �1 �1 1 40

4 1 1 �1 1 1 25

5 �1 �1 1 �1 1 45

6 1 �1 1 1 1 30

7 �1 1 1 1 �1 40

8 1 1 1 �1 �1 30

(a) What is the generator for column D? 

(b) What is the generator for column E?

(c) If this design were run in two blocks with the AB inter-
action confounded with blocks, the run d would be in
the block where the sign on AB is ______. Answer
either � or �.

8.48. Consider the following design:

Std A B C D E y

1 �1 �1 �1 1 1 40

2 1 �1 �1 �1 1 10

3 �1 1 �1 �1 �1 30

4 1 1 �1 1 �1 20

5 �1 �1 1 �1 �1 40

6 1 �1 1 1 �1 30

7 �1 1 1 1 1 20

8 1 1 1 �1 1 30



(a) What is the generator for column D? 

(b) What is the generator for column E?

(c) If this design were folded over, what is the resolution of
the combined design?

8.49. In an article in Quality Engineering (“An Application of
Fractional Factorial Experimental Designs,” 1988, Vol. 1, pp.
19–23), M. B. Kilgo describes an experiment to determine the
effect of CO2 pressure (A), CO2 temperature (B), peanut mois-
ture (C), CO2 flow rate (D), and peanut particle size (E) on the
total yield of oil per batch of peanuts (y). The levels that she used
for these factors are shown in Table P8.11. She conducted the
16-run fractional factorial experiment shown in Table P8.12.

■ TA B L E  P 8 . 1 1
Factor Levels for the Experiment in Problem 8.49

A, B, C, E, Part.
Coded Pressure Temp, Moisture  D, Flow Size
Level (bar) (°C) (% by weight) (liters/min) (mm)

� 1 415 25 5 40 1.28

1 550 95 15 60 4.05 

■ TA B L E  P 8 . 1 2
The Peanut Oil Experiment

A B C D E y

415 25 5 40 1.28 63

550 25 5 40 4.05 21

415 95 5 40 4.05 36

550 95 5 40 1.28 99

415 25 15 40 4.05 24

550 25 15 40 1.28 66

415 95 15 40 1.28 71

550 95 15 40 4.05 54

415 25 5 60 4.05 23

550 25 5 60 1.28 74

415 95 5 60 1.28 80

550 95 5 60 4.05 33

415 25 15 60 1.28 63

550 25 15 60 4.05 21

415 95 15 60 4.05 44

550 95 15 60 1.28 96

(a) What type of design has been used? Identify the defining
relation and the alias relationships.

(b) Estimate the factor effects and use a normal 
probability plot to tentatively identify the important
factors.
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(c) Perform an appropriate statistical analysis to test the
hypotheses that the factors identified in part 
(b) above have a significant effect on the yield of
peanut oil.

(d) Fit a model that could be used to predict peanut oil
yield in terms of the factors that you have identified as
important.

(e) Analyze the residuals from this experiment and com-
ment on model adequacy.

8.50. A 16-run fractional factorial experiment in 10 factors
on sand-casting of engine manifolds was conducted by engi-
neers at the Essex Aluminum Plant of the Ford Motor
Company and described in the article “Evaporative Cast
Process 3.0 Liter Intake Manifold Poor Sandfill Study,” by D.
Becknell (Fourth Symposium on Taguchi Methods, American
Supplier Institute, Dearborn, MI, 1986, pp. 120–130). The
purpose was to determine which of 10 factors has an effect on
the proportion of defective castings. The design and the result-
ing proportion of nondefective castings observed on each
run are shown in Table P8.13. This is a resolution III fraction
with generators E � CD, F � BD, G � BC, H � AC, J �
AB, and K � ABC. Assume that the number of castings made
at each run in the design is 1000.

(a) Find the defining relation and the alias relationships in
this design.

(b) Estimate the factor effects and use a normal probabil-
ity plot to tentatively identify the important factors.

(c) Fit an appropriate model using the factors identified in
part (b) above.

(d) Plot the residuals from this model versus the predicted
proportion of nondefective castings. Also prepare a
normal probability plot of the residuals. Comment on
the adequacy of these plots.

(e) In part (d) you should have noticed an indication that
the variance of the response is not constant.
(Considering that the response is a proportion, you
should have expected this.) The previous table also
shows a transformation on , the arcsin square root,
that is a widely used variance stabilizing transforma-
tion for proportion data (refer to the discussion of vari-
ance stabilizing transformations in Chapter 3). Repeat
parts (a) through (d) above using the transformed
response and comment on your results. Specifically,
are the residual plots improved?

(f) There is a modification to the arcsin square root trans-
formation, proposed by Freeman and Tukey
(“Transformations Related to the Angular and the
Square Root,” Annals of Mathematical Statistics,
Vol. 21, 1950, pp. 607–611), that improves its per-
formance in the tails. F&T’s modification is

�  arcsin�(np̂ � 1)/(n � 1)]/2

[arcsin�np̂/(n � 1)

p̂

p̂
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Rework parts (a) through (d) using this transforma-
tion and comment on the results. (For an interesting
discussion and analysis of this experiment, refer to
“Analysis of Factorial Experiments with Defects or
Defectives as the Response,” by S. Bisgaard and 
H. T. Fuller, Quality Engineering, Vol. 7, 1994–95,
pp. 429–443.)

8.51. A 16-run fractional factorial experiment in nine fac-
tors was conducted by Chrysler Motors Engineering and
described in the article “Sheet Molded Compound Process
Improvement,” by P. I. Hsieh and D. E. Goodwin (Fourth
Symposium on Taguchi Methods, American Supplier Institute,
Dearborn, MI, 1986, pp. 13–21). The purpose was to reduce
the number of defects in the finish of sheet-molded grill open-
ing panels. The design, and the resulting number of defects,
c, observed on each run, is shown in Table P8.14. This is a
resolution III fraction with generators E � BD, F � BCD, G
� AC, H � ACD, and J � AB.

(a) Find the defining relation and the alias relationships in
this design.

(b) Estimate the factor effects and use a normal probabil-
ity plot to tentatively identify the important factors.

(c) Fit an appropriate model using the factors identified in
part (b) above.

(d) Plot the residuals from this model versus the predicted
number of defects. Also, prepare a normal probability

plot of the residuals. Comment on the adequacy of
these plots.

(e) In part (d) you should have noticed an indication that
the variance of the response is not constant.
(Considering that the response is a count, you should
have expected this.) The previous table also shows a
transformation on c, the square root, that is a widely
used variance stabilizing transformation for count
data. (Refer to the discussion of variance stabilizing
transformations in Chapter 3.) Repeat parts (a)
through (d) using the transformed response and com-
ment on your results. Specifically, are the residual
plots improved?

(f) There is a modification to the square root transforma-
tion, proposed by Freeman and Tukey
(“Transformations Related to the Angular and the
Square Root,” Annals of Mathematical Statistics,
Vol. 21, 1950, pp. 607–611) that improves its perform-
ance. F&T’s modification to the square root transfor-
mation is

Rework parts (a) through (d) using this transforma-
tion and comment on the results. (For an interesting
discussion and analysis of this experiment, refer to
“Analysis of Factorial Experiments with Defects or

[�c � �(c � 1)]/2

■ TA B L E  P 8 . 1 3
The Sand-Casting Experiment

F&T’s
Run A B C D E F G H J K Arcsin Modification

1 � � � � � � � � � � 0.958 1.364 1.363

2 � � � � � � � � � � 1.000 1.571 1.555

3 � � � � � � � � � � 0.977 1.419 1.417

4 � � � � � � � � � � 0.775 1.077 1.076

5 � � � � � � � � � � 0.958 1.364 1.363

6 � � � � � � � � � � 0.958 1.364 1.363

7 � � � � � � � � � � 0.813 1.124 1.123

8 � � � � � � � � � � 0.906 1.259 1.259

9 � � � � � � � � � � 0.679 0.969 0.968

10 � � � � � � � � � � 0.781 1.081 1.083

11 � � � � � � � � � � 1.000 1.571 1.556

12 � � � � � � � � � � 0.896 1.241 1.242

13 � � � � � � � � � � 0.958 1.364 1.363

14 � � � � � � � � � � 0.818 1.130 1.130

15 � � � � � � � � � � 0.841 1.161 1.160

16 � � � � � � � � � � 0.955 1.357 1.356 

�p̂p̂



Defectives as the Response,” by S. Bisgaard and H.
T. Fuller, Quality Engineering, Vol. 7, 1994–95,
pp. 429–443.)

8.52. An experiment is run in a semiconductor factory to
investigate the effect of six factors on transistor gain. The
design selected is the shown in Table P8.15.

■ TA B L E  P 8 . 1 5
The Transistor Gain Experiment

Standard Run 
Order Order A B C D E F Gain

1 2 � � � � � � 1455

2 8 � � � � � � 1511

3 5 � � � � � � 1487

4 9 � � � � � � 1596

5 3 � � � � � � 1430

6 14 � � � � � � 1481

7 11 � � � � � � 1458

8 10 � � � � � � 1549

9 15 � � � � � � 1454

10 13 � � � � � � 1517

26�2
IV
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11 1 � � � � � � 1487

12 6 � � � � � � 1596

13 12 � � � � � � 1446

14 4 � � � � � � 1473

15 7 � � � � � � 1461

16 16 � � � � � � 1563

(a) Use a normal plot of the effects to identify the signifi-
cant factors.

(b) Conduct appropriate statistical tests for the model
identified in part (a).

(c) Analyze the residuals and comment on your findings.

(d) Can you find a set of operating conditions that produce
gain of 1500 
 25?

8.53. Heat treating is often used to carbonize metal parts,
such as gears. The thickness of the carbonized layer is a
critical output variable from this process, and it is usually
measured by performing a carbon analysis on the gear
pitch (the top of the gear tooth). Six factors were studied in
a design: A � furnace temperature, B � cycle time, C
� carbon concentration, D � duration of the carbonizing
cycle, E � carbon concentration of the diffuse cycle, and 

26�2
IV

■ TA B L E  P 8 . 1 4
The Grill Defects Experiment

F&T’s 
Run A B C D E F G H J c Modification

1 � � � � � � � � � 56 7.48 7.52

2 � � � � � � � � � 17 4.12 4.18

3 � � � � � � � � � 2 1.41 1.57

4 � � � � � � � � � 4 2.00 2.12

5 � � � � � � � � � 3 1.73 1.87

6 � � � � � � � � � 4 2.00 2.12

7 � � � � � � � � � 50 7.07 7.12

8 � � � � � � � � � 2 1.41 1.57

9 � � � � � � � � � 1 1.00 1.21

10 � � � � � � � � � 0 0.00 0.50

11 � � � � � � � � � 3 1.73 1.87

12 � � � � � � � � � 12 3.46 3.54

13 � � � � � � � � � 3 1.73 1.87

14 � � � � � � � � � 4 2.00 2.12

15 � � � � � � � � � 0 0.00 0.50

16 � � � � � � � � � 0 0.00 0.50 

�c
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F � duration of the diffuse cycle. The experiment is shown
in Table P8.16.

■ TA B L E  P 8 . 1 6
The Heat Treating Experiment

Standard Run
Order Order A B C D E F Pitch

1 5 � � � � � � 74

2 7 � � � � � � 190

3 8 � � � � � � 133

4 2 � � � � � � 127

5 10 � � � � � � 115

6 12 � � � � � � 101

7 16 � � � � � � 54

8 1 � � � � � � 144

9 6 � � � � � � 121

10 9 � � � � � � 188

11 14 � � � � � � 135

12 13 � � � � � � 170

13 11 � � � � � � 126

14 3 � � � � � � 175

15 15 � � � � � � 126

16 4 � � � � � � 193

(a) Estimate the factor effects and plot them on a normal
probability plot. Select a tentative model.

(b) Perform appropriate statistical tests on the model.

(c) Analyze the residuals and comment on model adequacy.

(d) Interpret the results of this experiment. Assume 
that a layer thickness of between 140 and 160 is
desirable.

8.54. An article by L. B. Hare (“In the Soup: A Case Study
to Identify Contributors to Filling Variability,” Journal of
Quality Technology, Vol. 20, pp. 36–43) describes a factorial
experiment used to study the filling variability of dry soup
mix packages. The factors are A � number of mixing ports
through which the vegetable oil was added (1, 2), B � tem-
perature surrounding the mixer (cooled, ambient), C � mix-
ing time (60, 80 sec), D � batch weight (1500, 2000 lb), and
E � number of days of delay between mixing and packaging
(1, 7). Between 125 and 150 packages of soup were sampled
over an 8-hour period for each run in the design, and the
standard deviation of package weight was used as the
response variable. The design and resulting data are shown in
Table P8.17.

■ TA B L E  P 8 . 1 7
The Soup Experiment

A B C D E y
Std. Mixer Batch Std. 
Order Ports Temp. Time Weight Delay Dev

1 � � � � � 1.13

2 � � � � � 1.25

3 � � � � � 0.97

4 � � � � � 1.7

5 � � � � � 1.47

6 � � � � � 1.28

7 � � � � � 1.18

8 � � � � � 0.98

9 � � � � � 0.78

10 � � � � � 1.36

11 � � � � � 1.85

12 � � � � � 0.62

13 � � � � � 1.09

14 � � � � � 1.1

15 � � � � � 0.76

16 � � � � � 2.1

(a) What is the generator for this design?

(b) What is the resolution of this design?

(c) Estimate the factor effects. Which effects are large?

(d) Does a residual analysis indicate any problems with
the underlying assumptions?

(e) Draw conclusions about this filling process.

8.55. Consider the design.

(a) Suppose that the design had been folded over by
changing the signs in column B instead of column A.
What changes would have resulted in the effects that
can be estimated from the combined design?

(b) Suppose that the design had been folded over by
changing the signs in column E instead of column A.
What changes would have resulted in the effects that
can be estimated from the combined design?

8.56. Consider the design. Suppose that a fold over of
this design is run by changing the signs in column A.
Determine the alias relationships in the combined design.

8.57. Reconsider the design in Problem 8.56.

(a) Suppose that a fold over of this design is run by chang-
ing the signs in column B. Determine the alias rela-
tionships in the combined design.

27�3
IV

27�3
IV

26�2
IV
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(b) Compare the aliases from this combined design to
those from the combined design from Problem 8.35.
What differences resulted by changing the signs in a
different column?

8.58. Consider the design.

(a) Suppose that a partial fold over of this design is run
using column A (� signs only). Determine the alias
relationships in the combined design.

(b) Rework part (a) using the negative signs to define the
partial fold over. Does it make any difference which
signs are used to define the partial fold over?

8.59. Consider a partial fold over for the design. Suppose
that the signs are reversed in column A, but the eight runs that
are retained are the runs that have positive signs in column C.
Determine the alias relationships in the combined design.

8.60. Consider a partial fold over for the design.
Suppose that the partial fold over of this design is constructed
using column A ( � signs only). Determine the alias relation-
ships in the combined design.

27�4
III

26�2
IV

27�3
IV

8.61. Consider a partial fold over for the design.
Suppose that the partial fold over of this design is constructed
using column A ( � signs only). Determine the alias relation-
ships in the combined design.

8.62. Reconsider the 24�1 design in Example 8.1. The sig-
nificant factors are A, C, D, AC � BD, and AD � BC. Find a
partial fold-over design that will allow the AC, BD, AD, and
BC interactions to be estimated.

8.63. Construct a supersaturated design for k � 8 factors in
P � 6 runs.

8.64. Consider the 28�3 design in Problem 8.37. Suppose
that the alias chain involving the AB interaction was large.
Recommend a partial fold-one design to resolve the ambiguity
about this interaction.

8.65. Construct a supersaturated design for h � 12 factors
in N � 10 runs.

8.66. How could an “optimal design” approach be used to
augment a fractional factorial design to de-alias effects of
potential interest?

25�2
III
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A d d i t i o n a l  D e s i g n  a n d  
A n a l y s i s  To p i c s  f o r  
F a c t o r i a l  a n d  F r a c t i o n a l
F a c t o r i a l  D e s i g n s

The two-level series of factorial and fractional factorial designs discussed in Chapters 6, 7, and 8
are widely used in industrial research and development. This chapter discusses some extensions

and variations of these designs one important case is the situation where all the factors are present
at three levels. These 3k designs and their fractions are discussed in this chapter. We will also con-
sider cases where some factors have two levels and other factors have either three or four levels. In
chapter 8 use introduced Plackett–Burman designs and observed that they are nonregular fractions.
The general case of nonregular fractions with all factors at two levels is discussed in more detail
here. We also illustrate how optimal design tools can be useful for constructing designs in many
important situations.
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9.1 The 3k Factorial Design 395

9.1 The 3k Factorial Design

9.1.1 Notation and Motivation for the 3k Design

We now discuss the 3k factorial design—that is, a factorial arrangement with k factors, each at three
levels. Factors and interactions will be denoted by capital letters. We will refer to the three levels
of the factors as low, intermediate, and high. Several different notations may be used to represent
these factor levels; one possibility is to represent the factor levels by the digits 0 (low), 1 (interme-
diate), and 2 (high). Each treatment combination in the 3k design will be denoted by k digits, where
the first digit indicates the level of factor A, the second digit indicates the level of factor B, . . . ,
and the kth digit indicates the level of factor K. For example, in a 32 design, 00 denotes the treat-
ment combination corresponding to A and B both at the low level, and 01 denotes the treatment
combination corresponding to A at the low level and B at the intermediate level. Figures 9.1 and 9.2
show the geometry of the 32 and the 33 design, respectively, using this notation.

This system of notation could have been used for the 2k designs presented previously,
with 0 and 1 used in place of the 
1s, respectively. In the 2k design, we prefer the 
1 notation
because it facilitates the geometric view of the design and because it is directly applicable to
regression modeling, blocking, and the construction of fractional factorials.

In the 3k system of designs, when the factors are quantitative, we often denote the low,
intermediate, and high levels by �1, 0, and �1, respectively. This facilitates fitting a regres-
sion model relating the response to the factor levels. For example, consider the 32 design in
Figure 9.1, and let x1 represent factor A and x2 represent factor B. A regression model relat-
ing the response y to x1 and x2 that is supported by this design is

(9.1)

Notice that the addition of a third factor level allows the relationship between the response
and design factors to be modeled as a quadratic.

The 3k design is certainly a possible choice by an experimenter who is concerned about
curvature in the response function. However, two points need to be considered:

1. The 3k design is not the most efficient way to model a quadratic relationship; the
response surface designs discussed in Chapter 11 are superior alternatives.

2. The 2k design augmented with center points, as discussed in Chapter 6, is an excel-
lent way to obtain an indication of curvature. It allows one to keep the size and
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■ F I G U R E  9 . 1 Treatment
combinations in a 32 design

■ F I G U R E  9 . 2 Treatment combinations in a 33
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complexity of the design low and simultaneously obtain some protection against
curvature. Then, if curvature is important, the two-level design can be augmented
with axial runs to obtain a central composite design, as shown in Figure 6.37.
This sequential strategy of experimentation is far more efficient than running a 3k

factorial design with quantitative factors.

9.1.2 The 32 Design

The simplest design in the 3k system is the 32 design, which has two factors, each at three lev-
els. The treatment combinations for this design are shown in Figure 9.1. Because there are 
32 � 9 treatment combinations, there are eight degrees of freedom between these treatment
combinations. The main effects of A and B each have two degrees of freedom, and the AB
interaction has four degrees of freedom. If there are n replicates, there will be n32 � 1 total
degrees of freedom and 32(n � 1) degrees of freedom for error.

The sums of squares for A, B, and AB may be computed by the usual methods for fac-
torial designs discussed in Chapter 5. Each main effect can be represented by a linear and a
quadratic component, each with a single degree of freedom, as demonstrated in Equation 9.1.
Of course, this is meaningful only if the factor is quantitative.

The two-factor interaction AB may be partitioned in two ways. Suppose that both
factors A and B are quantitative. The first method consists of subdividing AB into the four
single-degree-of-freedom components corresponding to ABL�L, ABL�Q, ABQ�L, and ABQ�Q.
This can be done by fitting the terms �12x1x2, �122x1 , �112 x2, and �1122 , respectively, as
demonstrated in Example 5.5. For the tool life data, this yields � 8.00, �
42.67, � 2.67, and � 8.00. Because this is an orthogonal partitioning of AB,
note that SSAB � � � � � 61.34.

The second method is based on orthogonal Latin squares. This method does not
require that the factors be quantitative, and it is usually associated with the case where all fac-
tors are qualitative. Consider the totals of the treatment combinations for the data in Example 5.5.
These totals are shown in Figure 9.3 as the circled numbers in the squares. The two factors A
and B correspond to the rows and columns, respectively, of a 3 � 3 Latin square. In Figure 9.3,
two particular 3� 3 Latin squares are shown superimposed on the cell totals.

These two Latin squares are orthogonal; that is, if one square is superimposed on the
other, each letter in the first square will appear exactly once with each letter in the second
square. The totals for the letters in the (a) square are Q � 18, R � �2, and S � 8, and the
sum of squares between these totals is [182 � (�2)2 � 82]/(3)(2) � [242/(9)(2)] � 33.34, with
two degrees of freedom. Similarly, the letter totals in the (b) square are Q � 0, R � 6, and
S � 18, and the sum of squares between these totals is [02 � 62 � 182]/(3)(2) � [242/(9)(2)] �
28.00, with two degrees of freedom. Note that the sum of these two components is

with 2 � 2 � 4 degrees of freedom.

33.34 � 28.00 � 61.34 � SSAB

SSABQ�Q
SSABQ�L

SSABL�Q
SSABL�L

SSABQ�Q
SSABQ�L

SSABL�Q
SSABL�L

x2
1x

2
2x2

1x2
2
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■ F I G U R E  9 . 3
Treatment combination
totals from Example 5.5
with two orthogonal
Latin squares superim-
posed
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In general, the sum of squares computed from square (a) is called the AB component
of interaction, and the sum of squares computed from square (b) is called the AB2 compo-
nent of interaction. The components AB and AB2 each have two degrees of freedom. This
terminology is used because if we denote the levels (0, 1, 2) for A and B by x1 and x2, respec-
tively, then we find that the letters occupy cells according to the following pattern:

Square (a) Square (b)

Q: x1 � x2 � 0 (mod 3) Q: x1 � 2x2 � 0 (mod 3)

R: x1 � x2 � 1 (mod 3) S: x1 � 2x2 � 1 (mod 3)

S: x1 � x2 � 2 (mod 3) R: x1 � 2x2 � 2 (mod 3)

For example, in square (b), note that the middle cell corresponds to x1 � 1 and x2 � 1; thus,
x1 � 2x2 � 1 � (2)(1) � 3 � 0 (mod 3), and Q would occupy the middle cell. When considering
expressions of the form ApBq, we establish the convention that the only exponent allowed on
the first letter is 1. If the first letter exponent is not 1, the entire expression is squared and the
exponents are reduced modulus 3. For example, A2B is the same as AB2 because

The AB and AB2 components of the AB interaction have no actual meaning and are usu-
ally not displayed in the analysis of variance table. However, this rather arbitrary partitioning
of the AB interaction into two orthogonal two-degree-of-freedom components is very useful
in constructing more complex designs. Also, there is no connection between the AB and AB2

components of interaction and the sums of squares for ABL�L, ABL�Q, ABQ�L, and ABQ�Q.
The AB and AB2 components of interaction may be computed another way. Consider the

treatment combination totals in either square in Figure 9.3. If we add the data by diagonals
downward from left to right, we obtain the totals �3 � 4 � 1 � 0, �3 � 10 � 1 � 6, and 
5 � 11 � 2 � 18. The sum of squares between these totals is 28.00 (AB2). Similarly, the diag-
onal totals downward from right to left are 5 � 4 � 1 � 8, �3 � 2 � 1 � �2, and �3 �
11 � 10 � 18. The sum of squares between these totals is 33.34 (AB). Yates called these com-
ponents of interaction as the I and J components of interaction, respectively. We use both
notations interchangeably; that is,

For more information about decomposing the sums of squares in three-level designs, refer to
the supplemental material for this chapter.

9.1.3 The 33 Design

Now suppose there are three factors (A, B, and C) under study and that each factor is at three
levels arranged in a factorial experiment. This is a 33 factorial design, and the experimental
layout and treatment combination notation are shown in Figure 9.2. The 27 treatment combi-
nations have 26 degrees of freedom. Each main effect has two degrees of freedom, each two-
factor interaction has four degrees of freedom, and the three-factor interaction has eight
degrees of freedom. If there are n replicates, there are n33 � 1 total degrees of freedom and
33(n � 1) degrees of freedom for error.

The sums of squares may be calculated using the standard methods for factorial
designs. In addition, if the factors are quantitative, the main effects may be partitioned into
linear and quadratic components, each with a single degree of freedom. The two-factor inter-
actions may be decomposed into linear � linear, linear � quadratic, quadratic � linear, and

J(AB) � AB

I(AB) � AB2

A2B � (A2B)2 � A4B2 � AB2



quadratic � quadratic effects. Finally, the three-factor interaction ABC can be partitioned into
eight single-degree-of-freedom components corresponding to linear � linear � linear, linear �
linear � quadratic, and so on. Such a breakdown for the three-factor interaction is generally
not very useful.

It is also possible to partition the two-factor interactions into their I and J components.
These would be designated AB, AB2, AC, AC2, BC, and BC2, and each component would have
two degrees of freedom. As in the 32 design, these components have no physical significance.

The three-factor interaction ABC may be partitioned into four orthogonal two-
degrees-of-freedom components, which are usually called the W, X, Y, and Z components of
the interaction. They are also referred to as the AB2C2, AB2C, ABC2, and ABC components of
the ABC interaction, respectively. The two notations are used interchangeably; that is,

Note that no first letter can have an exponent other than 1. Like the I and J components, the
W, X, Y, and Z components have no practical interpretation. They are, however, useful in con-
structing more complex designs.

Z(ABC) � ABC

Y(ABC) � ABC 2

X(ABC) � AB2C

W(ABC) � AB2C 2
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A machine is used to fill 5-gallon metal containers with soft
drink syrup. The variable of interest is the amount of syrup
loss due to frothing. Three factors are thought to influence
frothing: the nozzle design (A), the filling speed (B), and the
operating pressure (C). Three nozzles, three filling speeds, and
three pressures are chosen, and two replicates of a 33 factorial
experiment are run. The coded data are shown in Table 9.1.

The analysis of variance for the syrup loss data is
shown in Table 9.2. The sums of squares have been

computed by the usual methods. We see that the filling
speed and operating pressure are statistically significant.
All three two-factor interactions are also significant. 
The two-factor interactions are analyzed graphically in
Figure 9.4. The middle level of speed gives the best per-
formance, nozzle types 2 and 3, and either the low (10 psi)
or high (20 psi) pressure seems most effective in reducing
syrup loss.

■ TA B L E  9 . 1
Syrup Loss Data for Example 9.1 (units are cubic centimeters �70)

Nozzle Type (A)

1 2 3

Pressure (in psi)
Speed (in RPM) (B)

(C ) 100 120 140 100 120 140 100 120 140

10 �35 �45 �40 17 �65 20 �39 �55 15

�25 �60 15 24 �58 4 �35 �67 �30

15 110 �10 80 55 �55 110 90 �28 110

75 30 54 120 �44 44 113 �26 135

20 4 �40 31 �23 �64 �20 �30 �61 54

5 �30 36 �5 �62 �31 �55 �52 4
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Example 9.1 illustrates a situation where the three-level design often finds some appli-
cation; one or more of the factors are qualitative, naturally taking on three levels, and the
remaining factors are quantitative. In this example, suppose only three nozzle designs are
of interest. This is clearly, then, a qualitative factor that requires three levels. The filling
speed and the operating pressure are quantitative factors. Therefore, we could fit a quadratic
model such as Equation 9.1 in the two factors speed and pressure at each level of the nozzle
factor.

Table 9.3 shows these quadratic regression models. The �’s in these models were esti-
mated using a standard linear regression computer program. (We will discuss least squares
regression in more detail in Chapter 10.) In these models, the variables x1 and x2 are coded to
the levels �1, 0, �1 as discussed previously, and we assumed the following natural levels for
pressure and speed:

■ TA B L E  9 . 2
Analysis of Variance for Syrup Loss Data

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

A, nozzle 993.77 2 496.89 1.17 0.3256

B, speed 61,190.33 2 30,595.17 71.74 �0.0001

C, pressure 69,105.33 2 34,552.67 81.01 �0.0001

AB 6,300.90 4 1,575.22 3.69 0.0160

AC 7,513.90 4 1,878.47 4.40 0.0072

BC 12,854.34 4 3,213.58 7.53 0.0003

ABC 4,628.76 8 578.60 1.36 0.2580

Error 11,515.50 27 426.50

Total 174,102.83 53
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Coded Level Speed (psi) Pressure (rpm)

�1 100 10

0 120 15

�1 140 20

Table 9.3 presents models in terms of both these coded variables and the natural levels of
speed and pressure.

Figure 9.5 shows the response surface contour plots of constant syrup loss as a function of
speed and pressure for each nozzle type. These plots reveal considerable useful information about
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■ TA B L E  9 . 3
Regression Models for Example 9.1

Nozzle Type x1 � Speed (S), x2 � Pressure (P) in Coded Units

� 22.1 � 3.5x1 � 16.3x2 � � 2.9x1x2
1

� 1217.3 � 31.256S � 86.017P � 0.12917S2 � 2.8733P2 � 0.02875SP

� 25.6 � 22.8x1 � 12.3x2 � � 0.7x1x2
2

� 180.1 � 9.475S � 66.75P � 0.035S2 � 2.2767P2 � 0.0075SP

� 15.1 � 20.3x1 � 5.9x2 � � 10.5x1x2
3

� 1940.1 � 46.058S � 102.48P � 0.18958S2 � 3.7967P2 � 0.105SPŷ
75.8x 2

1 � 94.9x 2
2ŷ

ŷ
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2ŷ

ŷ
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2ŷ
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9.1 The 3k Factorial Design 401

the performance of this filling system. Because the objective is to minimize syrup loss, nozzle
type 3 would be preferred, as the smallest observed contours (�60) appear only on this plot. Filling
speed near the middle level of 120 rpm and the either low or high pressure levels should be used.

When constructing contour plots for an experiment that has a mixture of quantitative
and qualitative factors, it is not unusual to find that the shapes of the surfaces in the quantita-
tive factors are very different at each level of the qualitative factors. This is noticeable to some
degree in Figure 9.5, where the shape of the surface for nozzle type 2 is considerably elon-
gated in comparison to the surfaces for nozzle types 1 and 3. When this occurs, it implies that
there are interactions present between the quantitative and qualitative factors, and as a result,
the optimum operating conditions (and other important conclusions) in terms of the quantita-
tive factors are very different at each level of the qualitative factors.

We can easily show the numerical partitioning of the ABC interaction into its four
orthogonal two-degrees-of-freedom components using the data in Example 9.1. The general
procedure has been described by Davies (1956) and Cochran and Cox (1957). First, select any
two of the three factors, say AB, and compute the I and J totals of the AB interaction at each
level of the third factor C. These calculations are as follows:

A Totals

C B 1 2 3 I J

100 �60 41 �74 �198 �222

10 120 �105 �123 �122 �106 �79

140 �25 24 �15 �155 �158

100 185 175 203 331 238

15 120 20 �99 �54 255 440

140 134 154 245 377 285

100 9 �28 �85 �59 �144

20 120 �70 �126 �113 �74 �40

140 67 �51 58 �206 �155

The I(AB) and J(AB) totals are now arranged in a two-way table with factor C, and the I and J
diagonal totals of this new display are computed as follows:

Totals Totals

C I(AB) I J C J(AB) I J

10 �198 �106 �155 �149 41 10 �222 �79 �158 63 138

15 331 255 377 212 19 15 238 440 285 62 4

20 �59 �74 �206 102 105 20 �144 �40 �155 40 23

The I and J diagonal totals computed above are actually the totals representing the quantities
I[I(AB) � C] � AB2C2, J[I(AB) � C] � AB2C, I [J(AB) � C] � ABC2, and J[J(AB)� C] � ABC
or the W, X, Y, and Z components of ABC. The sums of squares are found in the usual way; that is,

�
(41)2 � (19)2 � (105)2

18
�

(165)2

54
� 221.77

J[I(AB) � C ] � AB2C � X(ABC)

�
(�149)2 � (212)2 � (102)2

18
�

(165)2

54
� 3804.11

I [I(AB) � C )] � AB2C 2 � W(ABC)



Although this is an orthogonal partitioning of SSABC, we point out again that it is not custom-
arily displayed in the analysis of variance table. In subsequent sections, we discuss the occa-
sional need for the computation of one or more of these components.

9.1.4 The General 3k Design

The concepts utilized in the 32 and 33 designs can be readily extended to the case of k factors,
each at three levels, that is, to a 3k factorial design. The usual digital notation is employed for
the treatment combinations, so 0120 represents a treatment combination in a 34 design with
A and D at the low levels, B at the intermediate level, and C at the high level. There are 3k

treatment combinations, with 3k � 1 degrees of freedom between them. These treatment com-
binations allow sums of squares to be determined for k main effects, each with two degrees
of freedom; ( ) two-factor interactions, each with four degrees of freedom; . . . ; and one 
k-factor interaction with 2k degrees of freedom. In general, an h-factor interaction has 2h

degrees of freedom. If there are n replicates, there are n3k � 1 total degrees of freedom and
3k(n � 1) degrees of freedom for error.

Sums of squares for effects and interactions are computed by the usual methods for fac-
torial designs. Typically, three-factor and higher interactions are not broken down any further.
However, any h-factor interaction has 2h�1 orthogonal two-degrees-of-freedom components. For
example, the four-factor interaction ABCD has 24�1 � 8 orthogonal two-degrees-of-freedom
components, denoted by ABCD2, ABC2D, AB2CD, ABCD, ABC2D2, AB2C2D, AB2CD2, and
AB2C2D2. In writing these components, note that the only exponent allowed on the first letter
is 1. If the exponent on the first letter is not 1, then the entire expression must be squared and
the exponents reduced modulus 3. To demonstrate this, consider

These interaction components have no physical interpretation, but they are useful in
constructing more complex designs.

The size of the design increases rapidly with k. For example, a 33 design has 27 treat-
ment combinations per replication, a 34 design has 81, a 35 design has 243, and so on.
Therefore, only a single replicate of the 3k design is frequently considered, and higher order
interactions are combined to provide an estimate of error. As an illustration, if three-factor and
higher interactions are negligible, then a single replicate of the 33 design provides 8 degrees of
freedom for error, and a single replicate of the 34 design provides 48 degrees of freedom for
error. These are still large designs for k � 3 factors and, consequently, not too useful.

9.2 Confounding in the 3k Factorial Design

Even when a single replicate of the 3k design is considered, the design requires so many runs
that it is unlikely that all 3k runs can be made under uniform conditions. Thus, confounding
in blocks is often necessary. The 3k design may be confounded in 3p incomplete blocks, where
p � k. Thus, these designs may be confounded in three blocks, nine blocks, and so on.

A2BCD � (A2BCD)2 � A4B2C 2D2 � AB2C 2D2

k
2

�
(138)2 � (4)2 � (23)2

18
�

(165)2

54
� 584.11

J[J(AB) � C ] � ABC � Z(ABC)

�
(63)2 � (62)2 � (40)2

18
�

(165)2

54
� 18.77

J[J(AB) � C ] � ABC 2 � Y(ABC)

402 Chapter 9 ■ Additional Design and Analysis Topics for Factorial and Fractional Factorial Designs



9.2 Confounding in the 3k Factorial Design 403

9.2.1 The 3k Factorial Design in Three Blocks

Suppose that we wish to confound the 3k design in three incomplete blocks. These three blocks
have two degrees of freedom among them; thus, there must be two degrees of freedom confounded
with blocks. Recall that in the 3k factorial series each main effect has two degrees of freedom.
Furthermore, every two-factor interaction has four degrees of freedom and can be decomposed
into two components of interaction (e.g., AB and AB2), each with two degrees of freedom; every
three-factor interaction has eight degrees of freedom and can be decomposed into four compo-
nents of interaction (e.g., ABC, ABC2, AB2C, and AB2C2), each with two degrees of freedom; and
so on. Therefore, it is convenient to confound a component of interaction with blocks.

The general procedure is to construct a defining contrast

(9.2)

where 	i represents the exponent on the ith factor in the effect to be confounded and xi is the
level of the ith factor in a particular treatment combination. For the 3k series, we have 	i � 0,
1, or 2 with the first nonzero 	i being unity, and xi � 0 (low level), 1 (intermediate level), or
2 (high level). The treatment combinations in the 3k design are assigned to blocks based on
the value of L (mod 3). Because L (mod 3) can take on only the values 0, 1, or 2, three blocks
are uniquely defined. The treatment combinations satisfying L� 0 (mod 3) constitute the
principal block. This block will always contain the treatment combination 00 . . . 0.

For example, suppose we wish to construct a 32 factorial design in three blocks. Either
component of the AB interaction, AB or AB2, may be confounded with blocks. Arbitrarily
choosing AB2, we obtain the defining contrast

The value of L (mod 3) of each treatment combination may be found as follows:

The blocks are shown in Figure 9.6.
The elements in the principal block form a group with respect to addition modulus 3.

Referring to Figure 9.6, we see that 11 � 11 � 22 and 11 � 22 � 00. Treatment combinations

 20�  L � 1(2) � 2(0) � 2 � 2 (mod 3)

10�  L � 1(1) � 2(0) � 1 � 1 (mod 3)  22�  L � 1(2) � 2(2) � 6 � 0 (mod 3)

02�  L � 1(0) � 2(2) � 4 � 1 (mod 3)  12�  L � 1(1) � 2(2) � 5 � 2 (mod 3)

01�  L � 1(0) � 2(1) � 2 � 2 (mod 3)  21�  L � 1(2) � 2(1) � 4 � 1 (mod 3)

00�  L � 1(0) � 2(0) � 0 � 0 (mod 3)  11�  L � 1(1) � 2(1) � 3 � 0 (mod 3)

L � x1 � 2x2

L � 	1x � 	2x2 � Á � 	kxk
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in the other two blocks may be generated by adding, modulus 3, any element in the new block
to the elements of the principal block. Thus, we use 10 for block 2 and obtain

To generate block 3, we find using 01

01 � 00 � 01  01 � 11 � 12  and  01 � 22 � 20

10 � 00 � 10  10 � 11 � 21  and  10 � 22 � 02

404 Chapter 9 ■ Additional Design and Analysis Topics for Factorial and Fractional Factorial Designs

E X A M P L E  9 . 2

We illustrate the statistical analysis of the 32 design con-
founded in three blocks by using the following data, which

■ TA B L E  9 . 4
Analysis of Variance for Data in Example 9.2

Degrees of
Source of Variation Sum of Squares Freedom

Blocks (AB2) 10.89 2

A 131.56 2

B 0.22 2

AB 2.89 2

Total 145.56 8

come from the single replicate of the 32 design shown in
Figure 9.6.

Using conventional methods for the analysis of factorials,
we find that SSA � 131.56 and SSB � 0.22.

We also find that

However, SSBlocks is exactly equal to the AB2 component of
interaction. To see this, write the observations as follows:

Factor B

0 1 2

0 4 5 8

Factor A 1 �2 �4 �5

2 0 1 0

SSBlocks �
(0)2 � (7)2 � (0)2

3
�

(7)2

9
� 10.89

Recall from Section 9.1.2 that the I or AB2 component of
the AB interaction may be found by computing the sum of
squares between the left-to-right diagonal totals in the
above layout. This yields

which is identical to SSBlocks.
The analysis of variance is shown in Table 9.4. Because

there is only one replicate, no formal tests can be per-
formed. It is not a good idea to use the AB component of
interaction as an estimate of error.

SSAB2 �
(0)2 � (0)2 � (7)2

3
�

(7)2

9
� 10.89
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We now look at a slightly more complicated design—a 33 factorial confounded in three
blocks of nine runs each. The AB2C2 component of the three-factor interaction will be con-
founded with blocks. The defining contrast is

It is easy to verify that the treatment combinations 000, 012, and 101 belong in the principal
block. The remaining runs in the principal block are generated as follows:

To find the runs in another block, note that the treatment combination 200 is not in the prin-
cipal block. Thus, the elements of block 2 are

Notice that all these runs satisfy L � 2 (mod 3). The final block is found by observing that
100 does not belong in block 1 or 2. Using 100 as above yields

The blocks are shown in Figure 9.7.
The analysis of variance for this design is shown in Table 9.5. Through the use of this

confounding scheme, information on all the main effects and two-factor interactions is avail-
able. The remaining components of the three-factor interaction (ABC, AB2C, and ABC2) are
combined as an estimate of error. The sum of squares for those three components could be
obtained by subtraction. In general, for the 3k design in three blocks, we would always select
a component of the highest order interaction to confound with blocks. The remaining uncon-
founded components of this interaction could be obtained by computing the k-factor interac-
tion in the usual way and subtracting from this quantity the sum of squares for blocks.

(3) 100 � 101 � 201   (6) 100 � 110 � 210   (9) 100 � 220 � 020

(2) 100 � 012 � 112   (5) 100 � 021 � 121   (8) 100 � 211 � 011

(1) 100 � 000 � 100   (4) 100 � 202 � 002   (7) 100 � 122 � 222

(3) 200 � 101 � 001   (6) 200 � 110 � 010   (9) 200 � 220 � 120

(2) 200 � 012 � 212   (5) 200 � 021 � 221   (8) 200 � 211 � 111

(1) 200 � 000 � 200   (4) 200 � 202 � 102   (7) 200 � 122 � 022

(3) 101   (6) 101 � 012 � 110   (9) 021 � 202 � 220

(2) 012   (5) 012 � 012 � 021   (8) 012 � 202 � 211

(1) 000   (4) 101 � 101 � 202   (7) 101 � 021 � 122

L � x1 � 2x2 � 2x3
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9.2.2 The 3k Factorial Design in Nine Blocks

In some experimental situations, it may be necessary to confound the 3k design in nine blocks.
Thus, eight degrees of freedom will be confounded with blocks. To construct these designs,
we choose two components of interaction, and, as a result, two more will be confounded auto-
matically, yielding the required eight degrees of freedom. These two are the generalized inter-
actions of the two effects originally chosen. In the 3k system, the generalized interactions of
two effects (e.g., P and Q) are defined as PQ and PQ2 (or P2Q).

The two components of interaction initially chosen yield two defining contrasts

(9.3)

where {	i} and {�j} are the exponents in the first and second generalized interactions, respec-
tively, with the convention that the first nonzero 	i and �j are unity. The defining contrasts in
Equation 9.3 imply nine simultaneous equations specified by the pair of values for L1 and L2.
Treatment combinations having the same pair of values for (L1, L2) are assigned to the same
block.

The principal block consists of treatment combinations satisfying L1 � L2 � 0 (mod 3).
The elements of this block form a group with respect to addition modulus 3; thus, the scheme
given in Section 9.2.1 can be used to generate the blocks.

As an example, consider the 34 factorial design confounded in nine blocks of nine runs
each. Suppose we choose to confound ABC and AB2D2. Their generalized interactions

are also confounded with blocks. The defining contrasts for ABC and AB2D2 are

(9.4)

The nine blocks may be constructed by using the defining contrasts (Equation 9.4) and
the group-theoretic property of the principal block. The design is shown in Figure 9.8.

For the 3k design in nine blocks, four components of interaction will be confounded.
The remaining unconfounded components of these interactions can be determined by sub-
tracting the sum of squares for the confounded component from the sum of squares for the

L2 � x1 � 2x2 � 2x4

L1 � x1 � x2 � x3

 (ABC )(AB2D2)2 � A3B5CD4 � B2CD � (B2CD)2 � BC 2D2

 (ABC )(AB2D2) � A2B3CD2 � (A2B3CD2)2 � AC 2D

L2 � �1x1 � �2x2 � Á � �k xk � h (mod 3)   h � 0, 1, 2

L1 � 	1x1 � 	2x2 � Á � 	k xk � u (mod 3)   u � 0, 1, 2

406 Chapter 9 ■ Additional Design and Analysis Topics for Factorial and Fractional Factorial Designs

■ TA B L E  9 . 5
Analysis of Variance for a 33 Design with AB2C2 Confounded

Source of Variation Degrees of Freedom

Blocks (AB2C2) 2

A 2

B 2

C 2

AB 4

AC 4

BC 4

Error (ABC � AB2C � ABC2) 6

Total 26
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entire interaction. The method described in Section 9.1.3 may be useful in computing the
components of interaction.

9.2.3 The 3k Factorial Design in 3 p Blocks

The 3k factorial design may be confounded in 3p blocks of 3k�p observations each, where 
p � k. The procedure is to select p independent effects to be confounded with blocks. As a
result, exactly (3p � 2p � 1)/2 other effects are automatically confounded. These effects are
the generalized interactions of those effects originally chosen.

As an illustration, consider a 37 design to be confounded in 27 blocks. Because p � 3,
we would select three independent components of interaction and automatically confound

others. Suppose we choose ABC2DG, BCE2F2G, and BDEFG.
Three defining contrasts can be constructed from these effects, and the 27 blocks can be
generated by the methods previously described. The other 10 effects confounded with
blocks are

This is a huge design requiring 37 � 2187 observations arranged in 27 blocks of 81 observa-
tions each.

(ABC 2DG)(BCE 2F 2G)(BDEFG)2 � ABC 3D3E 4F 4G4 � ABEFG

(ABC 2DG)(BCE 2F 2G)2(BDEFG) � ABCD2E 2F 2G

(ABC 2DG)2(BCE 2F 3G)(BDEFG) � A2B4C 5D3G4 � AB2CG2

(ABC 2DG)(BCE 2F 2G)(BDEFG) � AB3C3D2E 3F 3G3 � AD2

(BCE 2F 2G)(BDEFG)2 � B3CD2E 4F 4G3 � CD2EF

(BCE 2F 2G)(BDEFG) � B2CDE 3F 3G2 � BC 2D2G

(ABC 2DG)(BDEFG)2 � AB3C 2D3E 2F 2G3 � AC 2E 2F2

(ABC 2DG)(BDEFG) � AB2C 2D2EFG2

(ABC 2DG)(BCE 2F 2G)2 � AB3C 4DE 4F 4G3 � ACDEF

(ABC 2DG)(BCE 2F 2G) � AB2DE 2F 2G2

[33 � 2(3) � 1] �2 � 10

■ F I G U R E  9 . 8 The 34 design in nine blocks with ABC, AB2D2, AC2D, and
BC2D2 confounded



9.3 Fractional Replication of the 3k Factorial Design

The concept of fractional replication can be extended to the 3k factorial designs. Because a
complete replicate of the 3k design can require a rather large number of runs even for moderate
values of k, fractional replication of these designs is of interest. As we shall see, however,
some of these designs have complex alias structures.

9.3.1 The One-Third Fraction of the 3k Factorial Design

The largest fraction of the 3k design is a one-third fraction containing 3k�1 runs. Consequently,
we refer to this as a 3k�1 fractional factorial design. To construct a 3k�1 fractional factorial
design, select a two-degrees-of-freedom component of interaction (generally, the highest
order interaction) and partition the full 3k design into three blocks. Each of the three resulting
blocks is a 3k�1 fractional design, and any one of the blocks may be selected for use. If

is the component of interaction used to define the blocks, then I �
is called the defining relation of the fractional factorial design. Each main

effect or component of interaction estimated from the 3k�1 design has two aliases, which may
be found by multiplying the effect by both I and I2 modulus 3.

As an example, consider a one-third fraction of the 33 design. We may select any com-
ponent of the ABC interaction to construct the design, that is, ABC, AB2C, ABC2, or AB2C2.
Thus, there are actually 12 different one-third fractions of the 33 design defined by

where 	 � 1 or 2 and u � 0, 1, or 2. Suppose we select the component of AB2C2. Each frac-
tion of the resulting 33�1 design will contain exactly 32 � 9 treatment combinations that must
satisfy

where u � 0, 1, or 2. It is easy to verify that the three one-third fractions are as shown in
Figure 9.9.

If any one of the 33�1 designs in Figure 9.9 is run, the resulting alias structure is

Consequently, the four effects that are actually estimated from the eight degrees of free-
dom in the design are A � BC � ABC, B � AC2 � ABC2, C � AB2 � AB2C, and AB � AC �
BC2. This design would be of practical value only if all the interactions were small relative to
the main effects. Because the main effects are aliased with two-factor interactions, this is a
resolution III design. Notice how complex the alias relationships are in this design. Each main
effect is aliased with a component of interaction. If, for example, the two-factor interaction
BC is large, this will potentially distort the estimate of the main effect of A and make the

AB � AB(AB2C 2)2 � A3B5C 4 � BC 2

AB � AB(AB2C 2) � A2B3C 2 � AC

C � C(AB2C 2)2 � A2B4C 5 � AB2C

C � C(AB2C 2) � AB2C 3 � AB2

B � B(AB2C 2)2 � A2B5C 4 � ABC 2

B � B(AB2C 2) � AB3C 2 � AC 2

A � A(AB2C 2)2 � A3B4C 4 � BC

A � A(AB2C 2) � A2B2C 2 � ABC

x1 � 2x2 � 2x3 � u (mod 3)

x1 � 	2x2 � 	3x3 � u (mod 3)

AB	2C	3 Á K	k

AB	2C	3 Á K	k

408 Chapter 9 ■ Additional Design and Analysis Topics for Factorial and Fractional Factorial Designs
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AB � AC � BC2 effect very difficult to interpret. It is very difficult to see how this design
could be useful unless we assume that all interactions are negligible.

Before leaving the design, note that for the design with u � 0 (see Figure 9.9) if
we let A denote the row and B denote the column, then the design can be written as

000 012 021

101 110 122

202 211 220

which is a 3 � 3 Latin square. The assumption of negligible interactions required for unique
interpretations of the design is paralleled in the Latin square design. However, the two
designs arise from different motives, one as a consequence of fractional replication and the
other from randomization restrictions. From Table 4.13, we observe that there are only twelve
3 � 3 Latin squares and that each one corresponds to one of the twelve different 33�1 frac-
tional factorial designs.

The treatment combinations in a 3k�1 design with the defining relation I �
can be constructed using a method similar to that employed in the 2k�p series.

First, write down the 3k�1 runs for a full three-level factorial design in k�1 factors, with the
usual 0, 1, 2 notation. This is the basic design in the terminology of Chapter 8. Then intro-
duce the kth factor by equating its levels xk to the appropriate component of the highest order
interaction, say , through the relationship

(9.5)

where �i � (3 � 	k)	i (mod 3) for 1 � i � k � 1. This yields a design of the highest possi-
ble resolution.

xk � �1x1 � �2x2 � Á � �k�1xk�1

AB	2C	3 Á (K � 1)	k�1

AB	2C	3 Á K	k

33�1
III

33�1
III

(b) Geometric view

u = 0 u = 1 u = 2

000
012
101
202
021
110
122
211
220

Design 1
u = 0

Design 1
u = 1

Design 1
u = 2

100
112
201
002
121
210
222
011
020

200
212
001
102
221
010
022
111
120

(a) Treatment combinations

A

C
B
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As an illustration, we use this method to generate the design with the defining rela-
tion I � AB2CD shown in Table 9.6. It is easy to verify that the first three digits of each treat-
ment combination in this table are the 27 runs of a full 33 design. This is the basic design. For
AB2CD, we have 	1 � 	3 � 	4 � 1 and 	2 � 2. This implies that �1 � (3 � 1)	1 (mod 3) �
(3 � 1)(1) � 2, �2 � (3 � 1)	2 (mod 3) � (3 � 1)(2) � 4 � 1 (mod 3), and �3 � (3 � 1)	3

(mod 3) � (3 � 1)(1) � 2. Thus, Equation 9.5 becomes

(9.6)

The levels of the fourth factor satisfy Equation 9.6. For example, we have 2(0) � 1(0) � 2(0) �
0, 2(0) � 1(1) � 2(0) � 1, 2(1) � 1(1) � 2(0) � 3 � 0, and so on.

The resulting design has 26 degrees of freedom that may be used to compute the
sums of squares for the 13 main effects and components of interactions (and their aliases).
The aliases of any effect are found in the usual manner; for example, the aliases of A are
A(AB2CD) � ABC2D2 and A(AB2CD)2 � BC2D2. One may verify that the four main effects
are clear of any two-factor interaction components, but that some two-factor interaction com-
ponents are aliased with each other. Once again, we notice the complexity of the alias struc-
ture. If any two-factor interactions are large, it will likely be very difficult to isolate them with
this design.

The statistical analysis of a 3k�1 design is accomplished by the usual analysis of variance
procedures for factorial experiments. The sums of squares for the components of interaction
may be computed as in Section 9.1. Remember when interpreting results that the components
of interactions have no practical interpretation.

9.3.2 Other 3k�p Fractional Factorial Designs

For moderate to large values of k, even further fractionation of the 3k design is potential-
ly desirable. In general, we may construct a fraction of the 3k design for p � k, where
the fraction contains 3k�p runs. Such a design is called a 3k�p fractional factorial design.
Thus, a 3k�2 design is a one-ninth fraction, a 3k�3 design is a one-twenty-seventh fraction,
and so on.

The procedure for constructing a 3k�p fractional factorial design is to select p compo-
nents of interaction and use these effects to partition the 3k treatment combinations into 3p

blocks. Each block is then a 3k�p fractional factorial design. The defining relation I of any
fraction consists of the p effects initially chosen and their (3p � 2p � 1)/2 generalized inter-
actions. The alias of any main effect or component of interaction is produced by multiplication
modulus 3 of the effect by I and I2.

(1
3)p

34�1
IV

x4 � 2x1 � x2 � 2x3

34�1
IV
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A Design with I � AB2CD
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We may also generate the runs defining a 3k�p fractional factorial design by first writing
down the treatment combinations of a full 3k�p factorial design and then introducing the addi-
tional p factors by equating them to components of interaction, as we did in Section 9.3.1.

We illustrate the procedure by constructing a 34�2 design, that is, a one-ninth fraction
of the 34 design. Let AB2C and BCD be the two components of interaction chosen to construct
the design. Their generalized interactions are (AB2C)(BCD) � AC2D and (AB2C)(BCD)2 �
ABD2. Thus, the defining relation for this design is I � AB2C � BCD � AC2D � ABD2, and
the design is of resolution III. The nine treatment combinations in the design are found by
writing down a 32 design in the factors A and B, and then adding two new factors by setting

This is equivalent to using AB2C and BCD to partition the full 34 design into nine blocks and then
selecting one of these blocks as the desired fraction. The complete design is shown in Table 9.7.

This design has eight degrees of freedom that may be used to estimate four main effects
and their aliases. The aliases of any effect may be found by multiplying the effect modulus 3
by AB2C, BCD, AC2D, ABD2, and their squares. The complete alias structure for the design is
given in Table 9.8.

From the alias structure, we see that this design is useful only in the absence of inter-
action. Furthermore, if A denotes the rows and B denotes the columns, then from examining
Table 9.7 we see that the design is also a Graeco–Latin square.

The publication by Connor and Zelen (1959) contains an extensive selection of designs
for 4 � k � 10. This pamphlet was prepared for the National Bureau of Standards and is the
most complete table of fractional 3k�p plans available.

In this section, we have noted several times the complexity of the alias relationships
in 3k�p fractional factorial designs. In general, if k is moderately large, say k � 4 or 5, the
size of the 3k design will drive most experimenters to consider fairly small fractions. These
designs have alias relationships that involve the partial aliasing of two-degrees-of-
freedom components of interaction. This, in turn, results in a design that can be difficult
and in many cases impossible to interpret if interactions are not negligible. Furthermore,

34�2
III

x4 � 2x2 � 2x3

x3 � 2x1 � x2

■ TA B L E  9 . 7
A Design with I � AB2C and I � BCD

0000 0111 0222

1021 1102 1210

2012 2120 2201

34�2
III

■ TA B L E  9 . 8
Alias Structure for the Design in Table 9.7

Effect Aliases

I I2

A ABC2 ABCD ACD2 AB2D BC2 AB2C2D2 CD2 BD2

B AC BC2D2 ABC2D AB2D2 ABC CD AB2C2D AD2

C AB2C2 BC2D AD ABCD2 AB2 BD ACD ABC2D2

D AB2CD BCD2 AC2D2 AB AB2CD2 BC AC2 ABD

3III
4�2



there are no simple augmentation schemes (such as fold over) that can be used to combine
two or more fractions to isolate significant interactions. The 3k design is often suggested
as appropriate when curvature is present. However, more efficient alternatives (see
Chapter 11) are possible. 

9.4 Factorials with Mixed Levels

We have emphasized factorial and fractional factorial designs in which all the factors have the
same number of levels. The two-level system discussed in Chapters 6, 7, and 8 is particularly
useful. The three-level system presented earlier in this chapter is much less useful because the
designs are relatively large even for a modest number of factors, and most of the small
fractions have complex alias relationships that would require very restrictive assumptions
regarding interactions to be useful.

It is our belief that the two-level factorial and fractional factorial designs should be the
cornerstone of industrial experimentation for product and process development, troubleshoot-
ing, and improvement. In some situations, however, it is necessary to include a factor (or a few
factors) that has more than two levels. This usually occurs when there are both quantitative and
qualitative factors in the experiment, and the qualitative factor has (say) three levels. If all fac-
tors are quantitative, then two-level designs with center points should be employed. In this sec-
tion, we show how some three- and four-level factors can be accommodated in a 2k design.

9.4.1 Factors at Two and Three Levels

Occasionally, there is interest in a design that has some factors at two levels and some factors
at three levels. If these are full factorials, then construction and analysis of these designs pres-
ents no new challenges. However, interest in these designs can occur when a fractional facto-
rial design is being contemplated. If all of the factors are quantitative, mixed-level fractions
are usually poor alternatives to a 2k�p fractional factorial with center points. Usually when
these designs are considered, the experimenter has a mix of qualitative and quantitative
factors, with the qualitative factors taking on three levels. The complex aliasing we observed
in the 3k�p design with qualitative factors carries over to a great extent in the mixed-level frac-
tional system. Thus, mixed-level fractional designs with all qualitative factors or a mix of
qualitative and quantitative factors should be used very carefully. This section gives a brief
discussion of some of these designs.

Designs in which some factors have two levels and other factors have three levels can
be derived from the table of plus and minus signs for the usual 2k design. The general proce-
dure is best illustrated with an example. Suppose we have two variables, with A at two levels
and X at three levels. Consider a table of plus and minus signs for the usual eight-run 23

design. The signs in columns B and C have the pattern shown on the left side of Table 9.9. Let
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■ TA B L E  9 . 9
Use of Two-Level Factors to Form a Three-Level Factor

Two-Level Factors Three-Level Factor

B C X

� � x1

� � x2

� � x2

� � x3
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the levels of X be represented by x1, x2, and x3. The right side of Table 9.9 shows how the sign
patterns for B and C are combined to form the levels of the three-level factor.

Now factor X has two degrees of freedom and if the factor is quantitative, it can be par-
titioned into a linear and a quadratic component, each component having one degree of free-
dom. Table 9.10 shows a 23 design with the columns labeled to show the actual effects that they
estimate, with XL and XQ denoting the linear and quadratic effects of X, respectively. Note that
the linear effect of X is the sum of the two effect estimates computed from the columns usually
associated with B and C and that the effect of A can only be computed from the runs where
X is at either the low or high levels, namely, runs 1, 2, 7, and 8. Similarly, the A � XL effect is
the sum of the two effects that would be computed from the columns usually labeled AB and AC.
Furthermore, note that runs 3 and 5 are replicates. Therefore, a one-degree-of-freedom estimate
of error can be made using these two runs. Similarly, runs 4 and 6 are replicates, and this would
lead to a second one-degree-of-freedom estimate of error. The average variance at these two pairs
of runs could be used as a mean square for error with two degrees of freedom. The complete
analysis of variance is summarized in Table 9.11.

If we are willing to assume that the two-factor and higher interactions are negligible,
we can convert the design in Table 9.10 into a resolution III fraction with up to four two-level
factors and a single three-level factor. This would be accomplished by associating the two-
level factors with columns A, AB, AC, and ABC. Column BC cannot be used for a two-level
factor because it contains the quadratic effect of the three-level factor X.

■ TA B L E  9 . 1 0
One 2-Level and One 3-Level Factor in a 23 Design

Actual
Treatment

A XL XL A � XL A � XL XQ A � XQ Combinations

Run A B C AB AC BC ABC A X

1 � � � � � � � Low Low

2 � � � � � � � High Low

3 � � � � � � � Low Med

4 � � � � � � � High Med

5 � � � � � � � Low Med

6 � � � � � � � High Med

7 � � � � � � � Low High

8 � � � � � � � High High 

■ TA B L E  9 . 1 1
Analysis of Variance for the Design in Table 9.10

Sum of Degrees of Mean
Source of Variation Squares Freedom Square

A SSA 1 MSA

X (XL � XQ) SSX 2 MSX1

AX (A � XL � A � XQ) SSAX 2 MSAX

Error (from runs 3 and 5 SSE 2 MSE

and runs 4 and 6)

Total SST 7



This same procedure can be applied to the 16-, 32-, and 64-run 2k designs. For 16 runs,
it is possible to construct resolution V fractional factorials with two two-level factors and
either two or three factors at three levels. A 16-run resolution V fraction can also be obtained with
three two-level factors and one three-level factor. If we include 4 two-level factors and a
single three-level factor in 16 runs, the design will be of resolution III. The 32- and 64-run
designs allow similar arrangements. For additional discussion of some of these designs, see
Addelman (1962).

9.4.2 Factors at Two and Four Levels

It is very easy to accommodate a four-level factor in a 2k design. The procedure for doing this
involves using two two-level factors to represent the four-level factor. For example, suppose
that A is a four-level factor with levels a1, a2, a3, and a4. Consider two columns of the usual
table of plus and minus signs, say columns P and Q. The pattern of signs in these two columns
is as shown on the left side of Table 9.12. The right side of this table shows how these four
sign patterns would correspond to the four levels of factor A. The effects represented by
columns P and Q and the PQ interaction are mutually orthogonal and correspond to the
three-degrees-of-freedom A effect. This method of constructing a four-level factor from two
two-level factors is called the method of replacement.

To illustrate this idea more completely, suppose that we have one four-level factor and
two two-level factors and that we need to estimate all the main effects and interactions involv-
ing these factors. This can be done with a 16-run design. Table 9.13 shows the usual table of
plus and minus signs for the 16-run 24 design, with columns A and B used to form the four-
level factor, say X, with levels x1, x2, x3, and x4. Sums of squares would be calculated for each
column A, B, . . . , ABCD just as in the usual 2k system. Then the sums of squares for all fac-
tors X, C, D, and their interactions are formed as follows:

 (3 degrees of freedom)SSXCD � SSACD � SSBCD � SSABCD

 (3 degrees of freedom)SSXD � SSAD � SSBD � SSABD

 (3 degrees of freedom)SSXC � SSAC � SSBC � SSABC

 (1 degree of freedom)SSCD � SSCD

 (1 degree of freedom)SSD � SSD

 (1 degree of freedom)SSC � SSC

 (3 degrees of freedom)SSX � SSA � SSB � SSAB

414 Chapter 9 ■ Additional Design and Analysis Topics for Factorial and Fractional Factorial Designs

■ TA B L E  9 . 1 2
Four-Level Factor A Expressed as Two Two-Level Factors

Two-Level Factors Four-Level Factor

Run P Q A

1 � � a1

2 � � a2

3 � � a3

4 � � a4
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This could be called a 4 � 22 design. If we are willing to ignore two-factor interactions, up
to nine additional two-level factors can be associated with the two-factor interaction (except AB),
three-factor interaction, and four-factor interaction columns.

There are a wide range of fractional factorial designs with a mix of two- and four-level
factors available. However, we recommend using these designs cautiously. If all factors are
quantitative, the 2k�p system with center points will usually be a superior alternative. Designs
with factors at two and four levels that are of resolution IV or higher, which would usually be
necessary if there are both quantitative and qualitative factors present, and typically rather
large, requiring n � 32 runs in many cases.

9.5 Nonregular Fractional Factorial Designs

The regular two-level fractional factorial designs in Chapter 8 are a staple for factor screening
in modern industrial applications. Resolution IV designs are particularly popular because they
avoid the confounding of main effects and two-factor interactions found in resolution III
designs while avoiding the larger sample size requirements of resolution V designs. However,
when the number of factors is relatively large, say k � 9 or more, resolution III designs are
widely used. In Chapter 8 we discussed the regular minimum aberration versions of the 2k � p

fractional factorials of resolutions III, IV, and V.  
The two-factor interaction aliasing in the resolution III and IV designs can result in exper-

iments whose outcomes have ambiguous conclusions. For example, in Chapter 8 we illustrated
a 26-2 design used in a spin coating process applying photoresist where four main effects A, B,
C, and E were found to be important along with one two-factor interaction alias chain AB � CE.
Without external process knowledge, the experimenter could not decide whether the AB interac-
tion, the CE interaction, or some linear combination of them represents the true state of nature.

■ TA B L E  9 . 1 3
A Single Four-Level Factor and Two Two-Level Factors in 16 Runs

Run (A B) � X C D AB AC BC ABC AD BD ABD CD ACD BCD ABCD

1 � � x1 � � � � � � � � � � � � �

2 � � x2 � � � � � � � � � � � � �

3 � � x3 � � � � � � � � � � � � �

4 � � x4 � � � � � � � � � � � � �

5 � � x1 � � � � � � � � � � � � �

6 � � x2 � � � � � � � � � � � � �

7 � � x3 � � � � � � � � � � � � �

8 � � x4 � � � � � � � � � � � � �

9 � � x1 � � � � � � � � � � � � �

10 � � x2 � � � � � � � � � � � � �

11 � � x3 � � � � � � � � � � � � �

12 � � x4 � � � � � � � � � � � � �

13 � � x1 � � � � � � � � � � � � �

14 � � x2 � � � � � � � � � � � � �

15 � � x3 � � � � � � � � � � � � �

16 � � x4 � � � � � � � � � � � � �



To resolve this ambiguity requires additional runs. In Chapter 8 we illustrated the use of both a
fold-over and a partial fold-over strategy to resolve the aliasing. We also saw an example of a res-
olution III 27-4 fractional factorial in an eye focus time experiment where fold-over was required
to identify a large two-factor interaction effect.

While strong two-factor interactions may be less likely than strong main effects, there
are likely to be many more interactions than main effects in screening situations. As a
result, the likelihood of at least one significant interaction effect is quite high. There is often
substantial reluctance to commit additional time and material to a study with unclear
results. Consequently, experimenters often want to avoid the need for a follow-up study. In
this section we show how specific choices of nonregular two-level fractional factorial
designs can be used in experiments with between 6 and 14 factors and potentially avoid
subsequent experimentation when two-factor interactions are active. Section 9.5.1 presents
designs for 6, 7, and 8 factors in 16 runs. These designs have no complete confounding of
pairs of two-factor interactions. These designs are excellent alternatives for the regular min-
imum aberration resolution IV fractional factorials. In Section 9.5.2 we present nonregular
designs for between 9 and 14 factors in 16 runs that have no complete aliasing of main
effects and two-factor interactions. These designs are alternative to the regular minimum
aberration resolution III fractional factorials. We also present metrics to evaluate these frac-
tional factorial designs, show how the recommended nonregular 16-run designs were
obtained, and discuss analysis methods.

Screening designs are primarily concerned with the discovery of active factors. This
factor activity generally expresses itself through a main effect or a factor’s involvement in a
two-factor interaction. Consider the model

(9.7)

where X contains columns for the intercept, main effects and all two-factor interactions, is
the vector of model parameters, and is the usual vector of NID(0, ) random errors.
Consider the case of six factors in 16 runs and a model with all main effects and two-factor
interactions. For this situation the X matrix has more columns than rows. Thus, it is not of full
rank and the usual least squares estimate for does not exist because the matrix X�X is sin-
gular. With respect to this model, every 16 run design is supersaturated. Booth and Cox
(1962) introduced the E(s2) criterion as a diagnostic measure for comparing supersaturated
designs, where 

and k is the number of columns in X.
Minimizing the E(s2) criterion is equivalent to minimizing the sum of squared off-

diagonal elements of the correlation matrix of X. Removing the constant column from X, the
correlation matrix of the regular resolution IV 16-run six-factor design is 21 � 21 with one
row and column for each of the six main effects and 15 two-factor interactions. Figure 9.10
shows the cell plot of the correlation matrix for the principal fraction of this design. In
Figure 9.10 we note that the correlation is zero between all main effects and two-factor inter-
actions (because the design is resolution IV) and that the correlation is �1 between every
two-factor interaction and at least one other two-factor interaction. These two-factor interac-
tions are completely confounded. If another member of the same design family had been
used, at least one of the generators would gave been used with a negative sign in design con-
struction and some of the entries of the correlation matrix would have been �1. There still
would be complete confounding of two-factor interactions in the design.

Jones and Montgomery (2010) introduced the cell plot of the correlation matrix as a
useful graphical way to show the aliasing relationships in fractional factorials and to compare
nonregular designs to their regular fractional factorial counterparts. In Figure 9.10 it is a display

E(s2) � �i�j(Xi'Xj)
2/(k(k-1))

�

�2�
�

y � X � � �
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of the confounding pattern, much like what can be seen in the alias matrix. We introduced the
alias matrix in Chapter 8. Recall that we plan to fit the model 

where X1 is the design matrix for the experiment that has been conducted expanded to model
form, is the vector of model parameters, and is the usual vector of NID(0, ) errors but
that the true model is 

where the columns of X2 contain additional factors not included in the original model (such

as interactions) and is the corresponding vector of model parameters. In Chapter 8 we

observed that the expected value of , the least squares estimate of , is

The alias matrix A � (X�1X1)
�1 X�1 X2 shows how estimates of terms in the fitted model are

biased by active terms that are not in the fitted model. Each row of A is associated with a
parameter in the fitted model. Nonzero elements in a row of A show the degree of biasing of
the fitted model parameter due to terms associated with the columns of X2.

In a regular design, an arbitrary entry in the alias matrix, say Aij, is either 0 or . If
Aij is 0 then the ith column of X1 is orthogonal to the jth column of X2. Otherwise if Aij is
then the ith column of X1 and the jth column of X2 are perfectly correlated.

For nonregular designs, the aliasing is more complex. If X1 is the design matrix for the
main effects model and X2 is the design matrix for the two-factor interactions, then the entries
of the alias matrix for orthogonal nonregular designs for 16 runs take the values 0, 
1, or

. A small subset of these designs have no entries of 
1.
Bursztyn and Steinberg (2006) propose using the trace of (or equivalently the trace of

) as a scalar measure of the total bias in a design. They use this as a means for comparing
designs for computer simulations but this measure works equally well for ranking competitive
screening designs.
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9.5.1 Nonregular Fractional Factorial Designs for 6, 7,
and 8 Factors in 16 Runs

These designs were introduced by Jones and Montgomery (2010) as alternatives to the usual regu-
lar minimum aberration fraction. Hall (1961) identified five nonisomorphic orthogonal designs for
15 factors in 16 runs. By nonisomorphic, we mean that one cannot obtain one of these designs from
another one by permuting the rows or columns or by changing the labels of the factor. The Jones
and Montgomery designs are projections of the Hall designs created by selecting the specific sets
of columns that minimize the E(s2) and trace criteria. They searched all of the non-isomorphic
orthogonal projections of the Hall designs. Tables 9.14 through 9.18 show the Hall designs. Table
9.19 shows the number of nonisomorphic orthogonal 16 run designs.

AA	
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■ TA B L E  9 . 1 4
The Hall I Design 

Run A B C D E F G H J K L M N P Q

1 �1 �1 1 �1 1 1 �1 �1 1 1 �1 1 �1 �1 1

2 1 �1 �1 �1 �1 1 1 �1 �1 1 1 1 1 �1 �1

3 �1 1 �1 �1 1 �1 1 �1 1 �1 1 1 �1 1 �1

4 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1

5 �1 �1 1 1 �1 �1 1 �1 1 1 �1 �1 1 1 �1

6 1 �1 �1 1 1 �1 �1 �1 �1 1 1 �1 �1 1 1

7 �1 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1 �1 1

8 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

9 �1 �1 1 �1 1 1 �1 1 �1 �1 1 �1 1 1 �1

10 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1 1 1

11 �1 1 �1 �1 1 �1 1 1 �1 1 �1 �1 1 �1 1

12 1 1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1

13 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1

14 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1

15 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

■ TA B L E  9 . 1 5
The Hall II Design 

Run A B C D E F G H J K L M N P Q

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

3 1 1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1

4 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1

5 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1

6 1 �1 �1 1 1 �1 1 �1 �1 1 1 �1 �1 1 1

7 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1 1 1

8 1 �1 �1 �1 �1 1 1 �1 �1 1 1 1 1 �1 �1

9 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1

10 �1 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1 �1 1

11 �1 1 �1 �1 1 �1 1 1 �1 1 �1 �1 1 �1 1
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13 �1 �1 1 1 �1 �1 1 1 �1 �1 1 �1 1 1 �1

14 �1 �1 1 1 �1 �1 1 �1 1 1 �1 1 �1 �1 1

15 �1 �1 1 �1 1 1 �1 1 �1 �1 1 1 �1 �1 1

16 �1 �1 1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1

■ TA B L E  9 . 1 6
The Hall III Design 

Run A B C D E F G H J K L M N P Q

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

3 1 1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1

4 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1

5 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1

6 1 �1 �1 1 1 �1 �1 �1 �1 1 1 �1 �1 1 1

7 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1 1 1

8 1 �1 �1 �1 �1 1 1 �1 �1 1 1 1 1 �1 �1

9 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1

10 �1 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1 �1 1

11 �1 1 �1 �1 1 �1 1 1 �1 �1 1 1 �1 �1 1

12 �1 1 �1 �1 1 �1 1 �1 1 1 �1 �1 1 1 �1

13 �1 �1 1 1 �1 �1 1 1 �1 �1 1 �1 1 1 �1

14 �1 �1 1 1 �1 �1 1 �1 1 1 �1 1 �1 �1 1

15 �1 �1 1 �1 1 1 �1 1 �1 1 �1 �1 1 �1 1

16 �1 �1 1 �1 1 1 �1 �1 1 �1 1 1 1 1 �1

■ TA B L E  9 . 1 7
The Hall IV Design 

Run A B C D E F G H J K L M N P Q

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

3 1 1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1

4 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1

5 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1

6 1 �1 �1 1 1 �1 �1 �1 �1 1 1 �1 �1 1 1

7 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1 1 1

8 1 �1 �1 �1 �1 1 1 �1 �1 1 1 1 1 �1 �1

9 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1

10 �1 1 �1 1 �1 �1 1 1 �1 �1 1 �1 1 �1 1

11 �1 1 �1 �1 1 1 �1 1 1 �1 1 1 �1 �1 1

12 �1 1 �1 �1 1 �1 1 �1 1 1 �1 �1 1 1 �1

13 �1 �1 1 1 �1 1 �1 �1 1 �1 1 �1 1 1 �1

14 �1 �1 1 1 �1 �1 1 �1 1 1 �1 1 �1 �1 1

15 �1 �1 1 �1 1 1 �1 1 �1 1 �1 �1 1 �1 1

16 �1 �1 1 �1 1 �1 1 1 �1 �1 1 1 �1 1 �1



The nonregular designs that Jones and Montgomery recommended are shown in 
Tables 9.20, 9.21, and 9.22. The six-factor design in Table 9.20 is found from columns D, E, H,
K, M, and Q of Hall II. The correlation matrix for this design along with the correlation matrix
for the corresponding regular fraction is in Figure 9.11. Notice that like the regular 26-2 design the
design in Table 9.20 is first-order orthogonal but unlike the regular design, there are no two-fac-
tor interactions that are aliased with each other. All of the off-diagonal entries in the correlation
matrix are either zero, �0.5, or �0.5. Because there is no complete confounding of two-factor
interactions, Jones and Montgomery called this nonregular fraction a no-confounding design.

Table 9.21 presents the recommended seven-factor 16-run design. This design was con-
structed by selecting columns A, B, D, H, J, M, and Q from Hall III. The correlation matrix
for this design and the regular 27-3 fraction is shown in Figure 9.12. The no-confounding
design is first-order orthogonal and there is no complete confounding of two-factor interac-
tions. All off-diagonal elements of the correlation matrix are either zero, �0.5, or �0.5.

Table 9.22 presents the recommended eight-factor 16-run design. This design was con-
structed by choosing columns A, B, D, F, H, J, M, and O from Hall IV. The correlation matrix
for this design and the regular 28-4 fraction is shown in Figure 9.13. The no-confounding
design is orthogonal for the first-order model and there is no complete confounding of two-
factor interactions. All off-diagonal elements of the correlation matrix are either zero, �0.5,
or �0.5.

420 Chapter 9 ■ Additional Design and Analysis Topics for Factorial and Fractional Factorial Designs

■ TA B L E  9 . 1 8
The Hall V Design 

Run A B C D E F G H J K L M N P Q

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

3 1 1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1

4 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1

5 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1

6 1 �1 �1 1 1 �1 �1 �1 �1 1 1 �1 �1 1 1

7 1 �1 �1 �1 �1 1 1 1 �1 1 �1 1 �1 1 �1

8 1 �1 �1 �1 �1 1 1 �1 1 �1 1 �1 1 �1 1

9 �1 1 �1 1 �1 1 �1 1 1 �1 �1 �1 �1 1 1

10 �1 1 �1 1 �1 1 �1 �1 �1 1 1 1 1 �1 �1

11 �1 1 �1 �1 1 �1 1 1 �1 �1 1 �1 1 1 �1

12 �1 1 �1 �1 1 �1 1 �1 1 1 �1 1 �1 �1 1

13 �1 �1 1 1 �1 �1 1 1 �1 1 �1 �1 1 �1 1

14 �1 �1 1 1 �1 �1 1 �1 1 �1 1 1 �1 1 �1

15 �1 �1 1 �1 1 1 �1 1 �1 �1 1 1 �1 �1 1

16 �1 �1 1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1

■ TA B L E  9 . 1 9
Number of 16-Run Orthogonal Non-Isomorphic Designs 

Number of Factors Number of Designs

6 27

7 55

8 80
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■ TA B L E  9 . 2 0
A Nonregular Orthogonal Design for k � 6 Factors in 16 Runs 

Run A B C D E F

1 1 1 1 1 1 1

2 1 1 �1 �1 �1 �1

3 �1 �1 1 1 �1 �1

4 �1 �1 �1 �1 1 1

5 1 1 1 �1 1 �1

6 1 1 �1 1 �1 1

7 �1 �1 1 �1 �1 1

8 �1 �1 �1 1 1 �1

9 1 �1 1 1 1 �1

10 1 �1 �1 �1 �1 1

11 �1 1 1 1 �1 1

12 �1 1 �1 �1 1 �1

13 1 �1 1 �1 �1 �1

14 1 �1 �1 1 1 1

15 �1 1 1 �1 1 1

16 �1 1 �1 1 �1 �1

■ TA B L E  9 . 2 1
A Nonregular Orthogonal Design for k � 7 Factors in 16 Runs 

Run A B C D E F G

1 1 1 1 1 1 1 1

2 1 1 1 �1 �1 �1 �1

3 1 1 �1 1 1 �1 �1

4 1 1 �1 �1 �1 1 1

5 1 �1 1 1 �1 1 �1

6 1 �1 1 �1 1 �1 1

7 1 �1 �1 1 �1 �1 1

8 1 �1 �1 �1 1 1 �1

9 �1 1 1 1 1 1 �1

10 �1 1 1 �1 �1 �1 1

11 �1 1 �1 1 �1 1 1

12 �1 1 �1 �1 1 �1 �1

13 �1 �1 1 1 �1 �1 �1

14 �1 �1 1 �1 1 1 1

15 �1 �1 �1 1 1 �1 1

16 �1 �1 �1 �1 �1 1 �1

Table 9.23 compares the popular minimum aberration resolution IV designs to the non-
regular alternatives designs on the metrics described previously. As shown in the cell plots of
the correlation matrices, the recommended designs outperform the minimum aberration
designs for the number of confounded pairs of effects. They also are substantially better with
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■ F I G U R E  9 . 1 1
Correlation matrix (a)
regular 26-2 fractional
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■ TA B L E  9 . 2 2
A Nonregular Orthogonal Design for k � 7 Factors in 16 Runs 

Run A B C D E F G H

1 1 1 1 1 1 1 1 1

2 1 1 1 1 �1 �1 �1 �1

3 1 1 �1 �1 1 1 �1 �1

4 1 1 �1 �1 �1 �1 1 1

5 1 �1 1 �1 1 �1 1 �1

6 1 �1 1 �1 �1 1 �1 1

7 1 �1 �1 1 1 �1 �1 1

8 1 �1 �1 1 �1 1 1 �1

9 �1 1 1 1 1 1 1 1

10 �1 1 1 �1 1 �1 �1 �1

11 �1 1 �1 1 �1 �1 1 �1

12 �1 1 �1 �1 �1 1 �1 1

13 �1 �1 1 1 �1 �1 �1 1

14 �1 �1 1 �1 �1 1 1 �1

15 �1 �1 �1 1 1 1 �1 �1

16 �1 �1 �1 �1 1 �1 1 1

■ TA B L E  9 . 2 3
Design Comparison on Metrics 

N Factors Design Confounded Effect Pairs E(s2) Trace(AA�)

6 Recommended 0 7.31 6

Resolution IV 9 10.97 0

7 Recommended 0 10.16 6

Resolution IV 21 14.20 0

8 Recommended 0 12.80 10.5

Resolution IV 42 17.07 0



respect to the E(s2) criterion. The recommended designs all achieve the minimum value of the
trace criterion for all of the possible nonregular designs. The price that the Jones and
Montgomery recommended designs pay for avoiding any pure confounding is that there is
some correlation between main effects and two-factor interactions. 
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E X A M P L E  9 . 3 The Spin Coating Experiment

Recall from Chapter 8 (Section 8.7.2) the 26�2 spin coating
experiment that involved application of a photoresist materi-
al to silicon wafers. The response variable is thickness and
the design factors are A � Speed RPM, B � acceleration,
C � Volume, D � Time, E � Resist Viscosity, and F �
Exhaust Rate. The design is the regular minimum aberration
fraction. From the original analysis in Chapter 8, we con-
cluded that the main effects of factors A, B, C, and E are
important and that the two-factor interaction alias chain 
AB � CE is important. Because AB and CE are completely
confounded, either additional information or assumptions are
necessary to analytical ambiguity. A complete fold-over was
performed to resolve this ambiguity and this additional
experimentation indicated that the CE interaction was active.

Jones and Montgomery (2010) considered an alternative
experimental design for this problem, the no-confounding
six-variable design from Table 9.20. Table 9.24 presents
this design with a set of simulated response data. In con-
structing the simulation, they assumed that the main effects

Lock Entered Parameter Estimate nDF SS “F Ratio” “Prob>F”

� � Intercept 4462.8125 1 0 0.000 1

� A 85.3125 1 77634.37 53.976 2.46e-5

� B �77.6825 1 64368.76 44.753 5.43e-5

� C �34.1875 2 42735.84 14.856 0.00101

D 0 1 31.19857 0.020 0.89184

� E 21.5625 2 31474.34 10.941 0.00304

F 0 1 2024.045 1.474 0.25562

A*B 0 1 395.8518 0.255 0.6259

A*C 0 1 476.1781 0.308 0.59234

A*D 0 2 3601.749 1.336 0.31571

A*E 0 1 119.4661 0.075 0.78986

A*F 0 2 4961.283 2.106 0.18413

B*C 0 1 60.91511 0.038 0.84923

B*D 0 2 938.8809 0.279 0.76337

B*E 0 1 3677.931 3.092 0.11254

B*F 0 2 2044.119 0.663 0.54164

C*D 0 2 1655.264 0.520 0.61321

� C*E 54.8125 1 24035.28 16.711 0.00219

C*F 0 2 2072.497 0.673 0.53667

D*E 0 2 79.65054 0.022 0.97803

D*F 0 0 0 . .

E*F 0 2 5511.275 2.485 0.14476

■ F I G U R E  9 . 1 4 JMP stepwise regression output for the no-confounding design in Table 9.24 

that were important were A, B, C, and E, and that the CE
interaction was the true source of the AB � CE effect
observed in the actual study. They added normal random
noise in the simulated data to match the RMSE of the fitted
model in the original data. They also matched the model
parameter estimates to those from the original experiment.
The intent is to create a fair realization of the data that
might have been observed if the no-confounding design had
been used.

Jones and Montgomery analyzed this experiment using
forward stepwise regression with all main effect and two-
factor interactions as candidate effects. The reason that all
two-factor interactions can be considered as candidate
effects is that none of these interactions are completely
confounded. The JMP stepwise regression output is in
Figure 9.14. Stepwise regression selects the main effects
of A, B, C, E, along with the CE interaction.

The no-confounding design correctly identifies the model
unambiguously and without requiring additional runs.



9.5.2 Nonregular Fractional Factorial Designs 
for 9 Through 14 Factors in 16 Runs

Resolution III fractional factorial designs are popular for factor screening problems in situa-
tions where there are a moderate-to-large number of factors because these designs contain a
relatively small number of runs and they are effective in identifying the unimportant factors
and elevating potentially important factors for further experimentation. Designs in 16 runs are
extremely popular because the number of runs is usually within the resources available to
most experimenters.  

Because the regular resolution III designs alias main effects and two-factor interactions,
and the aliased effects are completely confounded, experimenters often end up with ambigu-
ous conclusions about which main effects and two-factor interactions are important.
Resolving these ambiguities requires either additional experimentation (such as use of a fold-
over design to augment the original fraction) or assumptions about which effects are impor-
tant or external process knowledge. This is very similar to the situation encountered in the
previous section, except now main effects are completely confounded with two-factor inter-
actions. Just as in that section, it is possible to develop no-confounding designs for 9–14 fac-
tors in 16 runs that are good alternatives to the usual minimum aberration resolution III
designs when there are only a few main effects and two-factor interactions that are important.
Table 9.25 is an extension of Table 9.19, showing all possible nonisomorphic nonregular 16
run designs with from 6 to 15 factors. The recommended designs in Tables 9.26 through 9.31
are chosen from the designs in this table. They are projections of the Hall designs. The cor-
relation matrices of the designs are shown in Figures 9.15 through 9.20. All recommended
designs are first-order orthogonal (100% D-efficient) and the correlations between main
effects and two-factor interactions are .
 5
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■ TA B L E  9 . 2 4  
The No-Confounding Design for the Photoresist Application Experiment  

Run A B C D E F Thickness

1 1 1 1 1 1 1 4494

2 1 1 �1 �1 �1 �1 4592

3 �1 �1 1 1 �1 �1 4357

4 �1 �1 �1 �1 1 1 4489

5 1 1 1 �1 1 �1 4513

6 1 1 �1 1 �1 1 4483

7 �1 �1 1 �1 �1 1 4288

8 �1 �1 �1 1 1 �1 4448

9 1 �1 1 1 1 �1 4691

10 1 �1 �1 �1 �1 1 4671

11 �1 1 1 1 �1 1 4219

12 �1 1 �1 �1 1 �1 4271

13 1 �1 1 �1 �1 �1 4530

14 1 �1 �1 1 1 1 4632

15 �1 1 1 �1 1 1 4337

16 �1 1 �1 1 �1 �1 4391
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■ TA B L E  9 . 2 5  
Number of Non-Isomorphic Nonregular 16-Run Designs 

Number of Factors Number of Non-Isomorphic Designs

6 27
7 55
8 80
9 87

10 78
11 58
12 36
13 18
14 10

15 5

■ TA B L E  9 . 2 6  
Recommended 16-Run 9-Factor No-Confounding Design 

Run A B C D E F G H J

1 �1 �1 �1 �1 �1 �1 1 �1 1
2 �1 �1 �1 1 �1 1 �1 1 �1
3 �1 �1 1 �1 1 1 1 1 �1
4 �1 �1 1 1 1 �1 �1 �1 1
5 �1 1 �1 �1 1 1 �1 1 1
6 �1 1 �1 1 1 �1 1 �1 �1
7 �1 1 1 �1 �1 �1 �1 1 �1
8 �1 1 1 1 �1 1 1 �1 1
9 1 �1 �1 �1 1 �1 �1 �1 �1

10 1 �1 �1 1 1 1 1 1 1
11 1 �1 1 �1 �1 1 �1 �1 1
12 1 �1 1 1 �1 �1 1 1 �1
13 1 1 �1 �1 �1 1 1 �1 �1
14 1 1 �1 1 �1 �1 �1 1 1
15 1 1 1 �1 1 �1 1 1 1

16 1 1 1 1 1 1 �1 �1 �1

■ F I G U R E  9 . 1 5 Correlations of main effects and two-factor interactions, no-confounding 
design for 9 factors in 16 runs 
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■ TA B L E  9 . 2 7  
Recommended 16-Run 10-Factor No-Confounding Design 

Run A B C D E F G H J K

1 �1 �1 �1 �1 1 �1 �1 1 �1 1

2 �1 �1 �1 1 1 1 �1 �1 1 1

3 �1 �1 1 �1 �1 1 1 1 1 1

4 �1 �1 1 �1 1 �1 1 �1 1 �1

5 �1 1 �1 1 �1 1 1 1 �1 1

6 �1 1 �1 1 1 �1 1 �1 �1 �1

7 �1 1 1 �1 �1 �1 �1 1 �1 �1

8 �1 1 1 1 �1 1 �1 �1 1 �1

9 1 �1 �1 �1 �1 1 1 �1 �1 �1

10 1 �1 �1 1 �1 �1 �1 1 1 �1

11 1 �1 1 1 �1 �1 1 �1 �1 1

12 1 �1 1 1 1 1 �1 1 �1 �1

13 1 1 �1 �1 �1 �1 �1 �1 1 1

14 1 1 �1 �1 1 1 1 1 1 �1

15 1 1 1 �1 1 1 �1 �1 �1 1

16 1 1 1 1 1 �1 1 1 1 1

■ F I G U R E  9 . 1 6 Correlations of main effects and two-factor interactions, no-confounding 
design for 10 factors in 16 runs 

9.5.3 Analysis of Nonregular Fractional Factorial Designs

In Section 9.5.1 we illustrated the use of forward selection regression to analyze a nonregu-
lar design, the 16-run no-confounding design with k � 6 factors. This approach was very suc-
cessful as the correct model was identified. Generally, forward selection  regression is a very
useful approach for analyzing nonregular designs. There are variations of the procedure that
are useful in some situations.

Let’s begin the discussion by identifying the types of models that may be of interest.
We assume that main effects and two-factor interactions may be important, and that higher-
order interactions are negligible. Interactions may be hierarchical; that is, an interaction AB
(say) may be in the model only if both of the main effects (here both A and B) are also in the
model. This situation is also called strong heredity and it occurs frequently in practice so
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■ F I G U R E  9 . 1 7 Correlations of main effects and two-factor interactions, no-confounding 
design for 11 factors in 16 runs 

■ TA B L E  9 . 2 8  
Recommended 16-Run 11-Factor No-Confounding Design 

Run A B C D E F G H J K L

1 �1 �1 �1 1 1 �1 �1 �1 1 �1 1

2 �1 �1 1 �1 �1 �1 1 �1 1 �1 �1

3 �1 �1 1 �1 1 1 �1 1 �1 �1 �1

4 �1 �1 1 1 �1 1 1 1 �1 1 1

5 �1 1 �1 �1 �1 �1 �1 �1 �1 1 1

6 �1 1 �1 1 �1 1 1 �1 �1 �1 �1

7 �1 1 �1 1 1 1 �1 1 1 1 �1

8 �1 1 1 �1 1 �1 1 1 1 1 1

9 1 �1 �1 �1 �1 1 �1 1 1 �1 1

10 1 �1 �1 �1 1 1 1 �1 �1 1 1

11 1 �1 �1 1 �1 �1 1 1 1 1 �1

12 1 �1 1 1 1 �1 �1 �1 �1 1 �1

13 1 1 �1 �1 1 �1 1 1 �1 �1 �1

14 1 1 1 �1 �1 1 �1 �1 1 1 �1

15 1 1 1 1 �1 �1 �1 1 �1 �1 1

16 1 1 1 1 1 1 1 �1 1 �1 1

assuming hierarchy (strong heredity) in analyzing data from a nonregular design is usually
not a bad assumption. Interactions may also obey only the weak heredity principle; this
means that AB can be in the model if either A or B is in the model. This situation also occurs
fairly often, although not as often as hierarchy, but ignoring this possibility could result in the
experimenter failing to identify all of the large interactions effects. Finally, there can be situ-
ations where an interaction such as AB is active but neither main effect A or B is active. This
case is relatively uncommon.

There are several variations of forward selection regression that are useful. They are
briefly described as follows:

1. Use forward selection without concern about model hierarchy. This can result in
including too many interaction terms.
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■ TA B L E  9 . 2 9  
Recommended 16-Run 12-Factor No-Confounding Design 

Run A B C D E F G H J K L M

1 �1 �1 �1 �1 1 �1 �1 1 1 �1 1 1

2 �1 �1 �1 1 �1 1 1 1 �1 �1 1 �1

3 �1 �1 1 �1 �1 �1 1 �1 1 1 �1 1

4 �1 �1 1 1 1 1 �1 �1 �1 1 �1 �1

5 �1 1 �1 1 �1 �1 �1 �1 �1 �1 �1 1

6 �1 1 �1 1 1 1 1 �1 1 1 1 1

7 �1 1 1 �1 �1 1 �1 1 1 �1 �1 �1

8 �1 1 1 �1 1 �1 1 1 �1 1 1 �1

9 1 �1 �1 �1 �1 1 �1 �1 1 1 1 �1

10 1 �1 �1 �1 1 �1 1 �1 �1 �1 �1 �1

11 1 �1 1 1 �1 �1 �1 1 �1 1 1 1

12 1 �1 1 1 1 1 1 1 1 �1 �1 1

13 1 1 �1 �1 �1 1 1 1 �1 1 �1 1

14 1 1 �1 1 1 �1 �1 1 1 1 �1 �1

15 1 1 1 �1 1 1 �1 �1 �1 �1 1 1

16 1 1 1 1 �1 �1 1 �1 1 �1 1 �1

■ F I G U R E  9 . 1 8 Correlations of main effects and two-factor interactions, no-confounding 
design for 12 factors in 16 runs 

2. Use forward selection restricted to hierarchy. This means that if AB is selected for
entry, then the entire group of terms A, B, and AB are entered in the model if A and
B are not already included.

3. Consider using larger than “usual” P-values for entering factors. Many stepwise
regression computer programs have “default” values for entering factors, such as
P � 0.05. This may be too restrictive. Values of 0.10 or even 0.15 may work bet-
ter. The big danger in screening designs is not identifying important effects (type
II errors), so type I errors are usually not of too much concern. 

4. Use forward selection in two steps. First, select terms from all the main effects.
Then run forward selection a second time using all two-factor interactions that sat-
isfy the weak heredity assumption based on the main effects identified in step 1.  

5. You could also include any two-factor interactions that experience or process
knowledge suggests should be considered.  



Another approach is to consider some variation of all-possible-models regression. This is a
procedure where we fit all possible regression models of particular sizes (such as all-possible
one-factor models, all-possible two-factor models, etc.) and use some criterion such as mini-
mum mean square error, or restrict attention to models with either strong or weak heredity, or
models associated with a large increase in adjusted R2, to narrow down the set of possible
models for further consideration.  

In some cases, nonregular designs have useful projection properties, and this could
suggest an appropriate analysis. For example, the 12-run Plackett–Burman design will sup-
port a model will all main effects and all two-factor interactions in any k � 4 factors. So if
up to four main effects appear large, we could analyze this design simply by fitting the main
effects plus two-factor interaction model to the four apparently active effects. In such situa-
tions, it still may be useful to consider other possible interaction terms for inclusion in the
final model.
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■ TA B L E  9 . 3 0  
Recommended 16-Run 13-Factor No-Confounding Design 

Run A B C D E F G H J K L M N

1 �1 �1 �1 1 1 �1 �1 1 �1 1 1 �1 1

2 �1 �1 1 �1 �1 �1 �1 �1 1 1 �1 �1 1

3 �1 �1 1 �1 1 1 1 1 1 �1 1 �1 �1

4 �1 �1 1 1 �1 1 1 1 �1 1 �1 1 �1

5 �1 1 �1 �1 �1 1 �1 �1 �1 �1 1 �1 �1

6 �1 1 �1 �1 1 1 1 �1 �1 1 �1 1 1

7 �1 1 �1 1 �1 �1 1 1 1 �1 1 1 1

8 �1 1 1 1 1 �1 �1 �1 1 �1 �1 1 �1

9 1 �1 �1 �1 �1 �1 1 �1 1 1 1 1 �1

10 1 �1 �1 �1 1 �1 �1 1 �1 �1 �1 1 �1

11 1 �1 �1 1 1 1 1 �1 1 �1 �1 �1 1

12 1 �1 1 1 �1 1 �1 �1 �1 �1 1 1 1

13 1 1 �1 1 �1 1 �1 1 1 1 �1 �1 �1

14 1 1 1 �1 �1 �1 1 1 �1 �1 �1 �1 1

15 1 1 1 �1 1 1 �1 1 1 1 1 1 1

16 1 1 1 1 1 �1 1 �1 �1 1 1 �1 �1

■ F I G U R E  9 . 1 9 Correlations of main effects and two-factor Interactions, no-confounding 
design for 13 factors in 16 runs 



9.6. Constructing Factorial and Fractional Factorial Designs 
Using an Optimal Design Tool

Most of this book has focused on standard factorial and fractional factorial design. These
standard designs work well when the experimental research problem and the design are a
good match. But there are many situations where the requirements of a standard design and
the research problem are not a good fit. Some of these include:

1. The experimenter has unusual resource restrictions, so either the number of runs
that can be made in the experiment or the size of the blocks required are different
from the sample size and/or block sizes required by a standard design. We will see
an example of this situation in Chapter 11. 

2. There are restrictions or constraints on the design region. That is, the standard
cuboidal regions for factorial and fractional factorial designs and spherical or
cuboidal regions for response surface designs are not appropriate either because it
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■ F I G U R E  9 . 2 0 Correlations of main effects and two-factor interactions,
no-confounding design for 14 factors in 16 runs 

■ TA B L E  9 . 3 1   
Recommended 16-Run 14-Factor No-Confounding Design 

Run A B C D E F G H J K L M N P

1 �1 �1 �1 �1 1 �1 1 1 �1 1 1 �1 �1 1

2 �1 �1 �1 1 �1 �1 1 �1 1 1 �1 1 1 �1

3 �1 �1 1 �1 �1 1 �1 1 1 1 �1 �1 1 1

4 �1 �1 1 1 1 1 1 �1 �1 �1 1 �1 1 �1

5 �1 1 �1 �1 �1 1 1 �1 1 �1 1 1 �1 1

6 �1 1 �1 1 1 1 �1 1 �1 1 �1 1 �1 �1

7 �1 1 1 �1 �1 �1 �1 1 �1 �1 1 1 1 �1

8 �1 1 1 1 1 �1 �1 �1 1 �1 �1 �1 �1 1

9 1 �1 �1 �1 1 1 �1 �1 �1 �1 �1 1 1 1

10 1 �1 �1 1 �1 1 �1 1 1 �1 1 �1 �1 �1

11 1 �1 1 �1 1 �1 �1 �1 1 1 1 1 �1 �1

12 1 �1 1 1 �1 �1 1 1 �1 �1 �1 1 �1 1

13 1 1 �1 �1 1 �1 1 1 1 �1 �1 �1 1 �1

14 1 1 �1 1 �1 �1 �1 �1 �1 1 1 �1 1 1

15 1 1 1 �1 �1 1 1 �1 �1 1 �1 �1 �1 �1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1



is impossible to experiment in some portions of the factor space (such as tempera-
tures and pressures that are simultaneously beyond certain boundaries leading to
unsafe operating conditions) or there are infeasible combinations of some factors.
An example of an optimal design for a problem with a constrained region will be
given in Chapter 11.

3. The experimenter needs to fit a nonstandard model. Models containing a mix of
factors of different types. For example, suppose that the experimenter is interested
in fitting a full quadratic model in two variables x1 and x2, but there is a third two-
level categorical factor z that is also of interest. The model that the experimenter
wants to entertain is 

This is a full quadratic model in the two continuous factors and it also contains the main effect
of the categorical factor plus all interactions between the categorical factor and the linear,
interaction, and pure quadratic effects of the continuous factors.  If this full 12-parameter
model is the final model for the experiment, then the model describes two completely differ-
ent response functions at the two different levels of the categorical factor. Assuming that the
experimenter can only conduct 15 runs, there is not a standard response surface design for this
problem. The closest standard design that would work for this problem would be the 3 � 3
� 2 factorial, which requires 18 runs.

Designing experiments for these types of problems requires a different approach. We
can’t look in the textbook or course notes and try to match the designs we find there to the
problem. Instead we need to create a custom design that fits our specific problem. Creating
this custom design requires:

1. Information about the problem—specifically the model that the experimenter wants
to entertain, the region of interest, the number of runs that can be performed, and
any requirements about blocking, covariates, etc.

2. Choosing an optimality criterion—that is, a criterion for selecting the design
points to be run. In the next section we will give a brief review of optimality crite-
rion for design experiments.

3. A software package to construct the design. Sometimes optimal designs are called
computer-generated designs. Several standard software packages do a good job of
finding optimal designs.

It is always better to create a custom design for the actual problem that you want to
solve than to force your problem to fit a standard design. Fortunately, it has been relatively
easy to construct optimal design for about the last 15 years. The early research work on the
theory of design optimality began with Kiefer (1959, 1961) and Kiefer and Wolfowitz (1959).
The first practical algorithm for construction of optimal designs was developed by Mitchell
(1974). This was a point exchange method, in which runs from a candidate set of all possible
runs that the experimenter would consider running were systematically exchanged with the
runs in a current design until no further improvement in the optimality criterion could be
achieved. Several variations of the point exchange approach were developed and implement-
ed over the next 20 years. Meyer and Nachtsheim (1995) developed a coordinate exchange
algorithm in which individual design coordinates were systematically searched to find the
optimal settings. No candidate set of runs was required. This approach quickly became the
standard one and today almost all efficient optimal design software makes use of the coordi-
nate exchange approach.

��12zx1x2 � �11zx2
1 � �22zx2

2 � �

y � �0 � �1x1 � �2x2 � �12x1x2 � �11x
2
1 � �22x

2
2 � yz � �1zx1 � �2zx2
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9.6.1 Design Optimality Criterion

In Chapter 6 (Section 6.7) we introduced three design optimality criteria—D-optimality,
G-optimality, and I-optimality. The D-optimal design employs a criterion on the selection of
design points that results in the minimization of the volume of the joint confidence region of the
regression coefficients. This is achieved by maximizing the determinant (hence, the “D” in 
D-optimal) of the X�X matrix. That is, the quantity |X�X| is maximized over all possible designs
with N runs. The covariance or dispersion matrix, (X�X)�1, contains the variances and covari-
ance of the regression coefficients and the square of the volume of the confidence region is
inversely proportional to |X’X|. Controlling the volume of the confidence region is related to the
precision of the regression coefficients; a smaller confidence region, for the same level of con-
fidence, means more precise estimates. The G-optimal design minimizes the maximum value
of prediction variance in the design region R. The I-optimal design minimizes the integrated or
average prediction variance of the regression model over the design region R.

The D-optimal and I-optimal are the two most widely used. Experimental designs that are
created with respect to both D-optimal and I-optimal criteria are available in many commercial-
ly available software packages. Creating these designs requires an optimization algorithm.
Techniques such as the coordinate exchange method of Meyer and Nachtsheim (1995) have
been developed that minimize the computational burden and reduce the time required to find the
optimal design. These techniques do not always guarantee a global optimal, but the efficiency,
a metric that quantifies the quality of an optimal design, in terms of the best possible design is
reported by the software programs. 

9.6.2 Examples of Optimal Designs

Many of the standard designs this book are optimal designs. To illustrate, recall the 2k facto-
rial design. The 2k factorial and its many variants are probably the most widely used family
of designs in industrial research and development. In Section 6.7 of Chapter 6 we showed that
these designs are optimal designs with respect to the D, G, and I criteria.

The fact that many widely used standard designs are optimal designs suggests that the
optimal design approach is applicable in any design situation. If the problem turns out to be
a standard one, an optimal design algorithm will generate the required standard design. But
if not, then the optimal design approach will be necessary to construct the appropriate design
for this specific research problem.

As an example, consider a situation in which there are two categorical factors with three
levels each. A scenario where this situation might occur is in missile testing. For example, assume
that the White Sands missile range testing center wants to compare distance from target for three
different types of missiles (x1�L1, L2, L3), each containing a slightly different metal alloy encas-
ing, and three different launching mechanisms (x2 � L1, L2, L3). Using this example, both D-
optimal and I-optimal designs can be created for the main effect only model and main effects plus
two-factor interaction model. Let us assume that the experimenter is interested in a 9-run design.
The D-optimal and I–optimal designs for the main effects only model were found using JMP and
are presented in Tables 9.32 and 9.33, respectively. Notice that both designs are identical; in fact,
they are both 32 factorial designs. If we augment the model to include the two-factor interaction
term and construct 9-run D-optimal and I-optimal designs we get the same results. 

Both of the designs in Tables 9.32 and 9.33 are unreplicated factorials. Usually the
experimenter would like to replicate the design in order to obtain an estimate of experimen-
tal error that would support statistical testing. If the design is replicated twice, this would
require a total of 18 runs. We would still have a standard design. However, since each run
requires firing a missile, and these runs are likely very expensive, the experimenter would
probably be interested in a design with fewer runs. Suppose that the experimenter wants to fit
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the main effects plus interaction model and can afford a total of 12 runs. Where should these
replicate runs made? An optimal design approach can be used to determine the best place to
allocate replicate runs to an existing design.

Tables 9.34 and 9.35 present the D-optimal and I-optimal designs obtained from JMP,
respectively. From inspection of the tables we see that both designs are full 32 full factorials
with three replicated runs.

The D-optimal design replicates the treatment combinations (L1, L2), (L2, L2), and
(L3, L2). Thus, L2 appears six times in column X2 while L1 and L3 appear only three
times. By contrast, the I-optimal design replicates combinations (L1, L1), (L2, L2), and
(L3, L2). In column X2 of this design, L1 appears three times, L2 appears five times, and
L3 appears four times. The only difference between the two designs is that one of the repli-
cated runs is different in each design. The average scaled prediction variance is 0.833 for
both designs.
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■ T A B L E  9 . 3 3
The 9-Run I-Optimal Design for Two 3-Level Categorical
Factors 

Run X1 X2

1 L1 L1

2 L2 L1

3 L3 L1

4 L1 L2

5 L2 L2

6 L3 L2

7 L1 L3

8 L2 L3

9 L3 L3

■ T A B L E  9 . 3 2
The 9-Run D-Optimal Design for Two 3-Level
Categorical Factors 

Run X1 X2

1 L1 L1

2 L2 L1

3 L3 L1

4 L1 L2

5 L2 L2

6 L3 L2

7 L1 L3

8 L2 L3

9 L3 L3

■ T A B L E  9 . 3 4
The 12-Run D-Optimal Design for Two 3-Level
Categorical Factors 

Run X1 X2

1 L1 L1

2 L2 L1

3 L3 L1

4 L1 L2

5 L1 L2

6 L2 L2

7 L2 L2

8 L3 L2

9 L3 L2

10 L1 L3

11 L2 L3

12 L3 L3

■ T A B L E  9 . 3 5
The 12-Run I-Optimal Design for Two 3-Level
Categorical Factors 

Run X1 X2

1 L3 L3

2 L2 L2

3 L2 L1

4 L1 L1

5 L3 L1

6 L3 L2

7 L2 L3

8 L3 L2

9 L1 L3

10 L2 L2

11 L1 L1

12 L1 L2
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E X A M P L E  9 . 4 An Experiment with Unusual Blocking Requirements

Suppose an investigator wishes to run a screening experi-
ment with six continuous factors and can perform three runs
in one day. The budget for the experiment allows for 12
runs. So, the experiment will involve four days of experi-
mentation with three runs per day. There could be significant
day-to-day variation, so days should be treated as block.

The 12-run Plackett–Burman design is a natural choice
for a main effects model but there is no blocking scheme for
these designs that accommodates blocks of three runs. So,
no textbook design quite matches this problem description. 

Table 9.36 shows the factor settings and block assign-
ments for the 12-run I-optimal design for a main effects
model tailored to fit the problem. This design has a D-
efficiency of 95.4 percent. The most notable feature of this
design is that each factor has one setting at the middle of its
range. This means that if any factor has a strong quadratic
effect, there is a good chance both of detecting the curva-
ture and identifying the active factor. By contrast, a two-
level design has no way to detect strong curvature if it
exists without adding center points. 

■ T A B L E  9 . 3 6
An I-Optimal Design for 6 Factors in 4 Blocks of Size 3 

A B C D E F Day

�1 �1 �1 �1 1 1 1

1 1 1 �1 1 �1 1

1 �1 1 1 �1 1 1

0 �1 1 �1 1 1 2

�1 1 �1 1 �1 �1 2

1 �1 1 0 1 0 2

1 �1 �1 1 1 �1 3

�1 �1 1 �1 �1 �1 3

�1 1 1 1 1 1 3

1 1 0 �1 �1 1 4

�1 �1 1 1 1 �1 4

1 0 �1 �1 0 1 4

Optimal design construction methodology can also be used to create specialized frac-
tional factorial designs. We saw examples of this in the presentation of no-confounding design
earlier in this chapter. To illustrate the usefulness of optimal design techniques, consider the
case of resolution IV designs. We know that there are regular resolution IV designs available
for 6, 7, and 8 factors in 16 runs, and no-confounding designs that are good competitors for
these regular designs (the no-confounding designs can be thought of as resolution III.5
designs). However, for 9 factors the smallest regular resolution IV fraction is the 29�4, which
has 32 runs. This is a large number of runs. Since a resolution IV design must have at least
2k runs, an 18-run optimal design could be a good competitor to the regular design. Table 9.37
presents the 18-run design constructed using the D-optimality criterion.

The alias relationships (for only the main effects and two-factor interactions) for the
design in Table 9.37 are

[A] � A, [B] � B, [C] � C, [D] � D, [E] � E, [F] � F, [G] � G, [H] � H, [J] � J
[AB] � AB � 0.429 BC � 0.429 BD � 0.429 BE � 0.429 BF � 0.143 BG � 0.429 BH

� 0.429 BJ � 0.571 CG � 0.571 CH � 0.571 DG � 0.571 DJ � 0.571 EF
� 0.571 EG � 0.571 FG � 0.571 GH � 0.571 GJ



[AC] � AC � 0.143 BC � 0.143 BD � 0.143 BE � 0.143 BF � 0.286 BG � 0.857 BH
� 0.143 BJ � 0.143 CG � 0.143 CH � DF � 0.143 DG � 0.143 DJ � 0.143 EF
� 0.143 EG � EJ � 0.143 FG � 0.857 GH � 0.143 GJ

[AD] � AD � 0.143 BC � 0.143 BD � 0.143 BE � 0.143 BF � 0.286 BG � 0.143 BH
� 0.857 BJ � CF � 0.143 CG � 0.143 CH � 0.143 DG � 0.143 DJ � 0.143 EF
� 0.143 EG � EH � 0.143 FG � 0.143 GH � 0.857 GJ

[AE] � AE � 0.143 BC � 0.143 BD � 0.143 BE � 0.857 BF � 0.286 BG � 0.143 BH
� 0.143 BJ � 0.143 CG � 0.143 CH � CJ � 0.143 DG � DH � 0.143 DJ
� 0.143 EF � 0.143 EG � 0.857 FG � 0.143 GH � 0.143 GJ

[AF] � AF � 0.143 BC � 0.143 BD � 0.857 BE � 0.143 BF � 0.286 BG � 0.143 BH
� 0.143 BJ � CD � 0.143 CG � 0.143 CH � 0.143 DG � 0.143 DJ � 0.143 EF
� 0.857 EG � 0.143 FG � 0.143 GH � 0.143 GJ � HJ

[AG] � AG � 0.571 BC � 0.571 BD � 0.571 BE � 0.571 BF � 0.143 BG � 0.571 BH
� 0.571 BJ � 0.429 CG � 0.571 CH � 0.429 DG � 0.571 DJ � 0.571 EF
� 0.429 EG � 0.429 FG � 0.429 GH � 0.429 GJ

[AH] � AH � 0.857 BC � 0.143 BD � 0.143 BE � 0.143 BF � 0.286 BG � 0.143 BH
� 0.143 BJ � 0.857 CG � 0.143 CH � DE � 0.143 DG � 0.143 DJ � 0.143 EF
� 0.143 EG � 0.143 FG � FJ � 0.143 GH � 0.143 GJ

[AJ] � AJ � 0.143 BC � 0.857 BD � 0.143 BE � 0.143 BF � 0.286 BG � 0.143 BH
� 0.143 BJ � CE � 0.143 CG � 0.143 CH � 0.857 DG � 0.143 DJ � 0.143 EF
� 0.143 EG � 0.143 FG � FH � 0.143 GH � 0.143 GJ

We see that, as in any resolution IV, design the main effects are estimated free of any two-
factor interactions, and the two-factor interactions are aliased with each other. However, note that
there is partial aliasing of the two-factor interaction effects (for example, BC appears in more than
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■ TA B L E  9 . 3 7
An 18-run Minimum Run Resolution IV Design in k � 9 Factors

A B C D E F G H J
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one alias chain and the constants in the alias chains are not all either zero or ). Therefore, this
is a nonregular design. The two-factor interaction alias relationships in the 18-run design are
much more complicated than they are in the standard 32-run 29�4 design. Because of partial 
aliasing of the two-factor interactions it may be possible to estimate some of these effects.
Furthermore, the standard errors of the main effects and interaction regression model coefficients
are 0.24� while in the standard 32-run 29�4 design they are 0.18�, so the 18-run design does not
provide as much precision in parameter estimation as the standard 32-run design. Finally, the
standard 29�4 design is an orthogonal design whereas the 18-run design is not. This results in 
correlation between the model coefficients and contributes to the inflation of the standard errors
of the model coefficients for the 18-run design.

It is also of interest to construct minimum-run resolution IV designs as alternatives to
the standard resolution IV designs for k � 6 or 7 factors. The 12-run resolution IV design
for six factors is shown in Table 9.38. The alias relationships for this design (ignoring three-
factor and higher order interactions) are

[A] � A, [B] � B, [C] � C, [D] � D, [E] � E, [F] � F

[AB] � AB � 0.2 BC � 0.6 BD � 0.2 BE � 0.6 BF � 0.4 CD � 0.8 CE � 0.4 CF � 0.4
DE � 0.4 DF � 0.4 EF

[AC] � AC � 0.2 BC � 0.4 BD � 0.8 BE � 0.4 BF � 0.6 CD � 0.2 CE � 0.6 CF � 0.4
DE � 0.4 DF � 0.4 EF

[AD] � AD � 0.4 BC � 0.2 BD � 0.4 BE � 0.8 BF � 0.2 CD � 0.4 CE � 0.8 CF � 0.2
DE � 0.2 DF � 0.8 EF

[AE] � AE � 0.8 BC � 0.4 BD � 0.2 BE � 0.4 BF � 0.4 CD � 0.2 CE � 0.4 CF � 0.6
DE � 0.4 DF � 0.6 EF

[AF] � AF � 0.4 BC � 0.8 BD � 0.4 BE � 0.2 BF � 0.8 CD � 0.4 CE � 0.2 CF � 0.8
DE � 0.2 DF � 0.2 EF

Once again, notice that the price an experimenter is paying to reduce the number of runs
from 16 to 12 is to introduce more complication into the alias relationships for the two-
factor interactions. There is also a loss in the precision of estimation for model coefficients in
comparison to the standard design. However, because we do not have complete confounding
between two-factor interactions it may be possible to estimate some of these effects.


1
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■ TA B L E  9 . 3 8
A 12-run Resolution IV Design in k � 6 Factors

A B C D E F

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �



438 Chapter 9 ■ Additional Design and Analysis Topics for Factorial and Fractional Factorial Designs

These minimum-run resolution IV designs are additional examples of nonregular frac-
tional factorial designs. Design-Expert contains a selection of these designs for 5 � k � 50
factors. Similar design can be created using the “custom designer” feature in JMP. Generally,
these will be nonregular designs and there is no guarantee that they will be orthogonal. Like
the no-confounding designs, these designs can be very useful alternatives to the standard 
fractional factorial designs in screening problems where main effects are of primary interest
but two-factor interactions cannot be completely ignored. If two-factor interactions prove to
be important, in many cases these interactions can be estimated by using stepwise regression
methods. In other cases follow-on experimentation will be necessary to determine which
interaction effects are important.

Small resolution V designs can be constructed similarly. Table 9.39 contains a nonreg-
ular two-level fraction for k � 6 factors and N � 22 runs. Since the two-factor interaction
model has 22 parameters, this is a minimum-run design. This design supports estimation of
all main effect and two-factor interactions, just as the will, but with 10 fewer runs.
However, the design in Table 9.39 is not orthogonal, and this impacts the precision of estima-
tion for effects and regression coefficients. The standard error of the regression model coeffi-
cients ranges from 0.26� to 0.29�, while in the , the corresponding standard errors are
0.18�.

As a final example, Table 9.40 presents a nonregular two-level fraction for k � 8 fac-
tors in N � 38 runs. This design supports estimation of all main effect and two-factor inter-
actions, just as the will, but with 26 fewer runs. However, the nonorthogonality of the28�2

V

26�1
VI

26�1
VI

2k�p
IV

■ TA B L E  9 . 3 9
A Resolution V Two-Level Fraction in k � 6 Factors

Run A B C D E F

1 � � � � � �

2 � � � � � �

3 � � � � � �

4 � � � � � �

5 � � � � � �

6 � � � � � �

7 � � � � � �

8 � � � � � �

9 � � � � � �

10 � � � � � �

11 � � � � � �

12 � � � � � �

13 � � � � � �

14 � � � � � �

15 � � � � � �

16 � � � � � �

17 � � � � � �

18 � � � � � �

19 � � � � � �

20 � � � � � �

21 � � � � � �

22 � � � � � �
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design has some modest impact on the precision of estimation for effects and regression coef-
ficients. For the design in Table 9.40, the standard error of the regression model coefficients
ranges from 0.18� to 0.26�, while in the , the corresponding standard error is 0.13�.

Despite the loss in precision of estimation, these nonregular fractions can be of value
when experimental resources are scarce. Design-Expert contains a selection of these designs
for 6 � k � 50 factors. These designs were constructed using a D-optimal design construc-
tion tool. The custom designer capability in JMP can also be very useful in constructing small
resolution V fractions.

28�2
V

■ TA B L E  9 . 4 0
A Resolution V Two-Level Fraction in k � 8 Factors

Run A B C D E F G H

1 � � � � � � � �
2 � � � � � � � �
3 � � � � � � � �
4 � � � � � � � �
5 � � � � � � � �
6 � � � � � � � �
7 � � � � � � � �
8 � � � � � � � �
9 � � � � � � � �

10 � � � � � � � �
11 � � � � � � � �
12 � � � � � � � �
13 � � � � � � � �
14 � � � � � � � �
15 � � � � � � � �
16 � � � � � � � �
17 � � � � � � � �
18 � � � � � � � �
19 � � � � � � � �
20 � � � � � � � �
21 � � � � � � � �
22 � � � � � � � �
23 � � � � � � � �
24 � � � � � � � �
25 � � � � � � � �
26 � � � � � � � �
27 � � � � � � � �
28 � � � � � � � �
29 � � � � � � � �
30 � � � � � � � �
31 � � � � � � � �
32 � � � � � � � �
33 � � � � � � � �
34 � � � � � � � �
35 � � � � � � � �
36 � � � � � � � �
37 � � � � � � � �
38 � � � � � � � �



The optimal design approach is also an excellent way to create mixed-level designs. The
D-optimality criterion discussed earlier usually produces good designs. The custom design tool
in JMP is an excellent way to construct D-optimal mixed-level designs. For example, suppose
that we have two three-level factors (categorical) and a single quantitative two-level factor. We
want to estimate all main effects and all two-factor interactions. The JMP custom designer rec-
ommends a 24-run design. The design is shown in Table 9.41. This design is nearly orthogonal;
notice that each level of the three-level factors A and B appears eight times, but the design is
not balanced with respect to these two factors. Also, while there are exactly 12 runs with fac-
tor C at the low and high levels, the levels of C are not exactly balanced against the levels of
factors A and B. Table 9.42 shows the relative variances (that is, variances divided by �2) of the
individual single-degree-of-freedom model components from this design. Notice that all of the
relative variances are almost identical, illustrating the near-orthogonality of the design. In an
orthogonal design, all of the relative variances would be equal.

It is possible to construct a smaller design for this problem. The minimum number of
runs for this situation is N � 14, and the D-optimal design, constructed using the JMP cus-
tom design tool, is shown in Table 9.43. This design is not orthogonal, but it does permit
unique estimates of all main effects and two-factor interactions. The relative variances of the
model parameters, shown in Table 9.44, are both larger than they were in the 24-run design
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■ TA B L E  9 . 4 1
A 24-Run D-optimal Design for Two Three-level Factors
and One Two-level Factor

Run Factor A Factor B Factor C

1 L1 L1 �1

2 L1 L1 �1

3 L1 L1 1

4 L1 L2 �1

5 L1 L2 1

6 L1 L3 �1

7 L1 L3 1

8 L1 L3 1

9 L2 L1 �1

10 L2 L1 �1

11 L2 L1 1

12 L2 L2 �1

13 L2 L2 �1

14 L2 L2 1

15 L2 L3 �1

16 L2 L3 1

17 L3 L1 �1

18 L3 L1 1

19 L3 L2 �1

20 L3 L2 1

21 L3 L2 1

22 L3 L3 �1

23 L3 L3 1

24 L3 L3 1
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■ TA B L E  9 . 4 2
Relative Variances for the Individual Model Effects
for the 24-Run D-optimal Design in Table 9.41

Effect Relative Variance

Intercept 0.046

A1 0.045

A2 0.045

B1 0.046

B2 0.044

C 0.045

A*B1 0.044

A*B2 0.047

A*B3 0.046

A*B4 0.044

A*C1 0.046

A*C2 0.046

B*C1 0.046

B*C2 0.046

■ TA B L E  9 . 4 3
A 14-Run D-optimal Design for Two Three-level Factors
and One Two-level Factor

Run Factor A Factor B Factor C

1 L1 L3 �1

2 L3 L2 1

3 L1 L1 1

4 L1 L2 1

5 L3 L3 1

6 L2 L3 1

7 L1 L1 �1

8 L3 L1 1

9 L2 L3 �1

10 L3 L3 �1

11 L2 L2 1

12 L2 L1 1

13 L1 L2 �1

14 L3 L1 �1

(this should not be a surprise—a larger sample size gives smaller variances of the estimates)
and more uneven, indicating that this design is much further from orthogonal than was the 
24-run design.

As a final illustration of the power and flexibility of optimal designs for mixed-level
fractional factorials, suppose that an experimenter has five factors: A is categorical with five
levels, B is categorical with four levels, C is categorical with three levels, and B and C are
continuous with two levels. The experimenter is interested in estimating all of the main effects
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■ TA B L E  9 . 4 4
Relative Variances for the Individual Model Effects
for the 14-Run D-optimal Design in Table 9.43

Effect Relative Variance

Intercept 0.340

A1 0.093

A2 0.179

B1 0.093

B2 0.179

C 0.167

A*B1 0.111

A*B2 0.185

A*B3 0.185

A*B4 0.136

A*C1 0.167

A*C2 0.278

B*C1 0.167

B*C2 0.278

■ TA B L E  9 . 4 5
A 15-Run D-optimal Mixed-level Design for Five Factors

Run Factor A Factor B Factor C Factor D Factor E

1 L4 L2 L1 1 1
2 L1 L1 L3 1 1
3 L5 L4 L2 1 1
4 L3 L3 L2 1 �1
5 L4 L1 L2 �1 �1
6 L2 L4 L3 1 �1
7 L1 L4 L1 �1 �1
8 L5 L2 L3 �1 �1
9 L3 L2 L3 1 �1

10 L3 L1 L1 �1 1
11 L2 L2 L2 �1 1
12 L4 L3 L3 �1 1
13 L5 L3 L1 1 �1
14 L1 L2 L2 1 �1
15 L2 L1 L1 1 �1

of these factors. The full factorial has N � 5 � 4 � 3 � 2 � 2 � 240 runs and is an orthogonal
design. However, it is not necessary to use 240 runs to estimate the main effects, as only 11
degrees of freedom are required. A design with 120 runs would be a one-half fraction. This
design is almost orthogonal, but probably too large for practical use. Both the one-quarter and
one-eighth fractions with 60 and 30 runs, respectively, are nearly orthogonal but still too
large. Let’s see what can be done with a 15-run design.

Table 9.45 shows the 15-run D-optimal design constructed using the optimal design tool
in JMP. This design is not perfectly balanced; this isn’t possible with 15 runs and a four-level
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■ TA B L E  9 . 4 6
Relative Variances for the Individual Model Effects
for the 15-Run D-optimal Design in Table 9.16

Effect Relative Variance

Intercept 0.077
A1 0.075
A2 0.069
A3 0.078
A4 0.084
B1 0.087
B2 0.063
B3 0.100
C1 0.070
C2 0.068
D 0.077
E 0.077

factor. However, it is nearly orthogonal. To see this, consider the relative variances of the model
coefficients shown in Table 9.46, and notice that all of the relative variances are very similar.

9.6.3 Extensions of the Optimal Design Approach

We have discussed the use of design optimality for relatively simple situations. There are sev-
eral extensions of these ideas that practitioners should be aware of.

A criticism often leveled at the optimal design approach is that the final design depends
on the model chosen by the experimenter. DuMouchel and Jones (1994) introduce a Bayesian
modification of the D-optimal design that affords protection to experimenters against terms that
are not in the assumed model. They assume that the model contains p primary terms but they
want to obtain protection against q potential model terms. These potential terms are typically of
higher order than those in the primary model. Their Bayesian D-optimal designs have N runs,
where p � N � p � q. These designs allow some of the potential model terms to be fit if nec-
essary. Jones, Lin, and Nachtsheim (2008) use the Bayesian D-optimality approach to construct
supersaturated fractional factorial designs. Andere-Rendon, Montgomery, and Rollier (1997)
use this approach to design mixture experiments in the presence of model uncertainty. Mixture
problems are introduced in Chapter 11.

We noted earlier that the G-optimal design criterion makes use of an objective function
that involves minimizes the maximum value of the prediction variance in the design region.
Constructing G-optimal designs has historically proved difficult because two optimization prob-
lems must be solved—finding the best coordinate value to change in the current design and
determining the maximum value of the scaled prediction variance for each new design that is
evaluated. Rodriguez et al. (2010) describe a commercially viable algorithm for constructing
G-optimal designs and compare the performance of several G-optimal designs to their I-optimal
and D-optimal counterparts.

It is also possible to construct optimal designs for nonlinear models. In linear models the
optimal design problem is relatively simple because the model covariance matrix X�X does not
contain any of the unknown parameters . However, if the model is nonlinear, this is not the
case. To find a D-optimal design for a nonlinear model, we must find design points that max-
imize the determinant of D�D, where D is a matrix of partial derivatives of the nonlinear model
expectation function with respect to each model parameter evaluated at each design point. This

�



matrix is a function of the unknown parameters, so finding a D-optimal design would require
knowledge of the model parameters. One possible approach to this problem is to assume 
values for the unknown ��s. This would produce a conditional D-optimal design.   

An alternative is to use a Bayesian approach employing a prior distribution f (�) to spec-
ify the uncertainty in the p parameter values. This leads to a design criterion 

(9.9)

This is the expectation of the logarithm of the information matrix. This criterion was proposed
by Chaloner and Larntz (1989) for the single-factor logistic regression model. The difficulty in
using Equation 9.9 as a design criterion is that the p-dimensional integral must be evaluated a
very large number of times. Gotwalt, Jones, and Steinberg (2009) have recently developed a
clever quadrature scheme that greatly reduces the computing time to evaluate the integral in
Equation 9.9 with excellent accuracy. This procedure is implemented in the nonlinear design
routine of JMP, and allows computationally efficient construction of D-optimal designs for
nonlinear models. Gotwalt et al. (2009) present examples of the use of this technique. Also see
Johnson and Montgomery (2010).

A very important type of nonlinear model that occurs frequently in industrial experimen-
tation is the generalized linear model. This is a family of models that unify linear and nonlin-
ear regression models with response distributions that are a member of the exponential family
(which includes the binomial, Poisson, normal, exponential, and gamma distributions).
Important special cases include logistic regression, Poisson regression, and regression with
exponential responses. Often an experimenter will know in advance that the response distribu-
tion is binomial (for example). Then a design for a logistic regression model would be appro-
priate. The method described in Gotwalt et al. (2009) can be used to construct D-optimal
designs for this experiment. For examples of designed experiments for generalized linear
models, also see Johnson and Montgomery (2009) and Myers et al. (2010).

9.7 Problems

�(D) � � log � D�D � f (�)d�

444 Chapter 9 ■ Additional Design and Analysis Topics for Factorial and Fractional Factorial Designs

9.1. The effects of developer strength (A) and develop-
ment time (B) on the density of photographic plate film are
being studied. Three strengths and three times are used, and
four replicates of a 32 factorial experiment are run. The data
from this experiment follow. Analyze the data using the stan-
dard methods for factorial experiments.

Development Time (minutes)
Developer
Strength 10 14 18

1 0 2 1 3 2 5

5 4 4 2 4 6

2 4 6 6 8 9 10

7 5 7 7 8 5

3 7 10 10 10 12 10

8 7 8 7 9 8

9.2. Compute the I and J components of the two-factor
interaction in Problem 9.1.

9.3. An experiment was performed to study the effect of
three different types of 32-ounce bottles (A) and three different

shelf types (B)—smooth permanent shelves, end-aisle displays
with grilled shelves, and beverage coolers—on the time it takes
to stock ten 12-bottle cases on the shelves. Three workers (fac-
tor C) were employed in the experiment, and two replicates of a
33 factorial design were run. The observed time data are shown
in the following table. Analyze the data and draw conclusions.

Replicate I

Per- End
Worker Bottle Type manent Aisle Cooler

Plastic 3.45 4.14 5.80

1 28-mm glass 4.07 4.38 5.48

38-mm glass 4.20 4.26 5.67

Plastic 4.80 5.22 6.21

2 28-mm glass 4.52 5.15 6.25

38-mm glass 4.96 5.17 6.03

Plastic 4.08 3.94 5.14

3 28-mm glass 4.30 4.53 4.99

38-mm glass 4.17 4.86 4.85



Replicate II

Per- End
manent Aisle Cooler

Plastic 3.36 4.19 5.23

1 28-mm glass 3.52 4.26 4.85

38-mm glass 3.68 4.37 5.58

Plastic 4.40 4.70 5.88

2 28-mm glass 4.44 4.65 6.20

38-mm glass 4.39 4.75 6.38

Plastic 3.65 4.08 4.49

3 28-mm glass 4.04 4.08 4.59

38-mm glass 3.88 4.48 4.90

9.4. A medical researcher is studying the effect of lido-
caine on the enzyme level in the heart muscle of beagle dogs.
Three different commercial brands of lidocaine (A), three
dosage levels (B), and three dogs (C) are used in the experiment,
and two replicates of a 33 factorial design are run. The observed
enzyme levels follow. Analyze the data from this experiment.

Replicate I

Dog
Lidocaine Dosage 
Brand Strength 1 2 3

1 96 84 85

1 2 94 99 98

3 101 106 98

1 85 84 86

2 2 95 98 97

3 108 114 109

1 84 83 81

3 2 95 97 93

3 105 100 106

Replicate II

Dog

1 2 3

1 84 85 86
1 2 95 97 90

3 105 104 103

1 80 82 84

2 2 93 99 95

3 110 102 100

1 83 80 79

3 2 92 96 93

3 102 111 108
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9.5. Compute the I and J components of the two-factor
interactions for Problem 9.4.

9.6. An experiment is run in a chemical process using a 32

factorial design. The design factors are temperature and pressure,
and the response variable is yield. The data that result from this
experiment are as follows.

Pressure, psig
Temper-
ature, °C 100 120 140

80 47.58, 48.77 64.97, 69.22 80.92, 72.60

90 51.86, 82.43 88.47, 84.23 93.95, 88.54

100 71.18, 92.77 96.57, 88.72 76.58, 83.04

(a) Analyze the data from this experiment by conducting an
analysis of variance. What conclusions can you draw?

(b) Graphically analyze the residuals. Are there any
concerns about underlying assumptions or model
adequacy?

(c) Verify that if we let the low, medium, and high levels
of both factors in this design take on the levels �1, 0,
and �1, then a least squares fit to a second-order
model for yield is

(d) Confirm that the model in part (c) can be written in
terms of the natural variables temperature (T ) and
pressure (P) as

(e) Construct a contour plot for yield as a function of pres-
sure and temperature. Based on examination of this
plot, where would you recommend running this
process?

9.7.(a) Confound a 33 design in three blocks using the ABC2

component of the three-factor interaction. Compare
your results with the design in Figure 9.7.

(b) Confound a 33 design in three blocks using the AB2C
component of the three-factor interaction. Compare
your results with the design in Figure 9.7.

(c) Confound a 33 design in three blocks using the ABC
component of the three-factor interaction. Compare
your results with the design in Figure 9.7.

(d) After looking at the designs in parts (a), (b), and (c)
and Figure 9.7, what conclusions can you draw?

9.8. Confound a 34 design in three blocks using the
AB2CD component of the four-factor interaction.

9.9. Consider the data from the first replicate of Problem
9.3. Assuming that not all 27 observations could be run on
the same day, set up a design for conducting the experiment
over three days with AB2C confounded with blocks. Analyze
the data.

�  0.072T 2 �  0.0196P 2 �  0.0384TP

ŷ � �1335.63 � 18.56T � 8.59P

� 7.17x 2
1 � 7.84x 2

2 � 7.69x1x2

ŷ � 86.81 � 10.4x1 � 8.42x2



9.10. Outline the analysis of variance table for the 34 design
in nine blocks. Is this a practical design?

9.11. Consider the data in Problem 9.3. If ABC is confound-
ed in replicate I and ABC2 is confounded in replicate II, per-
form the analysis of variance.

9.12. Consider the data from replicate I of Problem 9.3.
Suppose that only a one-third fraction of this design with I �
ABC is run. Construct the design, determine the alias
structure, and analyze the data.

9.13. From examining Figure 9.9, what type of design
would remain if after completing the first nine runs, one of the
three factors could be dropped?

9.14. Construct a design with I � ABCD. Write out the
alias structure for this design.

9.15. Verify that the design in Problem 9.14 is a resolution
IV design.

9.16. Construct a 35�2 design with I � ABC and I � CDE.
Write out the alias structure for this design. What is the reso-
lution of this design?

9.17. Construct a 39�6 design and verify that it is a resolu-
tion III design.

9.18. Construct a 4 � 23 design confounded in two blocks
of 16 observations each. Outline the analysis of variance for
this design.

9.19. Outline the analysis of variance table for a 2232 facto-
rial design. Discuss how this design may be confounded in
blocks.

9.20. Starting with a 16-run 24 design, show how two three-
level factors can be incorporated in this experiment. How
many two-level factors can be included if we want some infor-
mation on two-factor interactions?

9.21. Starting with a 16-run 24 design, show how one 
three-level factor and three two-level factors can be 
accommodated and still allow the estimation of two-factor
interactions.

9.22. In Problem 8.30, you met Harry Peterson-Nedry, a
friend of the author who has a winery and vineyard in
Newberg, Oregon. That problem described the application
of two-level fractional factorial designs to their 1985 
Pinot Noir product. In 1987, he wanted to conduct another
Pinot Noir experiment. The variables for this experiment
were

Variable Levels

Clone of Pinot Noir Wadenswil, Pommard

Berry size Small, large

Fermentation temperature 80°, 85°, 90/80°, and 90°F

Whole berry None, 10%

Maceration time 10 and 21 days

Yeast type Assmanhau, Champagne

Oak type Tronçais, Allier

34�1
IV
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Harry decided to use a 16-run two-level fractional fac-
torial design, treating the four levels of fermentation
temperature as two two-level variables. As he has done
previously, Harry used the rankings from a taste-test
panel as the response variable. The design and the
resulting average ranks are as follows.

Berry Ferm. Whole Macer. Yeast Oak Average
Run Clone Size Temp. Berry Time Type Type Rank

1 � � � � � � � � 4

2 � � � � � � � � 10

3 � � � � � � � � 6

4 � � � � � � � � 9

5 � � � � � � � � 11

6 � � � � � � � � 1

7 � � � � � � � � 15

8 � � � � � � � � 5

9 � � � � � � � � 12

10 � � � � � � � � 2

11 � � � � � � � � 16

12 � � � � � � � � 3

13 � � � � � � � � 8

14 � � � � � � � � 14

15 � � � � � � � � 7

16 � � � � � � � � 13

(a) Describe the aliasing in this design.

(b) Analyze the data and draw conclusions.

9.23. An article by W. D. Baten in the 1956 volume of
Industrial Quality Control described an experiment to study the
effect of three factors on the lengths of steel bars. Each bar was
subjected to one of two heat treatment processes and was cut on
one of four machines at one of three times during the day (8 A.M.,
11 A.M., or 3 P.M.). The coded length data are as follows:

Heat
Time Treat-
of ment

Machine

Day Process 1 2 3 4

1 6 9 7 9 1 2 6 6

1 3 5 5 0 4 7 3

8 A.M. 2 4 6 6 5 �1 0 4 5

0 1 3 4 0 1 5 4

1 6 3 8 7 3 2 7 9

1 �1 4 8 1 0 11 6

11 A.M. 2 3 1 6 4 2 0 9 4

1 �2 1 3 �1 1 6 3

1 5 4 10 11 �1 2 10 5

9 6 6 4 6 1 4 8

3 P.M. 2 6 0 8 7 0 �2 4 3

3 7 10 0 4 �4 7 0



(a) Analyze the data from this experiment, assuming that
the four observations in each cell are replicates.

(b) Analyze the residuals from this experiment. Is there
any indication that there is an outlier in one cell? If
you find an outlier, remove it and repeat the analysis
from part (a). What are your conclusions?

(c) Suppose that the observations in the cells are the
lengths (coded) of bars processed together in heat
treatment and then cut sequentially (that is, in order)
on the four machines. Analyze the data to determine
the effects of the three factors on mean length.

(d) Calculate the log variance of the observations in each
cell. Analyze this response. What conclusions can you
draw?

(e) Suppose the time at which a bar is cut really cannot be
controlled during routine production. Analyze the
average length and the log variance of the length for
each of the 12 bars cut at each machine/heat treatment
process combination. What conclusions can you draw?

9.7 Problems 447

9.24. Reconsider the experiment in Problem 9.23. Suppose
that it was necessary to estimate all main effects and two-factor
interactions, but the full factorial with 24 runs (not counting repli-
cation) was too expensive. Recommend an alternative design.

9.25. Suppose there are four three-level categorical factor
and a single two-level continuous factor. What is the minimum
number of runs required to estimate all main effects and two-
factor interactions? Construct this design.

9.26. Reconsider the experiment in Problem 9.25.
Construct a design with N � 48 runs and compare it to the
design you constructed  in Problem 9.25.

9.27. Reconsider the experiment in Problem 9.25. Suppose
that you are only interested in main effects. Construct a design
with N � 12 runs for this experiment.

9.28. An article in the Journal of Chemical Technology and
Biotechnology (“A Study of Antifungal Antibiotic Production
by Thermomonospora sp MTCC 3340 Using Full Factorial
Design,” 2003, Vol. 78, pp. 605–610) investigated three inde-
pendent variables—concentration of carbon source (glucose),

Percent carbon Percent nitrogen Temperature Activity against 
Run no (glucose) (soybean meal) (�C) C albicansa

1 2 0.5 25.84

2 2 1.0 51.86

3 2 3.0 32.59

4 5 0.5 20.48

5 5 1.0 25 25.84

6 5 3.0 12.87

7 7.5 0.5 20.48

8 7.5 1.0 25.84

9 7.5 3.0 10.20

10 2 0.5 51.86

11 2 1.0 131.33

12 2 3.0 41.11

13 5 0.5 41.11

14 5 1.0 30 104.11

15 5 3.0 32.59

16 7.5 0.5 65.42

17 7.5 1.0 82.53

18 7.5 3.0 51.86

19 2 0.5 41.11

20 2 1.0 104.11

21 2 3.0 32.59

22 5 0.5 32.59

23 5 1.0 35 82.53

24 5 3.0 25.84

25 7.5 0.5 51.86

26 7.5 1.0 65.42

27 7.5 3.0 41.11
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9.32. Suppose that you must design an experiment to
investigate seven continuous factors. Running all factors at
two levels is thought to be appropriate but that only the two-
factor interactions involving factor A are of interest.

(a) How many runs are required to estimate all of the rel-
evant effects?

(b) Find a minimum-run D-optimal design that is suitable
for this problem.

9.33. Suppose that you must design an experiment to inves-
tigate six continuous factors. It is thought that running all 
factors at two levels is adequate but that only the AB, AC, and
AD two-factor interactions are of interest.  

(a) How many runs are required to estimate all of the
effects that are of interest?

(b) Find a minimum-run D-optimal design that is suitable
for this problem.

9.34. Suppose that you must design an experiment with six
categorical factors. Factor A has six levels, factor B has five
levels, factor C has five levels, factor D has three levels, and
factors E and F have two levels. You are interested in main
effects and two-factor interactions.

(a) How many runs are required to estimate all of the
effects that are of interest?

(b) Find a D-optimal design that is suitable for this problem.

(c) Suppose that the experimenter decides that this design
requires too many runs. What strategy would you 
recommend?

concentration of nitrogen source (soybean meal), and temper-
ature of incubation for their effects on the production of anti-
fungal antibiotic by the isolate Thermomonospora sp MTCC
3340. A 33 factorial design was conducted and the results are
shown in the table on the previous page.

(a) Analyze the data from this experiment.

(b) Fit a second-order model to the activity response.
Construct contour plots and response surface plots to
assist in interpreting the results of this experiment.

(c) What operating conditions would you recommend to
optimize this process?

9.29. Construct a minimum-run D-optimal resolution IV
design for 10 factors. Find the alias relationships. What
approach would you recommend for analyzing the data from
this experiment?

9.30. Construct a minimum-run D-optimal resolution IV
design for 12 factors. Find the alias relationships. What
approach would you recommend for analyzing the data from
this experiment?

9.31. Suppose that you must design an experiment to inves-
tigate nine continuous factors. It is thought that running all
factors at two levels is adequate but that all two-factor inter-
actions are of interest.

(a) How many runs are required to estimate all main
effects and two-factor interactions?

(b) Find a minimum-run D-optimal design that is suitable
for this problem.
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10.1 Introduction

In many problems two or more variables are related, and it is of interest to model and explore
this relationship. For example, in a chemical process the yield of product is related to the
operating temperature. The chemical engineer may want to build a model relating yield to
temperature and then use the model for prediction, process optimization, or process control.

In general, suppose that there is a single dependent variable or response y that depends
on k independent or regressor variables, for example, x1, x2, . . . , xk. The relationship
between these variables is characterized by a mathematical model called a regression model.
The regression model is fit to a set of sample data. In some instances, the experimenter knows
the exact form of the true functional relationship between y and x1, x2, . . . , xk, say 
y � �(x1, x2, . . . , xk). However, in most cases, the true functional relationship is unknown, and
the experimenter chooses an appropriate function to approximate �. Low-order polynomial
models are widely used as approximating functions.

The supplemental material is on the textbook website www.wiley.com/college/montgomery.
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There is a strong interplay between design of experiments and regression analysis.
Throughout this book we have emphasized the importance of expressing the results of an experi-
ment quantitatively, in terms of an empirical model, to facilitate understanding, interpretation,
and implementation. Regression models are the basis for this. On numerous occasions we
have shown the regression model that represented the results of an experiment. In this chapter,
we present some aspects of fitting these models. More complete presentations of regression
are available in Montgomery, Peck, and Vining (2006) and Myers (1990).

Regression methods are frequently used to analyze data from unplanned experiments,
such as might arise from observation of uncontrolled phenomena or historical records.
Regression methods are also very useful in designed experiments where something has “gone
wrong.” We will illustrate some of these situations in this chapter.

10.2 Linear Regression Models

We will focus on fitting linear regression models. To illustrate, suppose that we wish to develop
an empirical model relating the viscosity of a polymer to the temperature and the catalyst feed
rate. A model that might describe this relationship is

(10.1)

where y represents the viscosity, x1 represents the temperature, and x2 represents the cata-
lyst feed rate. This is a multiple linear regression model with two independent variables.
We often call the independent variables predictor variables or regressors. The term linear
is used because Equation 10.1 is a linear function of the unknown parameters �0, �1, and �2.
The model describes a plane in the two-dimensional x1, x2 space. The parameter �0 defines
the intercept of the plane. We sometimes call �1 and �2 partial regression coefficients
because �1 measures the expected change in y per unit change in x1 when x2 is held 
constant and �2 measures the expected change in y per unit change in x2 when x1 is held
constant.

In general, the response variable y may be related to k regressor variables. The model

(10.2)

is called a multiple linear regression model with k regressor variables. The parameters �j,
j � 0, 1, . . . , k, are called the regression coefficients. This model describes a hyperplane in
the k-dimensional space of the regressor variables {xj}. The parameter �j represents the expect-
ed change in response y per unit change in xj when all the remaining independent variables 
xi (i � j) are held constant.

Models that are more complex in appearance than Equation 10.2 may often still be ana-
lyzed by multiple linear regression techniques. For example, consider adding an interaction
term to the first-order model in two variables, say

(10.3)

If we let x3 � x1x2 and �3 � �12, then Equation 10.3 can be written as

(10.4)

which is a standard multiple linear regression model with three regressors. Recall that we
presented empirical models like Equations 10.2 and 10.4 in several examples in Chapters 6, 7,
and 8 to quantitatively express the results of a two-level factorial design. As another example,
consider the second-order response surface model in two variables:

(10.5)y � �0 � �1x1 � �2xx � �11x
2
1 � �22x

2
2 � �12x1x2 � �

y � �0 � �1x1 � �2x2 � �3x3 � �

y � �0 � �1x1 � �2x2 � �12x1x2 � �

y � �0 � �1x1 � �2x2 � Á � �kxk � �

y � �0 � �1x1 � �2x2 � �
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If we let x3 � , x4 � , x5 � x1x2, �3 � �11, �4 � �22, and �5 � �12, then this
becomes

(10.6)

which is a linear regression model. We have also seen this model in examples earlier in the
text. In general, any regression model that is linear in the parameters (the �’s) is a linear
regression model, regardless of the shape of the response surface that it generates.

In this chapter we will summarize methods for estimating the parameters in multiple
linear regression models. This is often called model fitting. We have used some of these
results in previous chapters, but here we give the developments. We will also discuss meth-
ods for testing hypotheses and constructing confidence intervals for these models as well as
for checking the adequacy of the model fit. Our focus is primarily on those aspects of regres-
sion analysis useful in designed experiments. For more complete presentations of regression,
refer to Montgomery, Peck, and Vining (2006) and Myers (1990).

10.3 Estimation of the Parameters in Linear Regression Models

The method of least squares is typically used to estimate the regression coefficients in a mul-
tiple linear regression model. Suppose that n 
 k observations on the response variable are
available, say y1, y2, . . . , yn. Along with each observed response yi, we will have an observa-
tion on each regressor variable and let xij denote the ith observation or level of variable xj. The
data will appear as in Table 10.1. We assume that the error term � in the model has E(�) � 0
and V(�) � �2 and that the {�i} are uncorrelated random variables.

We may write the model equation (Equation 10.2) in terms of the observations in
Table 10.1 as

(10.7)

The method of least squares chooses the �’s in Equation 10.7 so that the sum of the squares
of the errors, �i, is minimized. The least squares function is

(10.8)

The function L is to be minimized with respect to �0, �1, . . . , �k. The least squares estima-
tors, say , must satisfy

(10.9a)
�L
��0

�
�̂0, �̂1, . . . , �̂k

� �2 �
n

i�1
�yi � �̂0 � �

k

j�1
�̂j xij� � 0

�̂0, �̂1, . . . , �̂k

L � �
n

i�1
�2

i � �
n

i�1
�yi � �0 � �

k

j�1
�j xij�2

� �0 � �
k

j�1
�j xij � �i  i � 1, 2, . . . , n

yi � �0 � �1xi1 � �2xi2 � Á � �k xik � �i

y � �0 � �1x1 � �2x2 � �3x3 � �4x4 � �5x5 � �

x2
2x2

1

■ TA B L E  1 0 . 1
Data for Multiple Linear Regression

y x1 x2 ... xk

y1 x11 x12 ... x1k

y2 x21 x22 ... x2k

yn xn1 xn2 ... xnk

oooo
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and

(10.9b)

Simplifying Equation 10.9, we obtain

(10.10)

These equations are called the least squares normal equations. Note that there are p � k � 1
normal equations, one for each of the unknown regression coefficients. The solution to the nor-
mal equations will be the least squares estimators of the regression coefficients .

It is simpler to solve the normal equations if they are expressed in matrix notation. We
now give a matrix development of the normal equations that parallels the development of
Equation 10.10. The model in terms of the observations, Equation 10.7, may be written in
matrix notation as

where

In general, y is an (n � 1) vector of the observations, X is an (n � p) matrix of the levels
of the independent variables, � is a ( p � 1) vector of the regression coefficients, and 	 is
an (n � 1) vector of random errors.

We wish to find the vector of least squares estimators, that minimizes

Note that L may be expressed as

(10.11)

because ��X�y is a (1 � 1) matrix, or a scalar, and its transpose (��X�y)� � y�X� is the same
scalar. The least squares estimators must satisfy

which simplifies to

(10.12)

Equation 10.12 is the matrix form of the least squares normal equations. It is identical to
Equation 10.10. To solve the normal equations, multiply both sides of Equation 10.12 by the
inverse of X�X. Thus, the least squares estimator of � is

(10.13)�̂ � (X�X)�1X�y

X�X�̂ � X�y

�L
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�
�̂

� �2X�y � 2X�X�̂ � 0
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It is easy to see that the matrix form of the normal equations is identical to the scalar
form. Writing out Equation 10.12 in detail, we obtain

If the indicated matrix multiplication is performed, the scalar form of the normal equations
(i.e., Equation 10.10) will result. In this form it is easy to see that X�X is a ( p � p) symmet-
ric matrix and X�y is a ( p � 1) column vector. Note the special structure of the X�X matrix.
The diagonal elements of X�X are the sums of squares of the elements in the columns of X,
and the off-diagonal elements are the sums of cross products of the elements in the columns
of X. Furthermore, note that the elements of X�y are the sums of cross products of the
columns of X and the observations {yi}.

The fitted regression model is

(10.14)

In scalar notation, the fitted model is

The difference between the actual observation yi and the corresponding fitted value is the
residual, say ei � yi � . The (n � 1) vector of residuals is denoted by

(10.15)

Estimating �2. It is also usually necessary to estimate �2. To develop an estimator of
this parameter, consider the sum of squares of the residuals, say

Substituting e � y � � y � X , we have

Because X�X � X�y, this last equation becomes

(10.16)

Equation 10.16 is called the error or residual sum of squares, and it has n � p degrees of
freedom associated with it. It can be shown that

so an unbiased estimator of �2 is given by
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Properties of the Estimators. The method of least squares produces an unbiased esti-
mator of the parameter � in the linear regression model. This may be easily demonstrated by
taking the expected value of as follows:

because E(�) � 0 and (X�X)� 1X�X � I. Thus, is an unbiased estimator of �.
The variance property of is expressed in the covariance matrix:

(10.18)

which is just a symmetric matrix whose ith main diagonal element is the variance of the indi-
vidual regression coefficient and whose (ij)th element is the covariance between and .
The covariance matrix of is

(10.19)

If �2 in Equation 10.19 is replaced with the estimate from Equation 10.12, we obtain an
estimate of the covariance matrix of . The square roots of the main diagonal elements of this
matrix are the standard errors of the model parameters.

�̂
�̂2

Cov( �̂) � � 2(X�X)�1
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E(�̂) � E[(X�X)�1X�y] � E[(X�X)�1X�(X� � 	)]

�̂

E X A M P L E  1 0 . 1

Sixteen observations on the viscosity of a polymer (y) and
two process variables—reaction temperature (x1) and cata-
lyst feed rate (x2)—are shown in Table 10.2. We will fit a
multiple linear regression model

to these data. The X matrix and y vector are
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The X�X matrix is

and the X�y vector is

The least squares estimate of � is
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The least squares fit, with the regression coefficients reported
to two decimal places, is

The first three columns of Table 10.3 present the actu-
al observations yi, the predicted or fitted values , and the
residuals. Figure 10.1 is a normal probability plot of the
residuals. Plots of the residuals versus the predicted

ŷi

ŷ � 1566.08 � 7.62x1 � 8.58x2

values and versus the two variables x1 and x2 are shown
in Figures 10.2, 10.3, and 10.4, respectively. Just as in
designed experiments, residual plotting is an integral part
of regression model building. These plots indicate that the
variance of the observed viscosity tends to increase with
the magnitude of viscosity. Figure 10.3 suggests that the
variability in viscosity is increasing as temperature
increases.

ŷi

■ TA B L E  1 0 . 2
Viscosity Data for Example 10.1 (viscosity in centistokes @ 100�c)

Temperature Catalyst Feed 
Observation (x1, °C) Rate (x2, lb/h) Viscosity

1 80 8 2256

2 93 9 2340

3 100 10 2426

4 82 12 2293

5 90 11 2330

6 99 8 2368

7 81 8 2250

8 96 10 2409

9 94 12 2364

10 93 11 2379

11 97 13 2440

12 95 11 2364

13 100 8 2404

14 85 12 2317

15 86 9 2309

16 87 12 2328
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■ F I G U R E  1 0 . 1 Normal probability plot of
residuals, Example 10.1

Predicted viscosity in centistokes
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■ F I G U R E  1 0 . 2 Plot of residuals versus
predicted viscosity, Example 10.1
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■ TA B L E  1 0 . 3
Predicted Values, Residuals, and Other Diagnostics from Example 10.1

Observation Predicted Residual Studentized 
i yi Value ei hii Residual Di R-Student

1 2256 2244.5 11.5 0.350 0.87 0.137 0.87

2 2340 2352.1 �12.1 0.102 �0.78 0.023 �0.77

3 2426 2414.1 11.9 0.177 0.80 0.046 0.79

4 2293 2294.0 �1.0 0.251 �0.07 0.001 �0.07

5 2330 2346.4 �16.4 0.077 �1.05 0.030 �1.05

6 2368 2389.3 �21.3 0.265 �1.52 0.277 �1.61

7 2250 2252.1 �2.1 0.319 �0.15 0.004 �0.15

8 2409 2383.6 25.4 0.098 1.64 0.097 1.76

9 2364 2385.5 �21.5 0.142 �1.42 0.111 �1.48

10 2379 2369.3 9.7 0.080 0.62 0.011 0.60

11 2440 2416.9 23.1 0.278 1.66 0.354 1.80

12 2364 2384.5 �20.5 0.096 �1.32 0.062 �1.36

13 2404 2396.9 7.1 0.289 0.52 0.036 0.50

14 2317 2316.9 0.1 0.185 0.01 0.000 �0.01

15 2309 2298.8 10.2 0.134 0.67 0.023 0.66

16 2328 2332.1 �4.1 0.156 �0.28 0.005 �0.27

ŷi

x1, temperature
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■ F I G U R E  1 0 . 3 Plot of residuals versus x1

(temperature), Example 10.1
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■ F I G U R E  1 0 . 4 Plot of residuals versus x2

(feed rate), Example 10.1



E X A M P L E  1 0 . 2 Regression Analysis of a 23 Factorial Design

A chemical engineer is investigating the yield of a process.
Three process variables are of interest: temperature, pres-
sure, and catalyst concentration. Each variable can be run at
a low and a high level, and the engineer decides to run a 23

design with four center points. The design and the resulting
yields are shown in Figure 10.5, where we have shown both
the natural levels of the design factor and the �1, �1 coded
variable notation normally employed in 2k factorial designs
to represent the factor levels.

Suppose that the engineer decides to fit a main effects
only model, say

For this model the X matrix and y vector are

1 0 0 0 53
1 0 0 0 56

The 23 is an orthogonal design, and even with the added
center runs it is still orthogonal. Therefore

X�X � �
12
0
0
0

0
8
0
0

0
0
8
0

0
0
0
8
	  and  X�y � �

612
45
85
9
	

X �

1
1
1
1
1
1
1
1
1
1

� 1
1

� 1
1

� 1
1

� 1
1
0
0

� 1
� 1

1
1

� 1
� 1

1
1
0
0

� 1
� 1
� 1
� 1

1
1
1
1
0
0

 
y �

32
46
57
65
36
48
57
68
50
44

y � �0 � �1x1 � �2x2 � �3x3 � �

Because the design is orthogonal, the X�X matrix is
diagonal, the required inverse is also diagonal, and the
vector of least squares estimates of the regression coeffi-
cients is

The fitted regression model is

As we have made use of on many occasions, the regression
coefficients are closely connected to the effect estimates
that would be obtained from the usual analysis of a 23

design. For example, the effect of temperature is (refer to
Figure 10.5)

Notice that the regression coefficient for x1 is

That is, the regression coefficient is exactly one-half the usual
effect estimate. This will always be true for a 2k design. As
noted above, we used this result in Chapters 6 through 8 to
produce regression models, fitted values, and residuals for
several two-level experiments. This example demonstrates

(11.25)/2 � 5.625

� 56.75 � 45.50 � 11.25

T � yT� � yT�

ŷ � 51.000 � 5.625x1 � 10.625x2 � 1.125x3

� �
51.000
5.625

10.625
1.125

	
�̂ � (X�X)�1X�y � �

1/12
0
0
0

0
1/8

0
0

0
0

1/8
0

0
0
0

1/8
	�

612
45
85
9
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Using the Computer. Regression model fitting is almost always done using a statis-
tical software package, such as Minitab or JMP. Table 10.4 shows some of the output obtained
when Minitab is used to fit the viscosity regression model in Example 10.1. Many of the quan-
tities in this output should be familiar because they have similar meanings to the quantities in
the output displays for computer analysis of data from designed experiments. We have seen
many such computer outputs previously in the book. In subsequent sections, we will discuss
the analysis of variance and t-test information in Table 10.4 in detail and will show exactly
how these quantities were computed.

Fitting Regression Models in Designed Experiments. We have often used a
regression model to present the results of a designed experiment in a quantitative form. We
now give a complete illustrative example. This is followed by three other brief examples
that illustrative other useful applications of regression analysis in designed experiments.

and
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■ TA B L E  1 0 . 4
Minitab Output for the Viscosity Regression Model, Example 10.1

Regression Analysis

The regression equation is

Viscosity � 1566 � 7.62 Temp � 8.58 Feed Rate

Predictor Coef Std. Dev. T P

Constant 1566.08 61.59 25.43 0.000

Temp 7.6213 0.6184 12.32 0.000

Feed Rat 8.585 2.439 3.52 0.004

S � 16.36 R-Sq � 92.7% R-Sq (adj) � 91.6%

Analysis of Variance

Source DF SS MS F P

Regression 2 44157 22079 82.50 0.000

Residual Error 13 3479 268

Total 15 47636

Source DF Seq SS

Temp 1 40841

Feed Rat 1 3316

that the effect estimates from a 2k design are least squares
estimates.

The variance of the regression model parameter are
found from the diagonal elements of (X�X)�1. That is,

, and V(�̂i) �
�2

8
, i � 1,2,3.V(�̂0

) �
�2

12

The relative variance are

and
V(�̂i)

�2
�

1
8

, i � 1,2,3.
V(�̂0)

�2
�

1
12

50
44
53
56

57 68

36

32
46

65

48

57

Run

1
2
3
4
5
6
7
8
9

10
11
12

Temp (°C)

120
160
120
160
120
160
120
160
140
140
140
140

Process Variables

Pressure (psig)

40
80
40
80
40
80
40
80
60
60
60
60

Conc (g/l)

15
15
15
15
30
30
30
30

   22.5
   22.5
   22.5
   22.5

x1

–1
  1
–1
  1
–1
  1
–1
  1
  0
  0
  0
  0

 Coded Variables

 32 
46
57
65
36
48
57
68
50
44
53
56

 Yield, y
x3

–1
–1
–1
–1
  1
  1
  1
  1
  0
  0
  0
  0

x2

–1
–1
  1
  1
–1
–1
  1
  1
  0
  0
  0
  0

x1 = , ,
Temp – 140

20
x2 =

Pressure – 60
20

x3 =
Conc – 22.5

7.5

■ F I G U R E  1 0 . 5 Experimental design for Example 10.2
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E X A M P L E  1 0 . 3 A 23 Factorial Design with a Missing Observation

Consider the 23 factorial design with four center points from
Example 10.2. Suppose that when this experiment was per-
formed, the run with all variables at the high level (run 8 in
Figure 10.5) was missing. This can happen for a variety of
reasons; the measurement system can produce a faulty read-
ing, the combination of factor levels may prove infeasible,
the experimental unit may be damaged, and so forth.

We will fit the main effects model

using the 11 remaining observations. The X matrix and y
vector are

1 0 0 0 56

To estimate the model parameters, we form

X�X � �
11

� 1
� 1
� 1

� 1
7

� 1
� 1

� 1
� 1

7
� 1

� 1
� 1
� 1

7
	 and X�y � �

544
� 23

17
� 59

	

and  y �

32
46
57
65
36
48
57
50
44
53

X �

1
1
1
1
1
1
1
1
1
1

� 1
1

� 1
1

� 1
1

� 1
0
0
0

� 1
� 1

1
1

� 1
� 1

1
0
0
0

� 1
� 1
� 1
� 1

1
1
1
0
0
0

y � �0 � �1x1 � �2x2 � �3x3 � �

Because there is a missing observation, the design is no
longer orthogonal. Now

Therefore, the fitted model is

Compare this model to the one obtained in Example 10.2,
where all 12 observations were used. The regression coeffi-
cients are very similar. Because the regression coefficients are
closely related to the factor effects, our conclusions would not
be seriously affected by the missing observation. However,
notice that the effect estimates are no longer orthogonal
because X�X and its inverse are no longer diagonal. Further
more the variances of the regression coefficients are larger
than they were in the original orthogonal design with no
missing data.

ŷ � 51.25 � 5.75x1 � 10.75x2 � 1.25x3

� �
51.25
5.75

10.75
1.25

	

1.92307 �  10�2

2.88462 �  10�2

0.15385
2.88462 �  10�2

1.92307 �  10�2

2.88462 �  10�2

2.88462 �  10�2

0.15385
	�

544
� 23

17
� 59

	

� �
9.61538 �  10�2

1.92307 �  10�2

1.92307 �  10�2

1.92307 �  10�2

1.92307 �  10�2

0.15385
2.88462 �  10�2

2.88462 �  10�2

�̂ � (X�X)�1X�y

In Example 10.2, the inverse matrix is easy to obtain because X�X is diagonal.
Intuitively, this seems to be advantageous, not only because of the computational simplicity
but also because the estimators of all the regression coefficients are uncorrelated; that is,
Cov( ) � 0. If we can choose the levels of the x variables before the data are collected,
we might wish to design the experiment so that a diagonal X�X will result.

In practice, it can be relatively easy to do this. We know that the off-diagonal elements
in X�X are the sums of cross products of the columns in X. Therefore, we must make the inner
product of the columns of X equal to zero; that is, these columns must be orthogonal. As we
have noted before, experimental designs that have this property for fitting a regression model
are called orthogonal designs. In general, the 2k factorial design is an orthogonal design for
fitting the multiple linear regression model.

Regression methods are extremely useful when something “goes wrong” in a designed
experiment. This is illustrated in the next two examples.

�̂i, �̂j
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E X A M P L E  1 0 . 4 Inaccurate Levels in Design Factors

When running a designed experiment, it is sometimes diffi-
cult to reach and hold the precise factor levels required by
the design. Small discrepancies are not important, but large
ones are potentially of more concern. Regression methods
are useful in the analysis of a designed experiment where
the experimenter has been unable to obtain the required fac-
tor levels.

To illustrate, the experiment presented in Table 10.5
shows a variation of the 23 design from Example 10.2, where
many of the test combinations are not exactly the ones spec-
ified in the design. Most of the difficulty seems to have
occurred with the temperature variable.

We will fit the main effects model

y � �0 � �1x1 � �2x2 � �3x3 � �

The X matrix and y vector are

1 0 0 0 53
1 0 0 0 56

To estimate the model parameters, we need

X�y � �
612
77.55

100.7
19.144

	
X�X � �

12
0.60
0.25
0.2670

0.60
8.18
0.31

�0.1403

0.25
0.31
8.5375

�0.3437

0.2670
�0.1403
�0.3437

9.2437
	

X �

1
1
1
1
1
1
1
1
1
1

�0.75
0.90

�0.95
1

�1.10
1.15

�0.90
1.25
0
0

�0.95
�1

1.1
0

�1.05
�1

1
1.15
0
0

�1.133
�1
�1
�1

1.4
1
1
1
0
0

 
y �

 32
46
57
65
36
48
57
68
50
44

■ TA B L E  1 0 . 5
Experimental Design for Example 10.4

Process Variables

Pressure Conc Coded Variables Yield 
Run Temp (°C) (psig) (g/l) x1 x2 x3 y

1 125 41 14 �0.75 �0.95 �1.133 32

2 158 40 15 0.90 �1 �1 46

3 121 82 15 �0.95 1.1 �1 57

4 160 80 15 1 1 �1 65

5 118 39 33 �1.10 �1.05 1.14 36

6 163 40 30 1.15 �1 1 48

7 122 80 30 �0.90 1 1 57

8 165 83 30 1.25 1.15 1 68

9 140 60 22.5 0 0 0 50

10 140 60 22.5 0 0 0 44

11 140 60 22.5 0 0 0 53

12 140 60 22.5 0 0 0 56
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E X A M P L E  1 0 . 5 De-aliasing Interactions in a Fractional Factorial

We observed in Chapter 8 that it is possible to de-alias
interactions in a fractional factorial design by a process
called fold over. For a resolution III design, a full fold over
is constructed by running a second fraction in which the
signs are reversed from those in the original fraction. Then
the combined design can be used to de-alias all main effects
from the two-factor interactions.

A difficulty with a full fold over is that it requires a sec-
ond group of runs of identical size as the original design. It
is usually possible to de-alias certain interactions of inter-
est by augmenting the original design with fewer runs than
required in a full fold over. The partial fold-over technique
was used to solve this problem. Regression methods are an
easy way to see how the partial fold-over technique works
and, in some cases, find even more efficient fold-over
designs.

To illustrate, suppose that we have run a design.
Table 8.3 shows the principal fraction of this design, in
which I � ABCD. Suppose that after the data from the first
eight trials were observed, the largest effects were A, B, C,
D (we ignore the three-factor interactions that are aliased
with these main effects) and the AB � CD alias chain. The
other two alias chains can be ignored, but clearly either AB,
CD, or both two-factor interactions are large. To find out
which interactions are important, we could, of course, run
the alternate fraction, which would require another eight
trials. Then all 16 runs could be used to estimate the main
effects and the two-factor interactions. An alternative

24�1
IV

would be to use a partial fold over involving four additional
runs.

It is possible to de-alias AB and CD in fewer than four
additional trials. Suppose that we wish to fit the model

where x1, x2, x3, and x4 are the coded variables representing
A, B, C, and D. Using the design in Table 8.3, the X matrix
for this model is

where we have written the variables above the columns 
to facilitate understanding. Notice that the x1x2 column is
identical to the x3x4 column (as anticipated, because AB or
x1x2 is aliased with CD or x3x4), implying a linear depend-
ency in the columns of X. Therefore, we cannot estimate
both �12 and �34 in the model. However, suppose that we
add a single run x1 � �1, x2 � �1, x3 � �1, and x4 � 1

X �

1
1
1
1
1
1
1
1

x1

�1
1

�1
1

�1
1

�1
1

x2

�1
�1

1
1

�1
�1

1
1

x3

�1
�1
�1
�1

1
1
1
1

x4

�1
1
1

�1
1

�1
�1

1

x1x2

1
�1
�1

1
1

�1
�1

1

x3x4

1
�1
�1

1
1

�1
�1

1

� �34x3x4 � �

y � �0 � �1x1 � �2x2 � �3x3 � �4x4 � �12x1x2

Then

�̂ � (X�X)�1X�y

� �
50.49391
5.40996

10.16316
1.07245

	
�2.33542 �  10�3

�4.20766 �  10�3

0.11753
4.37851 �  10�3

�2.59833 �  10�3

1.88490 �  10�3

4.37851 �  10�3

0.10845
	�

612
 77.55
100.7
19.144

	� �
8.37447 �  10�2

�6.09871 �  10�3

�2.33542 �  10�3

�2.59833 �  10�3

�6.09871 �  10�3

0.12289
�4.20766 �  10�3

1.88490 �  10�3

The fitted regression model, with the coefficients reported
to two decimal places, is

Comparing this to the original model in Example 10.2, where
the factor levels were exactly those specified by the design,

ŷ � 50.49 � 5.41x1 � 10.16x2 � 1.07x3

we note very little difference. The practical interpretation of
the results of this experiment would not be seriously affected
by the inability of the experimenter to achieve the desired
factor levels exactly.
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from the alternate fraction to the original eight runs. The X
matrix for the model now becomes

Notice that the columns x1x2 and x3x4 are now no longer
identical, and we can fit the model including both the x1x2

(AB) and x3x4 (CD) interactions. The magnitudes of the
regression coefficients will give insight regarding which
interactions are important.

Although adding a single run will de-alias the AB and CD
interactions, this approach does have a disadvantage. Suppose
that there is a time effect (or a block effect) between the first
eight runs and the last run added above. Add a column to the
X matrix for blocks, and you obtain the following:

X �

1
1
1
1
1
1
1
1
1

x1

� 1
1

� 1
1

� 1
1

� 1
1

� 1

x2

� 1
� 1

1
1

� 1
� 1

1
1

� 1

x3

� 1
� 1
� 1
� 1

1
1
1
1

� 1

x4

� 1
1
1

� 1
1

� 1
� 1

1
1

x1x2

1
� 1
� 1

1
1

� 1
� 1

1
1

x3x4

1
� 1
� 1

1
1

� 1
� 1

1
� 1

block
� 1
� 1
� 1
� 1
� 1
� 1
� 1
� 1

1

X �

1
1
1
1
1
1
1
1
1

x1

�1
1

�1
1

�1
1

�1
1

�1

x2

�1
�1

1
1

�1
�1

1
1

�1

x3

�1
�1
�1
�1

1
1
1
1

�1

x4

�1
1
1

�1
1

�1
�1

1
1

x1x2

1
�1
�1

1
1

�1
�1

1
1

x3x4

1
�1
�1

1
1

�1
�1

1
�1

We have assumed the block factor was at the low or “ � ”
level during the first eight runs, and at the high or “ � ”
level during the ninth run. It is easy to see that the sum of
the cross products of every column with the block column
does not sum to zero, meaning that blocks are no longer
orthogonal to treatments, or that the block effect now
affects the estimates of the model regression coefficients.
To block orthogonally, you must add an even number of
runs. For example, the four runs

x1 x2 x3 x4

�1 �1 �1 1

1 �1 �1 �1

�1 1 1 1

1 1 1 �1

will de-alias AB from CD and allow orthogonal blocking
(you can see this by writing out the X matrix as we did pre-
viously). This is equivalent to a partial fold over, in terms
of the number of runs that are required.

In general, it is usually straightforward to examine the
X matrix for the reduced model obtained from a fractional
factorial and determine which runs to augment the origi-
nal design with to de-alias interactions of potential inter-
est. Furthermore, the impact of specific augmentation
strategies can be evaluated using the general results for
regression models given later in this chapter. There are also
computer-based optimal design methods for constructing
designs that can be useful for design augmentation to
de-alias effects (refer to the supplemental material for
Chapter 8). 

10.4 Hypothesis Testing in Multiple Regression

In multiple linear regression problems, certain tests of hypotheses about the model parame-
ters are helpful in measuring the usefulness of the model. In this section, we describe several
important hypothesis-testing procedures. These procedures require that the errors �i in the
model be normally and independently distributed with mean zero and variance �2, abbreviated
�~, NID(0, �2). As a result of this assumption, the observations yi are normally and independ-
ently distributed with mean �0 � �jxij and variance �2.

10.4.1 Test for Significance of Regression

The test for significance of regression is a test to determine whether a linear relationship exists
between the response variable y and a subset of the regressor variables x1, x2, . . . , xk. The
appropriate hypotheses are

(10.20)

H1� �j Z  0   for at least one j

H0� �1 � �2 � Á � �k � 0

�k
j�1
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Rejection of H0 in Equation 10.20 implies that at least one of the regressor variables x1,
x2, . . . , xk contributes significantly to the model. The test procedure involves an analysis of
variance partitioning of the total sum of squares SST into a sum of squares due to the model
(or to regression) and a sum of squares due to residual (or error), say

(10.21)

Now if the null hypothesis H0 : �1 � �2 � � � � � �k � 0 is true, then SSR/�2 is distributed as
, where the number of degrees of freedom for �2 is equal to the number of regressor vari-

ables in the model. Also, we can show that SSE/�2 is distributed as and that SSE and
SSR are independent. The test procedure for H0 : �1 � �2 � � � � � �k � 0 is to compute

(10.22)

and to reject H0 if F0 exceeds F	,k,n � k � 1. Alternatively, we could use the P-value approach to
hypothesis testing and, reject H0 if the P-value for the statistic F0 is less than 	. The test is
usually summarized in an analysis of variance table such as Table 10.6.

A computational formula for SSR may be found easily. We have derived a computational
formula for SSE in Equation 10.16—that is,

Now, because SST � � y�y � , we may rewrite the foregoing
equation as

or

Therefore, the regression sum of squares is

(10.23)

and the error sum of squares is

(10.24)

and the total sum of squares is

(10.25)SST � y�y �
��

n

i�1
yi�2

n

SSE � y�y � �̂�X�y

SSR � �̂�X�y �
��

n

i�1
yi�2

n

SSE � SST � SSR

SSE � y�y �
��

n

i�1
yi�2

n � ��̂�X�y �
��

n

i�1
yi�2

n 	
(�n

i�1 yi)
2/n�n

i�1 y2
i � (�n

i�1 yi)
2/n

SSE � y�y � �̂�X�y

F0 �
SSR/k

SSE/(n � k � 1)
�

MSR

MSE

� 2
n�k�1

� 2
k

SST � SSR � SSE

■ TA B L E  1 0 . 6
Analysis of Variance for Significance of Regression in Multiple Regression

Source of Degrees of 
Variation Sum of Squares Freedom Mean Square F0

Regression SSR k MSR MSR/MSE

Error or residual SSE n � k � 1 MSE

Total SST n � 1
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These computations are almost always performed with regression software. For instance,
Table 10.4 shows some of the output from Minitab for the viscosity regression model in
Example 10.1. The upper portion in this display is the analysis of variance for the model. The
test of significance of regression in this example involves the hypotheses

The P-value in Table 10.4 for the F statistic (Equation 10.22) is very small, so we would con-
clude that at least one of the two variables—temperature (x1) and feed rate (x2)—has a nonzero
regression coefficient.

Table 10.4 also reports the coefficient of multiple determination R2, where

(10.26)

Just as in designed experiments, R2 is a measure of the amount of reduction in the variability
of y obtained by using the regressor variables x1, x2, . . . , xk in the model. However, as we
have noted previously, a large value of R2 does not necessarily imply that the regression model
is a good one. Adding a variable to the model will always increase R2, regardless of whether
the additional variable is statistically significant or not. Thus, it is possible for models that
have large values of R2 to yield poor predictions of new observations or estimates of the mean
response.

Because R2 always increases as we add terms to the model, some regression model
builders prefer to use an adjusted R2 statistic defined as

(10.27)

In general, the adjusted R2 statistic will not always increase as variables are added to the model.
In fact, if unnecessary terms are added, the value of will often decrease.

For example, consider the viscosity regression model. The adjusted R2 for the model is
shown in Table 10.4. It is computed as

which is very close to the ordinary R2. When R2 and differ dramatically, there is a good
chance that nonsignificant terms have been included in the model.

10.4.2 Tests on Individual Regression Coefficients
and Groups of Coefficients

We are frequently interested in testing hypotheses on the individual regression coefficients.
Such tests would be useful in determining the value of each regressor variable in the regres-
sion model. For example, the model might be more effective with the inclusion of additional
variables or perhaps with the deletion of one or more of the variables already in the model.

Adding a variable to the regression model always causes the sum of squares for regres-
sion to increase and the error sum of squares to decrease. We must decide whether the increase
in the regression sum of squares is sufficient to warrant using the additional variable in the model.
Furthermore, adding an unimportant variable to the model can actually increase the mean square
error, thereby decreasing the usefulness of the model.

R2
adj

� 1 � �15
13�(1 � 0.92697) � 0.915735

R2
adj � 1 � �n � 1

n � p�(1 � R2)

R2
adj

R2
adj � 1 �

SSE/(n � p)
SST/(n � 1)

� 1 � �n � 1
n � p�(1 � R2)

R2 �
SSR

SST
� 1 �

SSE

SST

H1� �j Z  0   for at least one j

H0� �1 � �2 �  0
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The hypotheses for testing the significance of any individual regression coefficient, say
�j, are

If H0 : �j � 0 is not rejected, then this indicates that xj can be deleted from the model. The test
statistic for this hypothesis is

(10.28)

where Cjj is the diagonal element of (X�X)�1 corresponding to . The null hypothesis H0 :
�j � 0 is rejected if �t0�
 t	/2,n � k � 1. Note that this is really a partial or marginal test because
the regression coefficient depends on all the other regressor variables xi (i � j) that are in
the model.

The denominator of Equation 10.28, , is often called the standard error of the
regression coefficient . That is,

(10.29)

Therefore, an equivalent way to write the test statistic in Equation (10.28) is

(10.30)

Most regression computer programs provide the t-test for each model parameter. For
example, consider Table 10.4, which contains the Minitab output for Example 10.1. The
upper portion of this table gives the least squares estimate of each parameter, the standard
error, the t statistic, and the corresponding P-value. We would conclude that both variables,
temperature and feed rate, contribute significantly to the model.

We may also directly examine the contribution to the regression sum of squares for a
particular variable, say xj, given that other variables xi (i � j) are included in the model. The
procedure for doing this is the general regression significance test or, as it is often called, the
extra sum of squares method. This procedure can also be used to investigate the contribu-
tion of a subset of the regressor variables to the model. Consider the regression model with k
regressor variables:

where y is (n � 1), X is (n � p), � is (p � 1), 	 is (n � 1), and p � k � 1. We would like to
determine if the subset of regressor variables x1, x2, . . . , xr (r � k) contribute significantly
to the regression model. Let the vector of regression coefficients be partitioned as follows:

where �1 is (r � 1) and �2 is [(p � r) � 1]. We wish to test the hypotheses

(10.31)

The model may be written as

(10.32)

where X1 represents the columns of X associated with �1 and X2 represents the columns of X
associated with �2.

y � X� � � � X1�1 � X2 �2 � �

H1� �1 Z 0

H0� �1 � 0

� � ��1

�2
	

y � X� � 	

t0 �
�̂j

se(�̂j)

se(�̂j) � ��̂ 2Cjj

�̂j

��̂ 2Cjj

�̂j

�̂j

t0 �
�̂j

��̂ 2Cjj

H1� �j Z  0

H0� �j � 0
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For the full model (including both �1 and �2), we know that � (X�X) �1X�y. Also,
the regression sum of squares for all variables including the intercept is

and

SSR(�) is called the regression sum of squares due to �. To find the contribution of the terms
in �1 to the regression, we fit the model assuming the null hypothesis H0 : �1 � 0 to be true.
The reduced model is found from Equation 10.32 with �1 � 0:

(10.33)

The least squares estimator of �2 is , and

(10.34)

The regression sum of squares due to �1 given that �2 is already in the model is

(10.35)

This sum of squares has r degrees of freedom. It is the “extra sum of squares” due to �1. Note
that SSR(�1��2) is the increase in the regression sum of squares due to inclusion of variables
x1, x2, . . . , xr in the model.

Now, SSR(�1��2) is independent of MSE, and the null hypothesis �1 � 0 may be tested
by the statistic

(10.36)

If F0 
 F	,r,n � p, we reject H0, concluding that at least one of the parameters in �1 is not zero,
and, consequently, at least one of the variables x1, x2, . . . , xr in X1 contributes significantly to
the regression model. Some authors call the test in Equation 10.36 a partial F test.

The partial F test is very useful. We can use it to measure the contribution of xj as if it
were the last variable added to the model by computing

This is the increase in the regression sum of squares due to adding xj to a model that already
includes x1, . . . , xj�1, xj�1, . . . , xk. Note that the partial F test on a single variable xj is equiv-
alent to the t test in Equation 10.28. However, the partial F test is a more general procedure
in that we can measure the effect of sets of variables.

SSR(�j��0, �1, . . . , �j�1, �j�1, . . . , �k)

F0 �
SsR(�1 ��2)/r

MSE

SSR(�1��2) � SSR(�) � SSR(�2)

SSR(�2) � �̂�2X�2y   (p � r degrees of freedom)

�̂2 � (X�2X2)
�1X�2y

y � X2�2 � �

MSE �
y�y � �̂X�y

n � p

SSR(�) � �̂�X�y   (p degrees of freedom)

�̂

E X A M P L E  1 0 . 6

Consider the viscosity data in Example 10.1. Suppose that
we wish to investigate the contribution of the variable x2

(feed rate) to the model. That is, the hypotheses we wish to
test are

H1� �2 Z  0

H0� �2 � 0

This will require the extra sum of squares due to �2, or

Now from Table 10.4, where we tested for significance of
regression, we have

SSR(�1, �2��0) � 44,157.1

� SsR(�1, �2��0) � SSR(�2 ��0)

SSR(�2 ��1, �0) � SSR(�0, �1, �2) � SSR(�0, �1)
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10.5 Confidence Intervals in Multiple Regression

It is often necessary to construct confidence interval estimates for the regression coefficients
{�j} and for other quantities of interest from the regression model. The development of a pro-
cedure for obtaining these confidence intervals requires that we assume the errors {�i} to be
normally and independently distributed with mean zero and variance �2, the same assumption
made in the section on hypothesis testing in Section 10.4.

10.5.1 Confidence Intervals on the Individual Regression
Coefficients

Because the least squares estimator is a linear combination of the observations, it follows
that is normally distributed with mean vector � and covariance matrix �2(X�X)�1. Then
each of the statistics

(10.37)

is distributed as t with n � p degrees of freedom, where Cjj is the (jj)th element of the
matrix, and is the estimate of the error variance, obtained from Equation 10.17.

Therefore, a 100(1 � 	) percent confidence interval for the regression coefficient �j, j � 0,
1, . . . , k, is

(10.38)

Note that this confidence interval could also be written as

because se .(�̂j) � ��̂ 2Cjj

�̂j � t	/2,n�pse(�̂j) � �j � �̂j � t	/2,n�pse(�̂j)

�̂j � t	/2,n�p��̂ 2Cjj � �j � �̂j � t	/2,n�p��̂ 2Cjj

�̂ 2(X�X)�1

�̂j � �j

��̂ 2Cjj

  j � 0, 1, . . . , k

�̂
�̂

which was called the model sum of squares in the table.
This sum of squares has two degrees of freedom.

The reduced model is

The least squares fit for this model is

and the regression sum of squares for this model (with one
degree of freedom) is

Note that SSR(�1��0) is shown at the bottom of the
Minitab output in Table 10.4 under the heading “Seq SS.”
Therefore,

� 3316.3

SSR(�2��0, �1) � 44,157.1 � 40,840.8

SSR(�1 ��0) � 40,840.8

ŷ � 1652.3955 � 7.6397x1

y � �0 � �1x1 � �

with 2 � 1 � 1 degree of freedom. This is the increase in
the regression sum of squares that results from adding x2 to
a model already containing x1, and it is shown at the bottom
of the Minitab output on Table 10.4. To test H0 : �2 � 0,
from the test statistic we obtain

Note that MSE from the full model (Table 10.4) is used in
the denominator of F0. Now, because F0.05,1,13 � 4.67, we
would reject H0 : �2 � 0 and conclude that x2 (feed rate)
contributes significantly to the model.

Because this partial F test involves only a single
regressor, it is equivalent to the t-test because the square
of a t random variable with v degrees of freedom is an F
random variable with 1 and v degrees of freedom. To see
this, note from Table 10.4 that the t-statistic for H0 :�2 � 0
resulted in t0 � 3.5203 and that � (3.5203)2 � 12.3925

 F0.

t 2
0

F0 �
SsR(�2 ��0, �1)/1

MSE
�

3316.3/1
267.604

� 12.3926
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10.5.2 Confidence Interval on the Mean Response

We may also obtain a confidence interval on the mean response at a particular point, say, x01,
x02, . . . , x0k. We first define the vector

The mean response at this point is

The estimated mean response at this point is

(10.39)

This estimator is unbiased because , and the variance of 
(x0) is

(10.40)

Therefore, a 100(1 � 	) percent confidence interval on the mean response at the point x01,
x02, . . . , x0k is

(10.41)

10.6 Prediction of New Response Observations

A regression model can be used to predict future observations on the response y correspon-
ding to particular values of the regressor variables, say x01, x02, . . . , x0k. If � [1, x01,
x02, . . . , x0k], then a point estimate for the future observation y0 at the point x01, x02, . . . , x0k

is computed from Equation 10.39:

ŷ(x0) � x�0�̂

x�0

� ŷ(x0) � t	/2,n�p��̂ 2x�0(X�X)�1x0ŷ(x0) � t	/2,n�p��̂ 2x�0(X�X)�1x0 � �y�x0

V [ ŷ(x0)] � � 2x�0(X�X)�1x0

ŷ
E[ ŷ(x0)] � E(x�0 �̂) � x0�� � �y�x0

ŷ(x0) � x�0�̂

�y�x0
� �0 � �1x01 � �2x02 � Á � �kx0k � x�0�

x0 � �
1

x01

x02

o
x0k
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We will construct a 95 percent confidence interval for the parameter �1 in Example 10.1. Now � 7.62129, and because
� 267.604 and C11 � 1.429184 � 10�3, we find that

and the 95 percent confidence interval on �1 is

6.2855 � �1 �  8.9570

7.62129 � 2.16(0.6184) � �1 �  7.62129 � 2.16(0.6184)

�  7.62129 � 2.16�(267.604)(1.429184 �  10�3)

 7.62129 � 2.16�(267.604)(1.429184 �  10�3) � �1

�̂1 � t0.025,13��̂ 2C11 � �1 � �̂1 � t0.025,13��̂ 2C11

�̂ 2
�̂1
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A 100(1 � 	) percent prediction interval for this future observation is

(10.42)

In predicting new observations and in estimating the mean response at a given point x01,
x02, . . . , x0k, we must be careful about extrapolating beyond the region containing the origi-
nal observations. It is very possible that a model that fits well in the region of the original data
will no longer fit well outside of that region.

The prediction interval in Equation 10.42 has many useful applications. One of these is
in confirmation experiments following a factorial or fractional factorial experiment. In a con-
firmation experiment, we are usually testing the model developed from the original experi-
ment to determine if our interpretation was correct. Often we will do this by using the model
to predict the response at some point of interest in the design space and then comparing the
predicted response with an actual observation obtained by conducting another trial at that
point. We illustrated this in Chapter 8, using the 24�1 fractional factorial design in Example
8.1. A useful measure of confirmation is to see if the new observation falls inside the predic-
tion interval on the response at that point.

To illustrate, reconsider the situation in Example 8.1. The interpretation of this experi-
ment indicated that three of the four main effects (A, C, and D) and two of the two-factor
interactions (AC and AD) were important. The point with A, B, and D at the high level and C
at the low level was considered to be a reasonable confirmation run, and the predicted value
of the response at that point was 100.25. If the fractional factorial has been interpreted cor-
rectly and the model for the response is valid, we would expect the observed value at this
point to fall inside the prediction interval computed from Equation 10.42. This interval is easy
to calculate. Since the 24 � 1 is an orthogonal design, and the model contains six terms (the
intercept, the three main effects, and the two two-factor interactions), the (X�X)�1 matrix has
a particularly simple form, namely (X�X)�1 � I6. Furthermore, the coordinates of the point
of interest are x1 � 1, x2 � 1, x3 � �1, and x4 � 1, but since B (or x2) isn’t in the model and
the two interactions AC and AD (or x1x3 and x1x4 � 1) are in the model, the coordinates of the
point of interest x0 are given by � [1, x1, x3, x4, x1x3, x1x4] � [1, 1, �1, 1, �1, 1]. It is also
easy to show that the estimate of �2 (with two degrees of freedom) for this model is �
3.25. Therefore, using Equation 10.42, a 95 percent prediction interval on the observation at
this point is

Therefore, we would expect the confirmation run with A, B, and D at the high level and C at
the low level to result in an observation on the filtration rate response that falls between 90
and 110.50. The actual observation was 104. The successful confirmation run provides some
assurance that the fractional factorial was interpreted correctly.

 90 � y0 � 110.50

 100.25 � 10.25 � y0 � 100.25 � 10.25

 100.25 � 4.30�3.25(1 � 0.75) � y0 � 100.25 � 4.30�3.25(1 � 0.75)

 100.25 � 4.30�3.25�1 � x�0
1
8 I6x0� � y0 � 100.25 � 4.30�3.25�1 � x�0

1
8 I6x0�

ŷ(x0) � t0.025,2��̂ 2(1 � x�0(X�X)�1x0) � y0 � ŷ(x0) � t0.025,2��̂ 2(1 � x�0(X�X)�1x0)

�̂ 2
x�0

1
8

� ŷ(x0) � t	/2,n�p��̂ 2(1 � x�0(X�X)�1x0)

ŷ(x0) � t	/2,n�p��̂ 2(1 � x�0(X�X)�1x0) � y0
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10.7 Regression Model Diagnostics

As we emphasized in designed experiments, model adequacy checking is an important part
of the data analysis procedure. This is equally important in building regression models, and
as we illustrated in Example 10.1, the residual plots that we used with designed experiments
should always be examined for a regression model. In general, it is always necessary to (1)
examine the fitted model to ensure that it provides an adequate approximation to the true sys-
tem and (2) verify that none of the least squares regression assumptions are violated. The
regression model will probably give poor or misleading results unless it is an adequate fit.

In addition to residual plots, other model diagnostics are frequently useful in regression.
This section briefly summarizes some of these procedures. For more complete presentations,
see Montgomery, Peck, and Vining (2006) and Myers (1990).

10.7.1 Scaled Residuals and PRESS

Standardized and Studentized Residuals. Many model builders prefer to work
with scaled residuals in contrast to the ordinary least squares residuals. These scaled residu-
als often convey more information than do the ordinary residuals.

One type of scaled residual is the standardized residual:

(10.43)

where we generally use in the computation. These standardized residuals have
mean zero and approximately unit variance; consequently, they are useful in looking for out-
liers. Most of the standardized residuals should lie in the interval � 3 � di � 3, and any
observation with a standardized residual outside of this interval is potentially unusual with
respect to its observed response. These outliers should be carefully examined because they
may represent something as simple as a data-recording error or something of more serious
concern, such as a region of the regressor variable space where the fitted model is a poor
approximation to the true response surface.

The standardizing process in Equation 10.43 scales the residuals by dividing them by
their approximate average standard deviation. In some data sets, residuals may have standard
deviations that differ greatly. We now present a scaling that takes this into account.

The vector of fitted values corresponding to the observed values yi is

(10.44)

The n � n matrix H � X(X�X)�1X� is usually called the “hat” matrix because it maps the
vector of observed values into a vector of fitted values. The hat matrix and its properties play
a central role in regression analysis.

The residuals from the fitted model may be conveniently written in matrix notation as

and it turns out that the covariance matrix of the residuals is

(10.45)

The matrix I � H is generally not diagonal, so the residuals have different variances and they
are correlated.

Cov(e) � � 2 (I � H)

e � y � ŷ

� Hy

� X(X�X)�1X�y

ŷ � X �̂

ŷi

�̂ � �MSE

di �
ei

�̂
 i � 1, 2, . . . , n
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Thus, the variance of the ith residual is

(10.46)

where hii is the ith diagonal element of H. Because 0 � hii � 1, using the residual mean square
MSE to estimate the variance of the residuals actually overestimates V(ei). Furthermore,
because hii is a measure of the location of the ith point in x-space, the variance of ei depends
on where the point xi lies. Generally, residuals near the center of the x space have larger vari-
ance than do residuals at more remote locations. Violations of model assumptions are more
likely at remote points, and these violations may be hard to detect from inspection of ei

(or di) because their residuals will usually be smaller.
We recommend taking this inequality of variance into account when scaling the resid-

uals. We suggest plotting the studentized residuals:

(10.47)

with � MSE instead of ei (or di). The studentized residuals have constant variance V(ri) � 1
regardless of the location of xi when the form of the model is correct. In many situations the
variance of the residuals stabilizes, particularly for large data sets. In these cases, there may be
little difference between the standardized and studentized residuals. Thus standardized and stu-
dentized residuals often convey equivalent information. However, because any point with a
large residual and a large hii is potentially highly influential on the least squares fit, examina-
tion of the studentized residuals is generally recommended. Table 10.3 displays the hat diago-
nals hii and the studentized residuals for the viscosity regression model in Example 10.1.

PRESS Residuals. The prediction error sum of squares (PRESS) provides a useful
residual scaling. To calculate PRESS, we select an observation—for example, i. We fit the
regression model to the remaining n � 1 observations and use this equation to predict the
withheld observation yi. Denoting this predicted value , we may find the prediction error
for point i as e(i) � yi � . The prediction error is often called the ith PRESS residual. This
procedure is repeated for each observation i � 1, 2, . . . , n, producing a set of n PRESS resid-
uals e(1), e(2), . . . , e(n). Then the PRESS statistic is defined as the sum of squares of the n
PRESS residuals as in

(10.48)

Thus PRESS uses each possible subset of n � 1 observations as an estimation data set, and
every observation in turn is used to form a prediction data set.

It would initially seem that calculating PRESS requires fitting n different regressions.
However, it is possible to calculate PRESS from the results of a single least squares fit to all
n observations. It turns out that the ith PRESS residual is

(10.49)

Thus because PRESS is just the sum of the squares of the PRESS residuals, a simple comput-
ing formula is

(10.50)

From Equation 10.49, it is easy to see that the PRESS residual is just the ordinary residual
weighted according to the diagonal elements of the hat matrix hii. Data points for which hii are
large will have large PRESS residuals. These observations will generally be high influence

PRESS � �
n

i�1
� ei

1 � hii
�2

e(i) �
ei

1 � hii

PRESS � �
n

i�1
e2

(i) � �
n

i�1
 [yi � ŷ(i)]

2

ŷ(i)

ŷ(i)

�̂ 2

ri �
ei

��̂ 2(1 � hii)
  i � 1, 2, . . . , n

V(ei) � � 2(1 � hii)
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points. Generally, a large difference between the ordinary residual and the PRESS residuals
will indicate a point where the model fits the data well, but a model built without that point
predicts poorly. In the next section we will discuss some other measures of influence.

Finally, we note that PRESS can be used to compute an approximate R2 for prediction,
say

(10.51)

This statistic gives some indication of the predictive capability of the regression model. For
the viscosity regression model from Example 10.1, we can compute the PRESS residuals
using the ordinary residuals and the values of hii found in Table 10.3. The corresponding value
of the PRESS statistic is PRESS � 5207.7. Then

Therefore, we could expect this model to “explain” about 89 percent of the variability in pre-
dicting new observations, as compared to the approximately 93 percent of the variability in
the original data explained by the least squares fit. The overall predictive capability of the
model based on this criterion seems very satisfactory.

R-Student. The studentized residual ri discussed above is often considered an outlier
diagnostic. It is customary to use MSE as an estimate of � 2 in computing ri. This is referred
to as internal scaling of the residual because MSE is an internally generated estimate of � 2

obtained from fitting the model to all n observations. Another approach would be to use an
estimate of � 2 based on a data set with the ith observation removed. We denote the estimate
of � 2 so obtained by . We can show that

(10.52)

The estimate of � 2 in Equation 10.52 is used instead of MSE to produce an externally studen-
tized residual, usually called R-student, given by

(10.53)

In many situations, ti will differ little from the studentized residual ri. However, if the ith
observation is influential, then can differ significantly from MSE, and thus the R-student will
be more sensitive to this point. Furthermore, under the standard assumptions, ti has a tn�p�1

distribution. Thus R-student offers a more formal procedure for outlier detection via hypoth-
esis testing. Table 10.3 displays the values of R-student for the viscosity regression model in
Example 10.1. None of those values are unusually large.

10.7.2 Influence Diagnostics

We occasionally find that a small subset of the data exerts a disproportionate influence on
the fitted regression model. That is, parameter estimates or predictions may depend more
on the influential subset than on the majority of the data. We would like to locate these
influential points and assess their impact on the model. If these influential points are “bad”
values, they should be eliminated. On the contrary, there may be nothing wrong with these
points. But if they control key model properties, we would like to know it because it could

S2
(i)

ti �
ei

�S2
(i)(1 � hii)

  i � 1, 2, . . . , n

S2
(i) �

(n � p)MSE � e2
i /(1 � hii)

n � p � 1

S2
(i)

� 1 �
5207.7

47,635.9
� 0.8907

R2
Prediction � 1 �

PRESS
SST

R2
Prediction � 1 �

PRESS
SST
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affect the use of the model. In this section we describe and illustrate some useful measures
of influence.

Leverage Points. The disposition of points in x space is important in determining
model properties. In particular, remote observations potentially have disproportionate lever-
age on the parameter estimates, predicted values, and the usual summary statistics.

The hat matrix H � X(X�X)�1X� is very useful in identifying influential observations.
As noted earlier, H determines the variances and covariances of and e because V( ) � � 2H
and V(e) � � 2(I � H). The elements hij of H may be interpreted as the amount of leverage
exerted by yj on i. Thus, inspection of the elements of H can reveal points that are potentially
influential by virtue of their location in x space. Attention is usually focused on the diagonal
elements hii. Because hii � rank(H) � rank(X) � p, the average size of the diagonal ele-
ment of the H matrix is p/n. As a rough guideline, then, if a diagonal element hii is greater
than 2p/n, observation i is a high-leverage point. To apply this to the viscosity model in
Example 10.1, note that 2p/n � 2(3)/16 � 0.375. Table 10.3 gives the hat diagonals hii for the
first-order model; because none of the hii exceeds 0.375, we would conclude that there are no
leverage points in these data.

Influence on Regression Coefficients. The hat diagonals will identify points that are
potentially influential due to their location in x space. It is desirable to consider both the loca-
tion of the point and the response variable in measuring influence. Cook (1977, 1979) has
suggested using a measure of the squared distance between the least squares estimate based
on all n points and the estimate obtained by deleting the i point, say . This distance meas-
ure can be expressed as

(10.54)

A reasonable cutoff for Di is unity. That is, we usually consider observations for which Di 
 1
to be influential.

The Di statistic is actually calculated from

(10.55)

Note that, apart from the constant p, Di is the product of the square of the ith studentized
residual and hii/(1 � hii). This ratio can be shown to be the distance from the vector xi to the
centroid of the remaining data. Thus, Di is made up of a component that reflects how well 
the model fits the ith observation yi and a component that measures how far that point is from
the rest of the data. Either component (or both) may contribute to a large value of Di.

Table 10.3 presents the values of Di for the regression model fit to the viscosity data in
Example 10.1. None of these values of Di exceeds 1, so there is no strong evidence of influ-
ential observations in these data.

10.8 Testing for Lack of Fit

In Section 6.8 we showed how adding center points to a 2k factorial design allows the exper-
imenter to obtain an estimate of pure experimental error. This allows the partitioning of the
residual sum of squares SSE into two components; that is

where SSPE is the sum of squares due to pure error and SSLOF is the sum of squares due to lack
of fit.

SSE � SSPE � SSLOF

Di �
r 2

i

p
V [ ŷ(xi)]

V(ei)
�

r 2
i

p
hii

(1 � hii)
  i � 1, 2, . . . , n

D1 �
( �̂(i) � �̂)�X�X( �̂(i) � �̂)

pMSE
  i � 1, 2, . . . , n

�̂(i)�̂

�n
i�1

ŷ

ŷŷ
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We may give a general development of this partitioning in the context of a regression
model. Suppose that we have ni observations on the response at the ith level of the regressors
xi, i � 1, 2, . . . , m. Let yij denote the jth observation on the response at xi, i � 1, 2, . . . , m
and j � 1, 2, . . . , ni. There are n � ni total observations. We may write the (ij)th resid-
ual as

(10.56)

where is the average of the ni observations at xi. Squaring both sides of Equation 10.56 and
summing over i and j yields

(10.57)

The left-hand side of Equation 10.57 is the usual residual sum of squares. The two com-
ponents on the right-hand side measure pure error and lack of fit. We see that the pure error
sum of squares

(10.58)

is obtained by computing the corrected sum of squares of the repeat observations at each level
of x and then pooling over the m levels of x. If the assumption of constant variance is satis-
fied, this is a model-independent measure of pure error because only the variability of the
y’s at each xi level is used to compute SSPE. Because there are ni � 1 degrees of freedom for
pure error at each level xi, the total number of degrees of freedom associated with the pure
error sum of squares is

(10.59)

The sum of squares for lack of fit

(10.60)

is a weighted sum of squared deviations between the mean response at each xi level and the
corresponding fitted value. If the fitted values are close to the corresponding average
responses , then there is a strong indication that the regression function is linear. If the 
deviate greatly from the , then it is likely that the regression function is not linear. There are
m � p degrees of freedom associated with SSLOF because there are m levels of x, and p degrees
of freedom are lost because p parameters must be estimated for the model. Computationally
we usually obtain SSLOF by subtracting SSPE from SSE.

The test statistic for lack of fit is

(10.61)

The expected value of MSPE is � 2, and the expected value of MSLOF is

(10.62)

If the true regression function is linear, then E(yi) � �0 � �j xij, and the second term of
Equation 10.62 is zero, resulting in E(MSLOF) � �2. However, if the true regression function
is not linear, then E(yi) � �0 � �j xij, and E(MSLOF) 
 � 2. Furthermore, if the true regres-
sion function is linear, then the statistic F0 follows the Fm�p,n�m distribution. Therefore, to test

�k
j�1

�k
j�1

E(MSLOF) � � 2 �

�
m

i�1
ni �E(yi) � �0 � �

k

j�1
�j xij	2

m � 2

F0 �
SSLOF/(m � p)
SSPE/(n � m)

�
MSLOF

MSPE

yi
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�m
i�1



10.9 Problems 475

for lack of fit, we would compute the test statistic F0 and conclude that the regression function
is not linear if F0 
 F	,m�p,n�m.

This test procedure may be easily incorporated into the analysis of variance. If we con-
clude that the regression function is not linear, then the tentative model must be abandoned
and attempts made to find a more appropriate equation. Alternatively, if F0 does not exceed
F	,m�p,n�m, there is no strong evidence of lack of fit and MSPE and MSLOF are often combined to
estimate �2. Example 6.7 is a very complete illustration of this procedure, where the replicate
runs are center points in a 24 factorial design.

10.9 Problems

10.1. The tensile strength of a paper product is related to
the amount of hardwood in the pulp. Ten samples are pro-
duced in the pilot plant, and the data obtained are shown in the
following table.

Percent Percent 
Strength Hardwood Strength Hardwood

160 10 181 20

171 15 188 25

175 15 193 25

182 20 195 28

184 20 200 30

(a) Fit a linear regression model relating strength to
percent hardwood.

(b) Test the model in part (a) for significance of regres-
sion.

(c) Find a 95 percent confidence interval on the parameter
�1.

10.2. A plant distills liquid air to produce oxygen, nitrogen,
and argon. The percentage of impurity in the oxygen is
thought to be linearly related to the amount of impurities in
the air as measured by the “pollution count” in parts per mil-
lion (ppm). A sample of plant operating data is shown below:

10.3. Plot the residuals from Problem 10.1 and comment on
model adequacy.

10.4. Plot the residuals from Problem 10.2 and comment on
model adequacy.

10.5. Using the results of Problem 10.1, test the regression
model for lack of fit.

10.6. A study was performed on wear of a bearing y and its
relationship to x1 � oil viscosity and x2 � load. The following
data were obtained:

y x1 x2

193 1.6 851

230 15.5 816

172 22.0 1058

91 43.0 1201

113 33.0 1357

125 40.0 1115

(a) Fit a multiple linear regression model to the data.

(b) Test for significance of regression.

(c) Compute t statistics for each model parameter. What
conclusions can you draw?

10.7. The brake horsepower developed by an automobile
engine on a dynamometer is thought to be a function of the
engine speed in revolutions per minute (rpm), the road octane
number of the fuel, and the engine compression. An experi-
ment is run in the laboratory and the data that follow are
collected:

Road
Brake Octane 

Horsepower rpm Number Compression

225 2000 90 100

212 1800 94 95

229 2400 88 110

222 1900 91 96

219 1600 86 100

278 2500 96 110

Purity
(%) 93.3 92.0 92.4 91.7 94.0 94.6 93.6

Pollution
count
(ppm) 1.10 1.45 1.36 1.59 1.08 0.75 1.20

Purity
(%) 93.1 93.2 92.9 92.2 91.3 90.1 91.6 91.9

Pollution
count
(ppm) 0.99 0.83 1.22 1.47 1.81 2.03 1.75 1.68

(a) Fit a linear regression model to the data.

(b) Test for significance of regression.

(c) Find a 95 percent confidence interval on �1.
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246 3000 94 98

237 3200 90 100

233 2800 88 105

224 3400 86 97

223 1800 90 100

230 2500 89 104

(a) Fit a multiple regression model to these data.

(b) Test for significance of regression. What conclusions
can you draw?

(c) Based on t-tests, do you need all three regressor vari-
ables in the model?

10.8. Analyze the residuals from the regression model in
Problem 10.7. Comment on model adequacy.

10.9. The yield of a chemical process is related to the con-
centration of the reactant and the operating temperature. An
experiment has been conducted with the following results.

Yield Concentration Temperature

81 1.00 150

89 1.00 180

83 2.00 150

91 2.00 180

79 1.00 150

87 1.00 180

84 2.00 150

90 2.00 180

(a) Suppose we wish to fit a main effects model to this
data. Set up the X�X matrix using the data exactly as
it appears in the table.

(b) Is the matrix you obtained in part (a) diagonal?
Discuss your response.

(c) Suppose we write our model in terms of the “usual”
coded variables

Set up the X�X matrix for the model in terms of these
coded variables. Is this matrix diagonal? Discuss your
response.

(d) Define a new set of coded variables

Set up the X X matrix for the model in terms of this
set of coded variables. Is this matrix diagonal? Discuss
your response.

(e) Summarize what you have learned from this problem
about coding the variables.

�

x1 �
Conc � 1.0

1.0
x2 �

Temp � 150
30

x1 �
Conc � 1.5

0.5
x2 �

Temp � 165
15

10.10. Consider the 24 factorial experiment in Example 6.2.
Suppose that the last observation is missing. Reanalyze the
data and draw conclusions. How do these conclusions com-
pare with those from the original example?

10.11. Consider the 24 factorial experiment in Example 6.2.
Suppose that the last two observations are missing. Reanalyze
the data and draw conclusions. How do these conclusions
compare with those from the original example?

10.12. Given the following data, fit the second-order polyno-
mial regression model

y x1 x2

26 1.0 1.0

24 1.0 1.0

175 1.5 4.0

160 1.5 4.0

163 1.5 4.0

55 0.5 2.0

62 1.5 2.0

100 0.5 3.0

26 1.0 1.5

30 0.5 1.5

70 1.0 2.5

71 0.5 2.5

After you have fit the model, test for significance of
regression.

10.13.

(a) Consider the quadratic regression model from
Problem 10.12. Compute t statistics for each model
parameter and comment on the conclusions that follow
from these quantities.

(b) Use the extra sum of squares method to evaluate the
value of the quadratic terms , and x1x2 to the model.

10.14. Relationship between analysis of variance and
regression. Any analysis of variance model can be expressed
in terms of the general linear model y � x� � 	, where the X
matrix consists of 0s and 1s. Show that the single-factor
model yij � � � �i � �ij , i � 1, 2, 3, j � 1, 2, 3, 4 can be writ-
ten in general linear model form. Then,

(a) Write the normal equations (X�X) � X�y and com-
pare them with the normal equations found for this
model in Chapter 3.

(b) Find the rank of X�X. Can (X�X)�1 be obtained?

(c) Suppose the first normal equation is deleted and the
restriction is added. Can the resulting sys-
tem of equations be solved? If so, find the solution. Find
the regression sum of squares X�y, and compare it to
the treatment sum of squares in the single-factor model.

�̂�

�3
i�1 n�̂i � 0

�̂

x2
1, x2

2

� �22x
2
2 � �12x1x2 � �y � �0 � �1x1 � �2x2 � �11x

2
1
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10.15. Suppose that we are fitting a straight line and we
desire to make the variance of as small as possible.
Restricting ourselves to an even number of experimental
points, where should we place these points so as to minimize
V( )? [Note: Use the design called for in this exercise with
great caution because, even though it minimizes V( ), it
has some undesirable properties; for example, see Myers,
Montgomery and Anderson-Cook (2009). Only if you are very
sure the true functional relationship is linear should you con-
sider using this design.]

10.16. Weighted least squares. Suppose that we are fitting
the straight line y � �0 � �1x � �, but the variance of the y’s
now depends on the level of x; that is,

where the wi are known constants, often called weights. Show
that if we choose estimates of the regression coefficients to 

minimize the weighted sum of squared errors given by 

wi(yi � �0 � �1xi)
2, the resulting least squares normal equa-

tions are

�̂0 �
n

i�1
wi xi � �̂1 �

n

i�1
wi x

2
i � �

n

i�1
wi xiyi

�̂0 �
n

i�1
wi � �1

ˆ �
n

i�1
wi xi � �

n

i�1
wiyi

�
n

i�1

V(y �xi) � � 2
i �

� 2

wi
  i � 1, 2, . . . , n

�̂1

�̂1

�̂1

10.17. Consider the design discussed in Example 10.5.

(a) Suppose you elect to augment the design with the sin-
gle run selected in that example. Find the variances and
covariances of the regression coefficients in the model
(ignoring blocks):

(b) Are there any other runs in the alternate fraction that
would de-alias AB from CD?

(c) Suppose you augment the design with the four runs
suggested in Example 10.5. Find the variances and
covariances of the regression coefficients (ignoring
blocks) for the model in part (a).

(d) Considering parts (a) and (c), which augmentation
strategy would you prefer, and why?

10.18. Consider a design. Suppose after running the
experiment, the largest observed effects are A � BD, B � AD,
and D � AB. You wish to augment the original design with a
group of four runs to de-alias these effects.

(a) Which four runs would you make?

(b) Find the variances and covariances of the regression
coefficients in the model

(c) Is it possible to de-alias these effects with fewer than
four additional runs?

� �14x1x4 � �24x2x4 � �.

y � �0 � �1x1 � �2x2 � �4x4 � �12x1x2

27�4
III

� �12x1x2 � �34x3x4 � �

y � �0 � �1x1 � �2x2 � �3x3 � �4x4

24�1
IV
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11.1 Introduction to Response Surface Methodology

Response surface methodology, or RSM, is a collection of mathematical and statistical
techniques useful for the modeling and analysis of problems in which a response of interest
is influenced by several variables and the objective is to optimize this response. For example,
suppose that a chemical engineer wishes to find the levels of temperature (x1) and pressure
(x2) that maximize the yield (y) of a process. The process yield is a function of the levels of
temperature and pressure, say

where � represents the noise or error observed in the response y. If we denote the expected
response by E(y) � f(x1, x2) � �, then the surface represented by

is called a response surface.

� � f (x1, x2)

y � f (x1, x2) � �

The supplemental material is on the textbook website www.wiley.com/college/montgomery.
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We usually represent the response surface graphically, such as in Figure 11.1, where �
is plotted versus the levels of x1 and x2. We have seen such response surface plots before, par-
ticularly in the chapters on factorial designs. To help visualize the shape of a response surface,
we often plot the contours of the response surface as shown in Figure 11.2. In the contour plot,
lines of constant response are drawn in the x1, x2 plane. Each contour corresponds to a partic-
ular height of the response surface. We have also previously seen the utility of contour plots.

In most RSM problems, the form of the relationship between the response and the inde-
pendent variables is unknown. Thus, the first step in RSM is to find a suitable approximation
for the true functional relationship between y and the set of independent variables. Usually, a
low-order polynomial in some region of the independent variables is employed. If the
response is well modeled by a linear function of the independent variables, then the approxi-
mating function is the first-order model

(11.1)

If there is curvature in the system, then a polynomial of higher degree must be used, such as
the second-order model

(11.2)

Almost all RSM problems use one or both of these models. Of course, it is unlikely that a
polynomial model will be a reasonable approximation of the true functional relationship over
the entire space of the independent variables, but for a relatively small region they usually
work quite well.

The method of least squares, discussed in Chapter 10, is used to estimate the parame-
ters in the approximating polynomials. The response surface analysis is then performed using
the fitted surface. If the fitted surface is an adequate approximation of the true response func-
tion, then analysis of the fitted surface will be approximately equivalent to analysis of the
actual system. The model parameters can be estimated most effectively if proper experimen-
tal designs are used to collect the data. Designs for fitting response surfaces are called
response surface designs. These designs are discussed in Section 11.4.
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■ F I G U R E  1 1 . 1 A three-dimensional
response surface showing the expected yield (�) as a
function of temperature (x1) and pressure (x2)

■ F I G U R E  1 1 . 2 A contour plot of a response
surface



RSM is a sequential procedure. Often, when we are at a point on the response surface
that is remote from the optimum, such as the current operating conditions in Figure 11.3,
there is little curvature in the system and the first-order model will be appropriate. Our
objective here is to lead the experimenter rapidly and efficiently along a path of improvement
toward the general vicinity of the optimum. Once the region of the optimum has been found,
a more elaborate model, such as the second-order model, may be employed, and an analysis
may be performed to locate the optimum. From Figure 11.3, we see that the analysis of a
response surface can be thought of as “climbing a hill,” where the top of the hill represents
the point of maximum response. If the true optimum is a point of minimum response, then we
may think of “descending into a valley.”

The eventual objective of RSM is to determine the optimum operating conditions for
the system or to determine a region of the factor space in which operating requirements are
satisfied. More extensive presentations of RSM are in Khuri and Cornell (1996), Myers,
Montgomery and Anderson-Cook (2009), and Box and Draper (2007). The review paper by
Myers et al. (2004) is also a useful reference.

11.2 The Method of Steepest Ascent

Frequently, the initial estimate of the optimum operating conditions for the system will be far
from the actual optimum. In such circumstances, the objective of the experimenter is to move
rapidly to the general vicinity of the optimum. We wish to use a simple and economically effi-
cient experimental procedure. When we are remote from the optimum, we usually assume that
a first-order model is an adequate approximation to the true surface in a small region of the x’s.

The method of steepest ascent is a procedure for moving sequentially in the direction
of the maximum increase in the response. Of course, if minimization is desired, then we call
this technique the method of steepest descent. The fitted first-order model is

(11.3)ŷ � �̂0 � �
k

i�1
�̂i xi
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■ F I G U R E  1 1 . 3 The sequential nature of RSM
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and the first-order response surface, that is, the contours of , is a series of parallel lines such
as shown in Figure 11.4. The direction of steepest ascent is the direction in which increases
most rapidly. This direction is normal to the fitted response surface. We usually take as the path
of steepest ascent the line through the center of the region of interest and normal to the fit-
ted surface. Thus, the steps along the path are proportional to the regression coefficients .
The actual step size is determined by the experimenter based on process knowledge or other
practical considerations.

Experiments are conducted along the path of steepest ascent until no further increase
in response is observed. Then a new first-order model may be fit, a new path of steepest
ascent determined, and the procedure continued. Eventually, the experimenter will arrive in
the vicinity of the optimum. This is usually indicated by lack of fit of a first-order model.
At that time, additional experiments are conducted to obtain a more precise estimate of the
optimum.
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ŷ
ŷ
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■ F I G U R E  1 1 . 4 First-
order response surface and path
of steepest ascent

E X A M P L E  1 1 . 1

A chemical engineer is interested in determining the operating conditions that maximize the yield of a process. Two
controllable variables influence process yield: reaction time and reaction temperature. The engineer is currently oper-
ating the process with a reaction time of 35 minutes and a temperature of 155°F, which result in yields of around 
40 percent. Because it is unlikely that this region contains the optimum, she fits a first-order model and applies the
method of steepest ascent.
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The engineer decides that the region of exploration for fitting the first-order model should be (30, 40) minutes of reac-
tion time and (150, 160) Fahrenheit. To simplify the calculations, the independent variables will be coded to the usual (�1, 1)
interval. Thus, if �1 denotes the natural variable time and �2 denotes the natural variable temperature, then the coded
variables are

The experimental design is shown in Table 11.1. Note that the design used to collect these data is a 22 factorial augmented
by five center points. Replicates at the center are used to estimate the experimental error and to allow for checking the
adequacy of the first-order model. Also, the design is centered about the current operating conditions for the process.

A first-order model may be fit to these data by least squares. Employing the methods for two-level designs, we obtain
the following model in the coded variables:

Before exploring along the path of steepest ascent, the adequacy of the first-order model should be investigated. The 22

design with center points allows the experimenter to

1. Obtain an estimate of error.
2. Check for interactions (cross-product terms) in the model.
3. Check for quadratic effects (curvature).

The replicates at the center can be used to calculate an estimate of error as follows:

The first-order model assumes that the variables x1 and x2 have an additive effect on the response. Interaction between the
variables would be represented by the coefficient �12 of a cross-product term x1x2 added to the model. The least squares
estimate of this coefficient is just one-half the interaction effect calculated as in an ordinary 22 factorial  design, or

The single-degree-of-freedom sum of squares for interaction is

SSInteraction �
(�0.1)2

4
� 0.0025

�̂12 �
1

4 [(1 � 39.3) � (1 � 41.5) � (�1 � 40.0) � (�1 � 40.9)] �
1

4 (�0.1) � �0.025

�̂2 �
(40.3)2 � (40.5)2 � (40.7)2 � (40.2)2 � (40.6)2 � (202.3)2/5

4
� 0.0430

ŷ � 40.44 � 0.775x1 � 0.325x2

x1 �
�1 � 35

5
 and  x2 �

�2 � 155
5

■ TA B L E  1 1 . 1
Process Data for Fitting the First-Order Model

Natural Coded 
Variables Variables Response

�1 �2 x1 x2 y

30 150 �1 �1 39.3

30 160 �1 1 40.0

40 150 1 �1 40.9

40 160 1 1 41.5

35 155 0 0 40.3

35 155 0 0 40.5

35 155 0 0 40.7

35 155 0 0 40.2

35 155 0 0 40.6
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Comparing SSInteraction to gives a lack-of-fit statistic

which is small, indicating that interaction is negligible.
Another check of the adequacy of the straight-line model is obtained by applying the check for a pure quadratic curva-

ture effect described in Section 6.8. Recall that this consists of comparing the average response at the four points in the facto-
rial portion of the design, say � 40.425, with the average response at the design center, say � 40.46. If there is quad-
ratic curvature in the true response function, then is a measure of this curvature. If �11 and �22 are the coefficients
of the “pure quadratic” terms and , then is an estimate of �11 � �22. In our example, an estimate of the pure quad-
ratic term is

The single-degree-of-freedom sum of squares associated with the null hypothesis, H0: �11� �22 � 0, is

where nF and nC are the number of points in the factorial portion and the number of center points, respectively. Because

is small, there is no indication of a pure quadratic effect.
The analysis of variance for this model is summarized in Table 11.2. Both the interaction and curvature checks are not

significant, whereas the F test for the overall regression is significant. Furthermore, the standard error of and is

Both regression coefficients and are large relative to their standard errors. At this point, we have no reason to question
the adequacy of the first-order model.

To move away from the design center—the point (x1 � 0, x2 � 0)—along the path of steepest ascent, we would move
0.775 units in the x1 direction for every 0.325 units in the x2 direction. Thus, the path of steepest ascent passes through the
point (x1 � 0, x2 � 0) and has a slope 0.325/0.775. The engineer decides to use 5 minutes of reaction time as the basic step
size. Using the relationship between �1 and x1, we see that 5 minutes of reaction time is equivalent to a step in the coded
variable x1 of !x1 � 1. Therefore, the steps along the path of steepest ascent are !x1 � 1.0000 and !x2 � (0.325/0.775)
� 0.42.

�̂2�̂1

se(�̂i) ��MSE

4
���̂2

4
��0.0430

4
� 0.10   i � 1, 2

�̂2�̂1

F �
SSPure Quadratic

�̂2
�

0.0027
0.0430

� 0.063

SSPure Quadratic �
nF nC (yF � yC)2

nF � nC
�

(4)(5)(�0.035)2

4 � 5
� 0.0027

�̂11 � �̂22 � yF � yC � 40.425 � 40.46 � �0.035

yF � yCx2
2x2

1

yF � yC

yCyF

F �
SSInteraction

�̂2
�

0.0025
0.0430

� 0.058

�̂2

■ TA B L E  1 1 . 2
Analysis of Variance for the First-Order Model

Sum of Degrees of Mean 
Source of Variation Squares Freedom Square F0 P-Value

Model (�1, �2) 2.8250 2 1.4125 47.83 0.0002

Residual 0.1772 6

(Interaction) (0.0025) 1 0.0025 0.058 0.8215

(Pure quadratic) (0.0027) 1 0.0027 0.063 0.8142

(Pure error) (0.1720) 4 0.0430

Total 3.0022 8



The engineer computes points along this path and observes the yields at these points until a decrease in response is noted.
The results are shown in Table 11.3 in both coded and natural variables. Although the coded variables are easier to manipulate
mathematically, the natural variables must be used in running the process. Figure 11.5 plots the yield at each step along the
path of steepest ascent. Increases in response are observed through the tenth step; however, all steps beyond this point result in
a decrease in yield. Therefore, another first-order model should be fit in the general vicinity of the point (�1 � 85, �2 � 175).

484 Chapter 11 ■ Response Surface Methods and Designs

■ TA B L E  1 1 . 3
Steepest Ascent Experiment for Example 11.1

Coded Variables Natural Variables Response
Steps x1 x2 �1 �2 y

Origin 0 0 35 155

! 1.00 0.42 5 2

Origin � ! 1.00 0.42 40 157 41.0

Origin � 2! 2.00 0.84 45 159 42.9

Origin � 3! 3.00 1.26 50 161 47.1

Origin � 4! 4.00 1.68 55 163 49.7

Origin � 5! 5.00 2.10 60 165 53.8

Origin � 6! 6.00 2.52 65 167 59.9

Origin � 7! 7.00 2.94 70 169 65.0

Origin � 8! 8.00 3.36 75 171 70.4

Origin � 9! 9.00 3.78 80 173 77.6

Origin � 10! 10.00 4.20 85 175 80.3

Origin � 11! 11.00 4.62 90 179 76.2

Origin � 12! 12.00 5.04 95 181 75.1

90

80

70

60

50

40

Y
ie

ld

1 2 3 4 5 6

Steps

7 8 9 10 11 12

■ F I G U R E  1 1 . 5 Yield versus steps along the
path of steepest ascent for Example 11.1
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A new first-order model is fit around the point (�1 � 85, �2 � 175). The region of exploration for �1 is [80, 90], and it is
[170, 180] for �2. Thus, the coded variables are

Once again, a 22 design with five center points is used. The experimental design is shown in Table 11.4.
The first-order model fit to the coded variables in Table 11.4 is

The analysis of variance for this model, including the interaction and pure quadratic term checks, is shown in Table 11.5.
The interaction and pure quadratic checks imply that the first-order model is not an adequate approximation. This curva-
ture in the true surface may indicate that we are near the optimum. At this point, additional analysis must be done to locate
the optimum more precisely.

ŷ � 78.97 � 1.00x1 � 0.50x2

x1 �
�1 � 85

5
 and  x2 �

�2 � 175
5

■ TA B L E  1 1 . 4
Data for Second First-Order Model

Natural Coded 
Variables Variables Response

�1 �2 x1 x2 y

80 170 �1 �1 76.5
80 180 �1 1 77.0
90 170 1 �1 78.0
90 180 1 1 79.5
85 175 0 0 79.9
85 175 0 0 80.3
85 175 0 0 80.0
85 175 0 0 79.7
85 175 0 0 79.8

■ TA B L E  1 1 . 5
Analysis of Variance for the Second First-Order Model

Sum of Degrees of Mean 
Source of Variation Squares Freedom Square F0 P-Value

Regression 5.00 2
Residual 11.1200 6

(Interaction) (0.2500) 1 0.2500 4.72 0.0955
(Pure quadratic) (10.6580) 1 10.6580 201.09 0.0001
(Pure error) (0.2120) 4 0.0530

Total 16.1200 8

We notice from Example 11.1 that the path of steepest ascent is proportional to the
signs and magnitudes of the regression coefficients in the fitted first-order model

It is easy to give a general algorithm for determining the coordinates of a point on the path of steep-
est ascent. Assume that the point x1 � x2 � � xk � 0 is the base or origin point. ThenÁ

ŷ � �̂0 � �
k

i�1
�̂i xi



1. Choose a step size in one of the process variables, say !xj. Usually, we would select
the variable we know the most about, or we would select the variable that has the
largest absolute regression coefficient .

2. The step size in the other variables is

3. Convert the !xi from coded variables to the natural variables.

To illustrate, consider the path of steepest ascent computed in Example 11.1. Because
x1 has the largest regression coefficient, we select reaction time as the variable in step 1 of the
above procedure. Five minutes of reaction time is the step size (based on process knowledge).
In terms of the coded variables, this is !x1 � 1.0. Therefore, from guideline 2, the step size
in temperature is

To convert the coded step sizes (!x1 � 1.0 and !x2 � 0.42) to the natural units of time and
temperature, we use the relationships

which results in

and

11.3 Analysis of a Second-Order Response Surface

When the experimenter is relatively close to the optimum, a model that incorporates
curvature is usually required to approximate the response. In most cases, the second-order
model

(11.4)

is adequate. In this section, we will show how to use this fitted model to find the optimum
set of operating conditions for the x’s and to characterize the nature of the response
surface.

11.3.1 Location of the Stationary Point

Suppose we wish to find the levels of x1, x2, . . . , xk that optimize the predicted response.
This point, if it exists, will be the set of x1, x2, . . . , xk for which the partial derivatives

. This point, say x1,s, x2,s, . . . , xk,s, is called the station-
ary point. The stationary point could represent a point of maximum response, a point of
�ŷ/�x1 � �ŷ/�x2 � Á � �ŷ/�xk � 0

y � �0 � �
k

i�1
�i xi � �

k

i�1
�ii x

2
i � ��

i< j
�ijxi xj � �

!�2 � !x2(5) � 0.42(5) � 2�F

!�1 � !x1(5) � 1.0(5) � 5 min

!x1 �
!�1

5
  and   !x2 �

! �2

5

!x2 �
�̂2

�̂1/!x1

�
0.325

(0.775/1.0)
� 0.42

!xi �
�̂i

�̂j/!xj

  i � 1, 2, . . . , k   i Z j

� �̂j �
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minimum response, or a saddle point. These three possibilities are shown in Figures 11.6,
11.7, and 11.8.

Contour plots play a very important role in the study of the response surface. By generat-
ing contour plots using computer software for response surface analysis, the experimenter can
usually characterize the shape of the surface and locate the optimum with reasonable precision.

We may obtain a general mathematical solution for the location of the stationary point.
Writing the fitted second-order model in matrix notation, we have

(11.5)ŷ � �̂0 � x�b � x�Bx

x1

x2

x 2

x1

103.04

92.03

81.02

70.01

59

1.00

1.00

0.50

0.00

–0.50

–1.00
–1.00 –0.50

(b) Contour plot(a) Response surface
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■ F I G U R E  1 1 . 6 Response surface and contour plot illustrating a surface with a maximum
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■ F I G U R E  1 1 . 7 Response surface and contour plot illustrating a surface with a minimum



where

That is, b is a (k � 1) vector of the first-order regression coefficients and B is a (k � k) sym-
metric matrix whose main diagonal elements are the pure quadratic coefficients and
whose off-diagonal elements are one-half the mixed quadratic coefficients ( , i � j). The
derivative of with respect to the elements of the vector x equated to 0 is

(11.6)

The stationary point is the solution to Equation 11.6, or

(11.7)

Furthermore, by substituting Equation 11.7 into Equation 11.5, we can find the predicted
response at the stationary point as

(11.8)

11.3.2 Characterizing the Response Surface

Once we have found the stationary point, it is usually necessary to characterize the response
surface in the immediate vicinity of this point. By characterize, we mean determining whether
the stationary point is a point of maximum or minimum response or a saddle point. We also
usually want to study the relative sensitivity of the response to the variables x1, x2, . . . , xk.

ŷs � �̂0 �
1
2 x�sb

xs � �
1
2 B�1b

�ŷ
�x

� b � 2Bx � 0

ŷ
�̂ij

(�̂ii)

x � �
x1

x2

o
xk

	  b � �
�̂1

�̂2

o
�̂k

	  and  B � �
�̂11, �̂12/2, . . . , �̂1k/2

�̂22, . . . , �̂2k/2
∞

sym.           �̂kk
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■ F I G U R E  1 1 . 8 Response surface and contour plot illustrating a saddle point (or minimax)
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As we mentioned previously, the most straightforward way to do this is to examine a con-
tour plot of the fitted model. If there are only two or three process variables (the x’s), the con-
struction and interpretation of this contour plot is relatively easy. However, even when there are
relatively few variables, a more formal analysis, called the canonical analysis, can be useful.

It is helpful first to transform the model into a new coordinate system with the origin at
the stationary point xs and then to rotate the axes of this system until they are parallel to the
principal axes of the fitted response surface. This transformation is illustrated in Figure 11.9.
We can show that this results in the fitted model

(11.9)

where the {wi} are the transformed independent variables and the {�i} are constants. Equation
11.9 is called the canonical form of the model. Furthermore, the {�i} are just the eigenval-
ues or characteristic roots of the matrix B.

The nature of the response surface can be determined from the stationary point and the
signs and magnitudes of the {�i}. First, suppose that the stationary point is within the region
of exploration for fitting the second-order model. If the {�i} are all positive, xs is a point of
minimum response; if the {�i} are all negative, xs is a point of maximum response; and if the
{�i} have different signs, xs is a saddle point. Furthermore, the surface is steepest in the wi

direction for which |�i| is the greatest. For example, Figure 11.9 depicts a system for which 
xs is a maximum (�1 and �2 are negative) with |�1| 
 |�2|.

ŷ � ŷs � �1w
2
1 � �2w

2
2 � Á � �kw

2
k

x1,0

x2,0

x2

x1

w2

w1

70

75

80

■ F I G U R E  1 1 . 9 Canonical form of
the second-order model

E X A M P L E  1 1 . 2

We will continue the analysis of the chemical process in
Example 11.1. A second-order model in the variables x1 and
x2 cannot be fit using the design in Table 11.4. The experi-
menter decides to augment this design with enough points to
fit a second-order model.1 She obtains four observations at (x1

� 0, x2 � 
1.414) and (x1 � 
1.414, x2 � 0). The complete
experiment is shown in Table 11.6, and the design is dis-
played in Figure 11.10. This design is called a central com-
posite design (or a CCD) and will be discussed in more detail
in Section 11.4.2. In this second phase of the study, two

1 The engineer ran the additional four observations at about the same time he or she ran the original nine observations. If substantial
time had elapsed between the two sets of runs, blocking would have been necessary. Blocking in response surface designs is discussed
in Section 11.4.3.
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additional responses were of interest: the viscosity and the
molecular weight of the product. The responses are also
shown in Table 11.6.

We will focus on fitting a quadratic model to the yield
response y1 (the other responses will be discussed in 

Section 11.3.4). We generally use computer software to fit
a response surface and to construct the contour plots. Table
11.7 contains the output from Design-Expert. From exam-
ining this table, we notice that this software package first
computes the “sequential or extra sums of squares” for the

x1

x2

(0,0)–2 +2

+2

–2

(0, 1.414)

(0, –1.414)

(1, –1)

(1, 1)(–1, 1)

(–1, –1)

(1.414, 0)(–1.414, 0)

■ F I G U R E  1 1 . 1 0 Central composite design for Example 11.2

■ TA B L E  1 1 . 6
Central Composite Design for Example 11.2

Natural
Variables Coded Variables Responses


1 
2 x1 x2 y1 (yield) y2 (viscosity) y3 (molecular weight)

80 170 �1 �1 76.5 62 2940

80 180 �1 1 77.0 60 3470

90 170 1 �1 78.0 66 3680

90 180 1 1 79.5 59 3890

85 175 0 0 79.9 72 3480

85 175 0 0 80.3 69 3200

85 175 0 0 80.0 68 3410

85 175 0 0 79.7 70 3290

85 175 0 0 79.8 71 3500

92.07 175 1.414 0 78.4 68 3360

77.93 175 �1.414 0 75.6 71 3020

85 182.07 0 1.414 78.5 58 3630

85 167.93 0 �1.414 77.0 57 3150
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■ TA B L E  1 1 . 7
Computer Output from Design-Expert for Fitting a Model to the Yield Response in Example 11.2

Response: yield

***WARNING: The Cubic Model is Aliased!***

Sequential Model Sum of Squares

Source Sum of Squares DF Mean Square F Value Prob � F

Mean 80062.16 1 80062.16
Linear 10.04 2 5.02 2.69 0.1166

2FI 0.25 1 0.25 0.12 0.7350
Quadratic 17.95 2 8.98 126.88 �0.001 Suggested

Cubic 2.042E-003 2 1.021E-003 0.010 0.9897 Aliased
Residual 0.49 5 0.099

Total 80090.90 13 6160.84

“Sequential Model Sum of Squares”: Select the highest order polynomial where the additional terms are significant.

Lack-of-Fit Tests

Source Sum of Squares DF Mean Square F Value Prob � F

Linear 18.49 6 3.08 58.14 0.0008
2FI 18.24 5 3.65 68.82 0.0006

Quadratic 0.28 3 0.094 1.78 0.2897 Suggested

Cubic 0.28 1 0.28 5.31 0.0826 Aliased
Pure Error 0.21 4 0.053

“Lack-of-Fit Tests”: Want the selected model to have insignificant lack-of-fit.

Model summary Statistics

Source Std. Dev. R-Squared Adjusted R-Squared Predicted R-Squared PRESS

Linear 1.37 0.3494 0.2193 �0.0435 29.99

2FI 1.43 0.3581 0.1441 �0.2730 36.59

Quadratic 0.27 0.9828 0.9705 0.9184 2.35 Suggested

Cubic 0.31 0.9828 0.9588 0.3622 18.33 Aliased

“Model Summary Statistics”: Focus on the model minimizing the “PRESS,” or equivalently maximizing the “PRED 
R-SQR.”

Response: yield
ANOVA for Response Surface Quadratic Model 
Analysis of variance table [Partial sum of squares]

Source Sum of Squares DF Mean Square F Value Prob � F

Model 28.25 5 5.65 79.85 �0.0001
A 7.92 1 7.92 111.93 �0.0001

B 2.12 1 2.12 30.01 0.0009

A2 13.18 1 13.18 186.22 �0.0001

B2 6.97 1 6.97 98.56 �0.0001

AB 0.25 1 0.25 3.53 0.1022

Residual 0.50 7 0.071
Lack of Fit 0.28 3 0.094 1.78 0.2897

Pure Error 0.21 4 0.053

Cor Total 28.74 12



■ TA B L E  1 1 . 7 (Continued)

Std. Dev. 0.27 R-Squared 0.9828

Mean 78.48 Adj R-Squared 0.9705

C.V. 0.34 Pred R-Squared 0.9184

PRESS 2.35 Adeq Precision 23.018

Factor Coefficient Estimate DF Standard Error 95% CI Low 95% CI High VIF

Intercept 79.94 1 0.12 79.66 80.22

A-time 0.99 1 0.094 0.77 1.22 1.00

B-temp 0.52 1 0.094 0.29 0.74 1.00

A2 �1.38 1 0.10 �1.61 �1.14 1.02

B2 �1.00 1 0.10 �1.24 �0.76 1.02

AB 0.25 1 0.13 �0.064 0.56 1.00

Final Equation in Terms of Coded Factors:

yield �

�79.94

�0.99 * A

�0.52 * B

�1.38 * A2

�1.00 * B2

�0.25 * A * B

Final Equation in Terms of Actual Factors:

yield �

�1430.52285

�7.80749 * time

�13.27053 * temp

�0.055050 * time2

�0.040050 * temp2

�0.010000 * time * temp

Diagnostics Case Statistics
Run Standard Actual Predicted Student Cook’s Outlier 
Order Order Value Value Residual Leverage Residual Distance t

8 1 76.50 76.30 0.20 0.625 1.213 0.409 1.264

6 2 78.00 77.79 0.21 0.625 1.275 0.452 1.347

9 3 77.00 76.83 0.17 0.625 1.027 0.293 1.032

11 4 79.50 79.32 0.18 0.625 1.089 0.329 1.106

12 5 75.60 75.78 �0.18 0.625 �1.107 0.341 �1.129

10 6 78.40 78.59 �0.19 0.625 �1.195 0.396 �1.240

7 7 77.00 77.21 �0.21 0.625 �1.283 0.457 �1.358

1 8 78.50 78.67 �0.17 0.625 �1.019 0.289 �1.023

5 9 79.90 79.94 �0.040 0.200 �0.168 0.001 �0.156

3 10 80.30 79.94 0.36 0.200 1.513 0.095 1.708

13 11 80.00 79.94 0.060 0.200 0.252 0.003 0.235

2 12 79.70 79.94 �0.24 0.200 �1.009 0.042 �1.010

4 13 79.80 79.94 �0.14 0.200 �0.588 0.014 �0.559
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linear, quadratic, and cubic terms in the model (there is a
warning message concerning aliasing in the cubic model
because the CCD does not contain enough runs to support
a full cubic model). On the basis of the small P-value for
the quadratic terms, we decided to fit the second-order
model to the yield response. The computer output shows
the final model in terms of both the coded variables and the
natural or actual factor levels.

Figure 11.11 shows the three-dimensional response sur-
face plot and the contour plot for the yield response in
terms of the process variables time and temperature. It is
relatively easy to see from examining these figures that the
optimum is very near 175°F and 85 minutes of reaction
time and that the response is at a maximum at this point.
From examination of the contour plot, we note that the
process may be slightly more sensitive to changes in reac-
tion time than to changes in temperature.

We could also find the location of the stationary point
using the general solution in Equation 11.7. Note that

and from Equation 11.7, the stationary point is

That is, x1,s � 0.389 and x2,s � 0.306. In terms of the natu-
ral variables, the stationary point is

� �
1

2��0.7345
�0.0917

�0.0917
�1.0096	�0.995

0.515	 � �0.389
0.306	

xs � �
1
2B�1b

b � �0.995
0.515	  B � ��1.376

0.1250
 0.1250

 �1.001 	

which yields �1 � 86.95 
 87 minutes of reaction time
and �2 � 176.53 
 176.5°F. This is very close to the sta-
tionary point found by visual examination of the contour
plot in Figure 11.11. Using Equation 11.8, we may find
the predicted response at the stationary point as �
80.21.

We may also use the canonical analysis described in this
section to characterize the response surface. First, it is nec-
essary to express the fitted model in canonical form
(Equation 11.9). The eigenvalues �1 and �2 are the roots of
the determinantal equation

which reduces to

The roots of this quadratic equation are �1 � �0.9634 and
�2 � �1.4141. Thus, the canonical form of the fitted
model is

Because both �1 and �2 are negative and the stationary point
is within the region of exploration, we conclude that the
stationary point is a maximum.

ŷ � 80.21 � 0.9634w2
1 � 1.4141w2

2

�2 � 2.3788� � 1.3639 � 0

��1.376 � �
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■ F I G U R E  1 1 . 1 1 Contour and response surface plots of the yield response, Example 11.2



In some RSM problems, it may be necessary to find the relationship between the
canonical variables {wi} and the design variables {xi}. This is particularly true if it is
impossible to operate the process at the stationary point. As an illustration, suppose that in
Example 11.2 we could not operate the process at �1 � 87 minutes and �2 � 176.5°F because
this combination of factors results in excessive cost. We now wish to “back away” from the
stationary point to a point of lower cost without incurring large losses in yield. The canonical
form of the model indicates that the surface is less sensitive to yield loss in the w1 direction.
Exploration of the canonical form requires converting points in the (w1, w2) space to points in
the (x1, x2) space.

In general, the variables x are related to the canonical variables w by

where M is a (k � k) orthogonal matrix. The columns of M are the normalized eigenvectors
associated with the {�i). That is, if mi is the ith column of M, then mi is the solution to

(11.10)

for which .
We illustrate the procedure using the fitted second-order model in Example 11.2. For �1 �

�0.9634, Equation 11.10 becomes

or

We wish to obtain the normalized solution to these equations, that is, the one for which
. There is no unique solution to these equations, so it is most convenient to

assign an arbitrary value to one unknown, solve the system, and normalize the solution.
Letting , we find � 0.3027. To normalize this solution, we divide and 
by

This yields the normalized solution

and

which is the first column of the M matrix.
Using �2 � �1.4141, we can repeat the above procedure, obtaining m12 � �0.9571

and m22 � 0.2898 as the second column of M. Thus, we have

The relationship between the w and x variables is

�w1

w2
	 � � 0.2898

�0.9574
0.9571
0.2898	�x1 � 0.389

x2 � 0.306	

M � �0.2898
0.9571

�0.9571
0.2898	

m21 �
m*21

1.0448
�

1
1.0448

� 0.9571

m11 �
m*11

1.0448
�

0.3027
1.0448

� 0.2898

�(m*11)
2 � (m*21)

2 � �(0.3027)2 � (1)2 � 1.0448

m*21m*11m*11m*21 � 1

m2
11 � m2

21 � 1

 0.1250m11 � 0.0377m21 � 0

�0.4129m11 � 0.1250m21 � 0

�(�1.376 � 0.9634)
0.1250

0.1250
(�1.001 � 0.9634)	�m11

m21
	 � �0

0	

�k
j�1m

2
ji � 1

(B � �iI)mi � 0

w � M�(x � xs)
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or

If we wished to explore the response surface in the vicinity of the stationary point, we could
determine appropriate points at which to take observations in the (w1, w2) space and then use
the above relationship to convert these points into the (x1, x2) space so that the runs may be
made.

11.3.3 Ridge Systems

It is not unusual to encounter variations of the pure maximum, minimum, or saddle point
response surfaces discussed in the previous section. Ridge systems, in particular, are fairly
common. Consider the canonical form of the second-order model given previously in Equa-
tion 11.9:

Now suppose that the stationary point xs is within the region of experimentation; furthermore,
let one or more of the �i be very small (e.g., �i 
 0). The response variable is then very insen-
sitive to the variables wi multiplied by the small �i.

A contour plot illustrating this situation is shown in Figure 11.12 for k � 2 variables
with �1 � 0. (In practice, �1 would be close to but not exactly equal to zero.) The canonical
model for this response surface is theoretically

with �2 negative. Notice that the severe elongation in the w1 direction has resulted in a line of
centers at � 70 and the optimum may be taken anywhere along that line. This type of
response surface is called a stationary ridge system.

If the stationary point is far outside the region of exploration for fitting the second-order
model and one (or more) �i is near zero, then the surface may be a rising ridge. Figure 11.13
illustrates a rising ridge for k � 2 variables with �1 near zero and �2 negative. In this type of
ridge system, we cannot draw inferences about the true surface or the stationary point because
xs is outside the region where we have fit the model. However, further exploration is warranted
in the w1 direction. If �2 had been positive, we would call this system a falling ridge.

ŷ

ŷ � ŷs � �2w
2
2

ŷ � ŷs � �1w
2
1 � �2w

2
2 � Á � �kw

2
k

w2 � �0.9574(x1 � 0.389) � 0.2888(x2 � 0.306)

w1 � 0.2897(x1 � 0.389) � 0.9571(x2 � 0.306)
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■ F I G U R E  1 1 . 1 3 A contour plot of a
rising ridge system

■ F I G U R E  1 1 . 1 2 A contour plot of a
stationary ridge system



11.3.4 Multiple Responses

Many response surface problems involve the analysis of several responses. For instance, in
Example 11.2, the experimenter measured three responses. In this example, we optimized the
process with respect to only the yield response y1.

Simultaneous consideration of multiple responses involves first building an appropriate
response surface model for each response and then trying to find a set of operating conditions
that in some sense optimizes all responses or at least keeps them in desired ranges. An
extensive treatment of the multiple response problem is given in Myers, Montgomery and
Anderson-Cook (2009).

We may obtain models for the viscosity and molecular weight responses (y2 and y3,
respectively) in Example 11.2 as follows:

In terms of the natural levels of time (�1) and temperature (�2), these models are

and

Figures 11.14 and 11.15 present the contour and response surface plots for these models.
A relatively straightforward approach to optimizing several responses that works well

when there are only a few process variables is to overlay the contour plots for each
response. Figure 11.16 shows an overlay plot for the three responses in Example 11.2, with
contours for which y1 (yield) � 78.5, 62 � y2 (viscosity) � 68, and y3 (molecular weight
Mn) � 3400. If these boundaries represent important conditions that must be met by the

ŷ3 � �6308.8 � 41.025�1 � 35.473�2

�2.75 � 10�2�2
1 � 0.26757�2

2 �5 � 10�2�1�2

ŷ2 � �9030.74 � 13.393�1 � 97.708�2

ŷ3 � 3386.2 � 205.1x1 � 177.4x2

ŷ2 � 70.00 � 0.16x2 � 0.95x2 � 0.69x2
1 � 6.69x2

2 � 1.25 x1x2
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process, then as the unshaded portion of Figure 11.16 shows, a number of combinations of
time and temperature will result in a satisfactory process. The experimenter can visually
examine the contour plot to determine appropriate operating conditions. For example, it is
likely that the experimenter would be most interested in the larger of the two feasible oper-
ating regions shown in Figure 11.16.

When there are more than three design variables, overlaying contour plots becomes
awkward because the contour plot is two dimensional, and k � 2 of the design variables must
be held constant to construct the graph. Often a lot of trial and error is required to determine
which factors to hold constant and what levels to select to obtain the best view of the surface.
Therefore, there is practical interest in more formal optimization methods for multiple
responses.
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■ F I G U R E  1 1 . 1 5 Contour plot and response surface plot of molecular weight, Example 11.2
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A popular approach is to formulate and solve the problem as a constrained optimization
problem. To illustrate using Example 11.2, we might formulate the problem as

Many numerical techniques can be used to solve this problem. Sometimes these techniques are
referred to as nonlinear programming methods. The Design-Expert software package solves
this version of the problem using a direct search procedure. The two solutions found are

and

Notice that the first solution is in the upper (smaller) feasible region of the design space (refer
to Figure 11.16), whereas the second solution is in the larger region. Both solutions are very
near to the boundary of the constraints.

Another useful approach to optimization of multiple responses is to use the simultane-
ous optimization technique popularized by Derringer and Suich (1980). Their procedure
makes use of desirability functions. The general approach is to first convert each response yi

into an individual desirability function di that varies over the range

where if the response yi is at its goal or target, then di � 1 and if the response is outside an accept-
able region, di � 0. Then the design variables are chosen to maximize the overall desirability

where there are m responses. The overall desirability will be zero if any of the individual
responses is undesirable.

The individual desirability functions are structured as shown in Figure 11.17. If the
objective or target T for the response y is a maximum value,

(11.11)

when the weight r � 1, the desirability function is linear. Choosing r 
 1 places more empha-
sis on being close to the target value and choosing 0 � r � 1 makes this less important. If the
target for the response is a minimum value,

(11.12)

The two-sided desirability function shown in Figure 11.17c assumes that the target is located
between the lower (L) and upper (U ) limits and is defined as

(11.13)d � �
0

�y � L
T � L�

r1

�U � y
U � T�

r2

0

y � L

L � y � T

T � y � U

y � U

d � �
1

�U � y
U � T�

r

0

y � T

T � y � U

y � U

d � �
0

�y � L
T � L�

r

1

y � L

L � y � T

y � T

D � (d1 � d2 � Á � dm)1/ m

0 � di � 1

time � 86.6  temp � 172.25  ŷ1 � 79.5

time � 83.5  temp � 177.1  ŷ1 � 79.5

Max y1

subject to
62 � y2 � 68

y3 � 3400
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The Design-Expert software package was used to solve Example 11.2 using the desir-
ability function approach. We chose T � 80 as the target for the yield response with U � 70
and set the weight for this individual desirability equal to unity. We set T � 65 for the viscos-
ity response with L � 62 and U � 68 (to be consistent with specifications), with both weights
r1 � r2 � 1. Finally, we indicated that any molecular weight between 3200 and 3400 was
acceptable. Two solutions were found.

Solution 1

Time � 86.5 Temp � 170.5 D � 0.822

� 78.8 � 65 � 3287

Solution 2

Time � 82 Temp � 178.8 D � 0.792

� 78.5 � 65 � 3400

Solution 1 has the highest overall desirability. Notice that it results in on-target viscosity and
acceptable molecular weight. This solution is in the larger of the two operating regions in

ŷ3ŷ2ŷ1

ŷ3ŷ2ŷ1

d

L T y

1

0 < r < 1

r = 1

r > 1

0

(a) Objective (target) is to maximize y

d

T U y

1

0 < r < 1

r = 1

r > 1

0

(b) Objective (target) is to minimize y

(c) Objective is for y to be as close as posible to the target

d

T UL y

1

0

r1 = 1 r2 = 1

r1 > 1 r2 > 1

0 < r1 < 1 0 < r2 < 1

■ F I G U R E  1 1 . 1 7 Individual desirability functions for simultaneous optimization



Figure 11.16, whereas the second solution is in the smaller region. Figure 11.18 shows a
response and contour plot of the overall desirability function D.

11.4 Experimental Designs for Fitting Response Surfaces

Fitting and analyzing response surfaces is greatly facilitated by the proper choice of an exper-
imental design. In this section, we discuss some aspects of selecting appropriate designs for
fitting response surfaces.

When selecting a response surface design, some of the features of a desirable design are
as follows:

1. Provides a reasonable distribution of data points (and hence information) through-
out the region of interest

2. Allows model adequacy, including lack of fit, to be investigated

3. Allows experiments to be performed in blocks

4. Allows designs of higher order to be built up sequentially

5. Provides an internal estimate of error

6. Provides precise estimates of the model coefficients

7. Provides a good profile of the prediction variance throughout the experimental
region

8. Provides reasonable robustness against outliers or missing values

9. Does not require a large number of runs

10. Does not require too many levels of the independent variables

11. Ensures simplicity of calculation of the model parameters

These features are sometimes conflicting, so judgment must often be applied in design selec-
tion. For more information on the choice of a response surface design, refer to Khuri and Cornell
(1996), Myers, Montgomery and Anderson-Cook (2009), and Box and Draper (2007).
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11.4.1 Designs for Fitting the First-Order Model

Suppose we wish to fit the first-order model in k variables

(11.14)

There is a unique class of designs that minimizes the variance of the regression coefficients
. These are the orthogonal first-order designs. A first-order design is orthogonal if the

off-diagonal elements of the (X�X) matrix are all zero. This implies that the cross products of
the columns of the X matrix sum to zero.

The class of orthogonal first-order designs includes the 2k factorial and fractions of the
2k series in which main effects are not aliased with each other. In using these designs, we
assume that the low and high levels of the k factors are coded to the usual 
1 levels.

The 2k design does not afford an estimate of the experimental error unless some runs
are replicated. A common method of including replication in the 2k design is to augment the
design with several observations at the center (the point xi � 0, i � 1, 2, . . . , k). The addition
of center points to the 2k design does not influence the for i � 1, but the estimate of �0

becomes the grand average of all observations. Furthermore, the addition of center points
does not alter the orthogonality property of the design. Example 11.1 illustrates the use of a
22 design augmented with five center points to fit a first-order model.

Another orthogonal first-order design is the simplex. The simplex is a regularly sided
figure with k � 1 vertices in k dimensions. Thus, the simplex design for k � 2 is an equilat-
eral triangle, and it is a regular tetrahedron for k � 3. Simplex designs in two and three
dimensions are shown in Figure 11.19.

11.4.2 Designs for Fitting the Second-Order Model

We have informally introduced in Example 11.2 (and even earlier, in Example 6.6) the cen-
tral composite design or CCD for fitting a second-order model. This is the most popular
class of designs used for fitting these models. Generally, the CCD consists of a 2k factorial (or
fractional factorial of resolution V) with nF factorial runs, 2k axial or star runs, and nC center
runs. Figure 11.20 shows the CCD for k � 2 and k � 3 factors.

The practical deployment of a CCD often arises through sequential experimentation,
as in Examples 11.1 and 11.2. That is, a 2k has been used to fit a first-order model, this model
has exhibited lack of fit, and the axial runs are then added to allow the quadratic terms to be
incorporated into the model. The CCD is a very efficient design for fitting the second-order

��̂i�

��̂i�

y � �0 � �
k

i�1
�i xi � �

(a) (b)

x2

x3

x2

x1 x1

■ F I G U R E  1 1 . 1 9 The simplex design for (a) k � 2 variables and 
(b) k � 3 variables



model. There are two parameters in the design that must be specified: the distance 	 of the
axial runs from the design center and the number of center points nC. We now discuss the
choice of these two parameters.

Rotatability. It is important for the second-order model to provide good predictions
throughout the region of interest. One way to define “good” is to require that the model should
have a reasonably consistent and stable variance of the predicted response at points of interest
x. Recall from Equation 10.40 that the variance of the predicted response at some point x is

(11.15)

Box and Hunter (1957) suggested that a second-order response surface design should be
rotatable. This means that the is the same at all points x that are at the same distance
from the design center. That is, the variance of predicted response is constant on spheres.

Figure 11.21 shows contours of constant for the second-order model fit using
the CCD in Example 11.2. Notice that the contours of constant standard deviation of predicted

�V [ ŷ(x)]

V [ ŷ(x)]

V [ ŷ(x)] � � 2x�(X�X)�1x
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response are concentric circles. A design with this property will leave the variance of unchanged
when the design is rotated about the center (0, 0, . . . , 0), hence the name rotatable design.

Rotatability is a reasonable basis for the selection of a response surface design. Because
the purpose of RSM is optimization and the location of the optimum is unknown prior to run-
ning the experiment, it makes sense to use a design that provides equal precision of estima-
tion in all directions. (It can be shown that any first-order orthogonal design is rotatable.)

A central composite design is made rotatable by the choice of �. The value of � for
rotatability depends on the number of points in the factorial portion of the design; in fact,
� � (nF)

1/4 yields a rotatable central composite design where nF is the number of points used
in the factorial portion of the design.

The Spherical CCD. Rotatability is a spherical property; that is, it makes the most
sense as a design criterion when the region of interest is a sphere. However, it is not impor-
tant to have exact rotatability to have a good design. For a spherical region of interest, the
best choice of 	 from a prediction variance viewpoint for the CCD is to set � � . This
design, called a spherical CCD, puts all the factorial and axial design points on the surface
of a sphere of radius . For more discussion of this, see Myers, Montgomery and
Anderson-Cook (2009).

Center Runs in the CCD. The choice of � in the CCD is dictated primarily by the
region of interest. When this region is a sphere, the design must include center runs to pro-
vide reasonably stable variance of the predicted response. Generally, three to five center runs
are recommended.

The Box–Behnken Design. Box and Behnken (1960) have proposed some three-
level designs for fitting response surfaces. These designs are formed by combining 2k facto-
rials with incomplete block designs. The resulting designs are usually very efficient in terms
of the number of required runs, and they are either rotatable or nearly rotatable.

Table 11.8 shows a three-variable Box–Behnken design. The design is also shown geomet-
rically in Figure 11.22. Notice that the Box–Behnken design is a spherical design, with all points

�k

�k

ŷ

■ TA B L E  1 1 . 8
A Three-Variable Box–Behnken Design

Run x1 x2 x3

1 �1 �1 0

2 �1 1 0

3 1 �1 0

4 1 1 0

5 �1 0 �1

6 �1 0 1

7 1 0 �1

8 1 0 1

9 0 �1 �1

10 0 �1 1

11 0 1 �1

12 0 1 1

13 0 0 0

14 0 0 0

15 0 0 0



lying on a sphere of radius . Also, the Box–Behnken design does not contain any points at the
vertices of the cubic region created by the upper and lower limits for each variable. This could be
advantageous when the points on the corners of the cube represent factor-level combinations that
are prohibitively expensive or impossible to test because of physical process constraints.

Cuboidal Region of Interest. In many situations, the region of interest is cuboidal rather
than spherical. In these cases, a useful variation of the central composite design is the face-
centered central composite design or the face-centered cube, in which � � 1. This design
locates the star or axial points on the centers of the faces of the cube, as shown in Figure 11.23 for
k � 3. This variation of the central composite design is also sometimes used because it requires
only three levels of each factor, and in practice it is frequently difficult to change factor levels.
However, note that face-centered central composite designs are not rotatable.

The face-centered cube does not require as many center points as the spherical CCD. In
practice, nC � 2 or 3 is sufficient to provide good variance of prediction throughout the exper-
imental region. It should be noted that sometimes more center runs will be employed to give
a reasonable estimate of experimental error. Figure 11.24 shows the square root of prediction
variance for the face-centered cube for  k � 3 with nC � 3 center points. Notice�V [ ŷ(x)]

�2
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that the standard deviation of predicted response is reasonably uniform over a relatively large
portion of the design space.

Other Designs. Many other response surface designs are occasionally useful in prac-
tice. For two variables, we could use designs consisting of points that are equally spaced on
a circle and that form regular polygons. Because the design points are equidistant from the
origin, these arrangements are often called equiradial designs.

For k � 2, a rotatable equiradial design is obtained by combining n2 � 5 points equally
spaced on a circle with n1 � 1 points at the center of the circle. Particularly useful designs for
k � 2 are the pentagon and the hexagon. These designs are shown in Figure 11.25. The small
composite design is another alternative. The small composite design consists of a fractional
factorial in the cube of resolution III* (main effects aliased with two-factor interactions and no
two-factor interactions aliased with each other) and the usual axial and center runs. While the
small composite design may be of interest when it is important to reduce the number of runs
these design do not enjoy good prediction variance properties relative to those of the CCD.

A small composite design for k � 3 factors is shown in Table 11.9. This design uses the
standard one-half fraction of the 23 in the cube because it meets the resolution III* criteria.

■ TA B L E  1 1 . 9
A Small Composite Design for k � 3 Factors

Standard Order x1 x2 x3

1 1.00 1.00 �1.00

2 1.00 �1.00 1.00

3 �1.00 1.00 1.00

4 �1.00 �1.00 �1.00

5 �1.73 0.00 0.00

6 1.73 0.00 0.00

7 0.00 �1.73 0.00

8 0.00 1.73 0.00

9 0.00 0.00 �1.73

10 0.00 0.00 1.73

11 0.00 0.00 0.00

12 0.00 0.00 0.00

13 0.00 0.00 0.00

14 0.00 0.00 0.00

(a)

x2

x1

(a)

x2

x1

■ F I G U R E  1 1 . 2 5 Equiradial designs
for two variables. (a) Hexagon, (b) Pentagon



The design has four runs in the cube and six axial runs, and it must have at least one center
point. Thus the design has a minimum of N � 11 trials, and the second-order model in k � 3
variables has p � 10 parameters to estimate, so this is a very efficient design with respect to
the number of runs. The design in Table 11.9 has nC � 4 center runs. We selected � � 1.73
to give a spherical design because the small composite design cannot be made rotatable.

The hybrid design is another alternative when it is important to reduce the number of
runs. A hybrid design for k � 3 is shown in Table 11.10. Some of these designs have irregu-
lar levels, and this can be a limiting factor in their application. However, they are very small
designs, and they have excellent prediction variance properties. For more details about small
composite and hybrid designs, refer to Myers, Montgomery and Anderson-Cook (2009).

Graphical Evaluation of Response Surface Designs. Response surface designs
are most often used to build models for making predictions. Therefore, the prediction variance
(defined in Equation 11.15) is of considerable importance in evaluating or comparing designs.
Two-dimensional contour plots or three-dimensional response surface plots of prediction
variance (or its square root, prediction standard deviation) such as Figures 11.21 and 11.24
can be of value in this. However, for a design in k factors, these plots allow only two design
factors to be displayed on  the plot. Because all remaining k � 2 factors are held constant,
these plots give an incomplete picture of how the prediction variance is distributed over the
design space. Both the fraction of design space (FDS) plot introduced in Section 6.7 and the
variance dispersion graph (VDG) developed by Giovannitti-Jensen and Myers (1989) can
be used to solve this problem.

A VDG is a graph displaying the minimum, maximum, and average prediction variance
for a specific design and response model versus the distance of the design point from the center
of the region. The distance or radius usually varies from zero (the design center) to , which
for a spherical design is the distance of the most remote point in the design from the center.
It is customary to plot the scaled prediction variance (SPV)

(11.16)

on a VDG. Notice that the SPV is the prediction variance in Equation 11.15 multiplied by the
number of runs in the design (N) and divided by the error variance �2. Dividing by �2 elimi-
nates an unknown parameter and multiplying by N often serves to facilitate comparing
designs of different sizes.

NV [ ŷ(x)]

� 2
� Nx�(X� X)�1x

�k
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■ TA B L E  1 1 . 1 0
A Hybrid Design for k � 3 Factors

Standard Order x1 x2 x3

1 0.00 0.00 1.41

2 0.00 0.00 �1.41

3 �1.00 �1.00 0.71

4 1.00 �1.00 0.71

5 �1.00 1.00 0.71

6 1.00 1.00 0.71

7 1.41 0.00 �0.71

8 �1.41 0.00 �0.71

9 0.00 1.41 �0.71

10 0.00 �1.41 �0.71

11 0.00 0.00 0.00
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Figure 11.26a is a VDG for the rotatable CCD with k � 3 variables and four center
runs. Because the design is rotatable, the minimum, maximum, and average SPV are identi-
cal for all points that are at the same distance from the center of the design, so there is only
one line on the VDG. Notice how the graph displays the behavior of the SPV over the design
space, with nearly constant variance out to a radius of approximately 1.2, and then increasing
steadily from there out to the boundary of the design. Figure 11.26b is the VDG for a spher-
ical CCD with k � 3 variables and four center runs. Notice that there is very little difference
between the three lines for minimum, maximum, and average SPV, leading us to conclude
that any practical difference between the rotatable and spherical versions of this design is very
minimal.

Figure 11.27 is the VDG for the rotatable CCD with k � 4 factors. In this VDG, the
number of center points in the design varies from nC � 1 to nC � 5. The VDG shows clearly
that a design with too few center points will have a very unstable distribution of prediction
variance but that prediction variance quickly stabilizes with increasing values of nC. Using
either four or five center runs will give reasonably stable prediction variance over the design
region. VDGs have been used to study the effect of changing the number of center runs in
response surface design, and the recommendations given earlier in the chapter are based on
some of these studies.

11.4.3 Blocking in Response Surface Designs

When using response surface designs, it is often necessary to consider blocking to eliminate
nuisance variables. For example, this problem may occur when a second-order design is
assembled sequentially from a first-order design, as was illustrated in Examples 11.1 and 11.2.
Considerable time may elapse between the running of the first-order design and the running of
the supplemental experiments required to build up a second-order design, and test conditions
may change during this time, thus necessitating blocking.

A response surface design is said to block orthogonally if it is divided into blocks such
that block effects do not affect the parameter estimates of the response surface model. If a 2k

or 2k�p design is used as a first-order response surface design, the methods of Chapter 7 may
be used to arrange the runs in 2r blocks. The center points in these designs should be allocated
equally among the blocks.

For a second-order design to block orthogonally, two conditions must be satisfied. If
there are nb observations in the bth block, then these conditions are

1. Each block must be a first-order orthogonal design; that is,

where xiu and xju are the levels of ith and jth variables in the uth run of the experiment
with x0u � 1 for all u.

2. The fraction of the total sum of squares for each variable contributed by every
block must be equal to the fraction of the total observations that occur in the block;
that is,

where N is the number of runs in the design.

�
nb

u�1
x2

iu

�
N

u�1
x2

iu

�
nb

N
  i � 1, 2, . . . , k   for all b

�
nb

u�1
xiu xju � 0   i Z j � 0, 1, . . . , k   for all b
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As an example of applying these conditions, consider a rotatable central composite
design in k � 2 variables with N � 12 runs. We may write the levels of x1 and x2 for this
design in the design matrix

Notice that the design has been arranged in two blocks, with the first block consisting of the
factorial portion of the design plus two center points and the second block consisting of 
the axial points plus two additional center points. It is clear that condition 1 is met; that is,
both blocks are first-order orthogonal designs. To investigate condition two, consider first
block 1 and note that

Therefore,

or

Thus, condition 2 is satisfied in block 1. For block 2, we have

Therefore,
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or

Because condition 2 is also satisfied in block 2, this design blocks orthogonally.
In general, the central composite design can always be constructed to block orthogonally

in two blocks, with the first block consisting of nF factorial points plus nCF center points and
the second block consisting of nA � 2k axial points plus nCA center points. The first condition
for orthogonal blocking will always hold regardless of the value used for � in the design. For
the second condition to hold,

(11.17)

The left-hand side of Equation 11.17 is 2�2/nF, and after substituting in this quantity, we may
solve the equation for the value of � that will result in orthogonal blocking as

(11.18)

This value of � does not, in general, result in a rotatable or spherical design. If the
design is also required to be rotatable, then � � (nF)1/4 and

(11.19)

It is not always possible to find a design that exactly satisfies Equation 11.19. For example if
k � 3, nF � 8, and nA � 6, Equation 11.19 reduces to

It is impossible to find values of nCA and nCF that exactly satisfy this last equation. However,
note that if nCF � 3 and nCA � 2, then the right-hand side is

so the design nearly blocks orthogonally. In practice, one could relax somewhat the require-
ment of either rotatability or orthogonal blocking without any major loss of information.

The central composite design is very versatile in its ability to accommodate blocking. If k
is large enough, the factorial portion of the design can be divided into two or more blocks. (The
number of factorial blocks must be a power of 2, with the axial portion forming a single block.)
Table 11.11 presents several useful blocking arrangements for the central composite design.

There are two important points about the analysis of variance when the response surface
design has been run in blocks. The first concerns the use of center points to calculate an estimate
of pure error. Only center points that are run in the same block can be considered to be replicates,
so the pure error term can only be calculated within each block. If the variability is consistent
across blocks, then these pure error estimates could be pooled. The second point concerns the
block effect. If the design blocks orthogonally in m blocks, the sum of squares for blocks is
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where Bb is the total of the nb observations in the bth block and G is the grand total of all N
observations in all m blocks. When blocks are not exactly orthogonal, the general regression
significance test (the “extra sum of squares” method) described in Chapter 10 can be used.

11.4.4 Optimal Designs for Response Surfaces

The standard response surface designs discussed in the previous sections, such as the central
composite design, the Box–Behnken design, and their variations (such as the face-centered
cube), are widely used because they are quite general and flexible designs. If the experimen-
tal region is either a cube or a sphere, typically a standard response surface design will be
applicable to the problem. However, occasionally an experimenter encounters a situation
where a standard response surface design may not be the obvious choice. Optimal designs
are an alternative to consider in these cases.

As we have noted before, there are several situations where some type of computer-
generated design may be appropriate.

1. An irregular experimental region. If the region of interest for the experiment is
not a cube or a sphere, standard designs may not be the best choice. Irregular regions
of interest occur fairly often. For example, an experimenter is investigating the prop-
erties of a particular adhesive. The adhesive is applied to two parts and then cured
at an elevated temperature. The two factors of interest are the amount of adhesive
applied and the cure temperature. Over the ranges of these two factors, taken as �1
to �1 on the usual coded variable scale, the experimenter knows that if too little
adhesive is applied and the cure temperature is too low, the parts will not bond

■ TA B L E  1 1 . 1 1
Some Rotatable and Near-Rotatable Central Composite Designs That Block Orthogonally

5 6 7
k 2 3 4 5 Rep. 6 Rep. 7 Rep.

Factorial Block(s)
nF 4 8 16 32 16 64 32 128 64

Number of blocks 1 2 2 4 1 8 2 16 8

Number of points in 4 4 8 8 16 8 16 8 8
each block

Number of center 3 2 2 2 6 1 4 1 1
points in each block

Total number of points  7 6 10 10 22 9 20 9 9
in each block

Axial Block
nA 4 6 8 10 10 12 12 14 14

nCA 3 2 2 4 1 6 2 11 4

Total number of points 7 8 10 14 11 18 14 25 18
in the axial block

Total number of points 14 20 30 54 33 90 54 169 80
N in the design

Values of �

Orthogonal blocking 1.4142 1.6330 2.0000 2.3664 2.0000 2.8284 2.3664 3.3333 2.8284

Rotatability 1.4142 1.6818 2.0000 2.3784 2.0000 2.8284 2.3784 3.3636 2.8284

1
2

1
2

1
2



satisfactorily. In terms of the coded variables, this leads to a constraint on the
design variables, say

where x1 represents the application amount of adhesive and x2 represents the temper-
ature. Furthermore, if the temperature is too high and too much adhesive is applied,
the parts will be either damaged by heat stress or an inadequate bond will result. Thus,
there is another constraint on the factor levels

Figure 11.28 shows the experimental region that results from applying these constraints.
Notice that the constraints effectively remove two corners of the square, producing an
irregular experimental region (sometimes these irregular regions are called “dented
cans”). There is no standard response surface design that will exactly fit into this region.

2. A nonstandard model. Usually an experimenter elects a first- or second-order
response surface model, realizing that this empirical model is an approximation to
the true underlying mechanism. However, sometimes the experimenter may have
some special knowledge or insight about the process being studied that may suggest
a nonstandard model. For example, the model

may be of interest. The experimenter would be interested in obtaining an efficient
design for fitting this reduced quartic model. As another illustration, sometimes we
encounter response surface problems where some of the design factors are categorical
variables. There are no standard response surface designs for this situation [refer to
Myers, Montgomery and Anderson-Cook (2009) for a discussion of categorical vari-
ables in response surface problems].

� �112x
2
1x2 � �1112x

3
1x2 � �

y � �0 � �1x1 � �2x2 � �12x1x2 � �11x
2
1 � �22x

2
2

x1 � x2 � 1

�1.5 � x1 � x2
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3. Unusual sample size requirements. Occasionally, an experimenter may need to
reduce the number of runs required by a standard response surface design. For
example, suppose we intend to fit a second-order model in four variables. The cen-
tral composite design for this situation requires between 28 and 30 runs, depending
on the number of center points selected. However, the model has only 15 terms. If
the runs are extremely expensive or time-consuming, the experimenter will want a
design with fewer trials. Although computer-generated designs can be used for this
purpose, there are other approaches. For example, a small composite design can be
constructed for four factors with 20 runs, including four center points, and a hybrid
design with as few as 16 runs is also available. These may be superior choices to
using a computer-generated design to reduce the number of trials.

There are several popular design optimality criteria. Perhaps the most widely used is the
D-optimality criterion. A design is said to be D-optimal if

is minimized. A D-optimal design minimizes the volume of the joint confidence region on the
vector of regression coefficients. A measure of the relative efficiency of design 1 to design 2
according to the D-criterion is given by

(11.21)

where X1 and X2 are the X matrices for the two designs and p is the number of model
parameters. Many popular software packages including JMP, Design-Expert, and Minitab
will construct D-optimal designs.

The A-optimality criterion deals with only the variances of the regression coefficients.
A design is A-optimal if it minimizes the sum of the main diagonal elements of (X�X)�1. (This
is called the trace of (X�X)�1, usually denoted tr(X�X)�1.) Thus, an A-optimal design mini-
mizes the sum of the variances of the regression coefficients.

Because many response surface experiments are concerned with the prediction of the
response, prediction variance criteria are of considerable practical interest. Perhaps the
most popular of these is the G-optimality criterion. A design is said to be G-optimal if it
minimizes the maximum scaled prediction variance over the design region; that is, if the
maximum value of

over the design region is a minimum, where N is the number of points in the design. If the
model has p parameters, the G-efficiency of a design is just

(11.22)

The V-criterion considers the prediction variance at a set of points of interest in the design
region, say x1, x2, . . . , xm. The set of points could be the candidate set from which the design
was selected, or it could be some other collection of points that have specific meaning to the
experimenter. A design that minimizes the average prediction variance over this set of m
points is a V-optimal design.

As we observed in Chapter 6 (Section 6.7), an alterative to calculating the prediction
variance at a finite set of points in the design space is to compute an average or integrated
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variance over the design space, say

where R is the design region and A is the volume of the region. Note that this is a more gen-
eral form of the I-criterion discussed in Chapter 6. The I criterion is also sometimes called the
IV or Q criterion. JMP can construct I -optimal designs.

Generally, we think of the D criteria as the most appropriate for first-oder designs, as
they are associated with parameter estimation, which is very important in screening situations
where first-order model are most often used. The G and I criteria are prediction-oriented cri-
teria, so they would be most likely used for second-order models, as second-order models are
often used for optimization, and good prediction properties are essential for optimization. The
I criteria is much easier to implement than G, and is available in several software packages.

One of the design construction methods is based on a point exchange algorithm. In the
simplest form of this algorithm, a grid of candidate points is selected by the experimenter, and
an initial design is selected (perhaps by random) from this set of points. Then the algorithm
exchanges points that are in the grid but not in the design with points currently in the design
in an effort to improve the selected optimality criterion. Because not every possible design is
explicitly evaluated, there is no guarantee that an optimal design has been found, but the
exchange procedure usually ensures that a design that is “close” to optimal results. The proce-
dure is also sensitive to the grid of candidate points that have been specified. Some implemen-
tations repeat the design construction process several times, starting from different initial
designs, to increase the likelihood that a final design that is very near the optimal will result.

Another way to construct optimal design is with a coordinate exchange algorithm.
This method searches over each coordinate of every point in the initial design recursively until
no improvement in the optimality criterion is found. The procedure is usually repeated sever-
al times with each cycle starting with a randomly generated initial design. Coordinate
exchange is usually much more efficient than point exchange and is the standard method in
many software packages.

To illustrate some of these ideas, consider the adhesive experiment discussed previously
that led to the irregular experimental region in Figure 11.28. Suppose that the response of
interest is pull-off force and that we wish to fit a second-order model to this response. In
Figure 11.29a, we show a central composite design with four center points (12 runs total)
inscribed inside this region. This is not a rotatable design, but it is the largest CCD that we
can fit inside the design space. For this design, (X�X)�1 � 1.852 E-2 and the trace of
(X�X)�1 is 6.375. Also shown in Figure 11.29a are the contours of constant standard deviation
of the predicted response, calculated assuming that � � 1. Figure 11.29b shows the correspon-
ding response surface plot.

Figure 11.30a and Table 11.12 show a 12-run D-optimal design for this problem, gen-
erated with the Design-Expert software package. For this design, |(X�X)�1| � 2.153 E-4.
Notice that the D-criterion is considerably better for this design than for the inscribed CCD.
The relative efficiency of the inscribed CCD to the D-optimal design is

That is, the inscribed CCD is only 47.6 percent as efficient as the D-optimal design. This
implies that the CCD would have to be replicated 1/0.476 � 2.1 times (or approximately
twice) to have the same precision of estimation for the regression coefficients as achieved
with the D-optimal design. The trace of (X�X)�1 is 2.516 for the D-optimal design, indicating
that the sum of the variances of the regression coefficients is considerably smaller for this
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design than for the CCD. Figure 11.30a and b also shows the contours of constant standard
deviation of predicted response and the associated response surface plot (assuming that � � 1).
Generally, the prediction standard deviation contours are lower for the D-optimal design than
for the inscribed CCD, particularly near the boundaries of the region of interest where the
inscribed CCD does not have any design points.

Figure 11.31a shows a third design, created by taking the two replicates at the corners of
the region in the D-optimal design and moving them to the design center. This could be a useful
idea because Figure 11.30b shows that the standard deviation of predicted response increases
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slightly near the center of the design region for the D-optimal design. Figure 11.31a also shows
the contours of constant standard deviation of prediction for this modified D-optimal design,
and Figure 11.31b shows the response surface plot. The D-criterion for this design is
|(X�X)�1| � 3.71 E-4, and the relative efficiency is

That is, this design is almost as efficient as the D-optimal design. The trace of (X�X)�1 is 2.448
for this design, a slightly smaller value than was obtained for the D-optimal design. The contours
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■ TA B L E  1 1 . 1 2
A D-Optimal Design for the Constrained Region in Figure 11.26

Standard Order x1 x2

1 �0.50 �1.00
2 1.00 0.00
3 �0.08 �0.08
4 �1.00 1.00
5 1.00 �1.00
6 0.00 1.00
7 �1.00 0.25
8 0.25 �1.00
9 �1.00 �0.50

10 1.00 0.00
11 0.00 1.00
12 �0.08 �0.08
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of constant prediction standard deviation for this design visually look at least as good as those for
the D-optimal design, particularly at the center of the region. This points out the necessity of
design evaluation; that is, carefully examine the properties of a computer-generated design
before you decide to use it.

E X A M P L E  1 1 . 3

As an illustration of the different designs that can be construct-
ed using both the D and I optimality criteria, suppose that we
want to fit a second-order model in four factors on a cubic
region. The standard design for this problem would be a face-
centered cube, a design with 24 factorial and axial runs plus 2
or 3 center points, or a total of 26 or 27 runs. The second-order

model in k � 4 factors has 15 parameters, so a minimal design
must have 15 runs. Suppose that we want to employ a design
with 16 runs. Since there is not a standard design available
with 16 runs, we will consider using an optimal design.

Table 11.13 is the output from the JMP custom design tool
for this problem, where a D-optimal design has been

■ TA B L E  1 1 . 1 3
The D-Optimal Design

Design Matrix
Run X1 X2 X3 X4

1 1 1 1 1
2 1 �1 �1 1
3 1 1 �1 �1
4 �1 �1 1 �1
5 1 �1 1 �1
6 0 0 0 �1
7 0 0 1 0
8 0 1 �1 1
9 �1 1 �1 �1

10 �1 �1 �1 1
11 0 1 1 �1
12 0 �1 1 1
13 0 �1 �1 �1
14 1 1 0 0
15 1 0 �1 1
16 �1 1 1 1

Prediction Variance Profile
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Relative Variance of Coefficients
Effect Variance

Intercept 0.909

X1 0.115

X2 0.092

X3 0.088

X4 0.088

X1*X1 0.319

X1*X2 0.124

X2*X2 0.591

X1*X3 0.120

X2*X3 0.093

X3*X3 0.839

X1*X4 0.120

X2*X4 0.093

X3*X4 0.090

X4*X4 0.839

requested. A coordinate exchange algorithm was used to
construct the design. Immediately below the design matrix is
the prediction variance profile, which shows the variance of
the predicted response along each of the four directions. The
crosshair on the plot has been set to coordinates that maximize
the prediction variance. The fraction of design space plot fol-
lows, along with a table of relative variances of the model
coefficients (that is, variance of the coefficients divided by �2).

Table 11.14 is the JMP output for a 16-run I-optimal
design. This table also contains the prediction variance pro-
file showing the maximum prediction variance, the FDS
plot, and the table of relative variance of the model coeffi-

cients. Several important differences between the D and I
optimal designs can be observed. First, the D-optimal design
has a smaller maximum prediction variance (1.806 versus
2.818), but from the FDS plot we observe that the variance
near the center of the region is smaller for the I-optimal
design. In other words, the I-optimal design has smaller 
prediction variance over most of the design space (leading
to a smaller integrated or average variance) when compared
to the D-optimal design but has larger prediction variance at
the extremes of the region. The relative variances of the
coefficients for the I-optimal design are in almost all cases
smaller for the D-optimal design. This is not unexpected as

■ TA B L E  1 1 . 1 3 (Continued)

P
re

d
ic

ti
o

n
va

ri
an

ce

1.5

1.0

0.5

0.0
0.0 0.1 0.2 0.3 0.4 0.5

Fraction of space

0.6 0.7 0.8 0.9 1.0

Fraction of Design Space Plot



11.4 Experimental Designs for Fitting Response Surfaces 519

Prediction Variance Profile
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■ TA B L E  1 1 . 1 4
The I-Optimal Design

Design Matrix
Run X1 X2 X3 X4

1 0 1 1 1
2 0 1 �1 �1
3 �1 �1 0 �1
4 1 �1 �1 0
5 �1 �1 �1 1
6 �1 1 0 1
7 �1 1 1 �1
8 �1 0 1 1
9 1 1 �1 1

10 1 �1 1 1
11 1 1 0 0
12 �1 0 �1 0
13 0 0 0 0
14 0 �1 1 0
15 0 0 0 1
16 1 0 1 �1

for second-order models or situations where prediction
and/or optimization is required because it results in a design
having small prediction variances over most of the design
space and performs only poorly at the extremes.

the D criterion focuses on minimizing the variances of the
model coefficients while the I criterion focuses on minimiz-
ing a measure of average prediction variance. This compar-
ison also reveals why the I-criterion is generally preferable
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■ TA B L E  1 1 . 1 4 (Continued)

Relative Variance of Coefficients
Effect Variance

Intercept 0.508

X1 0.118

X2 0.118

X3 0.118

X4 0.121

X1*X1 0.379

X1*X2 0.174

X2*X2 0.379

X1*X3 0.174

X2*X3 0.174

X3*X3 0.379

X1*X4 0.186

X2*X4 0.186

X3*X4 0.186

X4*X4 0.399

Jones and Nachtsheim (2011b) have introduced a potentially useful class of response sur-
face designs for quantitative factors whose construction can be facilitated by an optimal
design algorithm. They refer to these as “definitive screening designs” because they are
small enough to allow efficient screening of potentially many factors yet they can accom-
modate second-order effects without additional runs. In that regard, they can be thought of
as “one-step RSM designs”. Table 11.15 shows the general structure of these designs with
m factors.

■ TA B L E  1 1 . 1 5
General Structure of a Definitive Screening Design with m Factors

Foldover Run Factor Levels
Pair (i ) xi,1 xi,2 xi,3 ... xi,m

1 1 0 1 1 ... 1

2 0 1 1 ... 1

2 3 1 0 1 ... 1

4 1 0 1 ... 1

3 5 1 1 0 ... 1

6 1 1 0 ... 1

m 2m �1 1 1 1 ... 0

2m 1 1 1 ... 0

Centerpoint m � 1 0 0 0 ... 0
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Notice that for m factors, there are only 2m�1 runs based on m fold-over pairs and an overall
center point. Each run (excluding the center run) has exactly one factor level at its center point
and all others levels at the extremes. These designs have the following desirable properties:

1. The number of required runs is only one more than twice the number of factors.
Consequently, these are very small designs.

2. Unlike resolution III designs, main effects are completely independent of two-factor
interactions. As a result, estimates of main effects are not biased by the presence of
active two-factor interactions, regardless of whether the interactions are included in
the model.

3. Unlike resolution IV designs, two-factor interactions are not completely confounded
with other two-factor interactions, although they may be correlated.

4. Unlike resolution III, IV and V designs with added center points, all quadratic effects
can be estimated in models comprised of any number of linear and quadratic main
effect terms.

5. Quadratic effects are orthogonal to main effects and not completely confounded
(though correlated) with interaction effects.

6. With six through or more factors, the designs are capable of estimating all possible
full quadratic models involving three or fewer factors with very high levels of 
statistical efficiency.

These designs are an excellent compromise between Resolution III fractions for screening
and small RSM designs. They also admit the possibility of moving directly from screening
to optimization using the results of a single experiment. Jones and Nachtsheim found these
designs using an optimization technique they had previously developed for finding minimum
aliasing designs [see Jones and Nachtsheim (2011a)] Their algorithm minimizes the sum of
the squares of the elements of the alias matrix subject to a constraint on the D-efficiency of
the resulting design. Figure 11.32 shows these designs for the cases of 4 through 12 factors.

These designs can also be constructed from conference matrices [see Xiao, Lin and
Bai (2012)]. A conference matrix C is an n � n matrix that has diagonal elements equal to
zero and all off-diagonal elements equal to 
1. They have the property that C�C is a mul-
tiple of the identity matrix. For the n � n conference matrix C, C�C � (n � 1)I.
Conference matrices first arose in connection with a problem in telephony. They were used
in constructing ideal telephone conference networks from ideal transformers. These networks
were represented by conference matrices. There are other applications.

The conference matrix of order 6 is given by:

The 13-run 6-factor definitive screening design can be found by folding over each row of this
conference matrix and adding a row of zeros at the bottom. In general, if C is the conference
matrix of order n the m-factor definitive screening design matrix can be found as follows:

where 0 denotes the 1 � n row vector of zeros and m � 2n�1.
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■ F I G U R E  1 1 . 3 2 Definitive Screening Designs for 4 Through 12 Factors
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11.5 Experiments with Computer Models

We customarily think of applying designed experiments to a physical process, such as chem-
ical vapor deposition in semiconductor manufacturing, wave soldering or machining.
However, designed experiments can also be successfully applied to computer simulation mod-
els of physical systems. In such applications, the data from the experimental design is used to
build a model of the system being modeled by the computer simulation—a metamodel—and
optimization is carried out on the metamodel. The assumption is that if the computer simula-
tion model is a faithful representation of the real system, then optimization of the model will
result in adequate determination of the optimum conditions for the real system.

Generally, there are two types of simulation models, stochastic and deterministic. In
a stochastic simulation model, the output responses are random variables. Examples include
systems simulations such as the factory planning and scheduling models used in the semicon-
ductor industry and traffic flow simulators employed by civil engineers, and Monte Carlo sim-
ulations that sample from probability distributions to study complex mathematical phenomena
that do not have direct analytical solutions. Sometimes the output from a stochastic simula-
tion model will be in the form of a time series. Often standard experimental design techniques
can be applied to the output from a stochastic simulation model, although a number of spe-
cialized techniques have been developed. Sometimes polynomials of higher-order than the
usual quadratic response surface model are used.

In a deterministic simulation model the output responses are not random variables; they
are entirely deterministic quantities whose values are determined by the (often highly complex)
mathematical models upon which the computer model is based. Deterministic simulation mod-
els are often used by engineers and scientists  as computer-based design tools. Typical examples
are circuit simulators used for designing electronic circuits and semiconductor devices, finite
element analysis models for mechanical and structural design and computational models for
physical phenomena such as fluid dynamics. These are often very complex models, requiring
considerable computer resources and time to run.

As an example of a situation where a finite element analysis model may be employed,
consider the problem of designing a turbine engine to contain a failed compressor rotor. Many
factors may influence the design, such as engine operating conditions as well as the location,
size, and material properties of surrounding parts. Figure 11.33 shows a cutaway view of a typ-
ical compressor containment model. Many parameters for each component are potentially
important. The thickness, material type, and geometric feature (bend radius, bolt hole size and
location, stiffening ribs or gussets, etc.) are engineering design parameters and, potentially,
experimental factors that could be included in a response surface model. One can see that large
numbers of factors are potentially important in the design of such a product. Furthermore, the
sign or direction of the effect of many of these factors is unknown. For instance, setting fac-
tors that increase the axial stiffness of a backface (such as increasing the thickness of the tran-
sition duct) may help align a rotor fragment, centering the impact on the containment structure.
On the other hand, the increased stiffness may nudge the fragment too much, causing it to miss
the primary containment structure. From experience the design engineers may confidently
assume that only a small number of these potentially important factors have a significant effect
on the performance of the design in containing a failed part. Detailed analysis or testing of the
turbine engine is needed to understand which factors are important and to quantify their effect
on the design. The cost of building a prototype turbine engine frequently exceeds one million
dollars, so studying the effects of these factors using a computer model is very attractive. The
type of model used is called a finite element analysis model. Simulating a containment event
with a finite element analysis model is very computationally intensive. The model shown in
Figure 11.32 has over 100,000 elements and takes about 90 hr of computer time to model 2 ms



of event time. Frequently as much as 10 ms of event time must be modeled. Clearly the need
to limit experimentation or simulation is great. Therefore the typical approach of factor screen-
ing followed by optimization might well be applied to this scenario.

Remember that the response surface approach is based on a philosophy of sequential
experimentation, with the objective of approximating the response with a low-order polynomi-
al in a relatively small region of interest that contains the optimum solution. Some computer
experimenters advocate a somewhat different philosophy. They seek to find a model that
approximates the true response surface over a much wider range of the design variables,
sometimes extending over the entire region of operability. As mentioned earlier in this sec-
tion, this can lead to situations where the model that is considered is much more complex than
the first- and second-order polynomials typically employed in response surface methodology
[see, for example, Barton (1992, 1994), Mitchell and Morris (1992), and Simpson and
Peplinski (1997)].

The choice of a design for a computer simulation experiment presents some interesting
alternatives. If the experimenter is considering a polynomial model, then an optimal design
such as a D-optimal or I-optimal design is a possible choice. In recent years, various types of
space-filling designs have been suggested for computer experiments. Space-filling designs
are often thought to be particularly appropriate for deterministic computer models because in
general they spread the design points out nearly evenly or uniformly (in some sense) throughout
the region of experimentation. This is a desirable feature if the experimenter doesn’t know the
form of the model that is required, and believes that interesting phenomena are likely to be
found in different regions of the experimental space. Furthermore, most space-filling designs
do not contain any replicate runs. For a deterministic computer model this is desirable,
because a single run of the computer model at a design point provides all of the information
about the response at that point. Many space-filling designs do not contain replicates even if
some factors are dropped and they are projected into lower dimensions.

The first space-filling design proposed was the Latin hypercube design [McKay,
Conover and Beckman (1979)]. A Latin hypercube in n runs for k factors in an n � k matrix
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Partial part list

Outer case

Constrainment ring

Shroud

Impeller fragment

Backface

Inlet

Transition duct

Inlet case

■ F I G U R E  1 1 . 3 3 Finite element model for compressor containment
analysis of a turbine engine and partial parts list
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■ F I G U R E  1 1 . 3 4 A 10-run Latin hypercube design

where each column is a random permutation of the levels 1, 2, . . . , n. JMP can create Latin
hypercube designs. An example of a 10-run Latin hypercube design in two factors from JMP
on the interval �1 to �1 is shown in Figure 11.34.

The sphere-packing design in chosen so that the minimum distance between pairs of
points is maximized. These designs were proposed by Johnson, Moore and Ylvisaker (1990)
and are also called maximin designs. An example of a 10-run sphere-packing design in two
factors constructed using JMP is shown in Figure 11.35.

Uniform designs were proposed by Fang (1980). These designs attempt to place the
design points so that they are uniformly scattered through the regions as would a sample from
a uniform distribution. There are a number of algorithms for creating these designs and sev-
eral measures of uniformity. See the book by Fang, Li and Sudjianto (2006). An example of
a 10-run uniform design in two factors constructed using JMP is in Figure 11.36.

Maximum entropy designs were proposed by Shewry and Wynn (1987). Entropy can be
thought of as a measure of the amount of information contained in the distribution of a data
set. Suppose that the data comes from a normal distribution with mean vector � and covari-
ance matrix �2R(
), where R(
) is a correlation matrix having elements

(11.23)

The quantities rij are the correlations between the responses at two design points. The maxi-
mum entropy design maximizes the determinant of R(
). Figure 11.37 shows a 10-run
maximum entropy design in two factors created using JMP.

The Gaussian process model is often used to fit the data from a deterministic comput-
er experiment. These models were introduced as models for computer experiments by Sacks,
Welch, Mitchell and Wynn (1989). They are desirable because they provide an exact fit to the
observations from the experiment. Now this is no assurance that they will interpolate well at
locations in the region of interest where there is no data, and no one seriously believes that
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■ F I G U R E  1 1 . 3 6 A 10-run uniform design
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■ F I G U R E  1 1 . 3 5 A 10-run sphere-packing design



the Gaussian process model is the correct model for the relationship between the response and
the design variables. However, the “exact fit” nature of the model and the fact that it only
requires one parameter for each factor considered in the experiment has made it quite popu-
lar. The Gaussian process model is

where z(x) is a Gaussian stochastic process with covariance matrix �2R(
), and the ele-
ments of R(
) are defined in Equation (11.23). The Gaussian process model is essentially
a spatial correlation model, where the correlation of the response between two observa-
tions decreases as the values of the design factors become further apart. When design
points are close together, this causes ill-conditioning in the data for the Gaussian process
model, much like multicollinearity resulting from predictors that are nearly linearly
dependent in linear regression models. The parameters � and 
s, s � 1, 2, . . . , k are esti-
mated using the method of maximum likelihood. Predicted values of the response at the
point x are computed from

where and are the maximum likelihood estimates of the model parameters � and 
, and
r�(x) � [r(x1,x), r(x2, x) . . . , r(xn, x)]. The prediction equation contains one model term for
each design point in the original experiment. JMP will fit and provide predictions from the
Gaussian process model. More details about the Gaussian process model are in Santner,
Williams, and Notz (2003). A good review of designs for computer experiments and the
Gaussian process model is Jones and Johnson (2009).


̂�̂

ŷ(x) ��̂�r�(x)R(
̂)�1(y�j�̂)

y � � � z (x)
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E X A M P L E  1 1 . 4

The temperature in the exhaust from a jet turbine engine at
different locations in the plume was studied using a compu-
tational fluid dynamics (CFD) model. The two design fac-
tors of interest were the locations in the plume (x and y
coordinates, however the y axis was referred to by the
experimenters as the R-axis or radial axis). Both location
axes were coded to the �1, �1 interval. The experimenters
used a 10-run sphere-packing design. The experimental
design and the output obtained at these test conditions from
the CFD model are shown in Table 11.16. Figure 11.38
shows the design.

JMP was used to fit the Gaussian process model to the
temperature data. Some of the output is shown in Table
11.17. The plot of actual by predicted is obtained by “jack-
knifing” the predicted values; that is, each predicted value
is obtained from a model that doesn’t contain that observa-
tion when the model parameters are estimated. The predic-
tion model obtained from JMP is shown in Table 11.18. In
this table, “X-axis” and “R-axis” refer to the coordinates in
x and R where predictions are to be made.

■ TA B L E  1 1 . 1 6
Sphere-packing design and the temperature
responses in the CFD experiment

x-axis R-axis Temperature

0.056 0.062 338.07

0.095 0.013 1613.04

0.077 0.062 335.91

0.095 0.061 327.82

0.090 0.037 449.23

0.072 0.038 440.58

0.064 0.015 1173.82

0.050 0.000 1140.36

0.050 0.035 453.83

0.079 0.000 1261.39
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X
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■ F I G U R E  1 1 . 3 8 The sphere-packing design for
the CFD experiment

■ TA B L E  1 1 . 1 7
JMP output for the Gaussian process model for the CFD experiment in Table 11.16
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X-Axis 65.40254 0.0349982 0.0141129 0.0208852

R-axis 3603.2483 0.9858871 0.9650018 0.0208852

Mu Sigma
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■ TA B L E  1 1 . 1 8
The JMP Gaussian process prediction model for the CFD experiment

� 734.545842514493 �

(�1943.3447961328 * Exp(�(65.4025404276544 * ((“X-Axis”) � 0.0560573769818389)^2 �

3603.24827558717 * (“R-axis”) � 0.0618)^2)) �

3941.78888206788 * Exp(�(65.4025404276544 * ((“X-Axis”) � 0.0947)^2 � 3603.24827558717
* ((“R-axis”) � 0.0126487944665913)^2)) �

3488.57543918861 * Exp(�(65.4025404276544 * ((“X-Axis”) � 0.0765974898313444)^2 �

3603.24827558717 * ((“R-axis”) � 0.0618)^2)) � �

2040.39522592773 * Exp(�(65.4025404276544 * ((“X-Axis”) � 0.0947)^2 � 3603.24827558717

* ((“R-axis”) � 0.0608005210868486)^2)) �

�742.642897583584 * Exp(�(65.4025404276544 * ((“X-Axis”) � 0.898402482375096)^2 �

3603.24827558717 * (“R-axis”) � 0.0367246615426894)^2)) �

ŷ

■ TA B L E  1 1 . 1 7 (Continued)
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■ TA B L E  1 1 . 1 8 (Continued)

519.91871208163 * Exp(�(65.4025404276544 * ((“X-Axis”) � 0.0717377150616494)^2 �

3603.24827558717 * ((“R-axis”) � 0.377241897055609)^2)) �

�3082.85411601115 * Exp(�(65.4025404276544 * ((“X-Axis”) � 0.0644873310121405)^2 �

3603.24827558717 * (“R-axis”) �0.0148210408248663)^2)) �

958.926988711818 * Exp(�(65.4025404276544 * ((“X-Axis”) � 0.0499)^2 � 3603.24827558717
* (“R-axis”) ^2)) �

80.468182554262 * Exp(�(65.4025404276544 * ((“X-Axis”) � 0.0499)^2 � 3603.24827558717
* (“R-axis”) � 0.0347687447931648)^2)) �

�1180.44117607546 * Exp(�(65.4025404276544 * ((“X-Axis”) � 0.0790747191607881)^2 �

3603.24827558717 * (“R-axis”) ^2)))

Experiments with computer models represent a relatively new and challenging area
for both researchers and practitioners in RSM and in the broader engineering community.
The use of well-designed experiments with engineering computer models for product
design is potentially a very effective way to enhance the productivity of the engineering
design and development community. Some useful references on the general subject of sta-
tistical design for computer experiments include Barton (1992, 1994), Bettonvil and
Kleijnen (1996), Donohue (1994), McKay, Beckman, and Conover (1979), Montgomery
and Weatherby (1979), Sacks, Schiller, and Welch (1989), Sacks and Welch (1989),
Simpson and Peplinski (1997), Slaagame and Barton (1997), Welch et al. (1992), and
Jones and Johnson (2009).

11.6 Mixture Experiments

In previous sections, we have presented response surface designs for those situations in which
the levels of each factor are independent of the levels of other factors. In mixture experi-
ments, the factors are the components or ingredients of a mixture, and consequently their lev-
els are not independent. For example, if x1, x2, . . . , xp denote the proportions of p components
of a mixture, then

and

These restrictions are illustrated graphically in Figure 11.39 for p � 2 and p � 3 compo-
nents. For two components, the factor space for the design includes all values of the two
components that lie on the line segment x1 � x2 � 1, with each component being bound-
ed by 0 and 1. With three components, the mixture space is a triangle with vertices corre-
sponding to formulations that are pure blends (mixtures that are 100 percent of a single
component).

x1 � x2 � Á � xp � 1   (i.e., 100 percent)

0 � xi �  1   i � 1, 2, . . . , p
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When there are three components of the mixture, the constrained experimental region
can be conveniently represented on trilinear coordinate paper as shown in Figure 11.40.
Each of the three sides of the graph in Figure 11.40 represents a mixture that has none of the
three components (the component labeled on the opposite vertex). The nine grid lines in each
direction mark off 10 percent increments in the respective components.

Simplex designs are used to study the effects of mixture components on the response
variable. A {p, m} simplex lattice design for p components consists of points defined by the
following coordinate settings: the proportions assumed by each component take the m � 1
equally spaced values from 0 to 1,

(11.24)

and all possible combinations (mixtures) of the proportions from Equation 11.24 are used. As
an example, let p � 3 and m � 2. Then

and the simplex lattice consists of the following six runs:

(x1, x2, x3) � (1, 0, 0), (0, 1, 0), (0, 0, 1), (1
2, 1

2, 0), (1
2, 0, 1

2), (0, 1
2, 1

2)

xi � 0, 1
2, 1   i � 1, 2, 3

xi � 0, 1
m, 2

m, . . . , 1   i � 1, 2, . . . , p

1

0 1

1

1

10

(a)

(b)

x1

x3

x2

x2 x1 + x2 + x3 = 1 

x1 + x2 = 1 

x1

x1

x2 x3
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0.6

0.4

0.2
0.
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0.
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0.
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0.
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0.8

0.6
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■ F I G U R E  1 1 . 3 9
Constrained factor space for mix-
tures with (a) p � 2 components
and (b) p � 3 components

■ F I G U R E  1 1 . 4 0 Trilinear coordinate system



This design is shown in Figure 11.41. The three vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) are
the pure blends, whereas the points , and are binary blends or two-
component mixtures located at the midpoints of the three sides of the triangle. Figure 11.41
also shows the {3, 3}, {4, 2}, and {4, 3} simplex lattice designs. In general, the number of
points in a {p, m} simplex lattice design is

An alternative to the simplex lattice design is the simplex centroid design. In a p-
component simplex centroid design, there are 2p � 1 points, corresponding to the p permutations
of (1, 0, 0, . . . , 0), the permutations of , the permutations of

, . . . , and the overall centroid . Figure 11.42 shows some
simplex centroid designs.

A criticism of the simplex designs described above is that most of the experimental
runs occur on the boundary of the region and, consequently, include only p � 1 of the 
p components. It is usually desirable to augment the simplex lattice or simplex centroid
with additional points in the interior of the region where the blends will consist of all p
mixture components. For more discussion, see Cornell (2002) and Myers, Montgomery
and Anderson-Cook (2009).

Mixture models differ from the usual polynomials employed in response surface work
because of the constraint �xi � 1. The standard forms of the mixture models that are in wide-
spread use are

Linear

(11.25)

Quadratic

(11.26)E(y) � �
p

i�1
�ixi � � �

p

i�j
�ijxixj

E(y) � �
p

i�1
�i xi

(1
p
, 1

p
, . . . , 1

p)(1
3
, 1

3
, 1

3
, 0, . . . , 0)

(p
3)(1

2
, 1

2
, 0, . . . , 0)(p

2)

N �
(p � m � 1)!

m!(p � 1)!

(0, 1
2
, 1

2)(1
2
, 1

2
, 0), (1

2
, 0, 1

2)
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A [3,2] lattice

x1 = 1 

x1 = x3 = 2
1

x2 = 0 

x3 = 1 x1 = 0 x2 = 1 

A [3,3] lattice

x1 = 1 

x1 = 3, x3 = 3
12

x2 = 0 

x3 = 1 x2 = 1 

A [4,3] lattice

x1 = 1 

x4 = 1 x2 = 1 

x3 = 1 

A [4,2] lattice

x1 = 1 

x4 = 1 x2 = 1 

x3 = 1 

■ F I G U R E  1 1 . 4 1 Some simplex lattice designs for p � 3 and p � 4 components



11.6 Mixture Experiments 533

Full cubic

(11.27)

Special cubic

(11.28)

The terms in these models have relatively simple interpretations. In Equations 11.25
through 11.28, the parameter �i represents the expected response to the pure blend xi � 1
and xj � 0 when j " i. The portion π p

i�1 � i xi is called the linear blending portion. When
curvature arises from nonlinear blending between component pairs, the parameters �ij rep-
resent either synergistic or antagonistic blending. Higher order terms are frequently nec-
essary in mixture models because (1) the phenomena studied may be complex and (2) the
experimental region is frequently the entire operability region and therefore large, requiring
an elaborate model.

� ���
i�j�k

�ijkxixjxk

E(y) � �
p

i�1
�i xi � � �

p

i�j
�ij xi xj

� ���
i�j�k

�ijk xixjxk

� � �
p

i�j
�ijxixj(xi � xj)

E(y) � �
p

i�1
�i xi � � �

p

i�j
�ij xi xj

x1 = 1 

x1 = x3 = 2
1

x1 = x4 = 2
1

x1 = x2 = 2
1

x2 = x3 = 2
1 x3 = x4 = 2

1

x2 = x3 = 2
1

x1 = x2 = 2
1

x1 = x2 = x3 = 3
1

x1 = x3 = x4 = 3
1

x1 = x2 = x3 = x4 = 4
1

x3 = 1 x2 = 1 

 (a)  (b)

x1 = 1 

x4 = 1 x2 = 1 

x3 = 1 

■ F I G U R E  1 1 . 4 2 Simplex centroid designs with (a) p � 3 components and 
(b) p � 4 components

E X A M P L E  1 1 . 5 A Three-Component Mixture

Cornell (2002) describes a mixture experiment in which three
components—polyethylene (x1), polystyrene (x2), and poly-
propylene (x3)—were blended to form fiber that will be spun
into yarn for draperies. The response variable of interest is

yarn elongation in kilograms of force applied. A {3, 2} sim-
plex lattice design is used to study the product. The design
and the observed responses are shown in Table 11.19. Notice
that all of the design points involve either pure or binary
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■ TA B L E  1 1 . 1 9
The {3, 2} Simplex Lattice Design for the yarn Elongation Problem

Component Proportions
Design Observed Average 
Point x1 x2 x3 Elongation Values Elongation Value 

1 1 0 0 11.0, 12.4 11.7

2 0 15.0, 14.8, 16.1 15.3

3 0 1 0 8.8, 10.0 9.4

4 0 10.0, 9.7, 11.8 10.5

5 0 0 1 16.8, 16.0 16.4

6 0 17.7, 16.4, 16.6 16.91

2

1

2

1

2

1

2

1

2

1

2

(y )

blends; that is, at most only two of the three components are
used in any formulation of the product. Replicate observa-
tions are also run, with two replicates at each of the pure
blends and three replicates at each of the binary blends. The
error standard deviation can be estimated from these repli-
cate observations as � 0.85. Cornell fits the second-order
mixture polynomial to the data, resulting in

This model can be shown to be an adequate representation
of the response. Note that because , we
would conclude that component 3 (polypropylene) produces
yarn with the highest elongation. Furthermore, because 
and are positive, blending components 1 and 2 or
components 1 and 3 produces higher elongation values than
would be expected just by averaging the elongations of the
pure blends. This is an example of “synergistic” blending
effects. Components 2 and 3 have antagonistic blending
effects because is negative.

Figure 11.43 plots the contours of elongation, and this
may be helpful in interpreting the results. From examin-
ing the figure, we note that if maximum elongation is

�̂23

�̂13

�̂12

�̂3 � �̂1 � �̂2

� 11.4x1x3 � 9.6x2x3

ŷ � 11.7x1 � 9.4x2 � 16.4x3 � 19.0x1x2

desired, a blend of components 1 and 3 should be chosen
consisting of about 80 percent component 3 and 20
percent component 1.

x1

x3x2

 13 
 12 

 14 

 15  16 

 15 

 14 

 13 

 17 

■ F I G U R E  1 1 . 4 3 Contours of constant 
estimated yarn elongation from the second-order
mixture model for Example 11.5

We noted previously that the simplex lattice and simplex centroid designs are bound-
ary point designs. If the experimenter wants to make predictions about the properties of com-
plete mixtures, it would be highly desirable to have more runs in the interior of the simplex.
We recommend augmenting the usual simplex designs with axial runs and the overall cen-
troid (if the centroid is not already a design point).

The axis of component i is the line or ray extending from the base point xi � 0, xj � 1/
( p � 1) for all j � i to the opposite vertex where xi � 1, xj � 0 for all j " i. The base point
will always lie at the centroid of the (p � 2)-dimensional boundary of the simplex that is oppo-
site the vertex xi � 1, xj � 0 for all j " i. [the boundary is sometimes called a (p � 2)-flat.] The
length of the component axis is one unit. Axial points are positioned along the component axes
at a distance ! from the centroid. The maximum value for ! is (p � 1)/p. We recommend that
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axial runs be placed midway between the centroid of the simplex and each vertex so that ! �
( p � 1)/2p. Sometimes these points are called axial check blends because a fairly common
practice is to exclude them when fitting the preliminary mixture model and then use the
responses at these axial points to check the adequacy of the fit of the preliminary model.

Figure 11.44 shows the {3, 2} simplex lattice design augmented with the axial points.
This design has 10 points, with four of these points in the interior of the simplex. The {3, 3}
simplex lattice will support fitting the full cubic model, whereas the augmented simplex lattice
will not; however, the augmented simplex lattice will allow the experimenter to fit the special
cubic model or to add special quartic terms such as �1233x1x2 to the quadratic model. The aug-
mented simplex lattice is superior for studying the response of complete mixtures in the sense
that it can detect and model curvature in the interior of the triangle that cannot be accounted
for by the terms in the full cubic model. The augmented simplex lattice has more power for
detecting lack of fit than does the {3, 3} lattice. This is particularly useful when the experi-
menter is unsure about the proper model to use and also plans to sequentially build a model by
starting with a simple polynomial (perhaps first order), test the model for lack of fit, and then
augment the model with higher order terms, test the new model for lack of fit, and so forth.

In some mixture problems, constraints on the individual components arise. Lower
bound constraints of the form

are fairly common. When only lower bound constraints are present, the feasible design region
is still a simplex, but it is inscribed inside the original simplex region. This situation may be
simplified by the introduction of pseudocomponents, defined as

(11.29)

with πp
j�1 lj � 1. Now

x�1 � x�2 � Á � x�p � 1

x�i �
xi � li

�1 � �
p

j�1
lj�

li � xi �  1   i � 1, 2, . . . , p

x2
3

x1 = x2 = 6, x3 = 3
1 2x1 = x3 = 6, x2 = 3

1 2

x1 = x3 = 2
1

x2 = x3 = 2
1

x1 = x2 = 2
1

x1 = x2 = x3 = 3
1

x3 = 1 

x1 = 1 

x1 = 3, x2 = x3 = 6
12

x2 = 1 

■ F I G U R E  1 1 . 4 4
An augmented simplex-
lattice design
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so the use of pseudocomponents allows the use of simplex-type designs when lower
bounds are a part of the experimental situation. The formulations specified by the simplex
design for the pseudocomponents are transformed into formulations for the original com-
ponents by reversing the transformation Equation 11.29. That is, if is the value assigned
to the ith pseudocomponent on one of the runs in the experiment, the ith original mixture
component is

(11.30)

If the components have both upper and lower bound constraints, the feasible region is
no longer a simplex; instead, it will be an irregular polytope. Because the experimental region
is not a “standard” shape, computer-generated optimal designs are very useful for these
types of mixture problems.

xi � li � �1 � �
p

j�1
lj� x�i

x�i

E X A M P L E  1 1 . 6 Paint Formulation

An experimenter is trying to optimize the formulation of
automotive clear coat paint. These are complex products
that have very specific performance requirements.
Specifically, the customer wants the Knoop hardness to
exceed 25 and the percentage of solids to be below 30. The
clear coat is a three-component mixture, consisting of a
monomer (x1), a crosslinker (x2), and a resin (x3). There are
constraints on the component proportions:

The result is the constrained region of experimentation
shown in Figure 11.44. Because the region of interest is not
a simplex, we will use a D-optimal design for this problem.
Assuming that both responses are likely to be modeled with
a quadratic mixture model, we can generate the D-optimal
design shown in Figure 11.39 using Design-Expert. We
assumed that in addition to the six runs required to fit the
quadratic mixture model, four additional distinct runs
would be made to check for lack of fit and that four of these
runs would be replicated to provide an estimate of pure
error. Design-Expert used the vertices, the edge centers, the
overall centroid, and the check runs (points located halfway
between the centroid and the vertices) as the candidate
points.

The 14-run design is shown in Table 11.20, along with the
hardness and solids responses. The results of fitting quadratic
models to both responses are summarized in Tables 11.21
and 11.22. Notice that quadratic models fit nicely to both the
hardness and the solids responses. The fitted equations for
both responses (in terms of the pseudocomponents) are

 50 � x3 �  70

 25 � x2 �  40

 5 � x1 �  25

x1 � x2 � x3 � 100

shown in these tables. Contour plots of the responses are
shown in Figures 11.46 and 11.47.

Figure 11.48 is an overlay plot of the two response
surfaces, showing the Knoop hardness contour of 25 and the
30 percent contour for solids. The feasible region for this
product is the unshaded region near the center of the plot.
Obviously, there are a number of choices for the proportions
of monomer, crosslinker, and resin for the clear coat that
will give a product satisfying the performance requirements.

25
2

2

2

50

Monomer
25.00

5.00 70
Resin

45
Crosslinker

2

■ F I G U R E  1 1 . 4 5 The constrained
experimental region for the paint formulation
problem in Example 11.6 (shown in the actual
component scale)
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■ TA B L E  1 1 . 2 0
A D-Optimal Design for the Paint Formulation Problem in Example 11.5

Standard Monomer Crosslinker Resin Hardness Solids 
Order Run x1 x2 x3 y1 y2

1 2 17.50 32.50 50.00 29 9.539

2 1 10.00 40.00 50.00 26 27.33

3 4 15.00 25.00 60.00 17 29.21

4 13 25.00 25.00 50.00 28 30.46

5 7 5.00 25.00 70.00 35 74.98

6 3 5.00 32.50 62.50 31 31.5

7 6 11.25 32.50 56.25 21 15.59

8 11 5.00 40.00 55.00 20 19.2

9 10 18.13 28.75 53.13 29 23.44

10 14 8.13 28.75 63.13 25 32.49

11 12 25.00 25.00 50.00 19 23.01

12 9 15.00 25.00 60.00 14 41.46

13 5 10.00 40.00 50.00 30 32.98

14 8 5.00 25.00 70.00 23 70.95

■ TA B L E  1 1 . 2 1
Model Fitting for the Hardness Response

Response: hardness
ANOVA for Mixture Quadratic Model
Analysis of variance table [Partial sum of squares]

Source Sum of Squares DF Mean Square F Value Prob � F

Model 279.73 5 55.95 2.37 0.1329

Linear Mixture 29.13 2 14.56 0.62 0.5630

AB 72.61 1 72.61 3.08 0.1174

AC 179.67 1 179.67 7.62 0.0247

BC 8.26 1 8.26 0.35 0.5703

Residual 188.63 8 23.58

Lack of Fit 63.63 4 15.91 0.51 0.7354

Pure Error 125.00 4 31.25

Cor Total 468.36 13

Std. Dev. 4.86 R-Squared 0.5973

Mean 24.79 Adj R-Squared 0.3455

C.V. 19.59 Pred R-Squared �0.3635

PRESS 638.60 Adeq Precision 4.975
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■ TA B L E  1 1 . 2 1 (Continued)

Component Coefficient Estimate DF Standard Error 95% CI Low 95% CI High

A-Monomer 23.81 1 3.36 16.07 31.55

B-Crosslinker 16.40 1 7.68 �1.32 34.12

C-Resin 29.45 1 3.36 21.71 37.19

AB 44.42 1 25.31 �13.95 102.80

AC �44.01 1 15.94 �80.78 �7.25

BC 13.80 1 23.32 �39.97 67.57

Final Equation in Terms of Pseudocomponents:

hardness �

�23.81 * A

�16.40 * B

�29.45 * C

�44.42 * A * B

�44.01 * A * C

�13.80 * B * C

■ TA B L E  1 1 . 2 2
Model Fitting for the Solids Response

Response: solids
ANOVA for Mixture Quadratic Model
Analysis of variance table [Partial sum of squares]

Source Sum of Squares DF Mean Square F Value Prob � F

Model 4297.94 5 859.59 25.78 �0.0001

Linear Mixture 2931.09 2 1465.66 43.95 �0.0001

AB 211.20 1 211.20 6.33 0.0360

AC 285.67 1 285.67 8.57 0.0191

BC 1036.72 1 1036.72 31.09 0.0005

Residual 266.79 8 33.35

Lack of Fit 139.92 4 34.98 1.10 0.4633

Pure Error 126.86 4 31.72

Cor Total 4564.73 13

Std. Dev. 5.77 R-Squared 0.9416

Mean 33.01 Adj R-Squared 0.9050

C.V. 17.49 Pred R-Squared 0.7827

PRESS 991.86 Adeq Precision 15.075
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■ TA B L E  1 1 . 2 2 (Continued)

Component Coefficient Estimate DF Standard Error 95% CI Low 95% CI High

A-Monomer 26.53 1 3.99 17.32 35.74

B-Crosslinker 46.60 1 9.14 25.53 67.68

C-Resin 73.23 1 3.99 64.02 82.43

AB �75.76 1 30.11 �145.19 �6.34

AC �55.50 1 18.96 �99.22 �11.77

BC �154.61 1 27.73 �218.56 �90.67

Final Equation in Terms of Pseudocomponents:

solids �

�26.53 * A

�46.60 * B

�73.23 * C

�75.76 * A * B

�55.50 * A * C

�154.61 * B * C
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■ F I G U R E  1 1 . 4 6 Contour
plot of the Knoop hardness
response, Example 11.6

■ F I G U R E  1 1 . 4 7 Contour
plot of the percentage of solids
response, Example 11.6

■ F I G U R E  1 1 . 4 8 Overlay
plot of the Knoop hardness and
percentage of solids response,
showing the feasible region for the
paint formulation
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11.7 Evolutionary Operation

Response surface methodology is often applied to pilot plant operations by research and
development personnel. When it is applied to a full-scale production process, it is usually
done only once (or very infrequently) because the experimental procedure is relatively
elaborate. However, conditions that were optimum for the pilot plant may not be optimum
for the full-scale process. The pilot plant may produce 2 pounds of product per day, where-
as the full-scale process may produce 2000 pounds per day. This “scale-up” of the pilot
plant to the full-scale production process usually results in distortion of the optimum con-
ditions. Even if the full-scale plant begins operation at the optimum, it will eventually
“drift” away from that point because of variations in raw materials, environmental
changes, and operating personnel.

A method is needed for the continuous monitoring and improvement of a full-scale
process with the goal of moving the operating conditions toward the optimum or following
a “drift.” The method should not require large or sudden changes in operating conditions
that might disrupt production. Evolutionary operation (EVOP) was proposed by Box
(1957) as such an operating procedure. It is designed as a method of routine plant opera-
tion that is carried out by manufacturing personnel with minimum assistance from the
research and development staff.

EVOP consists of systematically introducing small changes in the levels of the operat-
ing variables under consideration. Usually, a 2k design is employed to do this. The changes in
the variables are assumed to be so small enough that serious disturbances in yield, quality, or
quantity will not occur, yet large enough that potential improvements in process performance
will eventually be discovered. Data are collected on the response variables of interest at each
point of the 2k design. When one observation has been taken at each design point, a cycle is
said to have been completed. The effects and interactions of the process variables may then
be computed. Eventually, after several cycles, the effect of one or more process variables or
their interactions may appear to have a significant effect on the response. At this point, a deci-
sion may be made to change the basic operating conditions to improve the response. When
improved conditions have been detected, a phase is said to have been completed.

In testing the significance of process variables and interactions, an estimate of experi-
mental error is required. This is calculated from the cycle data. Also, the 2k design is usually
centered about the current best operating conditions. By comparing the response at this point
with the 2k points in the factorial portion, we may check on curvature or change in mean
(CIM); that is, if the process is really centered at the maximum, say, then the response at the
center should be significantly greater than the responses at the 2k-peripheral points.

In theory, EVOP can be applied to k process variables. In practice, only two or three
variables are usually considered. We will give an example of the procedure for two variables.
Box and Draper (1969) give a detailed discussion of the three-variable case, including neces-
sary forms and worksheets.

E X A M P L E  1 1 . 7

Consider a chemical process whose yield is a function of
temperature (x1) and pressure (x2). The current operating
conditions are x1 � 250°F and x2 � 145 psi. The EVOP
procedure uses the 22 design plus the center point shown in
Figure 11.49. The cycle is completed by running each

design point in numerical order (1, 2, 3, 4, 5). The yields in
the first cycle are also shown in Figure 11.49.

The yields from the first cycle are entered in the EVOP
calculation sheet, as shown in Table 11.23. At the end of the
first cycle, no estimate of the standard deviation can be



11.7 Evolutionary Operation 541

made. The effects and interactions for temperature and
pressure are calculated in the usual manner for a 22 design.

A second cycle is then run and the yield data entered in
another EVOP calculation sheet, shown in Table 11.24. At
the end of the second cycle, the experimental error can be
estimated and the estimates of the effects compared to
approximate 95 percent (two standard deviation) limits.
Note that the range refers to the range of the differences in

row (iv); thus, the range is �1.0 � (�1.0) � 2.0. Because
none of the effects in Table 11.24 exceed their error limits,
the true effect is probably zero, and no changes in operating
conditions are contemplated.

The results of a third cycle are shown in Table 11.25.
The effect of pressure now exceeds its error limit and the
temperature effect is equal to the error limit. A change in
operating conditions is now probably justified.

■ TA B L E  1 1 . 2 3
EVOP Calculation Sheet for Example 11.7, n � 1

Cycle: n � 1 Phase: 1
Response: Yield Date: 1/11/04

Calculation of 
Calculation of Averages Standard Deviation

Operating Conditions (1) (2) (3) (4) (5)

(i) Previous cycle sum Previous sum S �

(ii) Previous cycle average Previous average S �

(iii) New observations 84.5 84.2 84.9 84.5 84.3 New S � range � f5,n �

(iv) Differences [(ii) � (iii)] Range of (iv) �

(v) New sums [(i) � (iii)] 84.5 84.2 84.9 84.5 84.3 New sum S �

(vi) New averages  84.5 84.2 84.9 84.5 84.3 New average S �

Calculation of Effects Calculation of Error Limits

Temperature effect For new average

Pressure effect For new effects 

T � P interaction effect 

Change-in-mean effect For change in mean 1.78

�n
S ��

1

5( y2 � y3 � y4 � y5 � 4y1) � 0.02

�
1

2( y2 � y3 � y4 � y5) � 0.15

2

�n
S ��

1

2( y3 � y5 � y2 � y4) � 0.25

�
2

�n
S ��

1

2( y3 � y4 � y2 � y5) � 0.45

New sum S
n � 1

[ yi � (v)�n]

■ F I G U R E  1 1 . 4 9 A 22 design
for EVOP

x1 (°F)

x 2
 (

p
si

)

245 250 255

140

145

150

(1)

84.5

(5) (3)

(2) (4)

84.984.3

84.584.2
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■ TA B L E  1 1 . 2 4
EVOP Calculation Sheet for Example 11.7, n � 2

Cycle: n � 2 Phase: 1
Response: Yield Date: 1/11/04

Calculation of 
Calculation of Averages Standard Deviation

Operating Conditions (1) (2) (3) (4) (5)

(i) Previous cycle sum 84.5 84.2 84.9 84.5 84.3 Previous sum S �

(ii) Previous cycle average 84.5 84.2 84.9 84.5 84.3 Previous average S �

(iii) New observations 84.9 84.6 85.9 83.5 84.0 New S � range � f5,n � 0.60

(iv) Differences [(ii) � (iii)] �0.4 �0.4 �1.0 �1.0 0.3 Range of (iv) � 2.0

(v) New sums [(i) � (iii)] 169.4 168.8 170.8 168.0 168.3 New sum S � 0.60

(vi) New average  n] 84.70 84.40 85.40 84.00 84.15 New average S �

Calculation of Effects Calculation of Error Limits

Temperature effect For new average 

Pressure effect For new effects 

T � P interaction effect 

Change-in-mean effect For change in mean 1.78

�n
S � 0.76�

1

5(y2 � y3 � y4 � y5 � 4y1) � �0.17

�
1

2(y2 � y3 � y4 � y5) � 0.83

2

�n
S � 0.85�

1

2(y3 � y5 � y2 � y4) � 0.58

�
2

�n
S � 0.85�

1

2(y3 � y4 � y2 � y5) � 0.43

New sum S
n � 1

� 0.60[yi � (v)�

■ TA B L E  1 1 . 2 5
EVOP Calculation Sheet for Example 11.7, n � 3

Cycle: n � 1 Phase: 1
Response: Yield Date: 1/11/04

Calculation of 
Calculation of Averages Standard Deviation

Operating Conditions (1) (2) (3) (4) (5)

(i) Previous cycle sum 169.4 168.8 170.8 168.0 168.3 Previous sum S � 0.60

(ii) Previous cycle average 84.70 84.40 85.40 84.00 84.15 Previous average S � 0.60

(iii) New observations 85.0 84.0 86.6 84.9 85.2 New S � range � f5,n � 0.56

(iv) Differences [(ii) � (iii)] �0.30 �0.40 �1.20 �0.90 �1.05 Range of (iv) � 1.60

(v) New sums [(i) � (iii)] 254.4 252.8 257.4 252.9 253.5 New sum S � 1.16

(vi) New average  84.80 84.27 85.80 84.30 84.50 New average S �
New sum S

n � 1
� 0.58[yi � (v)� n]
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Calculation of Effects Calculation of Error Limits

Temperature effect For new average 

Pressure effect For new effects 

T � P interaction effect 

Change-in-mean effect For change in mean 1.78

�n
S � 0.60�

1

5( y2 � y3 � y4 � y5 � 4y1) � �0.07

�
1

2(y2 � y3 � y4 � y5) � 0.64

2

�n
S � 0.67�

1

2(y3 � y5 � y2 � y4) � 0.87

�
2

�n
S � 0.67�

1

2 (y3 � y4 � y2 � y5) � 0.67

■ TA B L E  1 1 . 2 5 (Continued)

In light of the results, it seems reasonable to begin a new
EVOP phase about point (3). Thus, x1 � 225°F and x2 �
150 psi would become the center of the 22 design in the 
second phase.

An important aspect of EVOP is feeding the information
generated back to the process operators and supervisors.

This is accomplished by a prominently displayed EVOP
information board. The information board for this example
at the end of cycle 3 is shown in Table 11.26.

■ TA B L E  1 1 . 2 6
EVOP Information Board, Cycle 3

Error Limits for Averages: �0.67

Effects with Temperature 0.67 
 0.67

95 percent error Pressure 0.87 
 0.67

Limits T � P 0.64 
 0.67

Change in mean 0.07 
 0.60

Standard deviation 0.58
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Most of the quantities on the EVOP calculation sheet follow directly from the analysis
of the 2k factorial design. For example, the variance of any effect, such as 

, is simply �2/n where �2 is the variance of the observations (y). Thus,
two standard deviation (corresponding to 95 percent) error limits on any effect would be
±2�/ . The variance of the change in mean is

Thus, two standard deviation error limits on the CIM are ±(2 )�/ � ±1.78�/ .
The standard deviation � is estimated by the range method. Let yi(n) denote the obser-

vation at the ith design point in cycle n and the corresponding average of yi(n) after n
cycles. The quantities in row (iv) of the EVOP calculation sheet are the differences yi(n) �
(n � 1). The variance of these differences is

The range of the differences, say RD, is related to the estimate of the standard deviation of the
differences by � RD/d2. The factor d2 depends on the number of observations used in com-
puting RD. Now RD/d2 � , so

can be used to estimate the standard deviation of the observations, where k denotes the num-
ber of points used in the design. For a 22 design with one center point, we have k � 5 and for
a 23 design with one center point, we have k � 9. Values of fk,n are given in Table 11.27.

�̂ � �( n � 1)
n

RD

d2
� ( fk,n)RD � s

�̂�n/(n � 1)
�̂D

V [yi(n) � yi(n � 1)] � � 2
D � � 2 �1 �

1
(n � 1)	 � � 2 n

(n � 1)

yi

yi(n)

�n�n�20/25

�
1

25
 (4�

2
y � 16�

2
y) � �20

25� � 2

n

V(CIM) � V�1
5

(y2 � y3 � y4 � y5 � 4y1)	
�n

(y3 � y5 � y2 � y4)

1
2

11.8 Problems

11.1. A chemical plant produces oxygen by liquifying
air and separating it into its component gases by fractional
distillation. The purity of the oxygen is a function of the
main condenser temperature and the pressure ratio between
the upper and lower columns. Current operating conditions
are temperature (�1) � �220°C and pressure ratio (�2) �
1.2. Using the following data, find the path of steepest
ascent:

Temperature (�1) Pressure Ratio (�2) Purity

�225 1.1 82.8

�225 1.3 83.5

�215 1.1 84.7

�215 1.3 85.0

�220 1.2 84.1

�220 1.2 84.5

�220 1.2 83.9

�220 1.2 84.3

■ TA B L E  1 1 . 2 7 Values of fk,n

n � 2 3 4 5 6 7 8 9 10

k � 5 0.30 0.35 0.37 0.38 0.39 0.40 0.40 0.40 0.41

9 0.24 0.27 0.29 0.30 0.31 0.31 0.31 0.32 0.32

10 0.23 0.26 0.28 0.29 0.30 0.30 0.30 0.31 0.31
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11.2. An industrial engineer has developed a computer
simulation model of a two-item inventory system. The deci-
sion variables are the order quantity and the reorder point for
each item. The response to be minimized is total inventory
cost. The simulation model is used to produce the data shown
in Table P11.1. Identify the experimental design. Find the path
of steepest descent.

■ TA B L E  P 1 1 . 1
The Inventory Experiment, Problem 11.2

Item 1

Order Reorder 
Quantity (�1) Point (�2)

100 25
140 45
140 25
140 25
100 45
100 45
100 25
140 45
120 35
120 35
120 35

Item 2

Order Reorder Total
Quantity (�3) Point (�4) Cost

250 40 625
250 40 670
300 40 663
250 80 654
300 40 648
250 80 634
300 80 692
300 80 686
275 60 680
275 60 674
275 60 681

11.3. Verify that the following design is a simplex. Fit the
first-order model and find the path of steepest ascent.

x1 x2 x3 y

0 �1 18.5
0 1 19.8

0 �1 17.4
0 1 22.5�2

��2
��2

�2

11.4. For the first-order model

find the path of steepest ascent. The variables are coded as �1
� xi � 1.

11.5. The region of experimentation for three factors are
time (40 � T1 � 80 min), temperature (200 � T2 � 300°C),
and pressure (20 � P � 50 psig). A first-order model in coded
variables has been fit to yield data from a 23 design. The
model is

Is the point T1 � 85, T2 � 325, P � 60 on the path of steepest
ascent?

11.6. The region of experimentation for two factors are
temperature (100 � T � 300°F) and catalyst feed rate (10 �
C � 30 lb/in). A first-order model in the usual 
1 coded vari-
ables has been fit to a molecular weight response, yielding the
following model:

(a) Find the path of steepest ascent.

(b) It is desired to move to a region where molecular
weights are above 2500. On the basis of the informa-
tion you have from experimentation in this region,
about how many steps along the path of steepest
ascent might be required to move to the region of
interest?

11.7. The path of steepest ascent is usually computed
assuming that the model is truly first order; that is, there is
no interaction. However, even if there is interaction, steep-
est ascent ignoring the interaction still usually produces
good results. To illustrate, suppose that we have fit the
model

using coded variables (�1 � xi � �1).

(a) Draw the path of steepest ascent that you would obtain
if the interaction were ignored.

(b) Draw the path of steepest ascent that you would obtain
with the interaction included in the model. Compare
this with the path found in part (a).

11.8. The data shown in the Table P11.2 were collected in
an experiment to optimize crystal growth as a function of
three variables x1, x2, and x3. Large values of y (yield in grams)
are desirable. Fit a second-order model and analyze the fitted
surface. Under what set of conditions is maximum growth
achieved?

ŷ � 20 � 5x1 � 8x2 � 3x1x2

ŷ � 2000 � 125x1 � 40x2

ŷ � 30 � 5x1 � 2.5x2 � 3.5x3

ŷ � 60 � 1.5x1 � 0.8x2 � 2.0x3
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■ TA B L E  P 1 1 . 2
The Crystal Growth Experiment, Problem 11.8

x1 x2 x3 y

�1 �1 �1 66

�1 �1 1 70

�1 1 �1 78

�1 1 1 60

1 �1 �1 80

1 �1 1 70

1 1 �1 100

1 1 1 75

�1.682 0 0 100

1.682 0 0 80

0 �1.682 0 68

0 1.682 0 63

0 0 �1.682 65

0 0 1.682 82

0 0 0 113

0 0 0 100

0 0 0 118

0 0 0 88

0 0 0 100

0 0 0 85

11.9. The data in Table P11.3 were collected by a chemi-
cal engineer. The response y is filtration time, x1 is tempera-
ture, and x2 is pressure. Fit a second-order model.

(a) What operating conditions would you recommend if
the objective is to minimize the filtration time?

(b) What operating conditions would you recommend if
the objective is to operate the process at a mean filtra-
tion rate very close to 46?

■ TA B L E  P 1 1 . 3
The Experiment for Problem 11.9

x1 x2 y

�1 �1 54

�1 1 45

1 �1 32

1 1 47

�1.414 0 50

1.414 0 53

0 �1.414 47

0 1.414 51

0 0 41

0 0 39

0 0 44

0 0 42

0 0 40

11.10. The hexagon design in Table P11.4 is used in an exper-
iment that has the objective of fitting a second-order model:

■ TA B L E  P 1 1 . 4
A Hexagon Design

x1 x2 y

1 0 68

0.5 74

�0.5 65

�1 0 60
�0.5 63

0.5 70

0 0 58

0 0 60

0 0 57

0 0 55

0 0 69

(a) Fit the second-order model.

(b) Perform the canonical analysis. What type of surface
has been found?

(c) What operating conditions on x1 and x2 lead to the sta-
tionary point?

(d) Where would you run this process if the objective is to
obtain a response that is as close to 65 as possible?

��0.75

��0.75

�0.75

�0.75



11.8 Problems 547

11.11. An experimenter has run a Box–Behnken design and
obtained the results as shown in Table P11.5, where the
response variable is the viscosity of a polymer:

■ TA B L E  P 1 1 . 5
The Box–Behnken Design for Problem 11.11

Agitation
Level Temp. Rate Pressure x1 x2 x3

High 200 10.0 25 �1 �1 �1

Middle 175 7.5 20 0 0 0

Low 150 5.0 15 �1 �1 �1

Run x1 x2 x3 y1

1 �1 �1 0 535

2 �1 �1 0 580

3 �1 �1 0 596

4 �1 �1 0 563

5 �1 0 �1 645

6 �1 0 �1 458

7 �1 0 �1 350

8 �1 0 �1 600

9 0 �1 �1 595

10 0 �1 �1 648

11 0 �1 �1 532

12 0 �1 �1 656

13 0 0 0 653

14 0 0 0 599

15 0 0 0 620

(a) Fit the second-order model.

(b) Perform the canonical analysis. What type of surface
has been found?

(c) What operating conditions on x1, x2, and x3 lead to the
stationary point?

(d) What operating conditions would you recommend if it
is important to obtain a viscosity that is as close to 600
as possible?

11.12. Consider the three-variable central composite design
shown in Table P11.6. Analyze the data and draw conclusions,
assuming that we wish to maximize conversion (y1) with
activity (y2) between 55 and 60.

■ TA B L E  P 1 1 . 6
A Three Variable CCD

Time Temperature Catalyst Conversion Activity
Run (min) (°C) (%) (%) y1 y2

1 �1.000 �1.000 �1.000 74.00 53.20

2 1.000 �1.000 �1.000 51.00 62.90

3 �1.000 1.000 �1.000 88.00 53.40

4 1.000 1.000 �1.000 70.00 62.60

5 �1.000 �1.000 1.000 71.00 57.30

6 1.000 �1.000 1.000 90.00 67.90

7 �1.000 1.000 1.000 66.00 59.80

8 1.000 1.000 1.000 97.00 67.80

9 0.000 0.000 0.000 81.00 59.20

10 0.000 0.000 0.000 75.00 60.40

11 0.000 0.000 0.000 76.00 59.10

12 0.000 0.000 0.000 83.00 60.60

13 �1.682 0.000 0.000 76.00 59.10

14 1.682 0.000 0.000 79.00 65.90

15 0.000 �1.682 0.000 85.00 60.00

16 0.000 1.682 0.000 97.00 60.70

17 0.000 0.000 �1.682 55.00 57.40

18 0.000 0.000 1.682 81.00 63.20

19 0.000 0.000 0.000 80.00 60.80

20 0.000 0.000 0.000 91.00 58.90

11.13. A manufacturer of cutting tools has developed two
empirical equations for tool life in hours (y1) and for tool cost
in dollars (y2). Both models are linear functions of steel hard-
ness (x1) and manufacturing time (x2). The two equations are

and both equations are valid over the range �1.5 � xi � 1.5.
Unit tool cost must be below $27.50 and life must exceed 
12 hours for the product to be competitive. Is there a feasible
set of operating conditions for this process? Where would you
recommend that the process be run?

11.14. A central composite design is run in a chemical vapor
deposition process, resulting in the experimental data shown in
Table P11.7. Four experimental units were processed simultane-
ously on each run of the design, and the responses are the mean
and the variance of thickness, computed across the four units.

(a) Fit a model to the mean response. Analyze the residuals.

(b) Fit a model to the variance response. Analyze the
residuals.

(c) Fit a model to ln(s2). Is this model superior to the one
you found in part (b)?

ŷ2 � 23 � 3x1 � 4x2

ŷ � 10 � 5x1 � 2x2
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■ TA B L E  P 1 1 . 7
The CCD for Problem 11.14

x1 x2 s2

�1 �1 360.6 6.689

1 �1 445.2 14.230

�1 1 412.1 7.088

1 1 601.7 8.586

1.414 0 518.0 13.130

�1.414 0 411.4 6.644

0 1.414 497.6 7.649

0 �1.414 397.6 11.740

0 0 530.6 7.836

0 0 495.4 9.306

0 0 510.2 7.956

0 0 487.3 9.127

(d) Suppose you want the mean thickness to be in the
interval 450 
 25. Find a set of operating conditions
that achieves this objective and simultaneously mini-
mizes the variance.

(e) Discuss the variance minimization aspects of part (d).
Have you minimized the total process variance?

11.15. Verify that an orthogonal first-order design is also
first-order rotatable.

11.16. Show that augmenting a 2k design with nC center
points does not affect the estimates of the �i (i � 1, 2, . . . , k)
but that the estimate of the intercept �0 is the average of all 2k

� nc observations.

11.17. The rotatable central composite design. It can be
shown that a second-order design is rotatable if � 0,
if a or b (or both) are odd, and if . Show
that for the central composite design these conditions lead to
	� (nF)1/4 for rotatability, where nF is the number of points in
the factorial portion.

11.18. Verify that the central composite design shown in
Table P11.8 blocks orthogonally:

x2
iu x2

jux4
iu � 3�n

u�1�n
u�1

xa
iu xb

ju�n
u�1

y

■ TA B L E  P 1 1 . 8
A CCD in Three Blocks

Block 1 Block 2

x1 x2 x3 x1 x2 x3

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 �1

1 �1 �1 1 �1 1

�1 �1 1 �1 1 1

�1 1 �1 �1 �1 �1

Block 3

x1 x2 x3

�1.633 0 0

1.633 0 0

0 �1.633 0

0 1.633 0

0 0 �1.633

0 0 1.633

0 0 0

0 0 0

11.19. Blocking in the central composite design. Consider a
central composite design for k � 4 variables in two blocks. Can
a rotatable design always be found that blocks orthogonally?

11.20. How could a hexagon design be run in two orthogonal
blocks?

11.21. Yield during the first four cycles of a chemical process
is shown in the following table. The variables are percentage of
concentration (x1) at levels 30, 31, and 32 and temperature (x2)
at 140, 142, and 144°F. Analyze by EVOP methods.

Conditions

Cycle (1) (2) (3) (4) (5)

1 60.7 59.8 60.2 64.2 57.5
2 59.1 62.8 62.5 64.6 58.3
3 56.6 59.1 59.0 62.3 61.1
4 60.5 59.8 64.5 61.0 60.1

11.22. Suppose that we approximate a response surface
with a model of order d1, such as y � X1�1 � �, when the true
surface is described by a model of order d2 
 d1; that is, E(y)
� X1�1 � X1�2.

(a) Show that the regression coefficients are biased, that
is, E � �1 � A�2, where A � . A
is usually called the alias matrix.

(b) If d1 � 1 and d2 � 2, and a full 2k is used to fit the model,
use the result in part (a) to determine the alias structure.

(c) If d1 � 1, d2 � 2, and k � 3, find the alias structure
assuming that a 23�1 design is used to fit the model.

(X�1 X1)�1X�1 X2(�̂1)
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(d) If d1 � 1, d2 � 2, and k � 3, and the simplex design in
Problem 11.3 is used to fit the model, determine the
alias structure and compare the results with part (c).

11.23. Suppose that you need to design an experiment to fit
a quadratic model over the region �1 � xi � �1, i � 1, 2
subject to the constraint x1 � x2 � 1. If the constraint is vio-
lated, the process will not work properly. You can afford to
make no more than n � 12 runs. Set up the following designs:

(a) An “inscribed” CCD with center point at x1 � x2 � 0.

(b) An “inscribed” 32 factorial with center point at x1 � x2

� �0.25.

(c) A D-optimal design.

(d) A modified D-optimal design that is identical to the one
in part (c), but with all replicate runs at the design center.

(e) Evaluate the (X�X)�1 criterion for each design.

(f) Evaluate the D-efficiency for each design relative to
the D-optimal design in part (c).

(g) Which design would you prefer? Why?

11.24. Consider a 23 design for fitting a first-order model.

(a) Evaluate the D-criterion (X�X)�1 for this design.

(b) Evaluate the A-criterion tr(X�X)�1 for this design.

(c) Find the maximum scaled prediction variance for this
design. Is this design G-optimal?

11.25. Repeat problem 11.24 using a first-order model with
the two-factor interactions.

11.26. A chemical engineer wishes to fit a calibration curve
for a new procedure used to measure the concentration of a
particular ingredient in a product manufactured in his facility.
Twelve samples can be prepared, having known concentra-
tion. The engineer wants to build a model for the measured
concentrations. He or she suspects that a linear calibration
curve will be adequate to model the measured concentration
as a function of the known concentrations; that is, y � �0 �
�1x � �, where x is the actual concentration. Four experimen-
tal designs are under consideration. Design 1 consists of six
runs at known concentration 1 and six runs at known concen-
tration 10. Design 2 consists of four runs at concentrations 1,
5.5, and 10. Design 3 consists of three runs at concentration 1,
4, 7, and 10. Finally, design 4 consists of three runs at concen-
trations 1 and 10 and 6 runs at concentration 5.5.

(a) Plot the scaled variance of prediction for all four
designs on the same graph over the concentration
range 1 � x � 10. Which design would be preferable?

(b) For each design, calculate the determinant of (X�X)�1.
Which design would be preferred according to the
D-criterion?

(c) Calculate the D-efficiency of each design relative to
the “best” design that you found in part (b).

(d) For each design, calculate the average variance of pre-
diction over the set of points given by x � 1, 1.5, 2,
2.5, . . . , 10. Which design would you prefer accord-
ing to the V-criterion?

��

��

(e) Calculate the V-efficiency of each design relative to the
best design that you found in part (d).

(f) What is the G-efficiency of each design?

11.27. Rework problem 11.26 assuming that the model the
engineer wishes to fit is a quadratic. Obviously, only designs
2, 3, and 4 can now be considered.

11.28. Suppose that you want to fit a second-order model in
k � 5 factors. You cannot afford more than 25 runs. Construct
both a D-optimal and on I-optimal design for this situation.
Compare the prediction variance properties of the designs.
Which design would you prefer?

11.29. Suppose that you want to fit a second-order response
surface model in a situation where there are k � 4 factors;
however, one of the factors is categorical with two levels.
What model should you consider for this experiment? Suggest
an appropriate design for this situation.
11.30. An experimenter wishes to run a three-component
mixture experiment. The constraints in the component propor-
tions are as follows:

(a) Set up an experiment to fit a quadratic mixture
model. Use n � 14 runs, with four replicates. Use the
D-criterion.

(b) Draw the experimental region.

(c) Set up an experiment to fit a quadratic mixture model
with n � 12 runs, assuming that three of these runs are
replicates. Use the D-criterion.

(d) Comment on the two designs you have found.
11.31. Myers, Montgomery and Anderson-Cook (2009)
describe a gasoline blending experiment involving three mixture
components. There are no constraints on the mixture propor-
tions, and the following 10-run design is used:

Design Point x1 x2 x3 y (mi/gal)

1 1 0 0 24.5, 25.1

2 0 1 0 24.8, 23.9

3 0 0 1 22.7, 23.6

4 0 25.1

5 0 24.3

6 0 23.5

7 24.8, 24.1

8 24.2

9 23.9
10 23.7

(a) What type of design did the experimenters use?

(b) Fit a quadratic mixture model to the data. Is this model
adequate?

(c) Plot the response surface contours. What blend would
you recommend to maximize the miles per gallon?

2

3
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6
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6

1

6

2

3

1

6

1

6

1

6

2

3

1

3

1

3

1

3

1

2

1

2

1

2

1

2

1

2

1

2

0.4 � x2 �  0.7

0.1 � x2 �  0.3

0.2 � x1 �  0.4



11.32. Table P11.9 shows a six-variable RSM design from
Jones and Nachtsheim (2011b). Analyze the response data from
this experiment.

■ TA B L E  P 1 1 . 9   
The Design for Problem 11.31

Run (i) xi.1 xi.2 xi.3 xi.4 xi.5 xi.6 yi

1 0 1 �1 �1 �1 �1 21.04

2 0 �1 1 1 1 1 10.48

3 1 0 �1 1 1 �1 17.89

4 �1 0 1 �1 �1 1 10.07

5 �1 �1 0 1 �1 �1 7.74

6 1 1 0 �1 1 1 21.01

7 �1 1 1 0 1 �1 16.53

8 1 �1 �1 0 �1 1 20.38

9 1 �1 1 �1 0 �1 8.62

10 �1 1 �1 1 0 1 7.80

11 1 1 1 1 �1 0 23.56

12 �1 �1 �1 �1 1 0 15.24

13 0 0 0 0 0 0 19.91

11.33. An article in Quality Progress (“For Starbucks, It’s
in the Bag,” March 2011, pp. 18–23) describes using a cen-
tral composite design to improve the packaging of one-pound
coffee. The objective is to produce an airtight seal that is easy
to open without damaging the top of the coffee bag. The
experimenters studied three factors–x1 � plastic viscosity
(300–400 centipoise), x2 � clamp pressure (170–190 psi),
and x3 � plate gap (�3, �3 mm) and two responses–y1 �
tear and y2 � leakage. The design is shown in Table P11.10.

The tear response was measure on a scale from 0 to 9 (good
to bad) and leakage was proportion failing. Each run used a
sample of 20 bags for response measurement.

(a) Build a second-order model for the tear response.

(b) Build a second-order model for the leakage response.

(c) Analyze the residuals for both models. Do transforma-
tions seem necessary for either response? If so, refit
the models in the transformed metric.

(d) Construct response surface plots and contour plots for
both responses. Provide interpretations for the fitted
surfaces.

(e) What conditions would you recommend for process
operation to minimize leakage and keep tear below 0.75?
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■ TA B L E  P 1 1 . 1 0
The Coffee Bag Experiment in Problem 11.32

Run Viscosity Pressure Plate gap Tear Leakage

Center 350 180 0 0 0.15

Axial 350 170 0 0 0.5

Factorial 319 186 1.8 0.45 0.15

Factorial 380 174 1.8 0.85 0.05

Center 350 180 0 0.35 0.15

Axial 300 180 0 0.3 0.45

Axial 400 180 0 0.7 0.25

Axial 350 190 0 1.9 0

Center 350 180 0 0.25 0.05

Factorial 319 186 �1.8 0.1 0.35

Factorial 380 186 �1.8 0.15 0.4

Axial 350 180 3 3.9 0

Factorial 380 174 �1.8 0 0.45

Center 350 180 0 0.55 0.2

Axial 350 180 �3 0 1

Factorial 319 174 �1.8 0.05 0.2

Factorial 319 174 1.8 0.4 0.25

Factorial 380 186 1.8 4.3 0.05

Center 350 180 0 0 0

11.34. Box and Liu (1999) describe an experiment flying
paper helicopters where the objective is to maximize flight
time. They used the central composite design shown in Table
P11.11. Each run involved a single helicopter made to the fol-
lowing specifications: x1 � wing area (in2), �1 � 11.80 and
�1 � 13.00; x2 � wing-length to width ratio, �1 � 2.25 and
�1 � 2.78; x3 � base width (in), �1 � 1.00 and �1 � 1.50;
and x4 � base length (in), �1 � 1.50 and �1 � 2.50. Each
helicopter was flown four times and the average flight time
and the standard deviation of flight time was recorded.

(a) Fit a second-order model to the average flight time
response.

(b) Fit a second-order model to the standard deviation of
flight time response.

(c) Analyze the residuals for both models from parts (a)
and (b). Are transformations on the response(s) neces-
sary? If so, fit the appropriate models.

(d) What design would you recommend to maximize the
flight time?

(e) What design would you recommend to maximize the
flight time while simultaneously minimizing the stan-
dard deviation of flight time?



11.35. The Paper Helicopter Experiment Revisited.
Reconsider the paper helicopter experiment in Problem 11.34.
This experiment was actually run in two blocks. Block 1 con-
sisted of the first 16 runs in Table P11.11 (standard order runs
1–16) and two center points (standard order runs 25 and 26). 

11.8 Problems 551

(a) Fit main-effects plus two-factor interaction models to
the block 1 data, using both responses.  

(b) For the models in part (a) use the two center points to
test for lack of fit. Is there an indication that second-
order terms are needed?

■ TA B L E  P 1 1 . 1 1  
The Paper Helicopter Experiment

Std. Run Wing Wing Base Base Avg. flight Std. Dev 
order order area ratio width length time flight time

1 9 �1 �1 �1 �1 3.67 0.052

2 21 1 �1 �1 �1 3.69 0.052

3 14 �1 1 �1 �1 3.74 0.055

4 4 1 1 �1 �1 3.7 0.062

5 2 �1 �1 1 �1 3.72 0.052

6 19 1 �1 1 �1 3.55 0.065

7 22 �1 1 1 �1 3.97 0.052

8 25 1 1 1 �1 3.77 0.098

9 27 �1 �1 �1 �1 3.5 0.079

10 13 1 �1 �1 1 3.73 0.072

11 20 �1 1 �1 1 3.58 0.083

12 6 1 1 �1 1 3.63 0.132

13 12 �1 �1 1 1 3.44 0.058

14 17 1 �1 1 1 3.55 0.049

15 26 �1 1 1 1 3.7 0.081

16 1 1 1 1 1 3.62 0.051

17 8 �2 0 0 0 3.61 0.129

18 15 2 0 0 0 3.64 0.085

19 7 0 �2 0 0 3.55 0.1

20 5 0 2 0 0 3.73 0.063

21 29 0 0 �2 0 3.61 0.051

22 28 0 0 2 0 3.6 0.095

23 16 0 0 0 �2 3.8 0.049

24 18 0 0 0 2 3.6 0.055

25 24 0 0 0 0 3.77 0.032

26 10 0 0 0 0 3.75 0.055

27 23 0 0 0 0 3.7 0.072

28 11 0 0 0 0 3.68 0.055

29 3 0 0 0 0 3.69 0.078

30 30 0 0 0 0 3.66 0.058



(c) Now use the data from block 2 (standard order runs
17–24 and the remaining center points, standard order
runs 27–30) to augment block 1 and fit second-order
models to both responses. Check the adequacy of the
fit for both models. Does blocking seem to have been
important in this experiment?

(d) What design would you recommend to maximize the
flight time while simultaneously minimizing the stan-
dard deviation of flight time?

11.36. An article in the Journal of Chromatography A
(“Optimization of the Capillary Electrophoresis Separation of
Ranitidine and Related Compounds,” Vol. 766, pp. 245–254)
describes an experiment to optimize the production of raniti-
dine, a compound that is the primary active ingredient of
Zantac, a pharmaceutical product used to treat ulcers, gastroe-
sophageal reflux disease (a condition in which backward flow
of acid from the stomach causes heartburn and injury of the
esophagus), and other conditions where the stomach produces
too much acid, such as Zollinger–Ellison syndrome. The
authors used three factors (x1 � pH of the buffer solution, x2 �
the electrophoresis voltage, and the concentration of one com-
ponent of the buffer solution) in a central composite design.
The response is chromatographic exponential function (CEF),
which should be minimized. Table P11.12 shows the design.

(a) Fit a second-order model to the CEF response.
Analyze the residuals from this model. Does it seem
that all model terms are necessary?

(b) Reduce the model from part (a) as necessary. Did
model reduction improve the fit?

(c) Does transformation of the CEF response seem like a
useful idea? What aspect of either the data or the resid-
ual analysis suggests that transformation would be
helpful?

(d) Fit a second-order model to the transformed CEF
response. Analyze the residuals from this model. Does
it seem that all model terms are necessary? What
would you choose as the final model?

(e) Suppose that you had some information that suggests
that the separation process malfunctioned during run
7. Delete this run and analyze the data from this exper-
iment again.

(f) What conditions would you recommend to minimize
CEF?
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■ TA B L E  P 1 1 . 1 2  
The Ranitidine Separation Experiment

Standard
Order X1 X2 X3 CEF

1 �1 �1 �1 17.3

2 1 �1 �1 45.5

3 �1 1 �1 10.3

4 1 1 �1 11757.1

5 �1 �1 1 16.942

6 1 �1 1 25.4

7 �1 1 1 31697.2

8 1 1 1 12039.2

9 �1.68 0 0 7.5

10 1.68 0 0 6.3

11 0 �1.68 0 11.1

12 0 1.68 0 6.664

13 0 0 �1.68 16548.7

14 0 0 1.68 26351.8

15 0 0 0 9.9

16 0 0 0 9.6

17 0 0 0 8.9

18 0 0 0 8.8

19 0 0 0 8.013

20 0 0 0 8.059

11.37. An article in the Electronic Journal of
Biotechnology (“Optimization of Medium Composition for
Transglutaminase Production by a Brazilian Soil
Streptomyces sp,” available at http://www.ejbiotechnology
.info/content/vol10/issue4/full/10.index.html) describes the
use of designed experiments to improve the medium for cells
used in a new microbial source of transglutaminase
(MTGase), an enzyme that catalyzes an acyl transfer reaction
using peptide-bond glutamine residues as acyl donors and
some primary amines as acceptors. Reactions catalyzed by
MTGase can be used in food processing. The article describes
two phases of experimentation—screening with a fractional
factorial and optimization. We will use only the optimization
experiment. The design was a central composite design in four
factors—x1 � KH2PO4, x2 � MgSO4-7H2O, x3 � soybean
flower, and x4 � peptone. MTGase activity is the response,
which should be maximized. Table P11.13 contains the design
and the response data.
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■ TA B L E  P 1 1 . 1 3  
The MTGase Optimization Experiment

Standard MTGase 
Order X1 X2 X3 X4 activity

1 �1 �1 �1 �1 0.87

2 1 �1 �1 �1 0.74

3 �1 1 �1 �1 0.51

4 1 1 �1 �1 0.99

5 �1 �1 1 �1 0.67

6 1 �1 1 �1 0.72

7 �1 1 1 �1 0.81

8 1 1 1 �1 1.01

9 �1 �1 �1 1 1.33

10 1 �1 �1 1 0.7

11 �1 1 �1 1 0.82

12 1 1 �1 1 0.78

13 �1 �1 1 1 0.36

14 1 �1 1 1 0.23

15 �1 1 1 1 0.21

(a) Fit a second-order model to the MTGase activity
response.

(b) Analyze the residuals from this model.

(c) Recommend operating conditions that maximize
MTGase activity.

16 1 1 1 1 0.44

17 �2 0 0 0 0.56

18 2 0 0 0 0.49

19 0 �2 0 0 0.57

20 0 2 0 0 0.81

21 0 0 �2 0 0.9

22 0 0 2 0 0.65

23 0 0 0 �2 0.91

24 0 0 0 2 0.49

25 0 0 0 0 1.43

26 0 0 0 0 1.17

27 0 0 0 0 1.5
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SUPPLEMENTAL MATERIAL FOR CHAPTER 12
S12.1 The Taguchi Approach to Robust Parameter Design
S12.2 Taguchi’s Technical Methods

12.1 Introduction

Robust parameter design (RPD) is an approach to product realization activities that focuses
on choosing the levels of controllable factors (or parameters) in a process or a product to achieve
two objectives: (1) to ensure that the mean of the output response is at a desired level or target
and (2) to ensure that the variability around this target value is as small as possible. When an
RPD study is conducted on a process, it is usually called a process robustness study. The
general RPD problem was developed by a Japanese engineer, Genichi Taguchi, and intro-
duced in the United States in the 1980s (see Taguchi and Wu, 1980; Taguchi, 1987). Taguchi
proposed an approach to solving the RPD problem based on designed experiments and some
novel methods for analysis of the resulting data. His philosophy and technical methods gen-
erated widespread interest among engineers and statisticians, and during the 1980s his
methodology was used at many large corporations, including AT&T Bell Laboratories, Ford
Motor Company, and Xerox. These techniques generated controversy and debate in the
statistical and engineering communities. The controversy was not about the basic RPD prob-
lem, which is an extremely important one, but rather about the experimental procedures and
the data analysis methods that Taguchi advocated. Extensive analysis revealed that Taguchi’s
technical methods were usually inefficient and, in many cases, ineffective. Consequently, a
period of extensive research and development on new approaches to the RPD problem
followed. From these efforts, response surface methodology (RSM) emerged as an approach
to the RPD problem that not only allows us to employ Taguchi’s robust design concept but
also provides a sounder and more efficient approach to design and analysis.

The supplemental material is on the textbook website www.wiley.com/college/montgomery.
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This chapter is about the RSM approach to the RPD problem. More information about
the original Taguchi approach, including discussion that identifies the pitfalls and inefficiencies
of his methods, is presented in the supplemental text material for this chapter. Other useful
references include Hunter (1985, 1989), Box (1988), Box, Bisgaard, and Fung (1988),
Pignatiello and Ramberg (1992), Montgomery (1999), Myers, Montgomery and Anderson-Cook
(2009), and the panel discussion edited by Nair (1992).

In a robust design problem, the focus is usually on one or more of the following:

1. Designing systems that are insensitive to environmental factors that can affect per-
formance once the system is deployed in the field. An example is the development
of an exterior paint that should exhibit long life when exposed to a variety of weath-
er conditions. Because the weather conditions are not entirely predictable, and cer-
tainly not constant, the product formulator wants the paint to be robust against or
withstand a wide range of temperature, humidity, and precipitation factors that
affect the wear and finish of the paint.

2. Designing products so that they are insensitive to variability transmitted by the
components of the system. An example is designing an electronic amplifier so that
the output voltage is as close as possible to the desired target regardless of the vari-
ability in the electrical parameters of the transistors, resistors, and power supplies
that are the components of the system.

3. Designing processes so that the manufactured product will be as close as possible
to the desired target specifications, even though some process variables (such as
temperature) or raw material properties are impossible to control precisely.

4. Determining the operating conditions for a process so that the critical process
characteristics are as close as possible to the desired target values and the variability
around this target is minimized. Examples of this type of problem occur frequently.
For example, in semiconductor manufacturing we want the oxide thickness on
a wafer to be as close as possible to the target mean thickness, and we want the
variability in thickness across the wafer (a measure of uniformity) to be as small
as possible.

RPD problems are not new. Product and process designers/developers have been con-
cerned about robustness issues for decades, and efforts to solve the problem long predate
Taguchi’s contributions. One of the classical approaches used to achieve robustness is to
redesign the product using stronger components, or components with tighter tolerances, or to
use different materials. However, this may lead to problems with overdesign, resulting in a
product that is more expensive, more difficult to manufacture, or suffers a weight and subse-
quent performance penalty. Sometimes different design methods or incorporation of new
technology into the design can be exploited. For example, for many years automobile
speedometers were driven by a metal cable, and over time the lubricant in the cable deterio-
rated, which could lead to operating noise in cold weather or erratic measurement of vehicle
speed. Sometimes the cable would break, resulting in an expensive repair. This is an example
of robustness problems caused by product aging. Modern automobiles use electronic
speedometers that are not subject to these problems. In a process environment, older equip-
ment may be replaced with new tools, which may improve process robustness but usually at
a significant cost. Another possibility may be to exercise tighter control over the variables that
impact robustness. For example, if variations in environmental conditions cause problems
with robustness, then those conditions may have to be controlled more tightly. The use of
clean rooms in semiconductor manufacturing is a result of efforts to control environmental
conditions. In some cases, effort will be directed to controlling raw material properties or
process variables more tightly if these factors impact robustness. These classical approaches



are still useful, but Taguchi’s principal contribution was the recognition that experimental
design and other statistical tools could be applied to the problem in many cases.

An important aspect of Taguchi’s approach was his notion that certain types of variables
cause variability in the important system response variables. We refer to these types of vari-
ables as noise variables or uncontrollable variables. We have discussed this concept
before—for example, see Figure 1.1. These noise factors are often functions of environmental
conditions such as temperature or relative humidity. They may be properties of raw materials
that vary from batch to batch or over time in the process. They may be process variables that are
difficult to control or to keep at specified targets. In some cases, they may involve the way the
consumer handles or uses the product. Noise variables may often be controlled at the research
or development level, but they cannot be controlled at the production or product use level. An
integral part of the RPD problem is identifying the controllable variables and the noise variables
that affect process or product performance and then finding the settings for the controllable vari-
ables that minimize the variability transmitted from the noise variables.

As an illustration of controllable and noise variables, consider a product developer who
is formulating a cake mix. The developer must specify the ingredients and composition of the
cake mix, including the amounts of flour, sugar, dry milk, hydrogenated oils, corn starch, and
flavorings. These variables can be controlled reasonably easily when the cake mix is manu-
factured. When the consumer bakes the cake, water and eggs are added, the mixture of wet
and dry ingredients is blended into cake batter, and the cake is baked in an oven at a speci-
fied temperature for a specified time. The product formulator cannot control exactly how
much water is added to the dry cake mix, how well the wet and dry ingredients are blended, or
the exact baking time or oven temperature. Target values for these variables can be and usually
are specified, but they are really noise variables, as there will be variation (perhaps considerable
variation) in the levels of these factors that are used by different customers. Therefore, the product
formulator has a robust design problem. The objective is to formulate a cake mix that will
perform well and meet or exceed customer expectations regardless of the variability transmitted
into the final cake by the noise variables.

12.2 Crossed Array Designs

The original Taguchi methodology for the RPD problem revolved around the use of a statis-
tical design for the controllable variables and another statistical design for the noise variables.
Then these two designs were “crossed”; that is, every treatment combination in the design for
the controllable variables was run in combination with every treatment combination in the
noise variable design. This type of experimental design was called a crossed array design.

We will illustrate the crossed array design approach using the leaf spring experiment
originally introduced as Problem 8.10. In this experiment, five factors were studied to deter-
mine their effect on the free height of a leaf spring used in an automotive application. There
were five factors in the experiment; A � furnace temperature, B � heating time, C � transfer
time, D � hold down time, and E � quench oil temperature. This was originally an RPD
problem, and quench oil temperature was the noise variable. The data from this experiment
are shown in Table 12.1. The design for the controllable factors is a 24�1 fractional factorial
design with generator D � ABC. This is called the inner array design. The design for the sin-
gle noise factor is a 21 design, and it is called the outer array design. Notice how each run
in the outer array is performed for all eight treatment combinations in the inner array, produc-
ing the crossed array structure. In the leaf spring experiment, each of the 16 distinct design
points was replicated three times, resulting in 48 observations on free height.

An important point about the crossed array design is that it provides information about
interactions between controllable factors and noise factors. These interactions are crucial to the
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solution of an RPD problem. For example, consider the two-factor interaction graphs in Figure
12.1, where x is the controllable factor and z is the noise factor. In Figure 12.1a, there is no inter-
action between x and z; therefore, there is no setting for the controllable variable x that will
affect the variability transmitted to the response by the variability in the noise factor z. However,
in Figure 12.1b, there is a strong interaction between x and z. Note that when x is set to its low
level, there is much less variability in the response variable than when x is at the high level.
Thus, unless there is at least one controllable factor—noise factor interaction—there is no robust
design problem. As we will subsequently see, focusing on identifying and modeling these inter-
actions is one of the keys to an efficient and effective approach to solving the RPD problem.

Table 12.2 presents another example of an RPD problem, taken from Byrne and Taguchi
(1987). This problem involved the development of an elastometric connector that would deliv-
er the required pull-off force when assembled with a nylon tube. There are four controllable fac-
tors, each at three levels (A � interference, B � connector wall thickness, C � insertion depth,
and D � percent adhesive), and three noise or uncontrollable factors, each at two levels (E �
conditioning time, F � conditioning temperature, and G � conditioning relative humidity).
Panel (a) of Table 12.2 contains the inner array design for the controllable factors. Notice that the
design is a three-level fractional factorial, and specifically, it is a 34�2 design. Panel (b) of Table
12.2 contains a 23 outer array design for the noise factors. Now as before, each run in the inner

■ T A B L E  1 2 . 1
The Leaf Spring Experiment

A B C D E � � E � � s2

� � � � 7.78, 7.78, 7.81 7.50, 7.25, 7.12 7.54 0.090

� � � � 8.15, 8.18, 7.88 7.88, 7.88, 7.44 7.90 0.071

� � � � 7.50, 7.56, 7.50 7.50, 7.56, 7.50 7.52 0.001

� � � � 7.59, 7.56, 7.75 7.63, 7.75, 7.56 7.64 0.008

� � � � 7.54, 8.00, 7.88 7.32, 7.44, 7.44 7.60 0.074

� � � � 7.69, 8.09, 8.06 7.56, 7.69, 7.62 7.79 0.053

� � � � 7.56, 7.52, 7.44 7.18, 7.18, 7.25 7.36 0.030

� � � � 7.56, 7.81, 7.69 7.81, 7.50, 7.59 7.66 0.017

y

(a) No control × noise interaction (b) Significant control × noise interaction

z z

yy
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■ F I G U R E  1 2 . 1 The role of the control � noise interaction in robust design



array is performed for all treatment combinations in the outer array, producing the crossed array
design with 72 observations on pull-off force shown in the table.

Examination of the crossed array design in Table 12.2 reveals a major problem with the
Taguchi design strategy; namely, the crossed array approach can lead to a very large experi-
ment. In our example, there are only seven factors, yet the design has 72 runs. Furthermore,
the inner array design is a 34�2 resolution III design (see Chapter 9 for discussion of this
design), so in spite of the large number of runs, we cannot obtain any information about inter-
actions among the controllable variables. Indeed, even information about the main effects is
potentially tainted because the main effects are heavily aliased with the two-factor interac-
tions. In Section 12.4, we will introduce the combined array design, which is generally much
more efficient than the crossed array.

12.3 Analysis of the Crossed Array Design

Taguchi proposed that we summarize the data from a crossed array experiment with two sta-
tistics: the average of each observation in the inner array across all runs in the outer array and
a summary statistic that attempted to combine information about the mean and variance, called
the signal-to-noise ratio. These signal-to-noise ratios are purportedly defined so that a maxi-
mum value of the ratio minimizes variability transmitted from the noise variables. Then an
analysis is performed to determine which settings of the controllable factors result in (1) the
mean as close as possible to the desired target and (2) a maximum value of the signal-to-noise
ratio. Signal-to-noise ratios are problematic; they can result in confounding of location and dis-
persion effects, and they often do not produce the desired result of finding a solution to the
RPD problem that minimizes the transmitted variability. This is discussed in detail in the sup-
plemental material for this chapter.

A more appropriate analysis for a crossed array design is to model the mean and variance
of the response directly, where the sample mean and the sample variance for each observation
in the inner array are computed across all runs in the outer array. Because of the crossed array
structure, the sample means and variances are computed over the same levels of the noises 2

iyi
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■ T A B L E  1 2 . 2
The Design for the Connector Pull-Off Force Experiment

(b) Outer Array

E � � � � � � � �

F � � � � � � � �

G � � � � � � � �

(a) Inner Array

Run A B C D

1 �1 �1 �1 �1 15.6 9.5 16.9 19.9 19.6 19.6 20.0 19.1

2 �1 0 0 0 15.0 16.2 19.4 19.2 19.7 19.8 24.2 21.9

3 �1 �1 �1 �1 16.3 16.7 19.1 15.6 22.6 18.2 23.3 20.4

4 0 �1 0 �1 18.3 17.4 18.9 18.6 21.0 18.9 23.2 24.7

5 0 0 �1 �1 19.7 18.6 19.4 25.1 25.6 21.4 27.5 25.3

6 0 �1 �1 0 16.2 16.3 20.0 19.8 14.7 19.6 22.5 24.7

7 �1 �1 �1 0 16.4 19.1 18.4 23.6 16.8 18.6 24.3 21.6

8 �1 0 �1 �1 14.2 15.6 15.1 16.8 17.8 19.6 23.2 24.2

9 �1 �1 0 �1 16.1 19.9 19.3 17.3 23.1 22.7 22.6 28.6
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variables, so any differences between these quantities are due to differences in the levels of
the controllable variables. Consequently, choosing the levels of the controllable variables to
optimize the mean and simultaneously minimize the variability is a valid approach.

To illustrate this approach, consider the leaf spring experiment in Table 12.1. The last
two columns of this table show the sample means and variances for each run in the inner
array. Figure 12.2 is the half-normal probability plot of the effects for the mean free height
response. Clearly, factors A, B, and D have important effects. Since these factors are aliased
with three-factor interactions, it seems reasonable to conclude that these effects are real. The
model for the mean free height response is

where the x’s represent the original design factors A, B, and D. Because the sample variance
does not have a normal distribution (it is scaled chi-square), it is usually best to analyze the
natural log of the variance. Figure 12.3 is the half-normal probability plot of the effects of the

response. The only significant effect is factor B. The model for the response is

Figure 12.4 is a contour plot of the mean free height in terms of factors A and B with factor
D � 0, and Figure 12.5 is a plot of the variance response in the original scale. Clearly, the
variance of the free height decreases as the heating time (factor B) increases.

Suppose that the objective of the experimenter is to find a set of conditions that results
in a mean free height between 7.74 and 7.76 inches, with minimum variability. This is a stan-
dard multiple response optimization problem and can be solved by any of the methods for
solving these problems described in Chapter 11. Figure 12.6 is an overlay plot of the two
responses, with factor D � hold down time held constant at the high level. By also selecting
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A � temperature at the high level and B � heating time at 0.50 (in coded units), we can
achieve a mean free height between the desired limits with variance of approximately 0.0138.

A disadvantage of the mean and variance modeling approach using the crossed array
design is that it does not take direct advantage of the interactions between controllable variables
and noise variables. In some instances, it can even mask these relationships. Furthermore, the
variance response is likely to have a nonlinear relationship with the controllable variables (see
Figure 12.5, for example), and this can complicate the modeling process. In the next section, we
introduce an alternative design strategy and modeling approach that overcomes these issues.
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12.4 Combined Array Designs and the Response Model Approach

As noted in the previous section, interactions between controllable and noise factors are the
key to a robust design problem. Therefore, it is logical to use a model for the response that
includes both controllable and noise factors and their interactions. To illustrate, suppose that
we have two controllable factors x1 and x2 and a single noise factor z1. We assume that both
control and noise factors are expressed as the usual coded variables (that is, they are centered
at zero and have lower and upper limits at 
 a). If we wish to consider a first-order model
involving the controllable and noise variables, a logical model is

(12.1)

Notice that this model has the main effects of both controllable factors and their interaction,
the main effect of the noise variable, and interactions between the both controllable and noise
variables. This type of model, incorporating both controllable and noise variables, is often
called a response model. Unless at least one of the regression coefficients �11 and �21 is
nonzero, there will be no robust design problem.

An important advantage of the response model approach is that both the controllable
factors and the noise factors can be placed in a single experimental design; that is, the inner
and outer array structure of the Taguchi approach can be avoided. We usually call the design
containing both controllable and noise factors a combined array design.

As mentioned previously, we assume that noise variables are random variables,
although they are controllable for purposes of an experiment. Specifically, we assume that the
noise variables are expressed in coded units, they have expected value zero, and variance 
and if there are several noise variables, they have zero covariances. Under these assumptions,
it is easy to find a model for the mean response just by taking the expected value of y in
Equation 12.1. This yields

(12.2)

where the z subscript on the expectation operator is a reminder to take expected value with
respect to both random variables in Equation 12.1, z1 and �. To find a model for the variance
of the response y, we use the transmission of error approach. First, expand the response
model Equation 12.1 in a first-order Taylor series around z1 � 0. This gives

where R is the remainder term in the Taylor series. As is the usual practice, we will ignore the
remainder term. Now the variance of y can be obtained by applying the variance operator
across this last expression (without R). The resulting variance model is

(12.3)

Once again, we have used the z subscript on the variance operator as a reminder that both z1

and � are random variables.
Equations 12.2 and 12.3 are simple models for the mean and variance of the response

variable of interest. Note the following:

1. The mean and variance models involve only the controllable variables. This
means that we can potentially set the controllable variables to achieve a target value
of the mean and minimize the variability transmitted by the noise variable.

Vz(y) � � 2
z(�1 � �11x1 � �21x2)

2 � � 2

� (�1 � �11x1 � �21x2)z1 � R � �

� �0 � �1x1 � �2x2 � �12x1x2

y � yz�0 �
dy
dz1

(z1 � 0) � R � �

Ez(y) � �0 � �1x1 � �2x2 � �12x1x2

� 2
z,

y � �0 � �1x1 � �2x2 � �12x1x2 � �1z1 � �11x1z1 � �21x2z1 � �



2. Although the variance model involves only the controllable variables, it also
involves the interaction regression coefficients between the controllable and noise
variables. This is how the noise variable influences the response.

3. The variance model is a quadratic function of the controllable variables.

4. The variance model (apart from �2) is just the square of the slope of the fitted
response model in the direction of the noise variable.

To use these models operationally, we would

1. Perform an experiment and fit an appropriate response model, such as 
Equation 12.1.

2. Replace the unknown regression coefficients in the mean and variance models
with their least squares estimates from the response model and replace �2 in the
variance model by the residual mean square found when fitting the response
model.

3. Optimize the mean and variance model using the standard multiple response opti-
mization methods discussed in Section 11.3.4.

It is very easy to generalize these results. Suppose that there are k controllable variables
and r noise variables. We will write the general response model involving these variables as

(12.4)

where f(x) is the portion of the model that involves only the controllable variables and h(x, z)
are the terms that involve the main effects of the noise factors and the interactions between
the controllable and noise factors. Typically, the structure for h(x, z) is

The structure for f(x) will depend on what type of model for the controllable variables the
experimenter thinks is appropriate. The logical choices are the first-order model with interac-
tion and the second-order model. If we assume that the noise variables have mean zero, vari-
ances , and zero covariances and that the noise variables and the random errors � have zero
covariances, then the mean model for the response is just

(12.5)

and the variance model for the response is

(12.6)

Myers, Montgomery and Anderson-Cook (2009) give a slightly more general form for Equation
(12.6) based on applying a conditional variance operator directly to the response model.

Vz[y(x, z)] � �
r

i�1
��y(x, z)

�zi
	2

� 2
zi

� � 2

Ez[y(x, z)] � f (x)

� 2
zi

h(x, z) � �
r

i�1
�izi � �

k

i�1
�

r

j�1
�ij xizj

y(x, z) � f (x) � h(x, z) � �
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E X A M P L E  1 2 . 1

To illustrate the foregoing procedure, reconsider Example
6.2 in which four factors were studied in a 24 factorial
design to investigate their effect on the filtration rate of a
chemical product. We will assume that factor A, tempera-
ture, is potentially difficult to control in the full-scale
process, but it can be controlled during the experiment

(which was performed in a pilot plant). The other three fac-
tors, pressure (B), concentration (C ), and stirring rate (D),
are easy to control. Thus, the noise factor z1 is temperature,
and the controllable variables x1, x2, and x3 are pressure,
concentration, and stirring rate, respectively. Because both
the controllable factors and the noise factor are in the same
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design, the 24 factorial design used in this experiment is an
example of a combined array design.

Using the results from Example 6.2, the response model is

Using Equations (12.5) and (12.6), we can find the mean
and variance models as

and

� 195.88x2 � 179.66x3 � 150.58x2x3) � � 2

� � 2
z(116.91 � 82.08x2

2 � 69.06x2
3

Vz[y(x, z1)] � � 2
z(10.81 � 9.06x2 � 8.31x3)

2 � � 2

Ez[y(x, z1)] � 70.06 � 4.94x2 � 7.31x3

� 9.06x2z1 � 8.31x3z1

�  70.06 � 10.81z1 � 4.94x2 � 7.31x3

� �18.125
2 � x2z1 � �16.625

2 � x3z1

� �9.875
2 � x2 � �14.625

2 � x3

ŷ(x, z1) �  70.06 � �21.625
2 � z1

respectively. Now assume that the low and high levels of
the noise variable temperature have been run at one stan-
dard deviation on either side of its typical or average value,
so that and use (this is the residual
mean square obtained by fitting the response model).
Therefore, the variance model becomes

Figure 12.7 presents a contour plot from the Design-Expert
software package of the response contours from the mean
model. To construct this plot, we held the noise factor (temper-
ature) at zero and the nonsignificant controllable factor (pres-
sure) at zero. Notice that mean filtration rate increases as both
concentration and stirring rate increase. Design-Expert will
also automatically construct plots of the square root of the
variance contours, which it labels propagation of error, or
POE. Obviously, the POE is just the standard deviation of the
transmitted variability in the response as a function of the con-
trollable variables. Figure 12.8 shows a contour plot and a
three-dimensional response surface plot of the POE, obtained
from Design-Expert. (In this plot, the noise variable is held
constant at zero, as explained previously.)
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Suppose that the experimenter wants to maintain a mean
filtration rate of about 75 and minimize the variability
around this value. Figure 12.9 shows an overlay plot of the
contours of mean filtration rate and the POE as a function

of concentration and stirring rate, the significant control-
lable variables. To achieve the desired objectives, it will be
necessary to hold concentration at the high level and stir-
ring rate very near the middle level.
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We observe that the standard deviation of the filtration rate response in Example 12.1
is still very large. This illustrates that sometimes a process robustness study may not yield an
entirely satisfactory solution. It may still be necessary to employ other measures to achieve
satisfactory process performance, such as controlling temperature more precisely in the full-
scale process.

Example 12.1 illustrates the use of a first-order model with interaction as the model for
the controllable factors f (x). We now present an example adapted from Montgomery (1999)
that involves a second-order model.

E X A M P L E  1 2 . 2

An experiment was run in a semiconductor manufacturing
facility involving two controllable variables and three
noise variables. The combined array design used by the
experimenters is shown in Table 12.3. The design is a 23-
run variation of a central composite design that was creat-
ed by starting with a standard central composite design

(CCD) for five factors (the cube portion is a 25�1) and
deleting the axial runs associated with the three noise
variables. This design will support a response model that
has a second-order model in the controllable variables, the
main effects of the three noise variables, and the interac-
tions between the control and noise factors. The fitted

■ T A B L E  1 2 . 3
Combined Array Experiment with Two Controllable Variables and Three Noise Variables,
Example 12.2

Run Number x1 x2 z1 z2 z3 y

1 �1.00 �1.00 �1.00 �1.00 1.00 44.2

2 1.00 �1.00 �1.00 �1.00 �1.00 30.0

3 �1.00 1.00 �1.00 �1.00 �1.00 30.0

4 1.00 1.00 �1.00 �1.00 1.00 35.4

5 �1.00 �1.00 1.00 �1.00 �1.00 49.8

6 1.00 �1.00 1.00 �1.00 1.00 36.3

7 �1.00 1.00 1.00 �1.00 1.00 41.3

8 1.00 1.00 1.00 �1.00 �1.00 31.4

9 �1.00 �1.00 �1.00 1.00 �1.00 43.5

10 1.00 �1.00 �1.00 1.00 1.00 36.1

11 �1.00 1.00 �1.00 1.00 1.00 22.7

12 1.00 1.00 �1.00 1.00 �1.00 16.0

13 �1.00 �1.00 1.00 1.00 1.00 43.2

14 1.00 �1.00 1.00 1.00 �1.00 30.3

15 �1.00 1.00 1.00 1.00 �1.00 30.1

16 1.00 1.00 1.00 1.00 1.00 39.2

17 �2.00 0.00 0.00 0.00 0.00 46.1

18 2.00 0.00 0.00 0.00 0.00 36.1

19 0.00 �2.00 0.00 0.00 0.00 47.4

20 0.00 2.00 0.00 0.00 0.00 31.5

21 0.00 0.00 0.00 0.00 0.00 30.8

22 0.00 0.00 0.00 0.00 0.00 30.7

23 0.00 0.00 0.00 0.00 0.00 31.0
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response model is

The mean and variance models are

and

where we have substituted parameter estimates from the
fitted response model into the equations for the mean and
variance models and, as in the previous example, assumed
that . Figures 12.10 and 12.11 (from Design-
Expert) present contour plots of the process mean and POE
(remember POE is the square root of the variance response
surface) generated from these models.

In this problem, it is desirable to keep the process mean
below 30. From inspection of Figures 12.10 and 12.11, it is
clear that some trade-off will be necessary if we wish to
make the process variance small. Because there are only
two controllable variables, a logical way to accomplish this

� 2
z � 1

� 8.52x2
2 � 4.42x1x2

Vz[y(x, z)] � 19.26 � 6.40x1 � 24.91x2 � 7.52x2
1

� 2.60x2
1 � 2.18x2

2 � 2.87x1x2

� 30.37 � 2.92x1 � 4.13x2Ez[y(x, z)]

� 2.01x2z1 � 1.43x2z2 � 1.56x2z3

� 0.89x1z2 � 2.58x1z3

� 2.73z1 � 2.33z2 � 2.33z3 � 0.27x1z1

� 2.60x2
1 � 2.18x2

2 � 2.87x1x2

� 30.37 � 2.92x1 � 4.13x2ŷ(x, z)

trade-off is to overlay the contours of constant mean
response and constant variance, as shown in Figure 12.12.
This plot shows the contours for which the process mean is
less than or equal to 30 and the process standard deviation
is less than or equal to 5. The region bounded by these con-
tours would represent a typical operating region of low
mean response and low process variance.
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12.5 Choice of Designs

The selection of the experimental design is a very important aspect of an RPD problem.
Generally, the combined array approach will result in smaller designs that will be obtained
with a crossed array. Also, the response modeling approach allows the direct incorporation of
the controllable factor–noise factor interactions, which is usually superior to direct mean and
variance modeling. Therefore, our comments in this section are confined to combined arrays.

If all of the design factors are at two levels, a resolution V design is a good choice for
an RPD study, for it allows all main effect and two-factor interactions to be estimated, assum-
ing that three-factor and higher interactions are negligible. Standard fractional factorial
designs can be good choices in some cases. For example, with five factors, this design
requires 16 runs. However, with six or more factors, the standard designs are rather large.
As noted in Chapter 8, the software package Design-Expert contains smaller two-level reso-
lution V designs. Table 12.4 is the design from this package for seven factors, which requires

2k�p
V

2k�p
V

■ T A B L E  1 2 . 4
A Resolution V Design in Seven Factors and 30 Runs
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30 runs. This design will accommodate any combination of controllable and noise variables
totaling seven and allow all seven main effects and all two-factor interactions between these
factors to be estimated.

Sometimes a design with fewer runs can be employed. For example, suppose that there
are three controllable variables (A, B, and C) and four noise variables (D, E, F, and G). It is
only necessary to estimate the main effects and two-factor interactions of the controllable
variables (six parameters), the main effects of the noise variables (four parameters), and 
the interactions between the controllable and noise variables (12 parameters). Including the
intercept, only 23 parameters must be estimated. Often very nice designs for these problems
can be constructed using either the D or I-optimality criterion.

Table 12.5 is a D-optimal design with 23 runs for this situation. In this design, there are
no two-factor interactions involving the controllable factors aliased with each other or with
two-factor interactions involving control and noise variables. However, these main effects and
two-factor interactions are aliased with the two-factor interactions involving the noise factors,
so the usefulness of this design depends on the assumption that two-factor interactions involv-
ing only the noise factors are negligible.

When it is of interest to fit a complete second-order model in the controllable variables,
the CCD is a logical basis for selecting the experimental design. The CCD can be modified
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■ TA B L E  1 2 . 5
A D-Optimal Design with 23 Runs for Three Controllable and Four Noise Variables
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as in Example 12.2 by using only the axial runs in the directions of the controllable variables.
For example, if there were three controllable variables and four noise variables, adding six
axial runs for factors A, B, and C along with four center runs to the 30-run design in Table
12.4 would produce a very nice design for fitting the response model. The resulting design
would have 40 runs, and the response model would have 26 parameters.

Other methods can be used to construct designs for the second-order case. For exam-
ple, suppose that there are three controllable factors and two noise factors. A modified CCD
would have 16 runs (a 25�1) in the cube, six axial runs in the directions of the controllable
variables, and (say) four center runs. This yields a design with 26 runs to estimate a model
with 18 parameters. Another alternative would be to use a small composite design in the cube
(11 runs), along with the six axial runs in the directions of the controllable variables and the
four center runs. This results in a design with only 21 runs. A D-optimal or I-optimal
approach could also be used. The 18-run design in Table 12.6 was constructed using Design-
Expert. Note that this is a saturated design. Remember that as the design gets smaller, in
general the parameters in the response model may not be estimated as well as they would have
been with a larger design, and the variance of the predicted response may also be larger. For
more information on designs for RPD and process robustness studies, see Myers, Montgomery
and Anderson-Cook (2009) and the references therein.

■ T A B L E  1 2 . 6
A D-Optimal Design for Fitting a Second-Order Response Model with Three
Control and Two Noise Variables
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12.6 Problems

12.1. Reconsider the leaf spring experiment in Table 12.1.
Suppose that the objective is to find a set of conditions where
the mean free height is as close as possible to 7.6 inches, with
the variance of free height as small as possible. What condi-
tions would you recommend to achieve these objectives?

12.2. Consider the bottle-filling experiment in Problem
6.20. Suppose that the percentage of carbonation (A) is a noise
variable ( in coded units).

(a) Fit the response model to these data. Is there a robust
design problem?

(b) Find the mean model and either the variance model or
the POE.

(c) Find a set of conditions that result in mean fill devia-
tion as close to zero as possible with minimum trans-
mitted variance.

12.3. Consider the experiment in Problem 11.12. Suppose
that temperature is a noise variable ( in coded units). Fit
response models for both responses. Is there a robust design
problem with respect to both responses? Find a set of condi-
tions that maximize conversion with activity between 55 and 60
and that minimize the variability transmitted from temperature.

12.4. Reconsider the leaf spring experiment from Table
12.1. Suppose that factors A, B, and C are controllable vari-
ables and that factors D and E are noise factors. Set up a
crossed array design to investigate this problem, assuming
that all of the two-factor interactions involving the control-
lable variables are thought to be important. What type of
design have you obtained?

12.5. Continuation of Problem 12.5. Reconsider the leaf
spring experiment from Table 12.1. Suppose that factors A, B
and C are controllable variables and that factors D and E are
noise factors. Show how a combined array design can be
employed to investigate this problem that allows all two-
factor interaction to be estimated and only requires 16 runs.
Compare this with the crossed array design from Problem
12.5. Can you see how in general combined array designs
have fewer runs than crossed array designs?

12.6. Consider the connector pull-off force experiment
shown in Table 12.2. What main effects and interaction
involving the controllable variables can be estimated with this
design? Remember that all of the controllable variables are
quantitative factors.

12.7. Consider the connector pull-off force experiment
shown in Table 12.2. Show how an experiment can be designed
for this problem that will allow a full quadratic model to be fit
in the controllable variables along all main effects of the noise
variables and their interactions with the controllable variables.
How many runs will be required in this design? How does this
compare with the design in Table 12.2?

� 2
z � 1

� 2
z � 1

12.8. Consider the experiment in Problem 11.11. Suppose
that pressure is a noise variable ( in coded units). Fit
the response model for the viscosity response. Find a set of
conditions that result in viscosity as close as possible to 600
and that minimize the variability transmitted from the noise
variable pressure.

12.9. A variation of Example 12.1. In Example 12.1
(which utilized data from Example 6.2), we found that one of
the process variables (B � pressure) was not important.
Dropping this variable produces two replicates of a 23 design.
The data are as follows:

C D A ( � ) A ( � ) s2

� � 45, 48 71, 65 57.75 121.19
� � 68, 80 60, 65 68.25 72.25
� � 43, 45 100, 104 73.00 1124.67
� � 75, 70 86, 96 81.75 134.92

Assume that C and D are controllable factors and that A is a
noise variable.

(a) Fit a model to the mean response.

(b) Fit a model to the ln(s2) response.

(c) Find operating conditions that result in the mean filtra-
tion rate response exceeding 75 with minimum variance.

(d) Compare your results with those from Example 12.1,
which used the transmission of error approach. How
similar are the two answers?

12.10. In an article (“Let’s All Beware the Latin Square,”
Quality Engineering, Vol. 1, 1989, pp. 453–465), J. S. Hunter
illustrates some of the problems associated with 3k�p fraction-
al factorial designs. Factor A is the amount of ethanol added
to a standard fuel, and factor B represents the air/fuel ratio.
The response variable is carbon monoxide (CO) emission in
g/m3. The design is as follows,

Design Observations

A B x1 x2 y

0 0 �1 �1 66 62
1 0 0 �1 78 81
2 0 �1 �1 90 94
0 1 �1 0 72 67
1 1 0 0 80 81
2 1 �1 0 75 78
0 2 �1 �1 68 66
1 2 0 �1 66 69
2 2 �1 �1 60 58

y

� 2
z � 1
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Notice that we have used the notation system of 0, 1, and 2 to
represent the low, medium, and high levels for the factors. We
have also used a “geometric notation” of �1, 0, and �1. Each
run in the design is replicated twice.

(a) Verify that the second-order model

is a reasonable model for this experiment. Sketch the
CO concentration contours in the x1, x2 space.

(b) Now suppose that instead of only two factors, we had
used four factors in a 34�2 fractional factorial design
and obtained exactly the same data as in part (a). The
design would be as follows:

Design
Obser-

A B C D x1 x2 x3 x4 vations y

0 0 0 0 �1 �1 �1 �1 66 62
1 0 1 1 0 �1 0 0 78 81
2 0 2 2 �1 �1 �1 �1 90 94
0 1 2 1 �1 0 �1 0 72 67
1 1 0 2 0 0 �1 �1 80 81
2 1 1 0 �1 0 0 �1 75 78
0 2 1 2 �1 �1 0 �1 68 66
1 2 2 0 0 �1 �1 �1 66 69
2 2 0 1 �1 �1 �1 0 60 58

Calculate the marginal averages of the CO response at
each level of the four factors A, B, C, and D. Construct
plots of these marginal averages and interpret the
results. Do factors C and D appear to have strong
effects? Do these factors really have any effect on CO
emission? Why is their apparent effect strong?

(c) The design in part (b) allows the model

to be fitted. Suppose that the true model is

Show that if represents the least squares estimate of
the coefficients in the fitted model, then

E( �̂22) � �22 � (�13 � �14 � �34)/2

E( �̂11) � �11 � (�23 � �24)/2

E( �̂4) � �4 � (�12 � �23)/2

E( �̂3) � �3 � (�12 � �24)/2

E( �̂2) � �2 � (�13 � �14 � �34)/2

E( �̂1) � �1 � (�23 � �24)/2

E( �̂0) � �0 � �13 � �14 � �34

�̂i

� ��
i�j

�ijxixj � �

y � �0 � �
4

i�1
�ixi � �

4

i�1
�ijx

2
i

y � �0 � �
4

i�1
�i xi � �

4

i�1
�i x

2
i � �

�  4.5x 2
1 � 4.0x 2

2 � 9.0x1x2

ŷ � 78.5 � 4.5x1 � 7.0x2

Does this help explain the strong effects for factors C
and D observed graphically in part (b)?

12.11. An experiment has been run in a process that applies
a coating material to a wafer. Each run in the experiment pro-
duced a wafer, and the coating thickness was measured sever-
al times at different locations on the wafer. Then the mean y1

and the standard deviation y2 of the thickness measurement
were obtained. The data [adapted from Box and Draper
(2007)] are shown in the Table P12.1:

■ TA B L E  P 1 2 . 1
The Coating Experiment in Problem 12.11

Mean Std. 
Run Speed Pressure Distance y1 Dev. y2

1 �1 �1 �1 24.0 12.5

2 0 �1 �1 120.3 8.4

3 �1 �1 �1 213.7 42.8

4 �1 0 �1 86.0 3.5

5 0 0 �1 136.6 80.4

6 �1 0 �1 340.7 16.2

7 �1 �1 �1 112.3 27.6

8 0 �1 �1 256.3 4.6

9 �1 �1 �1 271.7 23.6

10 �1 �1 0 81.0 0.0

11 0 �1 0 101.7 17.7

12 �1 �1 0 357.0 32.9

13 �1 0 0 171.3 15.0

14 0 0 0 372.0 0.0

15 �1 0 0 501.7 92.5

16 �1 �1 0 264.0 63.5

17 0 �1 0 427.0 88.6

18 �1 �1 0 730.7 21.1

19 �1 �1 �1 220.7 133.8

20 0 �1 �1 239.7 23.5

21 �1 �1 �1 422.0 18.5

22 �1 0 �1 199.0 29.4

23 0 0 �1 485.3 44.7

24 �1 0 �1 673.7 158.2

25 �1 �1 �1 176.7 55.5

26 0 �1 �1 501.0 138.9

27 �1 �1 �1 1010.0 142.4

(a) What type of design did the experimenters use? Is this
a good choice of design for fitting a quadratic model?

(b) Build models of both responses.

E( �̂44) � �44 � (�12 � �23)/2 � �13

E( �̂33) � �33 � (�24 � �12)/2 � �14
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(c) Find a set of optimum conditions that result in the
mean as large as possible with the standard deviation
less than 60.

12.12. Suppose that there are four controllable variables and
two noise variables. It is necessary to estimate the main
effects and two-factor interactions of all of the controllable
variables, the main effects of the noise variables, and the two-
factor interactions between all controllable and noise factors.
If all factors are at two levels, what is the minimum number
of runs that can be used to estimate all of the model parame-
ters using a combined array design? Use a D-optimal algo-
rithm to find a design.

12.13. Suppose that there are four controllable variables and
two noise variables. It is necessary to fit a complete quadratic
model in the controllable variables, the main effects of the
noise variables, and the two-factor interactions between all
controllable and noise factors. Set up a combined array design
for this by modifying a central composite design.

12.14. Reconsider the situation in Problem 12.13. Could a
modified small composite design be used for this problem?
Are any disadvantages associated with the use of the small
composite design?

12.15. Reconsider the situation in Problem 12.13. What is the
minimum number of runs that can be used to estimate all of the
model parameters using a combined array design? Use a D-
optimal algorithm to find a reasonable design for this problem.

12.16. Rework Problem 12.15 using the I-criterion to construct
the design. Compare this design to the D-optimal design in
Problem 12.15. Which design would you prefer?

12.17. Rework Problem 12.12 using the I-criterion. Compare
this design to the D-optimal design in Problem 12.12. Which
design would you prefer?

12.18. An experiment was run in a wave soldering process.
There are five controllable variables and three noise variables.
The response variable is the number of solder defects per
million opportunities. The experimental design employed was
the following crossed array.

Outer Array

F �1 1 1 �1
Inner Array

G �1 1 �1 1

A B C D E H �1 �1 1 1

1 1 1 �1 �1 194 197 193 275
1 1 �1 1 1 136 136 132 136
1 �1 1 �1 1 185 261 264 264
1 �1 �1 1 �1 47 125 127 42

�1 1 1 1 �1 295 216 204 293
�1 1 �1 �1 1 234 159 231 157
�1 �1 1 1 1 328 326 247 322
�1 �1 �1 �1 �1 186 187 105 104

(a) What types of designs were used for the inner and
outer arrays? What are the alias relationships in these
designs?

(b) Develop models for the mean and variance of solder
defects. What set of operating conditions would you
recommend?

12.19. Reconsider the wave soldering experiment in Problem
12.16. Find a combined array design for this experiment that
requires fewer runs.

12.20. Reconsider the wave soldering experiment in Problem
12.16. Suppose that it was necessary to fit a complete quadratic
model in the controllable variables, all main effects of the
noise variables, and all controllable variable–noise variable
interactions. What design would you recommend?

12.21. Consider the alloy cracking experiment in Problem
6.15. Suppose that temperature (A) is a noise variable. Find
the response model, and the model for the mean response, and
the model for the transmitted variability. Can you find settings
for the controllable factors that minimize crack length and
make the transmitted variability small?
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C H A P T E R 1 3

E x p e r i m e n t s  w i t h
R a n d o m  F a c t o r s

13.1 Random Effects Models

Throughout most of this book we have assumed that the factors in an experiment were fixed
factors, that is, the levels of the factors used by the experimenter were the specific levels of
interest. The implication of this, of course, is that the statistical inferences made about these
factors are confined to the specific levels studied. That is, if three material types are investigat-
ed as in the battery life experiment of Example 5.1, our conclusions are valid only about those
specific material types. A variation of this occurs when the factor or factors are quantitative.
In these situations, we often use a regression model relating the response to the factors to pre-
dict the response over the region spanned by the factor levels used in the experimental design.
Several examples of this were presented in Chapters 5 through 9. In general, with a fixed
effect, we say that the inference space of the experiment is the specific set of factor levels
investigated.

CHAPTER OUTLINE
13.1 RANDOM EFFECTS MODELS

13.2 THE TWO-FACTOR FACTORIAL WITH RANDOM
FACTORS

13.3 THE TWO-FACTOR MIXED MODEL

13.4 SAMPLE SIZE DETERMINATION WITH 
RANDOM EFFECTS

13.5 RULES FOR EXPECTED MEAN SQUARES

13.6 APPROXIMATE F TESTS

13.7 SOME ADDITIONAL TOPICS ON ESTIMATION
OF VARIANCE COMPONENTS
13.7.1 Approximate Confidence Intervals on Variance

Components
13.7.2 The Modified Large-Sample Model

The supplemental material is on the textbook website www.wiley.com/college/montgomery.

SUPPLEMENTAL MATERIAL FOR CHAPTER 13
S13.1 Expected Mean Squares for the Random Model
S13.2 Expected Mean Squares for the Mixed Model
S13.3 Restricted versus Unrestricted Mixed Models
S13.4 Random and Mixed Models 

with Unequal Sample Size
S13.5 Background Concerning the Modified 

Large-Sample Method
S13.6 Confidence Interval on a Ratio of Variance

Components using the Modified Large-Sample
Method
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In some experimental situations, the factor levels are chosen at random from a larger
population of possible levels, and the experimenter wishes to draw conclusions about the
entire population of levels, not just those that were used in the experimental design. In this
situation, the factor is said to be a random factor. We introduced a simple situation in
Chapter 3, a single-factor experiment where the factor is random, and we used this to intro-
duce the random effects model for the analysis of variance and components of variance.
We have also discussed experiments where blocks are random. However, random factors also
occur regularly in factorial experiments as well as in other types of experiments. In this
chapter, we focus on methods for the design and analysis of factorial experiments with random
factors. In Chapter 14, we will present nested and split-plot designs, two situations where
random factors are frequently encountered in practice.

13.2 The Two-Factor Factorial with Random Factors

Suppose that we have two factors, A and B, and that both factors have a large number of lev-
els that are of interest (as in Chapter 3, we will assume that the number of levels is infinite).
We will choose at random a levels of factor A and b levels of factor B and arrange these fac-
tor levels in a factorial experimental design. If the experiment is replicated n times, we may
represent the observations by the linear model

(13.1)

where the model parameters �i, �j, (��)ij, and �ijk are all independent random variables. We are
also going to assume that the random variables �i, �j, (��)ij, and �ijk are normally distributed
with mean zero and variances given by V(�i) � , V(�j) � , V[(��)ij] � , and 
V(�ijk) � �2. Therefore the variance of any observation is

(13.2)

and and �2 are the variance components. The hypotheses that we are interested
in testing are H0: � 0, H0 : � 0, and H0 : � 0. Notice the similarity to the single-
factor random effects model.

The numerical calculations in the analysis of variance remain unchanged; that is, SSA,
SSB, SSAB, SS�, and SSE are all calculated as in the fixed effects case. However, to form the test
statistics, we must examine the expected mean squares. It may be shown that

(13.3)

and

From the expected mean squares, we see that the appropriate statistic for testing the no-
interaction hypothesis H0 : � 0 is

(13.4)F0 �
MSAB

MSE

���
2

E(MSE) � �2

E(MSAB) � �2 � n���
2

E(MSB) � �2 � n���
2 � an��

2
E(MSA) � �2 � n���

2 � bn��
2

���
2� 2

�� 2
�

��
2, ��

2, ���
2 ,

V(yijk) � � 2
� � � 2

� � � 2
�� � � 2

� 2
��� 2

�� 2
�

yijk � � � �i � �j � (��)ij � �ijk � i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , n



because under H0 both numerator and denominator of F0 have expectation �2, and only if H0

is false is E(MSAB) greater than E(MSE). The ratio F0 is distributed as F(a�1)(b�1),ab(n�1).
Similarly, for testing H0 : � 0 we would use

(13.5)

which is distributed as Fa�1,(a�1)(b�1), and for testing H0 : � 0 the statistic is

(13.6)

which is distributed as Fb�1,(a�1)(b�1). These are all upper-tail, one-tail tests. Notice that these
test statistics are not the same as those used if both factors A and B are fixed. The expected
mean squares are always used as a guide to test statistic construction.

In many experiments involving random factors, interest centers at least as much on esti-
mating the variance components as on hypothesis testing. Recall from Chapter 3 that there are
two approaches to variance component estimation. The variance components may be estimated
by the analysis of variance method, that is, by equating the observed mean squares in the
lines of the analysis of variance table to their expected values and solving for the variance
components. This yields

(13.7)

as the point estimates of the variance components in the two-factor random effects model.
These are moment estimators. Some computer programs use this method. This will be illus-
trated in the following example.

�̂ 2
� �

MSA � MSAB

bn

�̂ 2
� �

MSB � MSAB

an

�̂ 2
�� �

MSAB � MSE

n

�̂ 2 � MSE

F0 �
MSB

MSAB

� 2
�

F0 �
MSA

MSAB

� 2
�
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E X A M P L E  1 3 . 1 A Measurement Systems Capability Study

Statistically designed experiments are frequently used to
investigate the sources of variability that affect a system. A
common industrial application is to use a designed experi-
ment to study the components of variability in a measure-
ment system. These studies are often called gauge capabil-
ity studies or gauge repeatability and reproducibility
(R&R) studies because these are the components of vari-
ability that are of interest (for more discussion of gauge
R&R studies, see the supplemental material for this 
chapter).

A typical gauge R&R experiment from Montgomery
(2009) is shown in Table 13.1. An instrument or gauge is

used to measure a critical dimension on a part. Twenty parts
have been selected from the production process, and three
randomly selected operators measure each part twice with
this gauge. The order in which the measurements are made
is completely randomized, so this is a two-factor factorial
experiment with design factors parts and operators, with
two replications. Both parts and operators are random fac-
tors. The variance component identity in Equation 13.1
applies; namely,

� 2
y � � 2

� � � 2
� � � 2

�� � � 2
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where is the total variability (including variability due to
the different parts, variability due to the different operators,
and variability due to the gauge), is the variance compo-
nent for parts, is the variance component for operators,

is the variance component that represents interaction
between parts and operators, and �2 is the random experi-
mental error. Typically, the variance component �2 is called
the gauge repeatability because �2 can be thought of as
reflecting the variation observed when the same part is
measured by the same operator, and

is usually called the reproducibility of the gauge because it
reflects the additional variability in the measurement sys-
tem resulting from use of the instrument by the operator.
These experiments are usually performed with the objective
of estimating the variance components.

Table 13.2 shows the ANOVA for this experiment. The
computations were performed using the Balanced ANOVA
routine in Minitab. Based on the P-values, we conclude that

��
2 � ���

2

� 2
��

� 2
�

� 2
�

� 2
y the effect of parts is large, operators may have a small

effect, and no significant part–operator interaction takes
place. We may use Equation 13.7 to estimate the variance
components as follows:

and

The bottom portion of the Minitab output in Table 13.2
contains the expected mean squares for the random model,
with numbers in parentheses representing the variance
components [(4) represents �2, (3) represents , etc.]. The
estimates of the variance components are also given, along
with the error term that was used in testing that variance

� 2
��

�̂ 2 � 0.99

�̂ 2
�� �

0.71 � 0.99
2

� �0.14

�̂ 2
� �

1.31 � 0.71
(20)(2)

� 0.015

�̂ 2
� �

62.39 � 0.71
(3)(2)

� 10.28

■ TA B L E  1 3 . 1
The Measurement Systems Capability Experiment in Example 13.2

Part Number Operator 1 Operator 2 Operator 3

1 21 20 20 20 19 21

2 24 23 24 24 23 24

3 20 21 19 21 20 22

4 27 27 28 26 27 28

5 19 18 19 18 18 21

6 23 21 24 21 23 22

7 22 21 22 24 22 20

8 19 17 18 20 19 18

9 24 23 25 23 24 24

10 25 23 26 25 24 25

11 21 20 20 20 21 20

12 18 19 17 19 18 19

13 23 25 25 25 25 25

14 24 24 23 25 24 25

15 29 30 30 28 31 30

16 26 26 25 26 25 27

17 20 20 19 20 20 20

18 19 21 19 19 21 23

19 25 26 25 24 25 25

20 19 19 18 17 19 17 
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component in the analysis of variance. We will discuss the
terminology unrestricted model later; it has no relevance
in random models.

Notice that the estimate of one of the variance compo-
nents, , is negative. This is certainly not reasonable
because by definition variances are nonnegative.
Unfortunately, negative estimates of variance components
can result when we use the analysis of variance method of
estimation (this is considered one of its drawbacks). We can
deal with this negative result in a variety of ways. One pos-
sibility is to assume that the negative estimate means that
the variance component is really zero and just set it to zero,
leaving the other nonnegative estimates unchanged.
Another approach is to estimate the variance components
with a method that assures nonnegative estimates (this can
be done with the maximum likelihood approach). Finally,
we could note that the P-value for the interaction term in
Table 13.2 is very large, take this as evidence that real-
ly is zero and that there is no interaction effect, and then fit
a reduced model of the form

that does not include the interaction term. This is a relatively
easy approach and one that often works nearly as well as
more sophisticated methods.

yijk � � � �i � �j � �ijk

� 2
��

� 2
��

Table 13.3 shows the analysis of variance for the
reduced model. Because there is no interaction term in the
model, both main effects are tested against the error term,
and the estimates of the variance components are

Finally, we could estimate the variance of the gauge as
the sum of the variance component estimates and 
as

The variability in the gauge appears small relative to the
variability in the product. This is generally a desirable situ-
ation, implying that the gauge is capable of distinguishing
among different grades of product.

� 0.8908
� 0.88 � 0.0108

�̂ 2
gauge � �̂ 2 � �̂ 2

�

�̂ 2
��̂ 2

�̂ 2 �  0.88

�̂ 2
� �

1.31 � 0.88
(20)(2)

� 0.0108

�̂ 2
� �

62.39 � 0.88
(3)(2)

� 10.25

■ TA B L E  1 3 . 2
Analysis of Variance (Minitab Balanced ANOVA) for Example 13.1

Analysis of Variance (Balanced Designs)

Factor Type Levels Values

part random 20 1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20

operator random 3 1 2 3

Analysis of Variance for y

Source DF SS MS F P

part 19 1185.425 62.391 87.65 0.000

operator 2 2.617 1.308 1.84 0.173

part*operator 38 27.050 0.712 0.72 0.861

Error 60 59.500 0.992

Total 119 1274.592

Source Variance Error Expected Mean Square for Each Term

component term (using unrestricted model)

1 part 10.2798 3 (4) � 2(3) � 6(1)

2 operator 0.0149 3 (4) � 2(3) � 40(2)

3 part*operator �0.1399 4 (4) � 2(3)

4 Error 0.9917 (4) 
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Measurement system capability studies are a very common application of designed
experiments. These experiments almost always involve random effects. For more information
about measurement systems experiments and a bibliography, see Burdick, Borror, and
Montgomery (2003).

The other method for variance component estimation is the method of maximum
likelihood, which was introduced in Chapter 3. This method is superior to the method of
moments approach, because it produces estimators that are approximately normally distri-
buted and it is easy to obtain their standard errors. Therefore, finding confidence intervals
on the variance components is straightforward.

To illustrate how this method applies to an experimental design model with random
effects, consider a two-factor model where both factors are random and a � b � n � 2. The
model is

with i � 1, 2, j � 1, 2, and k � 1, 2. The variance of any observation is

and the covariances are

i Z i�, j Z j�� 0
i Z i�, j � j�� � 2

�

i � i�, j Z j�� � 2
�

 Cov(yijk, yi�j�k�) � � 2
� � � 2

� � � 2
��  i � i�, j � j�, k � k�

V(yijk) � � 2
y � � 2

� � � 2
� � � 2

�� � � 2

yijk � � � �i � �j � (��)ij � �ijk

■ TA B L E  1 3 . 3  
Analysis of Variance for the Reduced Model, Example 13.1

Analysis of Variance (Balanced Designs)

Factor Type   Levels   Values

part random 20 1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20

operator random 3 1 2 3

Analysis of Variance for y

Source DF SS MS F P

part 19 1185.425 62.391 70.64 0.000

operator 2 2.617 1.308 1.48 0.232

Error 98 86.550 0.883

Total 119 1274.592

Source Variance Error Expected Mean Square for Each Term

component term (using unrestricted model)

1 part 10.2513 3 (3) � 6(1)

2 operator 0.0106 3 (3) � 40(2)

3 error 0.8832 (3)



It is convenient to think of the observations as an 8 � 1 vector, say

and the variances and covariances can be expressed as an 8 � 8 covariance matrix

where �11, �22, �12, and �21 � are 4 � 4 matrices defined as follows:

and �21 is just the transpose of �12. Now each observation is normally distributed with vari-
ance , and if we assume that all N � abn observations have a joint normal distribution,
then the likelihood function for the random model becomes

where jN is an N � 1 vector of 1s. The maximum likelihood estimates of �, , and
�2 are those values of these parameters that maximize the likelihood function. In some situa-
tions, it would also be desirable to restrict the variance component estimates to nonnegative
values.

Estimating variance components by maximum likelihood requires specialized computer
software. JMP computes maximum likelihood estimates of the variance components in random
or mixed models using the residual maximum likelihood (REML) method.

Table 13.3 is the output from JMP for the two-factor random effects experiment in
Example 13.1. The output contains some model summary statistics, and the estimates of the
individual variance components, which agree with those obtained via the ANOVA method in
Example 13.1 (REML and the ANOVA method will agree for point estimation in balanced
designs). Other information includes the ratio of each variance component to the estimated
residual error variance, the standard error of each variance component, upper and lower
bounds of a large-sample 95 percent confidence interval on each variance component, the
percent of total variability accounted for by each variance component and the covariance
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matrix of the variance component estimates. The square roots of the diagonal elements of
the matrix are the standard errors. The lower and upper bounds on the large-sample CI are
found from

The 95% CI on the interaction variance component includes zero, evidence that this variance
component is likely zero. Furthermore, the CI on the operator variance component also
includes zero, and although its point estimate is positive, it would not be unreasonable to
assume that this variance component is also zero.

L � �̂i
2 � Za�2se(�̂i

2)  and  U � �̂i
2 � Za�2se(�̂i

2)

■ TA B L E  1 3 . 3
JMP REML Analysis for the Two-Factor Random Model in Example 13.1

Response Y

Whole Model

Summary of Fit

RSquare 0.910717

RSquare Adj 0.910717

Root Mean Square Error 0.995825

Mean of Response 22.39167

Observations (or Sum Wgts) 120

Parameter Estimates

Term Estimate Std Error DFDen t Ratio Prob�|t|

Intercept 22.391667 0.724496 19.28 30.91 �.0001*

REML Variance Component Estimates

Var
Random Effect Var Ratio Component Std Error 95% Lower 95% Upper Pct of Total

Parts 10.36621 10.279825 3.3738173 3.6672642 16.892385 92.225

Operators 0.0150376 0.0149123 0.0329622 �0.049692 0.0795169 0.134

Parts*Operators �0.141088 �0.139912 0.1219114 �0.378854 0.0990296 �1.255

Residual 0.9916667 0.1810527 0.7143057 1.4697982 8.897

Total 11.146491 100.000

�2 LogLikelihood � 408.14904346

Covariance Matrix of Variance Component Estimates

Random Effect Parts Operators Parts*Operators Residual

Parts 11.382643 0.0001111 �0.002222 3.125e-14

Operators 0.0001111 0.0010865 �0.000333 6.126e-17

Parts*Operators �0.002222 �0.000333 0.0148624 �0.01639

Residual 3.125e-14 6.126e-17 �0.01639 0.0327801



13.3 The Two-Factor Mixed Model

We now consider the situation where one of the factors A is fixed and the other factor B
is random. This is called the mixed model analysis of variance. The linear statistical
model is

(13.8)

Here �i is a fixed effect, �j is a random effect, the interaction (��)ij is assumed to be a ran-
dom effect, and �ijk is a random error. We also assume that the {�i} are fixed effects such that

�i � 0 and �j is a NID(0, ) random variable. The interaction effect, (��)ij, is a normal
random variable with mean 0 and variance [(a � 1)/a] ; however, summing the interac-
tion component over the fixed factor equals zero. That is,

This restriction implies that certain interaction elements at different levels of the fixed factor
are not independent. In fact, we may show that

The covariance between (��)ij� and (��)ij� for j " j� is zero, and the random error �ijk is NID
(0, �2). Because the sum of the interaction effects over the levels of the fixed factor equals
zero, this version of the mixed model is often called the restricted model.

In this model, the variance of (��)ij is defined as [(a � 1)/a] rather than to sim-
plify the expected mean squares. The assumption (��).j � 0 also has an effect on the expect-
ed mean squares, which we may show are

(13.9)

and

Therefore, the appropriate test statistic for testing that the means of the fixed factor effects are
equal, or H0 : �i � 0, is

for which the reference distribution is Fa�1,(a�1)(b�1). For testing H0: � 0, the test statistic is

F0 �
MSB

MSE

� 2
�

F0 �
MSA

MSAB

E(MSE) � � 2

E(MSAB) � � 2 � n� 2
��

E(MSB) � � 2 � an� 2
�

E(MSA) � � 2 � n� 2
�� �

bn �
a

i�1
� 2

i

a � 1

� 2
��� 2

��

Cov[(��)ij, (��)i	j] � �
1
a � 2

��   i � i�

�
a

i�1
(��)ij � (��).j � 0 j � 1, 2, . . . , b

� 2
��

� 2
��a

i�1

yijk � � � �i � �j � (��)ij � �ijk � i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , n
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with reference distribution Fb�1,ab(n�1). Finally, for testing the interaction hypothesis H0 : �
0, we would use

which has reference distribution F(a�1)(b�1),ab(n�1).
In the mixed model, it is possible to estimate the fixed factor effects as

(13.10)

The variance components , and �2 may be estimated using the analysis of variance
method. Eliminating the first Equation from Equations 13.9 leaves three equations in three
unknowns, whose solutions are

(13.11)

and

This general approach can be used to estimate the variance components in any mixed model.
After eliminating the mean squares containing fixed factors, there will always be a set of
equations remaining that can be solved for the variance components.

In mixed models the experimenter may be interested in testing hypotheses or construct-
ing confidence intervals about individual treatment means for the fixed factor. In using such
procedures, care must be exercised to use the proper standard error of the treatment mean. The
standard error of the fixed effect treatment mean is

Notice that this is just the standard error that we would use if this was a fixed effects model,
except that MSE has been replaced by the mean square used for hypothesis testing.

� Mean square for testing the fixed effect
Number of observations in each treatment mean	

1/2

� �MSAB

bn

�̂ 2 � MSE

�̂ 2
�� �

MSAB � MSE

n

�̂ 2
� �

MSB � MSE

an

� 2
�, � 2

��

�̂i � yi.. � y... i � 1, 2, . . . , a

�̂ � y...

F0 �
MSAB

MSE

� 2
��

E X A M P L E  1 3 . 2 The Measurement Systems Capability Experiment
Revisited

Reconsider the gauge R&R experiment described in
Example 13.1. Suppose now that only three operators use
this gauge, so the operators are a fixed factor. However,
because the parts are chosen at random, the experiment now
involves a mixed model.

The ANOVA for the mixed model is shown in 
Table 13.4. The computations were performed using the
Balanced ANOVA routine in Minitab. We specified that the
restricted model be used in the Minitab analysis. Minitab
also generated the expected mean squares for this model.
In the Minitab output, the quantity Q[2] indicates a quad-
ratic expression involving the fixed factor effect operator.

That is, Q[2] � /(b � 1). The conclusions are simi-
lar to Example 13.1. The variance components may be
estimated from Equation (13.11) as

�̂ 2 � MSE � 0.99

�
0.71 � 0.99

2
� �0.14

�̂ 2
Parts�operators �

MSParts�operators � MSE

n

�̂ 2
Parts �

MSParts � MSE

an �
62.39 � 0.99

(3)(2)
� 10.23

�b
j�1�

2
j
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These results are also given in the Minitab output. Once
again, a negative estimate of the interaction variance com-
ponent results. An appropriate course of action would be to

fit a reduced model, as we did in Example 13.1. In the case
of a mixed model with two factors, this leads to the same
results as in Example 13.1.

■ TA B L E  1 3 . 4
Analysis of Variance (Minitab) for the Mixed Model in Example 13.2. The Restricted Model is Assumed

Analysis of Variance (Balanced Designs)

Factor Type Levels Values

part  random 20 1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20

operator fixed 3 1 2 3

Analysis of Variance for y

Source DF SS MS F P

part 19 1185.425 62.391 62.92 0.000

operator 2 2.617 1.308 1.84 0.173

part*operator 38 27.050 0.712 0.72 0.861

Error 60 59.500 0.992

Total 119 1274.592

Source Variance Error Expected Mean Square for Each Term
component term (using restricted model)

1 part 10.2332 4 (4) � 6(1)

2 operator 3 (4) � 2(3) � 40Q[2]

3 part*operator �0.1399 4 (4) � 2(3)

4 Error 0.9917 (4)

Alternate Mixed Models. Several different versions of the mixed model have been pro-
posed. These models differ from the restricted version of the mixed model discussed previ-
ously in the assumptions made about the random components. One of these alternate models
is now briefly discussed.

Consider the model

where the 	i (i � 1, 2, . . . , a) are fixed effects such that 	i � 0 and �j, (	�)ij, and �ijk are
uncorrelated random variables having zero means and variances V(�j) � , V[(	�)ij] � 

, and V(�ijk) � �2. Note that the restriction imposed previously on the interaction effect is
not used here; consequently, this version of the mixed model is often called the unrestricted
mixed model.

We can show that expected mean squares for this model are (refer to the supplemental
text material for this chapter)

(13.12)E(MSAB) � � 2 � n� 2
	�

E(MSB) � � 2 � n� 2
	� � an� 2

�

E(MSA) � � 2 � n� 2
	� �

bn �
a

i�1
	2

i

a � 1

� 2
	�

� 2
�

�a
i�1

yijk � � � 	i � �j � (	�)ij � �ijk
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and

Comparing these expected mean squares with those in Equation 13.9, we note that the only
obvious difference is the presence of the variance component in the expected mean square
for the random effect. (Actually, there are other differences because of the different defini-
tions of the variance of the interaction effect in the two models.) Consequently, we would test
the hypothesis that the variance component for the random effect equals zero (H0 : � 0)
using the statistic

as contrasted with testing H0 : � 0 with F0 � MSB/MSE in the restricted model.
The parameters in the two models are closely related. In fact, we may show that

and

The analysis of variance method may be used to estimate the variance components.
Referring to the expected mean squares, we find that the only change from Equations 13.11
is that

(13.13)

Both of these models are special cases of the mixed model proposed by Scheffé (1956a,
1959). This model assumes that the observations may be represented by

where mij and �ijk are independent random variables. The structure of mij is

and

The variances and covariances of bj and cij are expressed through the covariances of the mij.
Furthermore, the random effect parameters in other formulations of the mixed model can be
related to bj and cij. The statistical analysis of Scheffé’s model is identical to that for our
restricted model, except that in general the statistic MSA/MSAB is not always distributed as F
when H0 : �i � 0 is true.

In light of this multiplicity of mixed models, a logical question is: Which model should
one use? This author prefers the restricted model, although both restricted and unrestricted
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models are widely encountered in the literature. The restricted model is actually slightly more
general than the unrestricted model, because in the restricted model the covariance between
two observations from the same level of the random factor can be either positive or negative,
whereas this covariance can only be positive in the unrestricted model. If the correlative
structure of the random components is not large, then either mixed model is appropriate,
and there are only minor differences between these models. On the contrary, the unrestricted
form of the mixed model is preferred when the design is unbalanced, because it is easier to
work with, and some computer packages always assume the unrestricted model when dis-
playing expected mean squares. (SAS is an example, JMP uses the unrestricted model, and
the default in Minitab is the unrestricted model, although that can be easily changed.) When
we subsequently refer to mixed models, we assume the restricted model structure.
However, if there are large correlations in the data, then Scheffé’s model may have to be
employed. The choice of model should always be dictated by the data. The article by
Hocking (1973) is a clear summary of various mixed models.
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E X A M P L E  1 3 . 3 The Unrestricted Model

Some computer software packages support only one
mixed model. Minitab supports both the restricted and
unrestricted model, although as noted above the default is
to the unrestricted model. Table 13.5 shows the Minitab
output for the experiment in Example 13.2 using the

unrestricted model. Note that the expected mean squares
are in agreement with those in Equation 13.12. The con-
clusions are identical to those from the restricted model
analysis, and the variance component estimates are very
similar.

■ TA B L E  1 3 . 5
Analysis of the Experiment in Example 13.2 Using the Unrestricted Model

Analysis of Variance (Balanced Designs)

Factor Type Levels Values

Part random 20 1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20

operator fixed 3 1 2 3

Analysis of Variance for y

Source DF SS MS F P

part 19 1185.425 62.391 87.65 0.000

operator 2 2.617 1.308 1.84 0.173

part*operator 38 27.050 0.712 0.72 0.861

Error 60 59.500 0.992

Total 119 1274.592

Source Variance Error Expected Mean Square for Each Term

component term (using unrestricted model)

1 part 10.2798 3 (4) � 2(3) � 6(1)

2 operator 3 (4) � 2(3) � Q[2]

3 part*operator �0.1399 4 (4) � 2(3)

4 Error 0.9917 (4) 
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JMP can also analyze the mixed model. JMP uses the REML method for variance com-
ponent estimation. Table 13.6 is the JMP output for the two-factor mixed model in
Example 13.2. Recall that this is a measurement systems capability study, where now
the parts are random but the operators are fixed. The JMP output includes both variance
components estimates and tests for the fixed effects. JMP assumes the unrestricted form
of the mixed model, so the results differ slightly from the previous analysis of this
experiment given in Table 13.4 where the restricted form of the mixed model was
employed.

■ TA B L E  1 3 . 6
JMP Output for the Two-Factor Mixed Model in Example 13.2

Response Y

Summary of Fit

RSquare 0.911896

RSquare Adj 0.91039

Root Mean Square Error 0.995825

Mean of Response 22.39167

Observations (or Sum Wgts) 120

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 95% Lower 9% Upper Pct of Total

Parts 10.36621 10.279825 3.3738173 3.6672642 16.892385 92.348

Parts*Operators �0.141088 �0.139912 0.1219114 �0.378854 0.0990296 �1.257

Residual 0.9916667 0.1810527 0.7143057 1.4697982 8.909

Total 11.131579 100.000

�2 LogLikelihood � 410.4121524

Covariance Matrix of Variance Component Estimates

Random Effect Parts Parts*Operators Residual

Parts 11.382643 �0.002222 2.659e-14

Parts*Operators �0.002222 0.0148624 �0.01639

Residual 2.659e-14 �0.01639 0.0327801

Fixed Effects Tests

Source Nparm DF DFDen F Ratio Prob > F

Operators 2 2 38 1.8380 0.1730



13.4 Sample Size Determination with Random Effects

The operating characteristic curves in the Appendix may be used for sample size determina-
tion in experiments with random factors. We begin with the single-factor random effects
model of Chapter 3. The type II error probability for the random effects model is

(13.14)

Once again, the distribution of the test statistic F0 � MSTreatments/MSE under the alternative
hypothesis is needed. It can be shown that if H1 is true ( 
 0), the distribution of F0 is cen-
tral F with a � 1 and N � a degrees of freedom.

Because the type II error probability of the random effects model is based on the usual
central F distribution, we could use the tables of the F distribution in the Appendix to evaluate
Equation 13.14. However, it is simpler to determine the sensitivity of the test through the use
of operating characteristic curves. A set of these curves for various values of numerator degrees
of freedom, denominator degrees of freedom, and 	 of 0.05 or 0.01 is provided in Chart VI of
the Appendix. These curves plot the probability of type II error against the parameter �, where

(13.15)

Note that � involves two unknown parameters, �2 and . We may be able to estimate if we
have an idea about how much variability in the population of treatments it is important to detect.
An estimate of �2 may be chosen using prior experience or judgment. Sometimes it is helpful
to define the value of we are interested in detecting in terms of the ratio .� 2

� /�2� 2
�

� 2
�� 2

�

� � �1 �
n� 2

�

� 2

� 2
�

� 1 � P�F0 � F	,a�1,N�a �� 2
� �  0�

� �  1 � P�Reject H0�H0 is false�
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E X A M P L E  1 3 . 4

Suppose we have five treatments selected at random with
six observations per treatment and � � 0.05, and we wish
to determine the power of the test if is equal to �2.
Because a � 5, n � 6, and � �2, we may compute

� � �1 � 6(1) � 2.646

� 2
�

� 2
�

From the operating characteristic curve with a � 1 � 4,
N � a � 25 degrees of freedom, and 	 � 0.05, we find that

and thus the power is approximately 0.80.

� 
  0.20

We can also use the percentage increase in the standard deviation of an observation
method to determine sample size. If the treatments are homogeneous, then the standard devi-
ation of an observation selected at random is �. However, if the treatments are different, the
standard deviation of a randomly chosen observation is

If P is the fixed percentage increase in the standard deviation of an observation beyond which
rejection of the null hypothesis is desired,

�� 2 � � 2
�

� � 1 � 0.01P

�� 2 � � 2
�
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or

Therefore, using Equation 13.15, we find that

(13.16)

For a given P, the operating characteristic curves in Appendix Chart VI can be used to find
the desired sample size.

We can also use the operating characteristic curves for sample size determination for
the two-factor random effects model and the mixed model. Appendix Chart VI is used for the
random effects model. The parameter �, numerator degrees of freedom, and denominator
degrees of freedom are shown in the top half of Table 13.7. For the mixed model, both Charts
V and VI in the Appendix must be used. The appropriate values for �2 and � are shown in the
bottom half of Table 13.7.

13.5 Rules for Expected Mean Squares

An important part of any experimental design problem is conducting the analysis of variance.
This involves determining the sum of squares for each component in the model and the num-
ber of degrees of freedom associated with each sum of squares. Then, to construct appropriate

� � �1 �
n� 2

�

� 2
� �1 � n[(1 � 0.01P)2 � 1]

� 2
�

� 2
� (1 � 0.01P)2 � 1

■ TA B L E  1 3 . 7
Operating Characteristic Curve Parameters for Tables V and VI of the Appendix for the Two-Factor Random Effects
and Mixed Models

The Random Effects Model

Factor 
 Numerator Degrees of Freedom Denominator Degrees of Freedom

A a � 1 (a � 1)(b � 1)

B b � 1 (a � 1)(b � 1)

AB (a � 1)(b � 1) ab(n � 1)

The Mixed Model

Numerator Degrees Denominator Degrees Appendix 
Factor Parameter of Freedom of Freedom Chart

A (Fixed) a � 1 (a � 1)(b � 1) V

B (Random) b � 1 ab(n � 1) VI

AB (a � 1)(b � 1) ab(n � 1) VI � � �1 �
n� 2

��

� 2

� � �1 �
an� 2

�

� 2

�2 �

bn�
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i�1
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a[�2 � n���
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�1 �
n� 2
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� 2

�1 �
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test statistics, the expected mean squares must be determined. In complex design situations,
particularly those involving random or mixed models, it is frequently helpful to have a formal
procedure for this process.

We will present a set of rules for writing down the number of degrees of freedom for
each model term and the expected mean squares for any balanced factorial, nested2, or nested
factorial experiment. (Note that partially balanced arrangements, such as Latin squares and
incomplete block designs, are specifically excluded.) Other rules are available; for example,
see Scheffé (1959), Bennett and Franklin (1954), Cornfield and Tukey (1956), and Searle
(1971a, 1971b). By examining the expected mean squares, one may develop the appropriate
statistic for testing hypotheses about any model parameter. The test statistic is a ratio of mean
squares that is chosen such that the expected value of the numerator mean square differs
from the expected value of the denominator mean square only by the variance component or
the fixed factor in which we are interested.

It is always possible to determine the expected mean squares in any model as we did in
Chapter 3—that is, by the direct application of the expectation operator. This brute force
method, as it is often called, can be very tedious. The rules that follow always produce the
expected mean squares without resorting to the brute force approach, and they are relatively
simple to use. We illustrate the rules using the two-factor fixed effects factorial model assum-
ing that there are n replicates.

Rule 1. The error term in the model is �ij . . . m, where the subscript m denotes the repli-
cation subscript. For the two-factor model, this rule implies that the error term is �ijk.
The variance component associated with �ij . . . m is �2.

Rule 2. In addition to an overall mean (�) and an error term �ij . . . m, the model con-
tains all the main effects and any interactions that the experimenter assumes exist.
If all possible interactions between k factors exist, then there are two-factor
interactions, three-factor interactions, . . . , 1 k-factor interaction. If one of the
factors in a term appears in parentheses, then there is no interaction between that
factor and the other factors in that term.

Rule 3. For each term in the model other than � and the error term, divide the sub-
scripts into three classes: (a) live—those subscripts that are present in the term and are
not in parentheses; (b) dead—those subscripts that are present in the term and are in
parentheses; and (c) absent—those subscripts that are present in the model but not in
that particular term. Note that the two-factor fixed effects model has no dead sub-
scripts, but we will encounter such models later. Thus, in the two-factor model, for the
term (��)ij, i and j are live and k is absent.

Rule 4. Degrees of freedom. The number of degrees of freedom for any effect in the
model is the product of the number of levels associated with each dead subscript and
the number of levels minus 1 associated with each live subscript. For example, the
number of degrees of freedom associated with (��)ij is (a � 1) (b � 1). The number
of degrees of freedom for error is obtained by subtracting the sum of all other degrees
of freedom from N � 1, where N is the total number of observations.

Rule 5. Each term in the model has either a variance component (random effect) or a
fixed factor (fixed effect) associated with it. If an interaction contains at least one ran-
dom effect, the entire interaction is considered as random. A variance component has
Greek letters as subscripts to identify the particular random effect. Thus, in a two-
factor mixed model with factor A fixed and factor B random, the variance component
for B is , and the variance component for AB is . A fixed effect is always� 2

��� 2
�

(k
3)

(k
2)
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2Nested designs are discussed in Chapter 14. 
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represented by the sum of squares of the model components associated with that fac-
tor divided by its degrees of freedom. In our example, the fixed effect for A is

Rule 6. Expected Mean Squares. There is an expected mean square for each model com-
ponent. The expected mean square for error is E(MSE) � �2. In the case of the restrict-
ed model, for every other model term, the expected mean square contains �2 plus either
the variance component or the fixed effect component for that term, plus those compo-
nents for all other model terms that contain the effect in question and that involve no
interactions with other fixed effects. The coefficient of each variance component or fixed
effect is the number of observations at each distinct value of that component.

To illustrate for the case of the two-factor fixed effects model, consider finding the inter-
action expected mean square, E(MSAB). The expected mean square will contain only the fixed
effect for the AB interaction (because no other model terms contain AB) plus �2, and the fixed
effect for AB will be multiplied by n because there are n observations at each distinct value
of the interaction component (the n observations in each cell). Thus, the expected mean
square for AB is

As another illustration of the two-factor fixed effects model, the expected mean square for the
main effect of A would be

The multiplier in the numerator is bn because there are bn observations at each level of A. The
AB interaction term is not included in the expected mean square because while it does include
the effect in question (A), factor B is a fixed effect.

To illustrate how Rule 6 applies to a model with random effects, consider the two-
factor random model. The expected mean square for the AB interaction would be

and the expected mean square for the main effect of A would be

Note that the variance component for the AB interaction term is included because A is includ-
ed in AB and B is a random effect.

Now consider the restricted form of the two-factor mixed model. Once again, the
expected mean square for the AB interaction term is

For the main effect of A, the fixed factor, the expected mean square is

The interaction variance component is included because A is included in AB and B is a ran-
dom effect. For the main effect of B, the expected mean square is
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Here the interaction variance component is not included, because while B is included in AB,
A is a fixed effect. Please note that these expected mean squares agree with those given pre-
viously for the two-factor mixed model in Equation 13.9.

Rule 6 can be easily modified to give expected mean squares for the unrestricted form of
the mixed model. Simply include the term for the effect in question, plus all the terms that contain
this effect as long as there is at least one random factor. To illustrate, consider the unrestricted form
of the two-factor mixed model. The expected mean square for the two-factor interaction term is

(Please recall the difference in notation for model components between the restricted and
unrestricted models.) For the main effect of A, the fixed factor, the expected mean square is

and for the main effect of the random factor B, the expected mean square would be

Note that these are the expected mean squares given previously in Equation 13.12 for the
unrestricted mixed model.

E(MSB) � � 2 � n� 2
�� � an� 2

�

E(MSA) � � 2 � n� 2
�� �

bn �
a

i�1
� 2

i

a � 1

E(MSAB) � � 2 � n� 2
��
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Consider a three-factor factorial experiment with a levels
of factor A, b levels of factor B, c levels of factor C, and n
replicates. The analysis of this design, assuming that all
the factors are fixed effects, is given in Section 5.4. We
now determine the expected mean squares assuming that
all the factors are random. The appropriate statistical
model is

Using the rules previously described, the expected mean
squares are shown in Table 13.8.

� (��)ik � (��)jk � (���)ijk � �ijkl

yijkl � � � �i � �j � �k � (��)ij

We notice, by examining the expected mean squares in
Table 13.8, that if A, B, and C are all random factors, then
no exact test exists for the main effects. That is, if we wish
to test the hypothesis � 0, we cannot form a ratio of two
expected mean squares such that the only term in the
numerator that is not in the denominator is . The
same phenomenon occurs for the main effects of B and C.
Notice that proper tests do exist for the two- and three-
factor interactions. However, it is likely that tests on the
main effects are of central importance to the experimenter.
Therefore, how should the main effects be tested? This
problem is considered in the next section.

bcn� 2
�

� 2
�

■ TA B L E  1 3 . 8
Expected Mean Squares for the Three-Factor Random Effects Model

Model Term Factor Expected Mean Squares

�i A, main effect �2 �

�j B, main effect �2 �

�k C, main effect �2 �

(��)ij AB, two-factor interaction �2 �

(��)ik AC, two-factor interaction �2 �

(��)jk BC, two-factor interaction �2 �

(���)ijk ABC, three-factor interaction �2 �

�ijkl Error �2

n� 2
���

n� 2
��� � an� 2

��

n� 2
��� � bn� 2

��

n� 2
��� � cn� 2

��

bn� 2
�� � an� 2

�� � n� 2
��� � abn� 2

�

cn� 2
�� � an� 2

�� � n� 2
��� � acn� 2

�

cn� 2
�� � bn� 2

�� � n� 2
��� � bcn� 2

�
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13.6 Approximate F Tests

In factorial experiments with three or more factors involving a random or mixed model and
certain other, more complex designs, there are frequently no exact test statistics for certain
effects in the models. One possible solution to this dilemma is to assume that certain interac-
tions are negligible. To illustrate, if we could reasonably assume that all the two-factor inter-
actions in Example 13.5 are negligible, then we could set , and tests
for main effects could be conducted.

Although this seems to be an attractive possibility, we must point out that there must be
something in the nature of the process—or some strong prior knowledge—for us to assume
that one or more of the interactions are negligible. In general, this assumption is not easily
made, nor should it be taken lightly. We should not eliminate certain interactions from the
model without conclusive evidence that it is appropriate to do so. A procedure advocated by
some experimenters is to test the interactions first, then set at zero those interactions found to
be insignificant, and then assume that these interactions are zero when testing other effects in
the same experiment. Although sometimes done in practice, this procedure can be dangerous
because any decision regarding an interaction is subject to both type I and type II errors.

A variation of this idea is to pool certain mean squares in the analysis of variance to
obtain an estimate of error with more degrees of freedom. For instance, suppose that in
Example 13.6 the test statistic F0 � MSABC/MSE was not significant. Thus, H0: � 0 is
not rejected, and both MSABC and MSE estimate the error variance �2. The experi-
menter might consider pooling or combining MSABC and MSE according to

so that E(MSE�) � �2. Note that MSE� has abc(n � 1) � (a � 1)(b � 1)(c � 1) degrees of
freedom, compared to abc(n � 1) degrees of freedom for the original MSE.

The danger of pooling is that one may make a type II error and combine the mean
square for a factor that really is significant with error, thus obtaining a new residual mean
square (MSE�) that is too large. This will make other significant effects more difficult to detect.
On the contrary, if the original error mean square has a very small number of degrees of free-
dom (e.g., less than six), the experimenter may have much to gain by pooling because it could
potentially increase the precision of further tests considerably. A reasonably practical proce-
dure is as follows. If the original error mean square has six or more degrees of freedom, do
not pool. If the original error mean square has fewer than six degrees of freedom, pool only
if the F statistic for the mean square to be pooled is not significant at a large value of 	, such
as 	 � 0.25.

If we cannot assume that certain interactions are negligible and we still need to make
inferences about those effects for which exact tests do not exist, a procedure attributed to
Satterthwaite (1946) can be employed. Satterthwaite’s method uses linear combinations of
mean squares, for example,

(13.17)

and
(13.18)

where the mean squares in Equations 13.31 and 13.32 are chosen so that E(MS�) � E(MS#)
is equal to a multiple of the effect (the model parameter or variance component) considered
in the null hypothesis. Then the test statistic would be

(13.19)F �
MS�

MS	

MS	 � MSu � Á � MSv

MS� � MSr � Á � MSs

MSE� �
abc(n � 1)MSE � (a � 1)(b � 1)(c � 1)MSABC

abc(n � 1) � (a � 1)(b � 1)(c � 1)

� 2
���

� 2
�� � 0� 2

�� � � 2
�� �



which is distributed approximately as Fp, q, where

(13.20)

and

(13.21)

In p and q, fi is the number of degrees of freedom associated with the mean square MSi. There is
no assurance that p and q will be integers, so it may be necessary to interpolate in the tables of
the F distribution. For example, in the three-factor random effects model (Table 13.9), it is rela-
tively easy to see that an appropriate test statistic for H0: � 0 would be F � MS�/MS#, with

and

The degrees of freedom for F would be computed from Equations 13.20 and 13.21.
The theory underlying this test is that both the numerator and the denominator of the

test statistic (Equation 13.19) are distributed approximately as multiples of chi-square random
variables, and because no mean square appears in both the numerator or denominator of
Equation 13.19, the numerator and denominator are independent. Thus F in Equation 13.19
is distributed approximately as Fp,q. Satterthwaite remarks that caution should be used in
applying the procedure when some of the mean squares in MS� and MS# are involved nega-
tively. Gaylor and Hopper (1969) report that if MS� � MS1 � MS2, then Satterthwaite’s
approximation holds reasonably well if

and if f1 � 100 and f2 � f1/2.

MS1

MS2
� F0.025, f2, f1

� F0.50, f2, f2

MS	 � MSAB � MSAC

MS� � MSA � MSABC

� 2
�

q �
(MSu � Á � MSv)

2

MS 2
u/fu � Á � MS 2

v/fv

p �
(MSr � Á � MSs)

2

MS 2
r/fr � Á � MS 2

s/fs
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The pressure drop measured across an expansion valve in a
turbine is being studied. The design engineer considers the
important variables that influence pressure drop reading to
be gas temperature on the inlet side (A), operator (B), and
the specific pressure gauge used by the operator (C). These
three factors are arranged in a factorial design, with gas
temperature fixed, and operator and pressure gauge ran-
dom. The coded data for two replicates are shown in Table
13.9. The linear model for this design is

where �i is the effect of the gas temperature (A), �j is the oper-
ator effect (B), and �k is the effect of the pressure gauge (C).

The analysis of variance is shown in Table 13.11. A col-
umn entitled Expected Mean Squares has been added to
this table, and the entries in this column are derived using

� (��)ik � (��)jk � (���)ijk � �ijkl

yijkl � � � �i � �j � �k � (��)ij

the rules discussed in Section 13.5. From the Expected
Mean Squares column, we observe that exact tests exist for
all effects except the main effect A. Results for these tests
are shown in Table 13.10. To test the gas temperature effect,
or H0 : �i � 0, we could use the statistic

where

and

because

E(MS�) � E(MS	) �
bcn�� 2

i

a � 1

MS	 � MSAB � MSAC

MS� � MSA � MSABC

F �
MS�

MS	
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■ TA B L E  1 3 . 9
Coded Pressure Drop Data for the Turbine Experiment

Gas Temperature (A)

Pressure 60°F 75°F 90°F

Gauge Operator (B) Operator (B) Operator (B)

(C ) 1 2 3 4 1 2 3 4 1 2 3 4

1 �2 0 �1 4 14 6 1 �7 �8 �2 �1 �2

�3 �9 �8 4 14 0 2 6 �8 20 �2 1

2 �6 �5 �8 �3 22 8 6 �5 �8 1 �9 �8

4 �1 �2 �7 24 6 2 2 3 �7 �8 3

3 �1 �4 0 �2 20 2 3 �5 �2 �1 �4 1

�2 �8 �7 4 16 0 0 �1 �1 �2 �7 3 

and

Comparing F � 2.22 to F0.05,2,8 � 4.46, we cannot reject
H0. The P-value is approximately 0.17.

The AB, or temperature–operator, interaction is large, and
there is some indication of an AC, or temperature–
gauge, interaction. The graphical analysis of the AB and AC
interactions, shown in Figure 13.2, indicates that the effect of
temperature may be large when operator 1 and gauge 3 are
used. Thus, it seems possible that the main effects of temper-
ature and operator are masked by the large AB interaction.

�
(236.47)2

[(202.00)2/6] � [(34.47)2/4]
� 7.88 
  8

q �
(MSAB � MSAC)2

(MS2
AB/6) � (MS2

AC/4)

To determine the test statistic for H0 : �i � 0, we compute

and

The degrees of freedom for this statistic are found from
Equations 13.20 and 13.21 as follows:

�
(525.52)2

[(511.68)2/2] � [(13.84)2/12]
� 2.11 
  2

p �
(MSA � MSABC)2

(MS2
A/2) � (MS2

ABC/12)

F �
MS�

MS	
�

525.52
236.47

� 2.22

� 202.00 � 34.47 � 236.47
MS	 � MSAB � MSAC

� 511.68 � 13.84 � 525.52
MS� � MSA � MSABC

■ TA B L E  1 3 . 1 0
Analysis of Variance for the Pressure Drop Data

Source of Sum of Degrees of Mean 
Variation Squares Freedom Expected Mean Squares Square F0 P-value

Temperature, A 1023.36 2 �2 � 511.68 2.22 0.17

Operator, B 423.82 3 �2 � 141.27 4.05 0.07

Pressure gauge, C 7.19 2 �2 � 3.60 0.10 0.90

AB 1211.97 6 �2 � 202.00 14.59 �0.01

AC 137.89 4 �2 � 34.47 2.49 0.10

BC 209.47 6 �2 � 34.91 1.63 0.17

ABC 166.11 12 �2 � 13.84 0.65 0.79
Error 770.50 36 �2 21.40
Total 3950.32 71 

n� 2
���

an� 2
��

n� 2
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Table 13.11 presents the Minitab Balanced ANOVA output for the experiment in Example
13.6. We have specified the restricted model. Q[1] represents the fixed effect of gas pressure.
Notice that the entries in the analysis of variance table are in general agreement with those in
Table 13.10, except for the F test on gas temperature (factor A). Minitab notes that the test is not
an exact test (which we see from the expected mean squares). The Synthesized Test construct-
ed by Minitab is actually Satterthwaite’s procedure, but it uses a different test statistic than we
did. Note that, from the Minitab output, the error mean square for testing factor A is

for which the expected value is

which is an appropriate error mean square for testing the mean effect of A. This nicely illus-
trates that there can be more than one way to construct the synthetic mean squares used in
Satterthwaite’s procedure. However, we would generally prefer the linear combination of
mean squares we selected instead of the one chosen by Minitab because it does not have any
mean squares involved negatively in the linear combinations.

The analysis of Example 13.6, assuming the unrestricted model, is presented in Table
13.12. The principal difference from the restricted model is that now the expected values of the
mean squares for all three mean effects are such that no exact test exists. In the restricted
model, the two random mean effects could be tested against their interaction, but now the
expected mean square for B involves and , and the expected mean square for C
involves and . Once again, Minitab constructs synthetic mean squares and tests these
effects with Satterthwaite’s procedure. The overall conclusions are not radically different from
the restricted model analysis, other than the large change in the estimate of the operator variance
component. The unrestricted model produces a negative estimate of . Because the gauge fac-
tor is not significant in either analysis, it is possible that some model reduction is in order.

� 2
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� 2
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� 2
��� 2
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� � 2 � n� 2
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� bn� 2
�� � (� 2 � n� 2

���)

E[(4) � (5) � (7)] � � 2 � n� 2
��� � cn� 2

�� � � 2 � n� 2
���

(4) � (5) � (7) � MSAB � MSAC � MSABC
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13.7 Some Additional Topics on Estimation of Variance Components

As we have previously observed, estimating the variance components in a random or
mixed model is frequently a subject of considerable importance to the experimenter. In
this section, we present some further results and techniques useful in estimating variance
components. We concentrate on procedures for finding confidence intervals on variance
components.

■ TA B L E  1 3 . 1 1
Minitab Balanced ANOVA for Example 13.6, Restricted Model

Analysis of Variance (Balanced Designs)

Factor Type Levels Values

GasT fixed 3 60 75 90

Operator random 4 1 2 3 4

Gauge random 3 1 2 3

Analysis of Variance for Drop

Source DF SS MS F P

GasT 2 1023.36 511.68 2.30 0.171 �

Operator 3 423.82 141.27 4.05 0.069

Gauge 2 7.19 3.60 0.10 0.904

GasT*Operator 6 1211.97 202.00 14.59 0.000

GasT*Gauge 4 137.89 34.47 2.49 0.099

Operator*Gauge 6 209.47 34.91 1.63 0.167

GasT*Operator*Gauge 12 166.11 13.84 0.65 0.788

Error 36 770.50 21.40

Total 71 3950.32

� Not an exact F test

Source Variance Error Expected Mean Square for Each Term

component term (using restricted model)

1 GasT * (8) � 2(7) � 8(5) � 6(4) � 24Q[1]

2 Operator 5.909 6 (8) � 6(6) � 18(2)

3 Gauge �1.305 6 (8) � 6(6) � 24(3)

4 GasT*Operator 31.359 7 (8) � 2(7) � 6(4)

5 GasT*Gauge 2.579 7 (8) � 2(7) � 8(5)

6 Operator*Gauge 2.252 8 (8) � 6(6)

7 GasT*Operator*Gauge �3.780 8 (8) � 2(7)

8 Error 21.403 (8)

* Synthesized Test

Error Terms for Synthesized Tests

Source Error DF Error MS Synthesis of Error MS

1 GasT 6.97 222.63 (4) � (5) � (7) 
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■ TA B L E  1 3 . 1 2
Minitab Balanced ANOVA for Example 13.6, Unrestricted Model

Analysis of Variance (Balanced Designs)

Factor Type Levels Values
GasT fixed 3 60 75 90
Operator random 4 1 2 3 4
Gauge random 3 1 2 3

Analysis of Variance for Drop

Source DF SS MS F P
GasT 2 1023.36 511.68 2.30 0.171 �

Operator 3 423.82 141.27 0.63 0.616 �

Gauge 2 7.19 3.60 0.06 0.938 �

GasT*Operator 6 1211.97 202.00 14.59 0.000
GasT*Gauge 4 137.89 34.47 2.49 0.099
Operator*Gauge 6 209.47 34.91 2.52 0.081
GasT*Operator*Gauge 12 166.11 13.84 0.65 0.788
Error 36 770.50 21.40
Total 71 3950.32

� Not an exact F test

Source Variance Error Expected Mean Square for Each Term
component term (using unrestricted model)

1 GasT * (8) � 2(7) � 8(5) � 6(4) � Q[1]
2 Operator �4.544 * (8) � 2(7) � 6(6) � 6(4) � 18(2)
3 Gauge �2.164 * (8) � 2(7) � 6(6) � 8(5) � 24(3)
4 GasT*Operator 31.359 7 (8) � 2(7) � 6(4)
5 GasT*Gauge 2.579 7 (8) � 2(7) � 8(5)
6 Operator*Gauge 3.512 7 (8) � 2(7) � 6(6)
7 GasT*Operator*Gauge �3.780 8 (8) � 2(7)
8 Error 21.403 (8)

* Synthesized Test

Error Terms for Synthesized Tests

Source Error DF Error MS Synthesis of Error MS
1 GasT 6.97 222.63 (4) � (5) � (7)
2 Operator 7.09 223.06 (4) � (6) � (7)
3 Gauge 5.98 55.54 (5) � (6) � (7)

13.7.1 Approximate Confidence Intervals on Variance
Components

When the single-factor random effects model was introduced in Chapter 1, we presented exact
100(1 � 	) percent confidence intervals for �2 and for other functions of the variance com-
ponents in that simple experimental design. It is always possible to find an exact confidence
interval on any function of the variance components that is the expected value of one of the
mean squares in the analysis of variance. For example, consider the error mean square.
Because E(MSE) � �2, we can always find an exact confidence interval on �2 because the
quantity

fEMSE/� 2 � fE �̂ 2/� 2



598 Chapter 13 ■ Experiments with Random Factors

has a chi-square distribution with fE degrees of freedom. The exact 100(1 � 	) percent con-
fidence interval is

(13.22)

Unfortunately, in more complex experiments involving several design factors, it is gen-
erally not possible to find exact confidence intervals on the variance components of interest
because these variances are not the expected value of a single mean square from the analysis
of variance. The advantage of the REML method is that it produces standard errors of the
variance component estimates, so finding approximate confidence intervals is easy. The con-
cepts underlying Satterthwaite’s approximate “pseudo” F tests, introduced in Section 13.6,
can also be employed to construct approximate confidence intervals on variance components
for which no exact CI is available and as an alternative to REML if it is not available.

Recall that Satterthwaite’s method uses two linear combinations of mean squares

and

with the test statistic

having an approximate F distribution. Using appropriate degrees of freedom for MS� and MS#,
defined in Equations 13.20 and 13.21, we can use this F statistic in an approximate test of the
significance of the parameter or variance component of interest.

For testing the significance of a variance component, say , the two linear combina-
tions, MS� and MS#, are chosen such that the difference in their expected values is equal to a
multiple of the component, say

or

. (13.23)

Equation 13.23 provides a basis for a point estimate of :

(13.24)

The mean squares (MSi) in Equation 13.24 are independent with fiMSi/ � SSi/ having
chi-square distributions with fi degrees of freedom. The estimate of the variance component,

, is a linear combination of multiples of the mean squares, and has an approximate
chi-square distribution with r degrees of freedom, where
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This result can only be used if > 0. As r will usually not be an integer, interpolation from
the chi-square tables will generally be required. Graybill (1961) derives a general result for r.

Now because has an approximate chi-square distribution with r degrees of free-
dom,

and

Therefore, an approximate 100(1 � 	) percent confidence interval on is

(13.26)
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To illustrate this procedure, reconsider the experiment in Example 13.6, where a three-factor mixed model is used on a study
of the pressure drop across an expansion valve of a turbine. The model is

where �i is a fixed effect and all other effects are random. We will find an approximate confidence interval on . Using the
expected mean squares in Table 13.10, we note that the difference in the expected values of the mean squares for the two-way
interaction effect AB and the three-way interaction effect ABC is a multiple of the variance component of interest, :

Therefore, the point estimate of is

and

The approximate 95 percent confidence interval on is then found from Equation 13.40 as follows:

This result is consistent with the results of the exact F test on , in that there is strong evidence that this variance compo-
nent is not zero.
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13.7.2 The Modified Large-Sample Method

The Satterthwaite method in the previous section is a relatively simple way to find an approx-
imate confidence interval on a variance component that can be expressed as a linear combi-
nation of mean squares, say

(13.27)

The Satterthwaite method works well when the degrees of freedom on each mean square MSi

are all relatively large and when the constants ci in Equation 13.27 are all positive. However,
often some of the ci are negative. Graybill and Wang (1980) proposed a procedure called the
modified large-sample method, which can be a very useful alternative to Satterthwaite’s
method. If all of the constants ci in Equation 13.27 are positive, then the approximate 100
(1 � 	) percent modified large-sample confidence interval on is

(13.28)

where

Note that an F random variable with an infinite number of denominator degrees of freedom
is equivalent to a chi-square random variable divided by its degrees of freedom.

Now consider the more general case of Equation 13.27, where the constants ci are unre-
stricted in sign. This may be written as

(13.29)

Ting et al. (1990) give an approximate 100(1 � 	) percent lower confidence limit on as

(13.30)

where

These results can also be extended to include approximate confidence intervals on ratios
of variance components. For a complete account of these methods, refer to the excellent book
by Burdick and Graybill (1992). Also see the supplemental material for this chapter.

   if P �  1 and G*it � 0 if P � 1

G*it � �� 1
Fa, fi�ft,�

�2 ( fi � fi)
2

fi ft
�

G2
i fi

ft
�

G2
i fi

ft
	 (P � 1),

Gij �
(F	, fi, fj

� 1)2 � G 2
i F

2
	, fi, fj

� H 2
j

F	, fi, fj

Hj �
1

F1�	, fi,�
� 1

Gi �  1 �
1

F	, fi,�

� �
P�1

i�1
�
P

t�1
G*it cict MSi MSt

VL � �
P

i�1
Gi

2ci
2MSi

2 � �
Q

j�P�1
Hj

2cj
2MSj

2 � �
P

i�1
�
Q

j�P�1
Gij

2cicj MSiMSj

L � �̂ 2
0 � �VL

� 2
0

�̂0
2 � �

P

i�1
ciMSi � �

Q

j�P�1
cjMSj   ci,cj � 0

Gi � 1 �
1

f	, fi,�
  and   Hi �

1
F1�	, fi,�

� 1

� ��
Q

i�1
Hi

2ci
2MSi

2�̂0
2 � ��

Q

i�1
Gi

2ci
2MSi

2 � �0
2 � �̂0

2

� 2
0

�̂0
2 � �

Q

i�1
ciMSi



13.8 Problems

13.8 Problems 601

E X A M P L E  1 3 . 8

To illustrate the modified large-sample method, reconsider the three-factor mixed model in Example 13.6. We will find an
approximate 95 percent lower confidence interval on . Recall that the point estimate of is

Therefore, in the notation of Equation 13.29, c1 � c2 � , and

From Equation 13.30

So an approximate 95 percent lower confidence limit on is

This result is consistent with the results of the exact F test for this effect.

L � �̂ 2
�� � �VL � 31.36 � �316.02 � 13.58

� 2
��

� 316.02

� (0.524)2(1/6)2(202.00)2 � (1.3)2(1/6)2(13.84)2 � (�0.054)(1/6)(1/6)(202.00)(13.84)
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13.1. An experiment was performed to investigate the capa-
bility of a measurement system. Ten parts were randomly
selected, and two randomly selected operators measured each
part three times. The tests were made in random order, and the
data are shown in Table P13.1.

■ TA B L E  P 1 3 . 1
Measurement Systems Data for Problem 13.1

Operator 1 Operator 2 
Measurements Measurements

Part No. 1 2 3 1 2 3
1 50 49 50 50 48 51
2 52 52 51 51 51 51
3 53 50 50 54 52 51
4 49 51 50 48 50 51
5 48 49 48 48 49 48

6 52 50 50 52 50 50
7 51 51 51 51 50 50
8 52 50 49 53 48 50
9 50 51 50 51 48 49
10 47 46 49 46 47 48

(a) Analyze the data from this experiment.

(b) Estimate the variance components using the ANOVA
method.

13.2. An article by Hoof and Berman (“Statistical Analysis
of Power Module Thermal Test Equipment Performance,”
IEEE Transactions on Components, Hybrids, and
Manufacturing Technology Vol. 11, pp. 516–520, 1988)
describes an experiment conducted to investigate the capabil-
ity of measurements in thermal impedance (C°/w � 100)
on a power module for an induction motor starter. There are
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10 parts, three operators, and three replicates. The data are
shown in Table P13.2.

■ TA B L E  P 1 3 . 2
Power Module Thermal Test Equipment Data for
Problem 13.2

Inspector 1 Inspector 2 Inspector 3

Test Test Test 

Part No. 1 2 3 1 2 3 1 2 3
1 37 38 37 41 41 40 41 42 41
2 42 41 43 42 42 42 43 42 43
3 30 31 31 31 31 31 29 30 28
4 42 43 42 43 43 43 42 42 42
5 28 30 29 29 30 29 31 29 29
6 42 42 43 45 45 45 44 46 45
7 25 26 27 28 28 30 29 27 27
8 40 40 40 43 42 42 43 43 41
9 25 25 25 27 29 28 26 26 26
10 35 34 34 35 35 34 35 34 35

(a) Analyze the data from this experiment, assuming that
both parts and operators are random effects.

(b) Estimate the variance components using the analysis
of variance method.

(c) Estimate the variance components using the REML
method. Use the confidence intervals on the variance
components to assist in drawing conclusions.

13.3. Reconsider the data in Problem 5.8. Suppose that both
factors, machines and operators, are chosen at random.

(a) Analyze the data from this experiment.

(b) Find point estimates of the variance components using
the analysis of variance method.

13.4. Reconsider the data in Problem 5.15. Suppose that
both factors are random.

(a) Analyze the data from this experiment.

(b) Estimate the variance components using the ANOVA
method.

13.5. Suppose that in Problem 5.13 the furnace positions
were randomly selected, resulting in a mixed model experi-
ment. Reanalyze the data from this experiment under this new
assumption. Estimate the appropriate model components
using the ANOVA method.

13.6. Reanalyze the measurement systems experiment in
Problem 13.1, assuming that operators are a fixed factor.
Estimate the appropriate model components using the
ANOVA method.

13.7. Reanalyze the measurement system experiment in
Problem 13.2, assuming that operators are a fixed factor.
Estimate the appropriate model components using the
ANOVA method.

13.8. In Problem 5.8, suppose that there are only four
machines of interest, but the operators were selected at 
random.

(a) What type of model is appropriate?

(b) Perform the analysis and estimate the model compo-
nents using the ANOVA method.

13.9 Rework Problem 13.5 using the REML method.

13.10 Rework Problem 13.6 using the REML method.

13.11 Rework Problem 13.7 using the REML method.

13.12 Rework Problem 13.8 using the REML method.

13.13. By application of the expectation operator, develop
the expected mean squares for the two-factor factorial, mixed
model. Use the restricted model assumptions. Check your
results with the expected mean squares given in Equation 13.9
to see that they agree.

13.14. Consider the three-factor factorial design in Example
13.5. Propose appropriate test statistics for all main effects
and interactions. Repeat for the case where A and B are fixed
and C is random.

13.15. Consider the experiment in Example 13.6. Analyze
the data for the case where A, B, and C are random.

13.16. Derive the expected mean squares shown in Table
13.11.

13.17. Consider a four-factor factorial experiment where fac-
tor A is at a levels, factor B is at b levels, factor C is at c lev-
els, factor D is at d levels, and there are n replicates. Write
down the sums of squares, the degrees of freedom, and the
expected mean squares for the following cases. Assume the
restricted model for all mixed models. You may use a
computer package such as Minitab.

(a) A, B, C, and D are fixed factors.

(b) A, B, C, and D are random factors.

(c) A is fixed and B, C, and D are random.

(d) A and B are fixed and C and D are random.

(e) A, B, and C are fixed and D is random.

Do exact tests exist for all effects? If not, propose test statistics
for those effects that cannot be directly tested.

13.18. Reconsider cases (c), (d), and (e) of Problem 13.17.
Obtain the expected mean squares assuming the unrestrict-
ed model. You may use a computer package such as
Minitab. Compare your results with those for the restricted
model.

13.19. In Problem 5.19, assume that the three operators were
selected at random. Analyze the data under these conditions
and draw conclusions. Estimate the variance components.

13.20. Consider the three-factor factorial model

� (��)jk � �ijk  � i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , c

yijk � � � �i � �j � �k � (��)ij



Assuming that all the factors are random, develop the analysis of
variance table, including the expected mean squares. Propose
appropriate test statistics for all effects.

13.21. The three-factor factorial model for a single replicate is

If all the factors are random, can any effects be tested? If the
three-factor and (��)ij interactions do not exist, can all the
remaining effects be tested?

13.22. In Problem 5.8, assume that both machines and oper-
ators were chosen randomly. Determine the power of the test
for detecting a machine effect such that � �2, where 
is the variance component for the machine factor. Are two
replicates sufficient?

13.23. In the two-factor mixed model analysis of variance,
show that Cov[(��)ij, (��)i�j] � �(1/a) for i " i�.

13.24. Show that the method of analysis of variance always
produces unbiased point estimates of the variance compo-
nents in any random or mixed model.

13.25. Invoking the usual normality assumptions, find an
expression for the probability that a negative estimate of a
variance component will be obtained by the analysis of vari-
ance method. Using this result, write a statement giving the
probability that 
 0 in a one-factor analysis of variance.
Comment on the usefulness of this probability statement.

13.26. Analyze the data in Problem 13.1, assuming that
operators are fixed, using both the unrestricted and the
restricted forms of the mixed models. Compare the results
obtained from the two models.

13.27. Consider the two-factor mixed model. Show that the
standard error of the fixed factor mean (e.g., A) is [MSAB/bn]1/2.

�̂ 2
�

� 2
��

� 2
�� 2

�

� (��)jk � (��)ik � (���)ijk � �ijk

yijk � � � �i � �j � �k � (��)ij
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13.28. Consider the variance components in the random
model from Problem 13.1.

(a) Find an exact 95 percent confidence interval on �2.

(b) Find approximate 95 percent confidence intervals on
the other variance components using the Satterthwaite
method.

13.29. Use the experiment described in Problem 5.8 and
assume that both factors are random. Find an exact 95 percent
confidence interval on �2. Construct approximate 95 percent
confidence intervals on the other variance components using
the Satterthwaite method.

13.30. Consider the three-factor experiment in Problem 5.19
and assume that operators were selected at random. Find an
approximate 95 percent confidence interval on the operator
variance component.

13.31. Rework Problem 13.26 using the modified large-
sample approach described in Section 13.7.2. Compare the
two sets of confidence intervals obtained and discuss.

13.32. Rework Problem 13.28 using the modified large-
sample method described in Section 13.7.2. Compare this
confidence interval with the one obtained previously and
discuss.

13.33 Consider the experiment described in Problem 5.8.
Estimate the variance components using the REML method.
Compare the confidence intervals to the approximate CIs
found in Problem 13.29

13.34 Consider the experiment in Problem 13.1. Analyze
the data using REML. Compare the CIs to those obtained in
Problem 13.28

13.35. Rework Problem 13.31 using REML. Compare all
sets of CIs for the variance components.
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This chapter introduces two important types of experimental designs, the nested design
and the split-plot design. Both of these designs find reasonably widespread application

in the industrial use of designed experiments. They also frequently involve one or more ran-
dom factors, and so some of the concepts introduced in Chapter 13 will find application here.

14.1 The Two-Stage Nested Design

In certain multifactor experiments, the levels of one factor (e.g., factor B) are similar but not
identical for different levels of another factor (e.g., A). Such an arrangement is called a nest-
ed, or hierarchical, design, with the levels of factor B nested under the levels of factor A. For
example, consider a company that purchases its raw material from three different suppliers.
The company wishes to determine whether the purity of the raw material is the same from each
supplier. There are four batches of raw material available from each supplier, and three deter-
minations of purity are to be taken from each batch. The situation is depicted in Figure 14.1.

This is a two-stage nested design, with batches nested under suppliers. At first glance,
you may ask why this is not a factorial experiment. If this were a factorial, then batch 1 would
always refer to the same batch, batch 2 would always refer to the same batch, and so on. This
is clearly not the case because the batches from each supplier are unique for that particular
supplier. That is, batch 1 from supplier 1 has no connection with batch 1 from any other

The supplemental material is on the textbook website www.wiley.com/college/montgomery.



14.1 The Two-Stage Nested Design 605

supplier, batch 2 from supplier 1 has no connection with batch 2 from any other supplier, and
so forth. To emphasize the fact that the batches from each supplier are different batches, we
may renumber the batches as 1, 2, 3, and 4 from supplier 1; 5, 6, 7, and 8 from supplier 2;
and 9, 10, 11, and 12 from supplier 3, as shown in Figure 14.2.

Sometimes we may not know whether a factor is crossed in a factorial arrangement or
nested. If the levels of the factor can be renumbered arbitrarily as in Figure 14.2, then the fac-
tor is nested.

14.1.1 Statistical Analysis

The linear statistical model for the two-stage nested design is

(14.1)

That is, there are a levels of factor A, b levels of factor B nested under each level of A, and n
replicates. The subscript j(i) indicates that the jth level of factor B is nested under the ith level
of factor A. It is convenient to think of the replicates as being nested within the combination
of levels of A and B; thus, the subscript (ij)k is used for the error term. This is a balanced
nested design because there are an equal number of levels of B within each level of A and an
equal number of replicates. Because not every level of factor B appears with every level of
factor A, there can be no interaction between A and B.

We may write the total corrected sum of squares as

(14.2)

Expanding the right-hand side of Equation 14.2 yields

(14.3)

because the three cross-product terms are zero. Equation 14.3 indicates that the total sum of
squares can be partitioned into a sum of squares due to factor A, a sum of squares due 
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■ F I G U R E  1 4 . 1 A two-stage nested design

Batches

Suppliers 1

1 2 3 4

1

7 8

2

5 6

3

9 10 11 12

■ F I G U R E  1 4 . 2 Alternate layout for the two-stage nested design
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to factor B under the levels of A, and a sum of squares due to error. Symbolically, we may
write Equation 14.3 as

(14.4)

There are abn � 1 degrees of freedom for SST , a � 1 degrees of freedom for SSA, a(b � 1)
degrees of freedom for SSB(A), and ab(n � 1) degrees of freedom for error. Note that abn � 1 �
(a � 1) � a(b � 1) � ab(n � 1). If the errors are NID(0, �2), we may divide each sum of
squares on the right of Equation 14.4 by its degrees of freedom to obtain independently
distributed mean squares such that the ratio of any two mean squares is distributed as F.

The appropriate statistics for testing the effects of factors A and B depend on whether
A and B are fixed or random. If factors A and B are fixed, we assume that �i � 0 and

�j(i) � 0 (i � 1, 2, . . . , a). That is, the A treatment effects sum to zero, and the B treat-
ment effects sum to zero within each level of A. Alternatively, if A and B are random, we
assume that �i is NID(0, ) and �j(i) is NID(0, ). Mixed models with A fixed and B random
are also widely encountered. The expected mean squares can be determined by a straightfor-
ward application of the rules in Chapter 13. Table 14.1 gives the expected mean squares for
these situations.

Table 14.1 indicates that if the levels of A and B are fixed, H0: �i � 0 is tested by
MSA/MSE and H0: �j(i) � 0 is tested by MSB(A) /MSE. If A is a fixed factor and B is random, then
H0: �i � 0 is tested by MSA/MSB(A) and H0: � 0 is tested by MSB(A) /MSE. Finally, if both 
A and B are random factors, we test H0: � 0 by MSA/MSB(A) and H0: � 0 by MSB(A) /MSE.
The test procedure is summarized in an analysis of variance table as shown in Table 14.2.
Computing formulas for the sums of squares may be obtained by expanding the quantities in
Equation 14.3 and simplifying. They are

(14.5)

(14.6)

(14.7)

(14.8)

We see that Equation 14.6 for SSB(A) can be written as

SSB(A) � �
a

i�1
�1

n �
b

j�1
y2

ij. �
y2

i..

bn	

SST � �
a

i�1
�
b

j�1
�
n

k�1
y2

ijk �
y2

...

abn

SSE � �
a

i�1
�
b

j�1
�
n

k�1
y2

ijk �
1
n �

a

i�1
�
b

j�1
y2

ij.

SSB(A) �
1
n �

a

i�1
�
b

j�1
y2

ij. �
1

bn �
a

i�1
y2

i..

SSA �
1

bn �
a

i�1
y2

i.. �
y2

...

abn

� 2
�� 2

�

� 2
�

� 2
�� 2

�

�b
j�1

�a
i�1

SST � SSA � SSB(A) � SSE

■ TA B L E  1 4 . 1
Expected Mean Squares in the Two-Stage Nested Design

A Fixed A Fixed A Random
E(MS) B Fixed B Random B Random
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This expresses the idea that SSB(A) is the sum of squares between levels of B for each level of
A, summed over all the levels of A.

■ TA B L E  1 4 . 2
Analysis of Variance Table for the Two-Stage Nested Design

Source of Variation Sum of Squares Degrees of Freedom Mean Square

A a � 1 MSA

B within A a(b � 1) MSB(A)

Error ab(n � 1) MSE

Total abn � 1� � � (yijk � y...)
2

� � � (yijk � yij.)
2

n � � (yij. � yi..)
2

bn � (yi.. � y...)
2

E X A M P L E  1 4 . 1

Consider a company that buys raw material in batches from
three different suppliers. The purity of this raw material varies
considerably, which causes problems in manufacturing the
finished product. We wish to determine whether the variabil-
ity in purity is attributable to differences between the suppli-
ers. Four batches of raw material are selected at random from
each supplier, and three determinations of purity are made on
each batch. This is, of course, a two-stage nested design. The
data, after coding by subtracting 93, are shown in Table 14.3.
The sums of squares are computed as follows:
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The analysis of variance is summarized in Table 14.4.
Suppliers are fixed and batches are random, so the expect-
ed mean squares are obtained from the middle column of
Table 14.1. They are repeated for convenience in Table 14.4.
From examining the P-values, we would conclude that
there is no significant effect on purity due to suppliers, but
the purity of batches of raw material from the same supplier
does differ significantly.
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■ TA B L E  1 4 . 3
Coded Purity Data for Example 14.1 (Code: yijk � Purity � 93)

Supplier 1 Supplier 2 Supplier 3

Batches 1 2 3 4 1 2 3 4 1 2 3 4

1 �2 �2 1 1 0 �1 0 2 �2 1 3

�1 �3 0 4 �2 4 0 3 4 0 �1 2

0 �4 1 0 �3 2 �2 2 0 2 2 1

Batch totals yij. 0 �9 �1 5 �4 6 �3 5 6 0 2 6

Supplier totals yi.. �5 4 14
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■ TA B L E  1 4 . 5
Incorrect Analysis of the Two-Stage Nested Design in Example 14.1 as a Factorial (Suppliers Fixed, Batches Random)

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0 P-Value

Suppliers (S) 15.06 2 7.53 1.02 0.42

Batches (B) 25.64 3 8.55 3.24 0.04

S � B interaction 44.28 6 7.38 2.80 0.03

Error 63.33 24 2.64

Total 148.31 35
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The practical implications of this experiment and the analysis are very important. The
objective of the experimenter is to find the source of the variability in raw material purity. If
it results from differences among suppliers, we may be able to solve the problem by select-
ing the “best” supplier. However, that solution is not applicable here because the major source
of variability is the batch-to-batch purity variation within suppliers. Therefore, we must attack
the problem by working with the suppliers to reduce their batch-to-batch variability. This may
involve modifications to the suppliers’ production processes or their internal quality assurance
system.

Notice what would have happened if we had incorrectly analyzed this design as a two-
factor factorial experiment. If batches are considered to be crossed with suppliers, we obtain
batch totals of 2, �3, �2, and 16, with each batch � suppliers cell containing three replicates.
Thus, a sum of squares due to batches and an interaction sum of squares can be computed. The
complete factorial analysis of variance is shown in Table 14.5, assuming the mixed model.

This analysis indicates that batches differ significantly and that there is a significant
interaction between batches and suppliers. However, it is difficult to give a practical interpre-
tation of the batches � suppliers interaction. For example, does this significant interaction
mean that the supplier effect is not constant from batch to batch? Furthermore, the significant
interaction coupled with the nonsignificant supplier effect could lead the analyst to conclude
that suppliers really differ but their effect is masked by the significant interaction.

Computing. Some statistical software packages will perform the analysis for a nested
design. Table 14.6 presents the output from the Balanced ANOVA procedure in Minitab
(using the restricted model). The numerical results are in agreement with the manual calcula-
tions reported in Table 14.4. Minitab also reports the expected mean squares in the lower

■ TA B L E  1 4 . 4
Analysis of Variance for the Data in Example 14.1

Sum of Degrees of Mean Expected Mean
Source of Variation Squares Freedom Square Square F0 P-Value

Suppliers 15.06 2 7.53 0.97 0.42

Batches (within 

suppliers) 69.92 9 7.77 2.94 0.02

Error 63.33 24 2.64 �2

Total 148.31 35

�2 � 3�2
�

�2 � 3�2
� � 6 � �2

i



portion of Table 14.6. Remember that the symbol Q[1] is a quadratic term that represents the
fixed effect of suppliers, so in our notation

Therefore, the fixed effect term in the Minitab expected mean square for suppliers 12Q[1] �
12 /(3 � 1) � 6 , which matches the result given by the algorithm in Table 14.4.

Sometimes a specialized computer program for analyzing nested designs is not avail-
able. However, notice from comparing Tables 14.4 and 14.5 that

That is, the sum of squares for batches within suppliers consists of the sum of squares of the
batches plus the sum of squares for the batches � suppliers interaction. The degrees of free-
dom have a similar property; that is,

Therefore, a computer program for analyzing factorial designs could also be used for the
analysis of nested designs by pooling the “main effect” of the nested factor and interactions
of that factor with the factor under which it is nested.

14.1.2 Diagnostic Checking

The major tool used in diagnostic checking is residual analysis. For the two-stage nested
design, the residuals are

eijk � yijk � ŷijk

Batches
3

�
Batches �  Suppliers

6
�

Batches within Suppliers
9

SSB � SSS�B � 25.64 � 44.28 � 69.92 � SSB(S)

�3
i�1 � 2

i�3
i�1 � 2

i

Q[1] �
�
a

i�1
� 2

i

a � 1

■ TA B L E  1 4 . 6
Minitab Output (Balanced ANOVA) for Example 14.1

Analysis of Variance (Balanced Designs)

Factor Type Levels Values

Supplier fixed 3 1 2 3

Batch(Supplier) random 4 1 2 3 4

Analysis of Variance for Purity

Source DF SS MS F P

Supplier 2 15.056 7.528 0.97 0.416

Batch(Supplier) 9 69.917 7.769 2.94 0.017

Error 24 63.333 2.639

Total 35 148.306

Source Variance Error Expected Mean Square for Each Term

component term (using restricted model)

1 Supplier 2 (3) � 3(2) � 12Q[1]

2 Batch(Supplier) 1.710 3 (3) � 3(2)

3 Error 2.639 (3)

14.1 The Two-Stage Nested Design 609
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The fitted value is

and if we make the usual restrictions on the model parameters (�i � 0 and �j � 0,

i � 1, 2, . . . , a), then , and . Consequently, the fitted

value is

Thus, the residuals from the two-stage nested design are

(14.9)

where are the individual batch averages.
The observations, fitted values, and residuals for the purity data in Example 14.1 follow:

Observed Value yijk Fitted Value eijk � yijk �

1 0.00 1.00

�1 0.00 �1.00

0 0.00 0.00

�2 �3.00 1.00

�3 �3.00 0.00

�4 �3.00 �1.00

�2 �0.33 �1.67

0 �0.33 0.33

1 �0.33 1.33

1 1.67 �0.67

4 1.67 2.33

0 1.67 �1.67

1 �1.33 2.33

�2 �1.33 �0.67

�3 �1.33 �1.67

0 2.00 �2.00

4 2.00 2.00

2 2.00 0.00

�1 �1.00 0.00

0 �1.00 1.00

�2 �1.00 �1.00

0 1.67 �1.67

3 1.67 1.33

2 1.67 0.33

2 2.00 0.00

4 2.00 2.00

0 2.00 �2.00

�2 0.00 �2.00

0 0.00 0.00

2 0.00 2.00

1 0.67 0.33

yij.ŷijk � yij.

yij.

eijk � yijk � yij.

ŷijk � y... � (yi.. � y...) � (yij. � yi..) � yij.

�̂j(i) � yij. � yi..�̂ � y..., �̂i � yi.. � y...

�̂j(i)�̂i

ŷijk � �̂ � �̂i � �̂j(i)



�1 0.67 �1.67

2 0.67 1.33

3 2.00 1.00

2 2.00 0.00

1 2.00 �1.00

The usual diagnostic checks—including normal probability plots, checking for outliers, and
plotting the residuals versus fitted values—may now be performed. As an illustration, the
residuals are plotted versus the fitted values and against the levels of the supplier factor in
Figure 14.3.

In a problem situation such as that described in Example 14.1, the residual plots are
particularly useful because of the additional diagnostic information they contain. For
instance, the analysis of variance has indicated that the mean purity of all three suppliers
does not differ but that there is statistically significant batch-to-batch variability (that is,

 0). But is the variability within batches the same for all suppliers? In effect, we have
assumed this to be the case and if it’s not true, we would certainly like to know it because it
has considerable practical impact on our interpretation of the results of the experiment. The
plot of residuals versus suppliers in Figure 14.3b is a simple but effective way to check this
assumption. Because the spread of the residuals is about the same for all three suppliers, we
would conclude that the batch-to-batch variability in purity is about the same for all three
suppliers.

14.1.3 Variance Components

For the random effects case, the analysis of variance method can be used to estimate the vari-
ance components �2, , and . The maximum likelihood (REML) procedure could also be
used. Applying the ANOVA method and using the expected mean squares in the last column
of Table 14.1, we obtain

(14.10)

(14.11)�̂ 2
� �

MSB(A) � MSE

n

�̂ 2 � MSE

� 2
�� 2

�

� 2
�

Observed Value yijk Fitted Value eijk � yijk � yij.ŷijk � yij.
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Predicted values

(a) Plot of residuals versus the predicted values (b) Plot of residuals versus supplier
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and

(14.12)

Many applications of nested designs involve a mixed model, with the main factor (A) fixed
and the nested factor (B) random. This is the case for the problem described in Example 14.1,
where suppliers (factor A) are fixed, and batches of raw material (factor B) are random. The
effects of the suppliers may be estimated by

To estimate the variance components � 2 and , we eliminate the line in the analysis of vari-
ance table pertaining to suppliers and apply the analysis of variance estimation method to the
next two lines. This yields

and

These results are also shown in the lower portion of the Minitab output in Table 14.6. From
the analysis in Example 14.1, we know that the �i does not differ significantly from zero,
whereas the variance component is greater than zero.

To illustrate the REML method for a nested design, reconsider the experiment in
Example 14.1 with suppliers fixed and batches random. The REML output from JMP is
shown in Table 14.7. The REML estimates of the variance components agree with the
ANOVA estimates, but the REML procedure provides confidence intervals. The fixed effects
test on suppliers indicates that there is no significant difference in mean purity among the
three suppliers. The 95 percent confidence interval on batches within suppliers has a lower
bound that is just less than zero, but the batches within suppliers variance component
accounts for about 40 percent of the total variability so there is some evidence that batches
within suppliers exhibit some meaningful variability.

14.1.4 Staggered Nested Designs

A potential problem in the application of nested designs is that sometimes to get a reasonable
number of degrees of freedom at the highest level, we can end up with many degrees of free-
dom (perhaps too many) at lower stages. To illustrate, suppose that we are investigating
potential differences in chemical analysis among different lots of material. We plan to take
five samples per lot, and each sample will be measured twice. If we want to estimate a vari-
ance component for lots, then 10 lots would not be an unreasonable choice. This results in 9
degrees of freedom for lots, 40 degrees of freedom for samples, and 50 degrees of freedom
for measurements.

One way to avoid this is to use a particular type of unbalanced nested design called a
staggered nested design. An example of a staggered nested design is shown in Figure 14.4.
Notice that only two samples are taken from each lot; one of the samples is measured twice,
whereas the other sample is measured once. If there are a lots, then there will be a � 1
degrees of freedom for lots (or, in general, the upper stage), and all lower stages will have

� 2
�

�̂ 2
� �

MSB(A) � MSE

n �
7.77 � 2.64

3
� 1.71

�̂ 2 � MSE � 2.64

� 2
�

�̂3 � y3.. � y... �
14
12

�
13
36

�
29
36

�̂2 � y2.. � y... �
4

12
�

13
36

�
�1
36

�̂1 � y1.. � y... �
�5
12

�
13
36

�
�28
36

�̂ 2
� �

MSA � MSB(A)

bn
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■ TA B L E  1 4 . 7
JMP Output for the Nested Design in Example 14.1, Suppliers Fixed and Batches Random

Response Y

Summary of Fit

RSquare 0.518555

RSquare Adj 0.489376

Root Mean Square Error 1.624466

Mean of Response 0.361111

Observations (or Sum Wgts) 36

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total

Supplier [Batches] 0.6479532 1.7098765 1.2468358 �0.733922 4.1536747 39.319

Residual 2.6388889 0.7617816 1.6089119 5.1070532 60.681

Total 4.3487654 100.000

�2 LogLikelihood � 145.04119391

Covariance Matrix of Variance Component Estimates

Random Effect Supplier [Batches] Residual

Supplier [Batches] 1.5545995 �0.193437

Residual �0.193437 0.5803112

Fixed Effect Tests

Source Nparm DF DFDen F Ratio Prob � F

Supplier 2 2 9 0.9690 0.4158

Measurement
1

Measurement
1

Sample
1

Lot 1 ...Stage 1

Stage 2

Stage 3
Measurement

2

Sample
2

■ F I G U R E  1 4 . 4 A three-stage staggered nested design

exactly a degrees of freedom. For more information on the use and analysis of these designs,
see Bainbridge (1965), Smith and Beverly (1981), and Nelson (1983, 1995a, 1995b). The
supplemental text material for this chapter contains a complete example of a staggered
nested design.



Alloy
formulation

Observations

y1111 y1121 y1211 y1221

y1112 y1122 y1212 y1222

y1311 y1321

y1312 y1322

Ingots

Heats 1 2

1

3

1 2 1 2 1 21 2

y2111 y2121 y2211 y2221

y2112 y2122 y2212 y2222

y2311 y2321

y2312 y2322

1 2

2

3

1 2 1 2 1 21 2

■ F I G U R E  1 4 . 5 A
three-stage nested design
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14.2 The General m-Stage Nested Design

The results of Section 14.1 can be easily extended to the case of m completely nested factors.
Such a design would be called an m-stage nested design. As an example, suppose a foundry
wishes to investigate the hardness of two different formulations of a metal alloy. Three heats
of each alloy formulation are prepared, two ingots are selected at random from each heat for
testing, and two hardness measurements are made on each ingot. The situation is illustrated
in Figure 14.5.

In this experiment, heats are nested under the levels of the factor alloy formulation, and
ingots are nested under the levels of the factor heats. Thus, this is a three-stage nested design
with two replicates.

The model for the general three stage nested design is

(14.13)

For our example, �i is the effect of the ith alloy formulation, �j(i) is the effect of the jth heat
within the ith alloy, �k(ij) is the effect of the kth ingot within the jth heat and ith alloy, and 
� (ijk)l is the usual NID(0, �2) error term. Extension of this model to m factors is straightforward.

Notice that in the above example the overall variability in hardness consists of three
components: one that results from alloy formulations, one that results from heats, and one that
results from analytical test error. These components of the variability in overall hardness are
illustrated in Figure 14.6.

This example demonstrates how the nested design is often used in analyzing processes
to identify the major sources of variability in the output. For instance, if the alloy formulation
variance component is large, then this implies that overall hardness variability could be
reduced by using only one alloy formulation.

The calculation of the sums of squares and the analysis of variance for the m-stage
nested design are similar to the analysis presented in Section 14.1. For example, the analysis
of variance for the three-stage nested design is summarized in Table 14.8. Definitions of the
sums of squares are also shown in this table. Notice that they are a simple extension of 
the formulas for the two-stage nested design. Many statistics software packages will perform
the calculations.

To determine the proper test statistics, we must find the expected mean squares using
the methods of Chapter 13. For example, if factors A and B are fixed and factor C is random,
then the expected mean squares are as shown in Table 14.9. This table indicates the proper
test statistics for this situation.

yijkl � � � �i � �j(i) � �k(ij) � �(ijk)l  �
i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , c
l � 1, 2, . . . , n
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Mean
hardness

Observed
hardness

Analytical test
variability

σ2

στ
2

Heat-to-heat
variability

σβ
2

Alloy formulation
variability

■ F I G U R E  1 4 . 6
Sources of variation in the
three-stage nested design
example

■ TA B L E  1 4 . 8
Analysis of Variance for the Three-Stage Nested Design

Source of Variation Sum of Squares Degrees of Freedom Mean Square

A a � 1 MSA

B (within A) a(b � 1) MSB(A)

C (within B) ab(c � 1) MSC(B)

Error abc(n � 1) MSE

Total abcn � 1�
i

�
j

�
k

�
l

 (yijkl � y....)
2

�
i

�
j

�
k

�
l

 (yijkl � yijk.)
2

n �
i

�
j

�
k

 (yijk. � yij..)
2

cn �
i

�
j

 (yij.. � yi...)
2

bcn �
i

 (yi... � y....)
2

■ TA B L E  1 4 . 9
Expected Mean Squares for a Three-Stage Nested
Design with A and B Fixed and C Random

Model Term Expected Mean Square

�i

�j(i)

�k(ij)

�l(ijk) �2

�2 � n�2
�

�2 � n�2
� �

cn � � �2
j(i)

a(b � 1)

�2 � n�2
� �

bcn � �2
i

a � 1



E X A M P L E  1 4 . 2

An industrial engineer is studying the hand insertion of
electronic components on printed circuit boards to
improve the speed of the assembly operation. He has
designed three assembly fixtures and two workplace lay-
outs that seem promising. Operators are required to per-
form the assembly, and it is decided to randomly select
four operators for each fixture–layout combination.
However, because the workplaces are in different loca-
tions within the plant, it is difficult to use the same four
operators for each layout. Therefore, the four operators
chosen for layout 1 are different individuals from the four
operators chosen for layout 2. Because there are only
three fixtures and two layouts, but the operators are
chosen at random, this is a mixed model. The treatment
combinations in this design are run in random order, and
two replicates are obtained. The assembly times are meas-
ured in seconds and are shown in Table 14.10.

In this experiment, operators are nested within the lev-
els of layouts, whereas fixtures and layouts are arranged in
a factorial. Thus, this design has both nested and factorial
factors. The linear model for this design is

� �(ijk)l

yijkl � � � �i � �j � �k( j) � (��)ij � (��)ik( j)

(14.14)

where �i is the effect of the ith fixture, �j is the effect of the
jth layout, �k(j) is the effect of the kth operator within the jth
level of layout, (��)ij is the fixture � layout interaction,
(��)ik(j) is the fixture � operators within layout interaction,
and �(ijk)l is the usual error term. Notice that no layout �
operator interaction can exist because all the operators do
not use all the layouts. Similarly, there can be no three-way
fixture � layout � operator interaction. The expected mean
squares are shown in Table 14.11 using the methods of
Chapter 13 and assuming a restricted mixed model. The
proper test statistic for any effect or interaction can be
found from the inspection of this table.

The complete analysis of variance is shown in Table
14.12. We see that assembly fixtures are significant and that
operators within layouts also differ significantly. There is also
a significant interaction between fixtures and operators with-
in layouts, indicating that the effects of the different fixtures
are not the same for all operators. The workplace layouts

�
i � 1, 2, 3
j � 1, 2
k � 1, 2, 3, 4
l � 1,2

■ TA B L E  1 4 . 1 0
Assembly Time Data for Example 14.2

Layout 1 Layout 2

Operator 1 2 3 4 1 2 3 4 yi...

Fixture 1 22 23 28 25 26 27 28 24 404

24 24 29 23 28 25 25 23

Fixture 2 30 29 30 27 29 30 24 28 447

27 28 32 25 28 27 23 30

Fixture 3 25 24 27 26 27 26 24 28 401

21 22 25 23 25 24 27 27

Operator totals, y.jk. 149 150 171 149 163 159 151 160

Layout totals, y.j.. 619 633 1252 � y....
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14.3 Designs with Both Nested and Factorial Factors

Occasionally in a multifactor experiment, some factors are arranged in a factorial layout
and other factors are nested. We sometimes call these designs nested–factorial designs.
The statistical analysis of one such design with three factors is illustrated in the following
example.
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■ TA B L E  1 4 . 1 1
Expected Mean Squares for Example 14.2

Model
Term Expected Mean Square

�i

�j

�k(j)

(��)ij

(��)ik(j)

�(ijk)l �2

�2 � 2�2
��

�2 � 2�2
�� � 4 � � (��)2

ij

�2 � 6�2
�

�2 � 6�2
� � 24 � �2

j

�2 � 2�2
�� � 8 � �2

i

seem to have little effect on the assembly time. Therefore, to
minimize assembly time, we should concentrate on fixture
types 1 and 3. (Note that the fixture totals in Table 14.9 are
smaller for fixture types 1 and 3 than for type 2. This differ-
ence in fixture type means could be formally tested using

multiple comparisons.) Furthermore, the interaction between
operators and fixtures implies that some operators are more
effective than others using the same fixtures. Perhaps these
operator–fixture effects could be isolated and the less effec-
tive operators’ performance improved by retraining them.

■ TA B L E  1 4 . 1 2
Analysis of Variance for Example 14.2

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F0 P-Value

Fixtures (F) 82.80 2 41.40 7.54 0.01

Layouts (L) 4.08 1 4.09 0.34 0.58

Operators (within layouts), O(L) 71.91 6 11.99 5.15 �0.01

FL 19.04 2 9.52 1.73 0.22

FO(L) 65.84 12 5.49 2.36 0.04

Error 56.00 24 2.33

Total 299.67 47

Computing. A number of statistical software packages can easily analyze nested–
factorial designs, including both Minitab and JMP. Table 14.13 presents the output from
Minitab (Balanced ANOVA), assuming the restricted form of the mixed model, for
Example 14.2. The expected mean squares in the bottom portion of Table 14.13 agree
with those shown in Table 14.10. Q[1], Q[3], and Q[4] are the fixed-factor effects for 
layouts, fixtures, and layouts � fixtures, respectively. The estimates of the variance
components are

� 2 � 2.333Error:

� 2
�� � 1.576Fixture �  Operator (layout):

� 2
� � 1.609Operator (layout):
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■ TA B L E  1 4 . 1 3
Minitab Balanced ANOVA Analysis of Example 14.2 Using the Restricted Model

Analysis of Variance (Balanced Designs)

Factor Type Levels Values

Layout fixed 2 1 2

Operator(Layout) random 4 1 2 3 4

Fixture fixed 3 1 2 3

Analysis of Variance for Time

Source DF SS MS F P

Layout 1 4.083 4.083 0.34 0.581

Operator(Layout) 6 71.917 11.986 5.14 0.002

Fixture 2 82.792 41.396 7.55 0.008

Layout*Fixture 2 19.042 9.521 1.74 0.218

Fixture*Operator(Layout) 12 65.833 5.486 2.35 0.036

Error 24 56.000 2.333

Total 47 299.667

Expected Mean Square

Variance Error for Each Term (using

Source component term restricted model)

1 Layout 2 (6) � 6(2) � 24Q[1]

2 Operator(Layout) 1.609 6 (6) � 6(2)

3 Fixture 5 (6) � 2(5) � 16Q[3]

4 Layout*Fixture 5 (6) � 2(5) � 8Q[4]

5 Fixture*Operator(Layout) 1.576 6 (6) � 2(5)

6 Error 2.333 (6)

Table 14.14 presents the Minitab analysis of Example 14.2 using the unrestricted form
of the mixed model. The expected mean squares in the lower portion of this table are slightly
different from those reported for the restricted model, and so the construction of the test statis-
tic will be slightly different for the operators (layout) factor. Specifically, the F ratio denomina-
tor for operators (layout) is the fixtures � operators (layout) interaction in the restricted model
(12 degrees of freedom for error), and it is the layout � fixtures interaction in the unrestricted
model (2 degrees of freedom for error). Because MSlayout�fixture 
 MSfixture�operator(layout) and it has
fewer degrees of freedom, we now find that the operator within layout effect is only significant
at about the 12 percent level (the P-value was 0.002 in the restricted model analysis).
Furthermore, the variance component estimate � 1.083 is smaller. However, because there
is a large fixture effect and a significant fixture � operator (layout) interaction, we would still
suspect an operator effect, and so the practical conclusions from this experiment are not greatly
affected by choosing either the restricted or the unrestricted form of the mixed model. The
quantities Q[1, 4] and Q[3, 4] are fixed-type quadratic terms containing the interaction effect of
layouts � fixtures.

�̂ 2
�
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■ TA B L E  1 4 . 1 4
Minitab Balanced ANOVA Analysis of Example 14.2 Using the Unrestricted Model

Analysis of Variance (Balanced Designs)

Factor Type Levels Values

Layout fixed 2 1 2

Operator(Layout) random 4 1 2 3 4

Fixture fixed 3 1 2 3

Analysis of Variance for Time

Source DF SS MS F P

Layout 1 4.083 4.083 0.34 0.581

Operator(Layout) 6 71.917 11.986 2.18 0.117

Fixture 2 82.792 41.396 7.55 0.008

Layout*Fixture 2 19.042 9.521 1.74 0.218

Fixture*Operator(Layout) 12 65.833 5.486 2.35 0.036

Error 24 56.000 2.333

Total 47 299.667

Source Expected Mean Square 

Variance Error for Each Term (using 

component term unrestricted model)

1 Layout 2 (6) � 2(5) � 6(2) � Q[1,4]

2 Operator(Layout) 1.083 5 (6) � 2(5) � 6(2)

3 Fixture 5 (6) � 2(5) � Q[3,4]

4 Layout*Fixture 5 (6) � 2(5) � Q[4]

5 Fixture*Operator 

(Layout) 1.576 6 (6) � 2(5)

6 Error 2.333 (6)

Table 14.15 presents the JMP output for Example 14.3. Because JMP uses the unre-
stricted form of the mixed model, estimates of the variance components agree with the
Minitab ANOVA estimates in Table 14.14, but the REML procedure is a preferred analysis
because it provides confidence intervals. The fixed effects tests indicate that there is a strong
fixture effect, and even though the confidence intervals on the operators (layout) and the fix-
ture � operators (layout) interaction variance components includes zero, we would be reluc-
tant to discount an operator effect and an interaction because these two variance components
account for over 50 percent of the total variability.

If no specialized software such as JMP or Minitab is available, then a program for
analyzing factorial experiments can be used to analyze experiments with nested and fac-
torial factors. For instance, the experiment in Example 14.2 could be considered as a
three-factor factorial, with fixtures (F), operators (O), and layouts (L) as the factors. Then
certain sums of squares and degrees of freedom from the factorial analysis would be
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pooled to form the appropriate quantities required for the design with nested and factorial
factors as follows:

Factorial Analysis Nested–Factorial Analysis

Degrees of Degrees of
Sum of Squares Freedom Sum of Squares Freedom

SSF 2 SSF 2

SSL 1 SSL 1

SSFL 2 SSFL 2

SSO 3

SSLO 3 SSO(L) � SSO � SSLO 6

SSFO 6

SSFOL 6 SSFO(L) � SSFO � SSFOL 12

SSE 24 SSE 24

SST 47 SST 47

■ TA B L E  1 4 . 1 5
JMP Output for Example 14.2

Response Time

Summary of Fit

RSquare 0.764291

RSquare Adj 0.73623

Root Mean Square Error 1.527525

Mean of Response 26.08333

Observations for (or Sum Wgts) 48

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total

Operator[Layout] 0.4642857 1.0833333 1.2122659 �1.292708 3.4593745 21.697

Operator*Fixture[Layout] 0.6755952 1.5763889 1.1693951 �0.715625 3.8684033 31.572

Residual 2.3333333 0.6735753 1.4226169 4.5157102 46.732

Total 4.9930556 100.000

�2 LogLikelihood � 195.88509411

Covariance Matrix of Variance Component Estimates

Random Effect Operator[Layout] Operator*Fixture[Layout] Residual

Operator[Layout] 1.4695886 �0.41802 3.608e-15

Operator*Fixture[Layout] �0.41802 1.3674849 �0.226852

Residual 3.608e-15 �0.226852 0.4537037

Fixed Effect Tests

Source Nparm DF DFDen F Ratio Prob > F

Layout 1 1 6 0.3407 0.5807

Fixture 2 2 12 7.5456 0.0076*

Layout*Fixture 2 2 12 1.7354 0.2178



14.4 The Split-Plot Design

In some multifactor factorial experiments, we may be unable to completely randomize the
order of the runs. This often results in a generalization of the factorial design called a
split-plot design.

As an example, consider a paper manufacturer who is interested in three different
pulp preparation methods (the methods differ in the amount of hardwood in the pulp mix-
ture) and four different cooking temperatures for the pulp and who wishes to study the
effect of these two factors on the tensile strength of the paper. Each replicate of a factorial
experiment requires 12 observations, and the experimenter has decided to run three replicates.
This will require a total of 36 runs. The experimenter decides to conduct the experiment as
follows. A batch of pulp is produced by one of the three methods under study. Then this
batch is divided into four samples, and each sample is cooked at one of the four temperatures.
Then a second batch of pulp is made up using another of the three methods. This second
batch is also divided into four samples that are tested at the four temperatures. The process
is then repeated, until all three replicates (36 runs) of the experiment are obtained. The data
are shown in Table 14.16.

Initially, we might consider this to be a factorial experiment with three levels of
preparation method (factor A) and four levels of temperature (factor B). If this is the case,
then the order of experimentation within each replicate should be completely randomized.
That is, we should randomly select a treatment combination (a preparation method and a
temperature) and obtain an observation, then we should randomly select another treatment
combination and obtain a second observation, and so on, until all 36 observations have
been taken. However, the experimenter did not collect the data this way. He made up a
batch of pulp and obtained observations for all four temperatures from that batch. Because
of the economics of preparing the batches and the size of the batches, this is the only fea-
sible way to run this experiment. A completely randomized factorial experiment would
require 36 batches of pulp, which is completely unrealistic. The split-plot design requires
only 9 batches total. Obviously, the split-plot design has resulted in considerable experi-
mental efficiency.

The design used in our example is a split-plot design. In this split-plot design we have
9 whole plots, and the preparation methods are called the whole plot or main treatments.
Each whole plot is divided into four parts called subplots (or split-plots), and one tempera-
ture is assigned to each. Temperature is called the subplot treatment. Note that if other
uncontrolled or undesigned factors are present and if these uncontrolled factors vary as the
pulp preparation methods are changed, then any effect of the undesigned factors on the
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■ TA B L E  1 4 . 1 6
The Experiment on the Tensile Strength of Paper

Replicate 1 Replicate 2 Replicate 3

Pulp Preparation Method 1 2 3 1 2 3 1 2 3

Temperature (°F)

200 30 34 29 28 31 31 31 35 32

225 35 41 26 32 36 30 37 40 34

250 37 38 33 40 42 32 41 39 39

275 36 42 36 41 40 40 40 44 45



■ TA B L E  1 4 . 1 7
Expected Mean Squares for Split-Plot Design

Model
Term Expected Mean Square

�i

Whole plot �j

(��)ij

�k

(��)ik

Subplot (��)jk

(���)ijk

�(ijk)h �2 (not estimable)

�2 � �2
���

�2 � �2
��� �

r � � (��)2
jk

(a � 1)(b � 1)

�2 � a�2
��

�2 � a�2
�� �

ra � �2
k

(b � 1)

�2 � b�2
��

�2 � b�2
�� �

rb � �2
j

a � 1

�2 � ab�2
�
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response will be completely confounded with the effect of the pulp preparation methods.
Because the whole-plot treatments in a split-plot design are confounded with the whole-plots
and the subplot treatments are not confounded, it is best to assign the factor we are most inter-
ested in to the subplots, if possible.

This example is fairly typical of how the split-plot design is used in an industrial set-
ting. Notice that the two factors were essentially “applied” at different times. Consequently,
a split-plot design can be viewed as two experiments “combined” or superimposed on each
other. One “experiment” has the whole-plot factor applied to the large experimental units (or
it is a factor whose levels are hard to change) and the other “experiment” has the subplot fac-
tor applied to the smaller experimental units (or it is a factor whose levels are easy to change).

The linear model for the split-plot design is

(14.15)

where �i, �j, and (��)ij represent the whole plot and correspond, respectively, to replicates,
main treatments (factor A), and whole-plot error (replicates � A), and �k, (��)ik, (��)jk, and
(���)ijk represent the subplot and correspond, respectively, to the subplot treatment (factor B),
the replicates � B and AB interactions, and the subplot error (replicates � AB). Note that
the whole-plot error is the replicates � A interaction and the subplot error is the three-factor
interaction replicates � AB. The sums of squares for these factors are computed as in the
three-way analysis of variance without replication.

The expected mean squares for the split-plot design, with replicates random and main
treatments and subplot treatments fixed, are shown in Table 14.17. Note that the main fac-
tor (A) in the whole plot is tested against the whole-plot error, whereas the subtreatment (B)
is tested against the replicates � subtreatment interaction. The AB interaction is tested
against the subplot error. Notice that there are no tests for the replicate effect (A) or the
replicate � subtreatment (AC) interaction.

� (��)jk � (���)ijk � �ijk  � i �  1, 2, . . . , r
j �  1, 2, . . . , a
k �  1, 2, . . . , b

yijk � � � �i � �j � (��)ij � �k � (��)ik



The analysis of variance for the tensile strength data in Table 14.16 is summarized in
Table 14.18. Because both preparation methods and temperatures are fixed and replicates are
random, the expected mean squares in Table 14.17 apply. The mean square for preparation
methods is compared to the whole-plot error mean square, and the mean square for tempera-
tures is compared to the replicate � temperature (AC) mean square. Finally, the preparation
method � temperature mean square is tested against the subplot error. Both preparation meth-
ods and temperature have a significant effect on strength, and their interaction is significant.

Note from Table 14.18 that the subplot error (4.24) is less than the whole-plot error
(9.07). This is the usual case in split-plot designs because the subplots are generally more
homogeneous than the whole plots. This results in two different error structures for the
experiment. Because the subplot treatments are compared with greater precision, it is prefer-
able to assign the treatment we are most interested in to the subplots, if possible.

Some authors propose a slightly different statistical model for the split-plot design, say

(14.16)

In this model, (��)ij is still the whole-plot error, but the replicates � B and replicates � AB
interactions have essentially been pooled with �ijk to form the subplot error. If we denote the
variance of the subplot error term �ijk by and make the same assumptions as for model
(Equation 14.15), the expected mean squares become

Factor E(MS)

�i (Replicates)

�j (A)

(��)ij

�k (B)

(��)jk (AB)

�ijk � 2
�  (subplot error)

� 2
� �

r � � (��)2
jk

(a � 1)(b � 1)

� 2
� �

ra � �2
k

ab � 1

� 2
� � b� 2

��   (whole-plot error)

� 2
� � b� 2

�� �
rb � �2

j

a � 1

� 2
� � ab� 2

�

� 2
�

yijk � � � �i � �j � (��)ij � �k � (��)jk � �ijk  � i � 1, 2, . . . , r
j � 1, 2, . . . , a
k � 1, 2, . . . , b

■ TA B L E  1 4 . 1 8
Analysis of Variance for the Split-Plot Design Using the Tensile Strength Data from Table 14.14

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F0 P-Value

Replicates 77.55 2 38.78

Preparation method (A) 128.39 2 64.20 7.08 0.05

Whole plot error (replicates � A) 36.28 4 9.07

Temperature (B) 434.08 3 144.69 41.94 �0.01

Replicates � B 20.67 6 3.45

AB 75.17 6 12.53 2.96 0.05

Subplot error (replicates � AB) 50.83 12 4.24

Total 822.97 35

14.4 The Split-Plot Design 623
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Notice that now both the subplot treatment (B) and the AB interaction are tested against the
subplot error mean square. If one is reasonably comfortable with the assumption that the
interactions of replicates � B and replicates � AB interactions are negligible, then this alter-
native model is entirely satisfactory.

Because there are two variance components in the split-plot design, REML can be used
to estimate them. JMP implements the REML method for the split-plot design using the model
in Equation 14.16. Table 14.19 is the JMP output for the split-plot design in Table 14.16. The
advantage of the REML method is that explicit estimates of the whole-plot and subplot variance
components are provided along with standard errors and approximate confidence intervals. 

Sometimes experimenters do not recognize the very specific structure of split-plot
designs. They know that there is one (or perhaps more) hard-to-change factor involved in the
experiment but they do not design the experiment as a split-plot. They set up a standard

■ TA B L E  1 4 . 1 9
JMP Output for the Split-Plot Design in Table 14.16

Response Strength

Summary of Fit

RSquare 0.903675

RSquare Adj 0.859526

Root Mean Square Error 1.993043

Mean of Response 36.02778

Observations (or Sum Wgts) 36

REML Variance Component Estimates

Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total

Whole Plots 0.6232517 2.4756944 3.2753747 �3.94404 8.8954289 32.059

Subplots 0.3208042 1.2743056 1.6370817 �1.934375 4.4829857 16.502

Residual 3.9722222 1.3240741 2.2679421 8.6869402 51.439

Total 7.7222222 100.000

�2 LogLikelihood � 139.36226272

Covariance Matrix of Variance Component Estimates

Random Effect Whole Plots Subplots Residual

Whole Plots 10.72808 �0.856821 �9.84e-14

Subplots �0.856821 2.6800365 �0.438293

Residual �9.84e-14 -0.438293 1.7531722

Fixed Effect Tests

Source Nparm DF DFDen F Ratio Prob > F

Method 2 2 4 7.0781 0.0485*

Temp 3 3 18 36.4266 <.0001*

Temp*Method 6 6 18 3.1538 0.0271*



factorial and then reorder the runs to minimize the number of times that the hard-to-change factor
must be changed. Then they run the experiment creating an “inadvertent” split-plot and analyze
the data as if it were a standard factorial (that is, a completely randomized design or a CRD).

Suppose that this happened with the experiment in Table 14.16. The experimenters
made up three batches of pulp in each replicate and then randomized the levels of tempera-
ture within each batch, resulting in the split-plot design in Table 14.16. The standard factori-
al analysis of this experiment as a two-factor completely randomized factorial design is
shown in Table 14.20. Recall that in the correct split-plot analysis both the whole-plot and
subplot factors and their interaction were significant. However, in the incorrect analysis the
interaction is not significant.

Generally, in “inadvertent” split-plots we will tend to make too many type I errors for
the whole-plot factors (concluding that unimportant factors are important) and too many type
II errors for the subplot factors (failing to identify significant effects). In our example, we did
properly identify the pulp preparation methods (the whole-plot factor) as important, but we
did not identify the significant interaction, which is a subplot factor.  This emphasizes the
importance of correctly designing and analyzing experiments involving split-plots.

The split-plot design has an agricultural heritage, with the whole plots usually being
large areas of land and the subplots being smaller areas of land within the large areas. For
example, several varieties of a crop could be planted in different fields (whole plots), one vari-
ety to a field. Then each field could be divided into, say, four subplots, and each subplot could
be treated with a different type of fertilizer. Here the crop varieties are the main treatments
and the different fertilizers are the subtreatments.

Despite its agricultural basis, the split-plot design is useful in many scientific and indus-
trial experiments. In these experimental settings, it is not unusual to find that some factors
require large experimental units whereas other factors require small experimental units, such
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■ TA B L E  1 4 . 2 0
Analysis of the Split-Plot Design in Table 14.16 as a CRD

Summary of Fit

RSquare 0.7748

RSquare Adj 0.671583

Root Mean Square Error 2.778889

Mean of Response 36.02778

Observations (or Sum Wgts) 36

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 11 637.63889 57.9672 7.5065

Error 24 185.33333 7.7222

Prob > F

C. Total 35 822.97222 <.0001*

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F

Method 2 2 128.38889 8.3129 0.0018*

Temp 3 3 434.08333 18.7374 <.0001

Temp*Method 6 6 75.16667 1.6223 0.1843
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as in the tensile strength problem described above. Alternatively, we sometimes find that com-
plete randomization is not feasible because it is more difficult to change the levels of some
factors than others. The hard-to-vary factors form the whole plots whereas the easy-to-vary
factors are run in the subplots. The review paper by Jones and Nachtsheim (2009) is an excel-
lent source of information and key references on split-plot designs.

In principle, we must carefully consider how the experiment must be conducted and
incorporate all restrictions on randomization into the analysis. We illustrate this point using a
modification of the eye focus time experiment in Chapter 6. Suppose there are only two fac-
tors: visual acuity (A) and illumination level (B). A factorial experiment with a levels of
acuity, b levels of illumination, and n replicates would require that all abn observations be
taken in random order. However, in the test apparatus, it is fairly difficult to adjust these two
factors to different levels, so the experimenter decides to obtain the n replicates by adjusting
the device to one of the a acuities and one of the b illumination levels and running all n obser-
vations at once. In the factorial design, the error actually represents the scatter or noise in the
system plus the ability of the subject to reproduce the same focus time. The model for the fac-
torial design could be written as

(14.17)

where �ijk represents the scatter or noise in the system that results from “experimental
error” (that is, our failure to duplicate exactly the same levels of acuity and illumination on
different runs, variability in environmental conditions, and the like), and 
ijk represents the
“reproducibility error” of the subject. Usually, we combine these components into one
overall error term, say �ijk � �ijk � 
ijk. Assume that V(�ijk) � �2 � . Now, in the
factorial design, the error mean square has expectation �2 � , with ab(n � 1)
degrees of freedom.

If we restrict the randomization as in the second design above, then the “error” mean
square in the analysis of variance provides an estimate of the “reproducibility error” with
ab(n � 1) degrees of freedom, but it yields no information on the “experimental error” .
Thus, the mean square for error in this second design is too small; consequently, we will
wrongly reject the null hypothesis very frequently. As pointed out by John (1971), this design
is similar to a split-plot design with ab whole plots, each divided into n subplots, and no sub-
treatment. The situation is also similar to subsampling, as described by Ostle (1963).
Assuming that A and B are fixed, we find that the expected mean squares in this case are

(14.18)

Thus, there are no tests on the main effects unless interaction is negligible. The situation is
exactly that of a two-way analysis of variance with one observation per cell. If both factors
are random, then the main effects may be tested against the AB interaction. If only one factor
is random, then the fixed factor can be tested against the AB interaction.

E(MSE) � � 2



E(MSAB) � � 2

 � n� 2

� �
n � � (��)2

ij

(a � 1)(b � 1)

E(MSB) � � 2

 � n� 2

� �
an � �2

j

b � 1

E(MSA) � � 2

 � n� 2

� �
bn � � 2

i

a � 1

� 2
�

� 2



� 2
� � � 2




� 2
� � � 2




yijk � � � �i � �j � (��)ij � �ijk � 
ijk  �i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , n



In general, if one analyzes a factorial design and all the main effects and interactions are
significant, then one should examine carefully how the experiment was actually conducted.
There may be randomization restrictions in the model not accounted for in the analysis, and
consequently, the data should not be analyzed as a factorial.

14.5 Other Variations of the Split-Plot Design

14.5.1 Split-Plot Designs with More Than Two Factors

Sometimes we find that either the whole plot or the subplot will contain two or more factors,
arranged in a factorial structure. As an example, consider an experiment conducted on a fur-
nace to grow an oxide on a silicon wafer. The response variables of interest are oxide layer
thickness and layer uniformity. There are four design factors: temperature (A), gas flow (B),
time (C), and wafer position in the furnace (D). The experimenter plans to run a 24 factorial
design with two replicates (32 trials). Now factors A and B (temperature and gas flow) are dif-
ficult to change, whereas C and D (time and wafer position) are easy to change. This leads to
the split-plot design shown in Figure 14.7. Notice that both replicates of the experiment are
split into four whole plots, each containing one combination of the settings of temperature
and gas flow. Once these levels are chosen, each whole plot is split into four subplots and a
22 factorial in the factors time and wafer position is conducted, where the treatment combina-
tions in the subplot are tested in random order. Only four changes in temperature and gas flow
are made in each replicate, whereas the levels of time and wafer position are completely
randomized.

A model for this experiment, consistent with Equation 14.16, is

(14.19)� (���)jlm � (���)klm � (����)jklm � �ijklm  �
i � 1, 2
j � 1, 2
k � 1, 2
l � 1, 2

m � 1, 2

�  (��)jl � (��)jm � (��)kl � (��)lm � (���)jkl � (���)jkm

yijklm � � � �i � �j � �k � (��)jk � 
ijk � �l � �m � (��)lm
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■ F I G U R E  1 4 . 7 A split-plot design with four design factors, two in the whole plot and
two in the subplot
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where �i represents the replicate effect, �j and �k represent the whole-plot main effects, 
ijk is
the whole-plot error, �l and �m represent the subplot main effects, and �ijklm is the subplot error.
We have included all interactions between the four design factors. Table 14.21 presents the
analysis of variance for this design, assuming that replicates are random and all design fac-
tors are fixed effects. In this table, and represent the variances of the whole-plot and
subplot errors, respectively, is the variance of the block effects, and (for simplicity) we
have used capital Latin letters to denote fixed-type effects. The whole-plot main effects and
interaction are tested against the whole-plot error, whereas the subplot factors and all other
interactions are tested against the subplot error. If some of the design factors are random, the
test statistics will be different. In some cases, there will be no exact F tests and Satterthwaite’s
procedure (described in Chapter 13) should be used.

Factorial experiments with three or more factors in a split-plot structure tend to be
rather large experiments. On the other hand, the split-plot structure often makes it easier to
conduct a larger experiment. For instance, in the oxide furnace example, the experimenters
only have to change the hard-to-change factors (A and B) eight times, so perhaps a 32-run
experiment is not too unreasonable.

As the number of factors in the experiment grows, the experimenter may consider using
a fractional factorial experiment in the split-plot setting. As an illustration, consider the exper-
iment that was originally described in Problem 8.7. This is a 25�1 fractional factorial experi-
ment conducted to study the effect of heat-treating process variables on the height of truck
springs. The factors are A � transfer time, B � heating time, C � oil quench temperature,
D � temperature, and E � hold down time. Suppose that factors A, B, and C are very hard

� 2
�

� 2
�� 2




■ TA B L E  1 4 . 2 1
An Abbreviated Analysis for a Split-Plot Design with Factors A and B in the Whole Plots and
Factors C and D in the Subplots (Refer to Figure 14.7)

Source of Sum of Degrees of Expected 
Variation Squares Freedom Mean Square

Replicates (�i) SSReplicates 1

A (�j) SSA 1

B (�k) SSB 1

AB SSAB 1

Whole-Plot Error (
ijk) SSWP 3

C (�l) SSC 1

D (�m) SSD 1

CD SSCD 1

AC SSAC 1

BC SSBC 1

AD SSAD 1

BD SSBD 1

ABC SSABC 1

ABD SSABD 1

ACD SSACD 1

BCD SSBCD 1

ABCD SSABCD 1

Subplot Error (�ijklm) SSSP 12

Total SST 31

�2
�

�2
� � ABCD

�2
� � BCD

�2
� � ACD

�2
� � ABD

�2
� � ABC

�2
� � BD

�2
� � AD

�2
� � BC

�2
� � AC

�2
� � CD

�2
� � D

�2
� � C

�2
� � 8�2




�2
� � 8�2


 � AB

�2
� � 8�2


 � B

�2
� � 8�2


 � A

�2
� � 16�2

�



E X A M P L E  1 4 . 3

The factors affecting uniformity in a single-wafer plasma
etching process are being investigated. Three factors on the
etching tool are relatively difficult to change from run to
run: A � electrode gap, B � gas flow, and C � pressure.
Two other factors are easy to change from run to run: D �
time and E � RF (radio frequency) power. The experi-
menters want to use a fractional factorial experiment to
investigate these five factors because the number of test
wafers available is limited. The hard-to-change factors also
indicate that a split-plot design should be considered. The
experimenters decide to use the strategy discussed above: a
25�1 design with factors A, B, and C in the whole plots and
factors D and E in the subplots. The design generator is E �
ABCD. This produces a 16-run fractional factorial with
eight whole plots. Every whole plot contains one of the eight

treatment combinations from a complete 23 factorial design
in factors A, B, and C. Each whole plot is divided into two
subplots, with one of the treatment combinations for factors
D and E in each subplot. The design and the resulting uni-
formity data are shown in Table 14.22. The eight whole
plots were run in random order, but once a whole plot con-
figuration for factors A, B, and C was set up on the etching
tool, both subplot runs were made (also in random order).

The statistical analysis of this experiment involves keep-
ing the whole-plot and subplot factors separate. We assume
that all interactions beyond order two are negligible. Table
14.23 lists the effect estimates separated into whole-plot and
subplot terms. Furthermore, available degrees of freedom
are used to estimate effects, so we cannot estimate either the
whole-plot or the subplot error. Therefore, we must use

14.5 Other Variations of the Split-Plot Design 629

to change and that the other two factors D and E are easy to change. For example, it might be
necessary to first manufacture the springs by varying factors A, B, and C, and then hold those
factors fixed while varying factors D and E in a subsequent experiment.

We consider a modification of that experiment because the original experimenters may
not have run it as a split plot and because they did not use the design generator that we are
going to use. Let the whole-plot factors be denoted by A, B, and C and the split-plot factors
be denoted by D and E (the bold symbol is used to help us identify the easy-to-change fac-
tors). We will select the design generator E � ABCD. The layout of this design has eight
whole plots (the eight combinations of factors A, B, and C each at two levels). Each whole
plot is divided into two subplots, and a combination of the factors D and E are tested in each
split plot. (The exact treatment combinations depend on the signs on the treatment combina-
tions for the whole-plot factors through the generator.)

Assume that all three-, four-, and five-factor interactions are negligible. If this assump-
tion is reasonable, then all whole-plot factors A, B, and C and their two-factor interactions can
be estimated in the whole plot . If the design is replicated, these effects would be tested against
the whole-plot error. Alternatively, if the design is unreplicated, their effects could be assessed
via a normal probability plot (or possibly by Lenth’s method). The subplot factors D and E and
their two-factor interaction DE can also be estimated. However, since DE � ABC, the DE
interaction needs to be treated as a whole-plot term. There are six two-factor interactions of
whole-plot and split-plot factors that can also be estimated: AD, AE, BD, BE, CD, and CE. In
general, it turns out that any split-plot main effect or interaction that is aliased with whole-plot
main effects or interactions involving only whole-plot factors would be compared to the whole-
plot error. Furthermore, split-plot main effects or interactions involving at least one split-plot
factor that are not aliased with whole-plot main effects or interactions involving only whole-
plot factors are compared to the split-plot error. See Bisgaard (2000) for a thorough discussion.
Therefore, in our problem, all of the effects D, E, AD, AE, BD, BE, CD, and CE are compared
to the split-plot error. Alternatively, they could be assessed via a normal probability plot.

Recently, several papers have appeared on the subject of fractional factorials and
response surface experiments in split plots. The papers by Vining, Kowalski and Montgomery
(2005), Vining and Kowalski (2008), Macharia and Goos (2010), Bisgaard (2000), Bingham
and Sitter (1999), Huang, Chen, and Voelkel (1999), and Almimi, Kulahci and Montgomery
(2008a)(2008b)(2009) are recommended.
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■ TA B L E  1 4 . 2 3
Effects for Plasma Etching Experiment Separated into Whole-Plot
and Subplot Effects

Term Parameter Estimates Type of Term

Intercept 49.73875
Gap (A) 10.0625 Whole
Gas flow (B) 5.6275 Whole
Pressure (C) 1.325 Whole
Time (D) �2.0725 Subplot
RF power (E) 5.12625 Subplot
AB 7.34625 Whole
AC 1.83125 Whole
AD �3.00875 Subplot
AE 6.505 Subplot
BC �0.60125 Whole
BD �1.35875 Subplot
BE �0.2125 Subplot
CD 1.86625 Subplot
CE �1.485 Subplot
DE 0.34 Whole

■ TA B L E  1 4 . 2 2
The 25�1 Split-Plot Experiment for the Plasma Etching Tool

Whole Whole-Plot Factors Subplot Factors
Plots A B C D E Uniformity

� � � � � 40.85

1 � � � � � 41.07

� � � � � 35.67

2 � � � � � 51.15

� � � � � 41.80

3 � � � � � 37.01

� � � � � 91.09

4 � � � � � 48.67

� � � � � 40.32

5 � � � � � 43.34

� � � � � 62.46

6 � � � � � 38.08

� � � � � 31.99

7 � � � � � 41.03

� � � � � 70.31

8 � � � � � 81.03



normal probability plots to evaluate the effects. Figure 14.8a
is a half-normal probability plot of the effect estimates for
only the whole-plot factors, ignoring the factors in the sub-
plots. Notice that factors A, B, and the AB interaction have
large effects. Figure 14.8b is a half-normal probability plot

of the subplot effects D and E, and the interactions involv-
ing those factors, DE, AD, AE, BD, BE, CD, and CE. Only
the main effect of E and the AE interaction are large.

Figure 14.9a and b are the two-factor interaction plots of
the intersections AB and AE. The experimenter’s objective is
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■ F I G U R E  1 4 . 9 Two-factor interaction graphs for the 25�1 split-plot experiment in Example
14.3. (a) AB interaction. (b) AE interaction
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■ F I G U R E  1 4 . 8 Half-normal plots of the effects from the 25�1 split-plot experiment
in Example 14.3. (a) Whole-plot effects. (b) Subplot effects
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■ TA B L E  1 4 . 2 4
Default Design from JMP for the Plasma Etching Experiment

Whole-Plot Factors Subplot Factors
Whole plots A B C D E

1 � � � � �

� �

� �

� �

2 � � � � �

� �

� �

� �

3 � � � � �

� �

� �

� �

to minimize the uniformity response, so Figure 14.9a sug-
gests that either level of factor A � electrode gap will be
effective as long as B � gas flow is at the low level.
However, if B is at the high level, then A must be at the low
level to achieve low uniformity. Figure 14.9b indicates that
controlling E � RF power at the low level is effective in
reducing uniformity, particularly if A is at the high level.

However, if E is at the high level, A must be at the low level.
Therefore, the results of this screening experiment indicate
that three of the five original factors significantly impact
etch uniformity. Furthermore, the treatment combination A
high, B low, and E low or A low, B high, and E high will
produce low levels of the uniformity response.

The design in Example 14.3 can be constructed as a D-optimal design using JMP, by speci-
fying A, B, and C to be hard-to-change factors and D and E to be easy-to-change factors, and
requiring eight whole plots and 16 runs. The default design that JMP recommends for this
problem is a 32-run design with eight whole plots and four subplots per whole plot. This
design is a full factorial and because of the additional runs, it allows the estimation of both
the whole-plot and the subplot error terms. The default design is shown in Table 14.24. Note
that both designs require eight whole plots, as they have exactly the same number of changes
in the hard-to-change factors. So there may be little practical difference in the resources
required to run the two designs.

14.5.2 The Split-Split-Plot Design

The concept of split-plot designs can be extended to situations in which randomization
restrictions may occur at any number of levels within the experiment. If there are two levels
of randomization restrictions, the layout is called a split-split-plot design. The following
example illustrates such a design.

Optimal design tools are an important and useful way to construct split-plot designs.
Optimal design tools using the coordinate exchange algorithm are very efficient and available
in JMP. An alternate construction tool using integer programming has been developed by
Capehart, Keha, Kulahci and Montgomery (2011).
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E X A M P L E  1 4 . 4

A researcher is studying the absorption times of a particu-
lar type of antibiotic capsule. There are three technicians,
three dosage strengths, and four capsule wall thicknesses of
interest to the researcher. Each replicate of a factorial
experiment would require 36 observations. The experi-
menter has decided on four replicates, and it is necessary to
run each replicate on a different day. Note that the days can
be considered as blocks. Within a replicate (or a block)
(day), the experiment is performed by assigning a unit of
antibiotic to a technician who conducts the experiment on
the three dosage strengths and the four wall thicknesses.
Once a particular dosage strength is formulated, all four
wall thicknesses are tested at that strength. Then another
dosage strength is selected and all four wall thicknesses are
tested. Finally, the third dosage strength and the four wall
thicknesses are tested. Meanwhile, two other laboratory

technicians also follow this plan, each starting with a unit
of antibiotic.

Note that there are two randomization restrictions with-
in each replicate (or block): technician and dosage strength.
The whole plots correspond to the technician. The order in
which the technicians are assigned the units of antibiotic is
randomly determined. The dosage strengths form three sub-
plots. Dosage strength may be randomly assigned to a sub-
plot. Finally, within a particular dosage strength, the four
capsule wall thicknesses are tested in random order, form-
ing four sub-subplots. The wall thicknesses are usually
called sub-subtreatments. Because there are two random-
ization restrictions in the experiment (some authors say two
“splits” in the design), the design is called a split-split-plot
design. Figure 14.10 illustrates the randomization restric-
tions and experimental layout in this design.

■ TA B L E  1 4 . 2 4 (Continued)

4 � � � � �

� �

� �

� �

5 � � � � �

� �

� �

� �

6 � � � � �

� �

� �

� �

7 � � � � �

� �

� �

� �

8 � � � � �

� �

� �

� �



634 Chapter 14 ■ Nested and Split-Plot Designs

Antibiotic
assigned to
a technician

Dosage
strength
chosen

Wall thickness
1

2

3

4

Random
order

Second
randomization

restriction

First
randomization

restriction

Blocks

1

1

1

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

2 3

2

1 2 3

3

1 2 3

Technician

2

3

Dosage
strength

Wall
thicknesses

Wall
thicknesses

Wall
thicknesses

4
Wall
thicknesses

■ F I G U R E  1 4 . 1 0 A split-split-plot design

A linear statistical model for the split-split-plot design is

(14.20)�  (����)ijkh � �ijkh  �
i � 1, 2, . . . , r
j � 1, 2, . . . , a
k � 1, 2, . . . , b
h � 1, 2, . . . , c

�  (���)ijh � (��)kh � (���)ikh � (���)jkh

� �h � (��)ih � (��)jh

yijkh � � � �i � �j � (��)ij � �k � (��)ik � (��)jk � (���)ijk



■ TA B L E  1 4 . 2 5
Expected Mean Squares for the Split-Split-Plot Design

Model
Term Expected Mean Square

�i

Whole plot �j

(��)ij

�k

Subplot (��)ik

(��)jk

(���)ijk

�h

(��)ih

(��)jh

(���)ijh

Sub-subplot (��)kh

(���)ikh

(���)jkh

(����)ijkh

�l(ijkh) �2 (not estimable)

�2 � �2
����

�2 � �2
���� �

r � � � (���)2
ijk

(a � 1)(b � 1)(c � 1)

�2 � a�2
���

�2 � a�2
��� �

ra � � (��)2
kh

(b � 1)(c � 1)

�2 � b�2
���

�2 � b�2
��� �

rb � � (��)2
jh

(a � 1)(c � 1)

�2 � ab�2
��

�2 � ab�2
�� �

rab � �2
k

(c � 1)

�2 � c�2
���

�2 � c�2
��� �

rc � � (��)2
jh

(a � 1)(b � 1)

�2 � ac�2
��

�2 � ac�2
�� �

rac � �2
k

(b � 1)

�2 � bc�2
��

�2 � bc�2
�� �

rbc � �2
j

(a � 1)

�2 � abc�2
�
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where �i, �j, and (��)ij represent the whole plot and correspond to replicates or blocks, main
treatments (factor A), and whole-plot error (replicates (or blocks) � A), respectively; �k, (��)ik,
(��)jk, and (���)ijk represent the subplot and correspond to the subplot treatment (factor B), the
replicates (or blocks) � B and AB interactions, and the subplot error, respectively; and �h and
the remaining parameters correspond to the sub-subplot and represent, respectively, the 
sub-subplot treatment (factor C) and the remaining interactions. The four-factor interaction
(����)ijkh is called the sub-subplot error.

The expected mean squares are as shown in Table 14.25, assuming that the replicates
(blocks) are random and that the other design factors are fixed. Tests on the main treatments, sub-
treatments, sub-subtreatments and their interactions are obvious from inspection of this table.
Note that no tests on replicates or blocks or interactions involving replicates or blocks exist.

The statistical analysis of a split-split-plot design is like that of a single replicate of a
four-factor factorial. The number of degrees of freedom for each test is determined in the
usual manner. To illustrate, in Example 14.4, where we had four replicates, three technicians,
three dosage strengths, and four wall thicknesses, we would have only (r � 1)(a � 1) �
(4 � 1)(3 � 1) � 6 whole-plot error degrees of freedom for testing technicians. This is a
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■ TA B L E  1 4 . 2 6
An Abbreviated Analysis of Variance for a Strip-Split-Plot Design

Source of Sum of Degrees of
Variation Squares Freedom Expected Mean Square

Replicates (or blocks) SSReplicates r � 1

A SSA a � 1

Whole-plot errorA (r � 1)(a � 1)

B SSB b � 1

Whole-plot errorB (r � 1)(b � 1)

AB SSAB (a � 1)(b � 1)

Subplot error SSSP (r � 1)(a � 1)(b � 1)

Total SST rab � 1

�2
�

�2
� �

r � � (��)2
jk

(a � 1)(b � 1)

�2
� � a�2

��SSWPB

�2
� � a�2

�� �
ra � �2

k

b � 1

�2
� � b�2

��SSWPA

�2
� � b�2

�� �
rb � �2

j

a � 1

�2
� � ab�2

�

A3B1 A1B1 A2B1

A3 A1 A2

A3B3 A1B3 A2B3

A3B2

B1

B3

B2 A1B2 A2B2

Whole plots

Strip
plots

■ F I G U R E  1 4 . 1 1 One replicate
(block) of a strip-split-plot design

relatively small number of degrees of freedom, and the experimenter might consider using
additional replicates to increase the precision of the test. If there are a replicates, we will have 
2(r � 1) degrees of freedom for whole-plot error. Thus, five replicates yield 2(5 � 1) � 8
error degrees of freedom, six replicates yield 2(6 � 1) � 10 error degrees of freedom, seven
replicates yield 2(7 � 1) � 12 error degrees of freedom, and so on. Consequently, we would
probably not want to run fewer than four replicates because this would yield only four error
degrees of freedom. Each additional replicate allows us to gain two degrees of freedom for
error. If we could afford to run five replicates, we could increase the precision of the test by
one-third (from six to eight degrees of freedom). Also, in going from five to six replicates,
there is an additional 25 percent gain in precision. If resources permit, the experimenter
should run five or six replicates.

14.5.3 The Strip-Split-Plot Design

The strip-split-plot design has had an extensive application in the agricultural sciences, but it
finds occasional use in industrial experimentation. In the simplest case, we have two factors
A and B. Factor A is applied to whole plots just as in the standard split-plot design. Then fac-
tor B is applied to strips (which are really just another set of whole plots) that are orthogonal
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14.6 Problems

14.1. A rocket propellant manufacturer is studying the
burning rate of propellant from three production processes.
Four batches of propellant are randomly selected from the
output of each process, and three determinations of burning
rate are made on each batch. The results follow. Analyze the
data and draw conclusions.

Process 1 Process 2 Process 3

Batch 1 2 3 4 1 2 3 4 1 2 3 4

25 19 15 15 19 23 18 35 14 35 38 25
30 28 17 16 17 24 21 27 15 21 54 29
26 20 14 13 14 21 17 25 20 24 50 33

14.2. The surface finish of metal parts made on four
machines is being studied. An experiment is conducted in
which each machine is run by three different operators and
two specimens from each operator are collected and tested.
Because of the location of the machines, different operators
are used on each machine, and the operators are chosen at ran-
dom. The data are shown in the following table. Analyze the
data and draw conclusions.

Machine 1 Machine 2 Machine 3 Machine 4

Operator 1 2 3 1 2 3 1 2 3 1 2 3

79 94 46 92 85 76 88 53 46 36 40 62

62 74 57 99 79 68 75 56 57 53 56 47

14.3. A manufacturing engineer is studying the dimension-
al variability of a particular component that is produced on
three machines. Each machine has two spindles, and four
components are randomly selected from each spindle. The
results follow. Analyze the data, assuming that machines and
spindles are fixed factors.

Machine 1 Machine 2 Machine 3

Spindle 1 2 1 2 1 2

12 8 14 12 14 16
9 9 15 10 10 15

11 10 13 11 12 15
12 8 14 13 11 14

14.4. To simplify production scheduling, an industrial
engineer is studying the possibility of assigning one time
standard to a particular class of jobs, believing that differ-
ences between jobs are negligible. To see if this simplifica-
tion is possible, six jobs are randomly selected. Each job is
given to a different group of three operators. Each operator
completes the job twice at different times during the week,
and the following results are obtained. What are your con-
clusions about the use of a common time standard for all
jobs in this class? What value would you use for the 
standard?

Job Operator 1 Operator 2 Operator 3

1 158.3 159.4 159.2 159.6 158.9 157.8
2 154.6 154.9 157.7 156.8 154.8 156.3
3 162.5 162.6 161.0 158.9 160.5 159.5
4 160.0 158.7 157.5 158.9 161.1 158.5
5 156.3 158.1 158.3 156.9 157.7 156.9
6 163.7 161.0 162.3 160.3 162.6 161.8

14.5. Consider the three-stage nested design shown in
Figure 14.5 to investigate alloy hardness. Using the data that
follow, analyze the design, assuming that alloy chemistry and
heats are fixed factors and ingots are random. Use the restrict-
ed form of the mixed model.

to the original whole plots used for factor A. Figure 14.11 illustrates a situation in which both
factors A and B have three levels. Note that the levels of factor A are confounded with the
whole plots, and the levels of factor B are confounded with the strips (which can be thought
of as a second set of whole plots).

A model for the strip-split plot design in Figure 14.11, assuming r replicates, a levels
of factor A, and b levels of factor B, is

where (��)ij and (��)ik are whole-plot errors for factors A and B, respectively, and �ijk is a “sub-
plot” error used to test the AB interaction. Table 14.26 shows an abbreviated analysis of
variance assuming A and B are fixed factors and replicates are random. The replicates are
sometimes considered as blocks.

yijk � � � �i � �j � (��)ij � �k � (��)ik � (��)jk � �ijk  �i � 1, 2, . . . , r
j � 1, 2, . . . , a
k � 1, 2, . . . , b
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Alloy Chemistry 1

Heats 1 2 3

Ingots 1 2 1 2 1 2

40 27 95 69 65 78
63 30 67 47 54 45

Alloy Chemistry 2

Heats 1 2 3

Ingots 1 2 1 2 1 2

22 23 83 75 61 35
10 39 62 64 77 42

14.6. Reanalyze the experiment in Problem 14.5 using the
unrestricted form of the mixed model. Comment on any dif-
ferences you observe between the restricted and the unre-
stricted model results. You may use a computer software
package.

14.7. Derive the expected mean squares for a balanced 
three-stage nested design, assuming that A is fixed and that B
and C are random. Obtain formulas for estimating the
variance components. Assume the restricted form of the
mixed model.

14.8. Repeat Problem 14.7 assuming the unrestricted
form of the mixed model. You may use a computer software
package to do this. Comment on any differences between
the restricted and unrestricted model analysis and conclu-
sions.

14.9. Derive the expected mean squares for a balanced
three-stage nested design if all three factors are random.
Obtain formulas for estimating the variance components.

14.10. Verify the expected mean squares given in Table 14.1.

14.11. Unbalanced nested designs. Consider an unbalanced
two-stage nested design with bj levels of B under the ith level
of A and nij replicates in the ijth cell.

(a) Write down the least squares normal equations for this
situation. Solve the normal equations.

(b) Construct the analysis of variance table for the
unbalanced two-stage nested design.

(c) Analyze the following data, using the results in part (b).

Factor A 1 2

Factor B 1 2 1 2 3

6 �3 5 2 1
4 1 7 4 0
8 9 3 �3

6

14.12. Variance components in the unbalanced two-stage
nested design. Consider the model

where A and B are random factors. Show that

where

14.13. A process engineer is testing the yield of a product man-
ufactured on three machines. Each machine can be operated at
two power settings. Furthermore, a machine has three stations on
which the product is formed. An experiment is conducted in
which each machine is tested at both power settings, and three
observations on yield are taken from each station. The runs are
made in random order, and the results are shown in Table P14.1.
Analyze this experiment, assuming that all three factors are fixed.

■ TA B L E  P 1 4 . 1
Yield Experiment in Problem 14.13

Machine 1 Machine 2

Station 1 2 3 1 2 3

Power 34.1 33.7 36.2 31.1 33.1 32.8

setting 1 30.3 34.9 36.8 33.5 34.7 35.1

31.6 35.0 37.1 34.0 33.9 34.3

Power 24.3 28.1 25.7 24.1 24.1 26.0

setting 2 26.3 29.3 26.1 25.0 25.1 27.1

27.1 28.6 24.9 26.3 27.9 23.9

Machine 3

Station 1 2 3

Power 32.9 33.8 33.6

setting 1 33.0 33.4 32.8

33.1 32.8 31.7

Power 24.2 23.2 24.7

setting 2 26.1 27.4 22.0

25.3 28.0 24.8
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N �
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a

i�1
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yijk � � � �i � �j(i) � �k(ij)  � i � 1, 2, . . . , a
j � 1, 2, . . . , bi

k � 1, 2, . . . , nij



14.14. Suppose that in Problem 14.13 a large number of
power settings could have been used and that the two selected
for the experiment were chosen randomly. Obtain the expect-
ed mean squares for this situation assuming the restricted
form of the mixed model and modify the previous analysis
appropriately.

14.15. Reanalyze the experiment in Problem 14.14 assuming
the unrestricted form of the mixed model. You may use a com-
puter software package to do this. Comment on any differ-
ences between the restricted and unrestricted model analysis
and conclusions.

14.16. A structural engineer is studying the strength of
aluminum alloy purchased from three vendors. Each vendor
submits the alloy in standard-sized bars of 1.0, 1.5, or 2.0
inches. The processing of different sizes of bar stock from
a common ingot involves different forging techniques, and
so this factor may be important. Furthermore, the bar stock
is forged from ingots made in different heats. Each vendor
submits two test specimens of each size bar stock from
three heats. The resulting strength data is shown in Table
P14.2. Analyze the data, assuming that vendors and bar size
are fixed and heats are random. Use the restricted form of
the mixed model.

■ TA B L E  P 1 4 . 2
Strength Data in Problem P14.16

Vendor 1 Vendor 2

Heat 1 2 3 1 2 3

Bar size:

1 in. 1.230 1.346 1.235 1.301 1.346 1.315

1.259 1.400 1.206 1.263 1.392 1.320

1.316 1.329 1.250 1.274 1.384 1.346

1.300 1.362 1.239 1.268 1.375 1.357

2 in. 1.287 1.346 1.273 1.247 1.362 1.336

1.292 1.382 1.215 1.215 1.328 1.342

Vendor 3

Heat 1 2 3

Bar size:

1 in. 1.247 1.275 1.324

1.296 1.268 1.315

1.273 1.260 1.392

1.264 1.265 1.364

2 in. 1.301 1.280 1.319

1.262 1.271 1.323

14.17. Rework Problem 14.16 using the unrestricted form
of the mixed model. You may use a computer software

11

2 in. 

11

2 in. 

package to do this. Comment on any differences 
between the restricted and unrestricted model analysis and
conclusions.

14.18. Suppose that in Problem 14.16 the bar stock may be
purchased in many sizes and that the three sizes actually used
in the experiment were selected randomly. Obtain the expect-
ed mean squares for this situation and modify the previous
analysis appropriately. Use the restricted form of the mixed
model.

14.19. Steel is normalized by heating above the critical
temperature, soaking, and then air cooling. This process
increases the strength of the steel, refines the grain, and
homogenizes the structure. An experiment is performed to
determine the effect of temperature and heat treatment time
on the strength of normalized steel. Two temperatures and
three times are selected. The experiment is performed by
heating the oven to a randomly selected temperature and
inserting three specimens. After 10 minutes one specimen is
removed, after 20 minutes the second is removed, and after
30 minutes the final specimen is removed. Then the temper-
ature is changed to the other level and the process is repeat-
ed. Four shifts are required to collect the data, which are
shown below. Analyze the data and draw conclusions,
assuming both factors are fixed.

Temperature (°F)

Shift Time (min) 1500 1600

10 63 89
1 20 54 91

30 61 62
10 50 80

2 20 52 72
30 59 69
10 48 73

3 20 74 81
30 71 69
10 54 88

4 20 48 92
30 59 64

14.20. An experiment is designed to study pigment disper-
sion in paint. Four different mixes of a particular pigment
are studied. The procedure consists of preparing a particu-
lar mix and then applying that mix to a panel by three
application methods (brushing, spraying, and rolling). The
response measured is the percentage reflectance of pig-
ment. Three days are required to run the experiment, and
the data obtained follow. Analyze the data and draw con-
clusions, assuming that mixes and application methods are
fixed.

14.6 Problems 639
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Mix
Application

Day Method 1 2 3 4

1 64.5 66.3 74.1 66.5
1 2 68.3 69.5 73.8 70.0

3 70.3 73.1 78.0 72.3

1 65.2 65.0 73.8 64.8
2 2 69.2 70.3 74.5 68.3

3 71.2 72.8 79.1 71.5

1 66.2 66.5 72.3 67.7
3 2 69.0 69.0 75.4 68.6

3 70.8 74.2 80.1 72.4

14.21. Repeat Problem 14.20, assuming that the mixes are
random and the application methods are fixed.

14.22. Consider the split-split-plot design described in
Example 14.4. Suppose that this experiment is conducted as
described and that the data shown in Table P14.3 are obtained.
Analyze the data and draw conclusions.

14.23. Rework Problem 14.22, assuming that the technicians
are chosen at random. Use the restricted form of the mixed
model.

14.24. Suppose that in Problem 14.22 four technicians had
been used. Assuming that all the factors are fixed, how
many blocks should be run to obtain an adequate number
of degrees of freedom on the test for differences among
technicians?

■ TA B L E  P 1 4 . 3
The Absorption Time Experiment

Technician

Replicates Dosage
1 2 3

(or Blocks) Strengths 1 2 3 1 2 3 1 2 3

Wall Thickness

1 95 71 108 96 70 108 95 70 100
1 2 104 82 115 99 84 100 102 81 106

3 101 85 117 95 83 105 105 84 113
4 108 85 116 97 85 109 107 87 115
1 95 78 110 100 72 104 92 69 101

2 2 106 84 109 101 79 102 100 76 104
3 103 86 116 99 80 108 101 80 109
4 109 84 110 112 86 109 108 86 113
1 96 70 107 94 66 100 90 73 98

3 2 105 81 106 100 84 101 97 75 100
3 106 88 112 104 87 109 100 82 104
4 113 90 117 121 90 117 110 91 112
1 90 68 109 98 68 106 98 72 101

4 2 100 84 112 102 81 103 102 78 105
3 102 85 115 100 85 110 105 80 110
4 114 88 118 118 85 116 110 95 120

14.25. Consider the experiment described in Example 14.4.
Demonstrate how the order in which the treatment combinations
are run would be determined if this experiment were run as (a) a
split-split-plot, (b) a split-plot, (c) a factorial design in a random-
ized block, and (d) a completely randomized factorial design.

14.26. An article in Quality Engineering (“Quality Quandries:
Two-Level Factorials Run as Split-Plot Experiments,” Bisgaard

et al., Vol. 8, No. 4, pp. 705–708, 1996) describes a 25 factorial
experiment in a plasma process focused on making paper more
susceptible to ink. Four of the factors (A–D) are difficult to
change from run to run, so the experimenters set up the reactor
at the eight sets of conditions specified by the low and high lev-
els of those factors, and then processed the two paper types
(factor E) together. The placement of the paper specimens in



the reactor (right versus left) was randomized. This produces a
split-plot design with A–D as the whole-plot factors and factor
E as the subplot factor. The data from this experiment are
shown in Table P14.4. Analyze the data from this experiment
and draw conclusions.

14.27. Reconsider the experiment in Problem 14.26. This is
a rather large experiment, so suppose that the experimenter
had used a 25�1 design instead. Set up the 25�1 design in a
split-plot, using the principal fraction. Then select the
response data using the information from the full factorial.
Analyze the data and draw conclusions. Do they agree with
the results of Problem 14.26?

■ TA B L E  P 1 4 . 4
The Paper-Making Experiment in Problem 14.26

Stan- Run A � C � D � E � y
dard Num- Pres- B � Gas Gas Paper Contact
Order ber sure Power Flow Type Type Angle

5 1 �1 �1 �1 Oxygen E1 37.6

21 2 �1 �1 �1 Oxygen E2 43.5

2 3 �1 �1 �1 Oxygen E1 41.2

18 4 �1 �1 �1 Oxygen E2 38.2

10 5 �1 �1 �1 SiCl4 E1 56.8

26 6 �1 �1 �1 SiCl4 E2 56.2

14 7 �1 �1 �1 SiCl4 E1 47.5

30 8 �1 �1 �1 SiCl4 E2 43.2

11 9 �1 �1 �1 SiCl4 E1 25.6

27 10 �1 �1 �1 SiCl4 E2 33.0

3 11 �1 �1 �1 Oxygen E1 55.8

19 12 �1 �1 �1 Oxygen E2 62.9

13 13 �1 �1 �1 SiCl4 E1 13.3

29 14 �1 �1 �1 SiCl4 E2 23.7

6 15 �1 �1 �1 Oxygen E1 47.2

22 16 �1 �1 �1 Oxygen E2 44.8

16 17 �1 �1 �1 SiCl4 E1 49.5

32 18 �1 �1 �1 SiCl4 E2 48.2

9 19 �1 �1 �1 SiCl4 E1 5.0

25 20 �1 �1 �1 SiCl4 E2 18.1

15 21 �1 �1 �1 SiCl4 E1 11.3

31 22 �1 �1 �1 SiCl4 E2 23.9

1 23 �1 �1 �1 Oxygen E1 48.6

17 24 �1 �1 �1 Oxygen E2 57.0

8 25 �1 �1 �1 Oxygen E1 48.7

24 26 �1 �1 �1 Oxygen E2 44.4

7 27 �1 �1 �1 Oxygen E1 47.2

23 28 �1 �1 �1 Oxygen E2 54.6

4 29 �1 �1 �1 Oxygen E1 53.5

20 30 �1 �1 �1 Oxygen E2 51.3

12 31 �1 �1 �1 SiCl4 E1 41.8

28 32 �1 �1 �1 SiCl4 E2 37.8
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The subject of statistically designed experiments is an extensive one. The previous chap-
ters have provided an introductory presentation of many of the basic concepts and meth-

ods, yet in some cases we have only been able to provide an overview. For example, there are
book-length presentations of topics such as response surface methodology, mixture experi-
ments, variance component estimation, and optimal design. In this chapter, we provide an
overview of several other topics that the experimenter may potentially find useful.



15.1 Nonnormal Responses and Transformations

15.1.1 Selecting a Transformation: The Box–Cox Method

In Section 3.4.3, we discussed the problem of nonconstant variance in the response variable
y from a designed experiment and noted that this is a departure from the standard analysis of
variance assumptions. This inequality of variance problem occurs relatively often in practice,
often in conjunction with a nonnormal response variable. Examples would include a count of
defects or particles, proportion data such as yield or fraction defective, or a response variable
that follows some skewed distribution (one “tail” of the response distribution is longer than
the other). We introduced transformation of the response variable as an appropriate method
for stabilizing the variance of the response. Two methods for selecting the form of the trans-
formation were discussed—an empirical graphical technique and essentially trial and error in
which the experimenter simply tries one or more transformations, selecting the one that pro-
duces the most satisfactory or pleasing plot of residuals versus the fitted response.

Generally, transformations are used for three purposes: stabilizing response variance,
making the distribution of the response variable closer to the normal distribution, and improv-
ing the fit of the model to the data. This last objective could include model simplification, say
by eliminating interaction terms. Sometimes a transformation will be reasonably effective in
simultaneously accomplishing more than one of these objectives.

We have noted that the power family of transformations y* � y� is very useful, where
� is the parameter of the transformation to be determined (e.g., � � means use the square
root of the original response). Box and Cox (1964) have shown how the transformation
parameter � may be estimated simultaneously with the other model parameters (overall mean
and treatment effects). The theory underlying their method uses the method of maximum like-
lihood. The actual computational procedure consists of performing, for various values of �, a
standard analysis of variance on

(15.1)

where � ln�1[(1/n) � ln y] is the geometric mean of the observations. The maximum like-
lihood estimate of � is the value for which the error sum of squares, say SSE(�), is a mini-
mum. This value of � is usually found by plotting a graph of SSE(�) versus � and then read-
ing the value of � that minimizes SSE(�) from the graph. Usually between 10 and 20 values
of � are sufficient for estimating the optimum value. A second iteration using a finer mesh of
values can be performed if a more accurate estimate of � is necessary.

Notice that we cannot select the value of � by directly comparing the error sums of
squares from analysis of variance on y� because for each value of �, the error sum of squares
is measured on a different scale. Furthermore, a problem arises in y when � � 0, namely, as
� approaches zero, y� approaches unity. That is, when � � 0, all the response values are a con-
stant. The component (y� � 1)/� of Equation 15.1 alleviates this problem because as � tends
to zero, (y� � 1)/� goes to a limit of ln y. The divisor component ��1 in Equation 15.1
rescales the responses so that the error sums of squares are directly comparable.

In using the Box–Cox method, we recommend that the experimenter use simple choic-
es for � because the practical difference between � � 0.5 and � � 0.58 is likely to be small,
but the square root transformation (� � 0.5) is much easier to interpret. Obviously, values of
� close to unity would suggest that no transformation is necessary.

Once a value of � is selected by the Box–Cox method, the experimenter can analyze
the data using y� as the response unless of course � � 0, in which case he can use ln y. It is
perfectly acceptable to use y(�) as the actual response, although the model parameter estimates

ẏ

ẏ

y(�) � �y � � 1

�ẏ��1

ẏ ln y

 � Z  0

 � � 0

1
2
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will have a scale difference and origin shift in comparison to the results obtained using y�

(or ln y).
An approximate 100(1 � 	) percent confidence interval for � can be found by computing

(15.2)

where � is the number of degrees of freedom, and plotting a line parallel to the � axis at height
SS* on the graph of SSE(�) versus �. Then, by locating the points on the � axis where SS* cuts
the curve SSE(�), we can read confidence limits on � directly from the graph. If this confi-
dence interval includes the value � � 1, this implies (as noted above) that the data do not sup-
port the need for transformation.

SS* � SSE(�)�1 �
t 2

	/2,�

� �

E X A M P L E  1 5 . 1

We will illustrate the Box–Cox procedure using the peak
discharge data originally presented in Example 3.5. Recall
that this is a single-factor experiment (see Table 3.7 for the
original data). Using Equation 15.1, we computed values of
SSE(�) for various values of �:

� SSE(�)

�1.00 7922.11

�0.50 687.10

�0.25 232.52

0.00 91.96

0.25 46.99

0.50 35.42

0.75 40.61

1.00 62.08

1.25 109.82

1.50 208.12

A graph of values close to the minimum is shown in Figure
15.1, from which it is seen that � � 0.52 gives a minimum
value of approximately SSE(�) � 35.00. An approximate 95
percent confidence interval on � is found by calculating the
quantity SS* from Equation 15.2 as follows:

�  42.61

�  35.00 �1 �
(2.086)2

20 	
SS* � SSE (�)�1 �

t2
0.025,20

20 �

By plotting SS* on the graph in Figure 15.1 and reading the
points on the � scale where this line intersects the curve, we
obtain lower and upper confidence limits on � of �� � 0.27
and �� � 0.77. Because these confidence limits do not
include the value 1, use of a transformation is indicated,
and the square root transformation (� � 0.50) actually used
is easily justified.
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■ F I G U R E  1 5 . 1 Plot of SSE(�) versus � for 
Example 15.1 

Some computer programs include the Box–Cox procedure for selecting a power family
transformation. Figure 15.2 presents the output from this procedure as implemented in Design-
Expert for the peak discharge data. The results agree closely with the manual calculations sum-
marized in Example 15.1. Notice that the vertical scale of the graph in Figure 15.2 is ln[SSE(�)].



15.1.2 The Generalized Linear Model

Data transformations are often a very effective way to deal with the problem of nonnormal
responses and the associated inequality of variance. As we have seen in the previous section,
the Box–Cox method is an easy and effective way to select the form of the transformation.
However, the use of a data transformation poses some problems.

One problem is that the experimenter may be uncomfortable in working with the
response in the transformed scale. That is, he or she is interested in the number of defects, not
the square root of the number of defects, or in resistivity instead of the logarithm of resistivity.
On the other hand, if a transformation is really successful and improves the analysis and the
associated model for the response, experimenters will usually quickly adopt the new metric.

A more serious problem is that a transformation can result in a nonsensical value for
the response variable over some portion of the design factor space that is of interest to the
experimenter. For example, suppose that we have used the square root transformation in an
experiment involving the number of defects observed on semiconductor wafers, and for some
portion of the region of interest the predicted square root of the count of defects is negative.
This is likely to occur for situations where the actual number of defects observed is small.
Consequently, the model for the experiment has produced an obviously unreliable prediction
in the very region where we would like this model to have good predictive performance.

Finally, as noted in Section 15.1.1, we often use transformations to stabilize variance,
induce normality, and simplify the model. There is no assurance that a transformation will
effectively accomplish all of these objectives simultaneously.

An alternative to the typical approach of data transformation followed by standard least
squares analysis of the transformed response is to use the generalized linear model (GLM).
This is an approach developed by Nelder and Wedderburn (1972) that essentially unifies lin-
ear and nonlinear models with both normal and nonnormal responses. McCullagh and Nelder
(1989) and Myers, Montgomery, Vining and Robinson (2010) give comprehensive presentations
of generalized linear models, and Myers and Montgomery (1997) provide a tutorial. More
details are also given in the supplemental text material for this chapter. We will provide an
overview of the concepts and illustrate them with three short examples.

A generalized linear model is basically a regression model (an experimental design
model is also a regression model). Like all regression models, it is made up of a random
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component (what we have usually called the error term) and a function of the design factors
(the x’s) and some unknown parameters (the �’s). In a standard normal-theory linear regres-
sion model, we write

(15.3)

where the error term � is assumed to have a normal distribution with mean zero and constant
variance, and the mean of the response variable y is

(15.4)

The portion x�� of Equation (15.4) is called the linear predictor. The generalized linear
model contains Equation (15.3) as a special case.

In a GLM, the response variable can have any distribution that is a member of the expo-
nential family. This family includes the normal, Poisson, binomial, exponential, and gamma
distributions, so the exponential family is a very rich and flexible collection of distributions
applicable to many experimental situations. Also, the relationship between the response mean �
and the linear predictor x�� is determined by a link function.

(15.5)

The regression model that represents the mean response is then given by

(15.6)

For example, the link function leading to the ordinary linear regression model in Equation 15.3
is called the identity link because � � g�1(x��) � x��. As another example, the log link

(15.7)

produces the model

(15.8)

The log link is often used with count data (Poisson response) and with continuous responses
that have a distribution that has a long tail to the right (the exponential or gamma distribu-
tion). Another important link function used with binomial data is the logit link

(15.9)

This choice of link function leads to the model

(15.10)

Many choices of link function are possible, but it must always be monotonic and differen-
tiable. Also, note that in a generalized linear model, the variance of the response variable does
not have to be a constant; it can be a function of the mean (and the predictor variables through
the link function). For example, if the response is Poisson, the variance of the response is
exactly equal to the mean.

To use a generalized linear model in practice, the experimenter must specify a response
distribution and a link function. Then the model fitting or parameter estimation is done by the
method of maximum likelihood, which for the exponential family turns out to be an iterative
version of weighted least squares. For ordinary linear regression or experimental design mod-
els with a normal response variable, this reduces to standard least squares. Using an approach
that is analogous to the analysis of variance for normal-theory data, we can perform inference
and diagnostic checking for a GLM. Refer to Myers and Montgomery (1997) and Myers,
Montgomery, Vining and Robinson (2010) for the details and examples. Two software pack-
ages that support the generalized linear model nicely are SAS (PROC GENMOD) and JMP.

� �
1

1 � e�x	�

ln � �

1 � �� � x��

� � ex	�

ln(�) � x��

E(y) � � � g�1(x��)

g(�) � x��

E(y) � � � �0 � �1x1 � �2x2 � Á � �kxk � x��

y � �0 � �1x1 � �2x2 � Á � �kxk � �



�
1

1 �  exp(�1.01 � 0.169x1 � 0.169x2 � 0.023x3 �  0.041x2x3)

ŷ �
1

1 �  exp[�(�1.01 �  0.169x1 �  0.169x2 �  0.023x3 � 0.041x2x3)]

E X A M P L E  1 5 . 2

A consumer products company is studying the factors that
impact the chances that a customer will redeem a coupon
for one of its personal care products. A 23 factorial experi-
ment was conducted to investigate the following variables:
A � coupon value (low, high), B � length of time for
which the coupon is valid, and C � ease of use (easy, hard).
A total of 1000 customers were randomly selected for each
of the eight cells of the 23 design, and the response is the
number of coupons redeemed. The experimental results are
shown in Table 15.1.

We can think of the response as the number of successes
out of 1000 Bernoulli trials in each cell of the design, so a
reasonable model for the response is a generalized linear
model with a binomial response distribution and a logit
link. This particular form of the GLM is usually called
logistic regression.

Minitab and JMP will fit logistic regression models.
The experimenters decided to fit a model involving only
the main effects and two-factor interactions. Therefore, the
model for the expected response is

Table 15.2 presents a portion of the Minitab output for
the data in Table 15.1. The upper portion of the table fits the
full model involving all three main effects and the three
two-factor interactions. Notice that the output contains a
display of the estimated model coefficients and their stan-
dard errors. It turns out that the ratio of the estimated
regression coefficient to its standard error (a t-like ratio)
has an asymptotically normal distribution under the null
hypothesis that the regression coefficient is equal to zero.
Thus, the ratios Z � can be used to test the con-�̂/se(�̂)

E(y) �
1

1 �  exp����0 � �
3

i�1
�ixi � �

2

i�
�
3

j�2
�ijxixj�	

tribution that each main effect and interaction term is
significant. Here, the word “asymptotic” means when the
sample size is large. Now the sample size here is certainly
not large, and we should be careful about interpreting the
P-values associated with these t-like ratios, but these
statistics can be used as a guide to the analysis of the
data. The P-values in the table indicate that the intercept,
the main effects of A and B, and the BC interaction are
significant.

The goodness-of-fit section of the table presents three
different test statistics (Pearson, Deviance, and Hosmer–
Lemeshow) that measure the overall adequacy of the
model. All of the P-values for these goodness-of-fit statis-
tics are large implying that the model is satisfactory. The
bottom portion of the table presents the analysis for a
reduced model containing the three main effects and the BC
interaction (factor C was included to maintain model hier-
archy). The fitted model is

■ TA B L E  1 5 . 1
Design and Data for the Coupon Redemption
Experiment

A B C Number of Coupons Redeemed

� � � 200

� � � 250

� � � 265

� � � 347

� � � 210

� � � 286

� � � 271

� � � 326

Since the effects of C and the BC interaction are very small,
these terms could likely be dropped from the model with no
major consequences.

Minitab reports an odds ratio for each regression model
coefficient. The odds ratio follows directly from the logit
link in Equation 15.9 and is interpreted much like factor
effect estimates in standard two-level designs. For factor A,
it can be interpreted as the ratio of the odds of redeeming a

coupon of high value (x1 � �1) to the odds of redeeming a
coupon of value x1 � 0. The computed value of the odds
ratio is � e0.168765 � 1.18. The quantity � e2(0.168765)

� 1.40 is the ratio of the odds of redeeming a coupon of
high value (x1 � �1) to the odds of redeeming a coupon of
low value (x1 � �1). Thus, a high-value coupon increases
the odds of redemption by about 40 percent.

e2�1
ˆ

e�̂1
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■ TA B L E  1 5 . 2
Minitab Output for the Coupon Redemption Experiment

Binary Logistic Regression: Full Model

Link Function: Logit

Response Information

Variable Value Count

C5 Success 2155

Failure 5845

C6 Total 8000

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant �1.01154 0.0255150 �39.65 0.000

A 0.169208 0.0255092 6.63 0.000 1.18 1.13 1.25

B 0.169622 0.0255150 6.65 0.000 1.18 1.13 1.25

C 0.0233173 0.0255099 0.91 0.361 1.02 0.97 1.08

A*B �0.0062854 0.0255122 �0.25 0.805 0.99 0.95 1.04

A*C �0.0027726 0.0254324 �0.11 0.913 1.00 0.95 1.05

B*C �0.0410198 0.0254339 �1.61 0.107 0.96 0.91 1.01

Log-Likelihood � �4615.310

Goodness-of-Fit Tests

Method Chi-Square DF P

Pearson 1.46458 1 0.226

Deviance 1.46451 1 0.226

Hosmer–Lemeshow 1.46458 6 0.962

Binary Logistic Regression: Reduced Model Involving A, B, C, and BC

Link Function: Logit

Response Information

Variable Value Count

C5 Success 2155

Failure 5845

C6 Total 8000

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant �1.01142 0.0255076 �39.65 0.000

A 0.168675 0.0254235 6.63 0.000 1.18 1.13 1.24

B 0.169116 0.0254321 6.65 0.000 1.18 1.13 1.24

C 0.0230825 0.0254306 0.91 0.364 1.02 0.97 1.08

B*C �0.0409711 0.0254307 �1.61 0.107 0.96 0.91 1.01

Log-Likelihood � �4615.346

Goodness-of-Fit Tests

Method Chi-Square DF P

Pearson 1.53593 3 0.674

Deviance 1.53602 3 0.674

Hosmer–Lemeshow 1.53593 6 0.957 
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Logistic regression is widely used and may be the most common application of the
GLM. It finds wide application in the biomedical field with dose-response studies (where the
design factor is the dose of a particular therapeutic treatment and the response is whether or
not the patient responds successfully to the treatment). Many reliability engineering experi-
ments involve binary (success–failure) data, such as when units of products or components
are subjected to a stress or load and the response is whether or not the unit fails.

E X A M P L E  1 5 . 3 The Grill Defects Experiment

Problem 8.29 introduced an experiment to study the effects
of nine factors on defects in sheet-molded grill opening 
panels. Bisgaard and Fuller (1994–95) performed an inter-
esting and useful analysis of these data to illustrate the value
of data transformation in a designed experiment. As 
we observed in Problem 8.29 part (f), they used a modifica-
tion of the square root transformation that led to the model

(�ẏ � �ẏ � 1)�2 � 2.513 � 0.996x4 � 1.21x6 � 0.772x2x7

where, as usual, the x’s represent the coded design factors.
This transformation does an excellent job of stabilizing the
variance of the number of defectives. The first two panels
of Table 15.3 present some information about this model.
Under the “transformed” heading, the first column contains
the predicted response. Notice that there are two negative
predicted values. The “untransformed” heading presents
the untransformed predicted values, along with 95 percent
confidence intervals on the mean response at each of the 16
design points. Because there were some negative predicted

■ TA B L E  1 5 . 3
Least Squares and Generalized Linear Model Analysis for the Grill Opening Panels Experiment

Using Least Squares Methods with Freeman and 
Generalized Linear Tukey Modified Square Root Data Transformation

Model (Poisson Length of the 
Transformed Untransformed Response, Log Link) 95% Confidence

95% 95% 95%
Interval

Predicted Confidence Predicted Confidence Predicted Confidence Least
Observation Value Interval Value Interval Value Interval Squares GLM

1 5.50 (4.14, 6.85) 29.70 (16.65, 46.41) 51.26 (42.45, 61.90) 29.76 19.45

2 3.95 (2.60, 5.31) 15.12 (6.25, 27.65) 11.74 (8.14, 16.94) 21.39 8.80

3 1.52 (0.17, 2.88) 1.84 (1.69, 7.78) 1.12 (0.60, 2.08) 6.09 1.47

4 3.07 (1.71, 4.42) 8.91 (2.45, 19.04) 4.88 (2.87, 8.32) 16.59 5.45

5 1.52 (0.17, 2.88) 1.84 (1.69, 7.78) 1.12 (0.60, 2.08) 6.09 1.47

6 3.07 (1.71, 4.42) 8.91 (2.45, 19.04) 4.88 (2.87, 8.32) 16.59 5.45

7 5.50 (4.14, 6.85) 29.70 (16.65, 46.41) 51.26 (42.45, 61.90) 29.76 19.45

8 3.95 (2.60, 5.31) 15.12 (6.25, 27.65) 11.74 (8.14, 16.94) 21.39 8.80

9 1.08 (�0.28, 2.43) 0.71 (*, 5.41) 0.81 (0.42, 1.56) * 1.13

10 �0.47 (�1.82, 0.89) * (*, 0.36) 0.19 (0.09, 0.38) * 0.29

11 1.96 (0.61, 3.31) 3.36 (0.04, 10.49) 1.96 (1.16, 3.30) 10.45 2.14

12 3.50 (2.15, 4.86) 11.78 (4.13, 23.10) 8.54 (5.62, 12.98) 18.96 7.35

13 1.96 (0.61, 3.31) 3.36 (0.04, 10.49) 1.96 (1.16, 3.30) 10.45 2.14

14 3.50 (2.15, 4.86) 11.78 (4.13, 23.10) 8.54 (5.62, 12.98) 18.97 7.35

15 1.08 (�0.28, 2.43) 0.71 (*, 5.41) 0.81 (0.42, 1.56) * 1.13

16 �0.47 (�1.82, 0.89) * (*, 0.36) 0.19 (0.09, 0.38) * 0.29 
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values and negative lower confidence limits, we were
unable to compute values for all of the entries in this panel
of the table.

The response is essentially a square root of the count of
defects. A negative predicted value is clearly illogical.
Notice that this is occurring where the observed counts
were small. If it is important to use the model to predict
performance in this region, the model may be unreliable.
This should not be taken as a criticism of either the original
experimenters or Bisgaard and Fuller’s analysis. This was
an extremely successful screening experiment that clearly
defined the important processing variables. Prediction was
not the original goal, nor was it the goal of the analysis
done by Bisgaard and Fuller.

If obtaining a prediction model had been important,
however, a generalized linear model would probably have
been a good alternative to the transformation approach.
Myers and Montgomery use a log link (Equation 15.7)
and Poisson response to fit exactly the same linear

predictor as given by Bisgaard and Fuller. This produces
the model

The third panel of Table 15.3 contains the predicted val-
ues from this model and the 95 percent confidence intervals
on the mean response at each point in the design. These
results were obtained from SAS PROC GENMOD. JMP
will also fit the Poisson regression model. There are no neg-
ative predicted values (assured by the choice of link func-
tion) and no negative lower confidence limits. The last
panel of the table compares the lengths of the 95 percent
confidence intervals for the untransformed response and the
GLM. Notice that the confidence intervals for the general-
ized linear model are uniformly shorter than their least
squares counterparts. This is a strong indication that the
generalized linear model approach has explained more vari-
ability and produced a superior model compared to the
transformation approach.

ŷ � e(1.128�0.896x4�1.176x6�0.737x2x7)

E X A M P L E  1 5 . 4 The Worsted Yarn Experiment

Table 15.4 presents a 33 factorial design conducted to inves-
tigate the performance of worsted yarn under cycles of
repeated loading. The experiment is described thoroughly
by Box and Draper (2007). The response is the number of
cycles to failure. Reliability data such as this is typically
nonnegative and continuous and often follows a distribution
with a long right tail.

The data were initially analyzed using the standard (least
squares) approach, and data transformation was necessary to
stabilize the variance. The natural log of the cycles to failure
data is found to yield an adequate model in terms of overall
model fit and satisfactory residual plots. The model is

or in terms of the original response, cycles to failure,

ŷ � e6.33�0.82x1�0.63x2�0.38x3

ln ŷ � 6.33 �  0.82x1 � 0.63x2 � 0.38x3

■ TA B L E  1 5 . 4
The Worsted Yarn Experiment

Natural Log of
Cycles to Cycles to

Run x1 x2 x3 Failure Failure

1 �1 �1 �1 674 6.51

2 �1 �1 0 370 5.91

3 �1 �1 1 292 5.68

4 �1 0 �1 338 5.82

5 �1 0 0 266 5.58

6 �1 0 1 210 5.35

7 �1 1 �1 170 5.14

8 �1 1 0 118 4.77

9 �1 1 1 90 4.50

10 0 �1 �1 1414 7.25

11 0 �1 0 1198 7.09

12 0 �1 1 634 6.45

13 0 0 �1 1022 6.93
14 0 0 0 620 6.43
15 0 0 1 438 6.08
16 0 1 �1 442 6.09
17 0 1 0 332 5.81
18 0 1 1 220 5.39
19 1 �1 �1 3636 8.20
20 1 �1 0 3184 8.07
21 1 �1 1 2000 7.60
22 1 0 �1 1568 7.36
23 1 0 0 1070 6.98
24 1 0 1 566 6.34
25 1 1 �1 1140 7.04
26 1 1 0 884 6.78
27 1 1 1 360 5.89
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This experiment was also analyzed using the general-
ized linear model and selecting the gamma response distri-
bution and the log link. We used exactly the same model
form found by least squares analysis of the log-transformed
response. The model that resulted is

ŷ � e6.35�0.84x1�0.63x2�0.39x3

Table 15.5 presents the predicted values from the least
squares model and the generalized linear model, along with
95 percent confidence intervals on the mean response at
each of the 27 points in the design. A comparison of the
lengths of the confidence intervals reveals that the general-
ized linear model is likely to be a better predictor than the
least squares model.

■ TA B L E  1 5 . 5
Least Squares and Generalized Linear Model Analysis for the Worsted Yarn Experiment

Least Squares Methods
with Log Data Transformation

Length of the 
Transformed Untransformed Generalized Linear Model 95% Confidence

95% 95% 95%
Interval

Predicted Confidence Predicted Confidence Predicted Confidence Least
Obs. Value Interval Value Interval Value Interval Squares GLM

1 2.83 (2.76, 2.91) 682.50 (573.85, 811.52) 680.52 (583.83, 793.22) 237.67 209.39

2 2.66 (2.60, 2.73) 460.26 (397.01, 533.46) 463.00 (407.05, 526.64) 136.45 119.59

3 2.49 (2.42, 2.57) 310.38 (260.98, 369.06) 315.01 (271.49, 365.49) 108.09 94.00

4 2.56 (2.50, 2.62) 363.25 (313.33, 421.11) 361.96 (317.75, 412.33) 107.79 94.58

5 2.39 (2.34, 2.44) 244.96 (217.92, 275.30) 246.26 (222.55, 272.51) 57.37 49.96

6 2.22 (2.15, 2.28) 165.20 (142.50, 191.47) 167.55 (147.67, 190.10) 48.97 42.42

7 2.29 (2.21, 2.36) 193.33 (162.55, 229.93) 192.52 (165.69, 223.70) 67.38 58.01

8 2.12 (2.05, 2.18) 130.38 (112.46, 151.15) 130.98 (115.43, 148.64) 38.69 33.22

9 1.94 (1.87, 2.02) 87.92 (73.93, 104.54) 89.12 (76.87, 103.32) 30.62 26.45

10 3.20 (3.13, 3.26) 1569.28 (1353.94, 1819.28) 1580.00 (1390.00, 1797.00) 465.34 407.00

11 3.02 (2.97, 3.08) 1058.28 (941.67, 1189.60) 1075.00 (972.52, 1189.00) 247.92 216.48

12 2.85 (2.79, 2.92) 713.67 (615.60, 827.37) 731.50 (644.35, 830.44) 211.77 186.09

13 2.92 (2.87, 2.97) 835.41 (743.19, 938.86) 840.54 (759.65, 930.04) 195.67 170.39

14 2.75 (2.72, 2.78) 563.25 (523.24, 606.46) 571.87 (536.67, 609.38) 83.22 72.70

15 2.58 (2.53, 2.63) 379.84 (337.99, 426.97) 389.08 (351.64, 430.51) 88.99 78.87

16 2.65 (2.58, 2.71) 444.63 (383.53, 515.35) 447.07 (393.81, 507.54) 131.82 113.74

17 2.48 (2.43, 2.53) 299.85 (266.75, 336.98) 304.17 (275.13, 336.28) 70.23 61.15

18 2.31 (2.24, 2.37) 202.16 (174.42, 234.37) 206.95 (182.03, 235.27) 59.95 53.23

19 3.56 (3.48, 3.63) 3609.11 (3034.59, 4292.40) 3670.00 (3165.00, 4254.00) 1257.81 1089.00

20 3.39 (3.32, 3.45) 2433.88 (2099.42, 2821.63) 2497.00 (2200.00, 2833.00) 722.21 633.00

21 3.22 (3.14, 3.29) 1641.35 (1380.07, 1951.64) 1699.00 (1462.00, 1974.00) 571.57 512.00

22 3.28 (3.22, 3.35) 1920.88 (1656.91, 2226.90) 1952.00 (1720.00, 2215.00) 569.98 495.00

23 3.11 (3.06, 3.16) 1295.39 (1152.66, 1455.79) 1328.00 (1200.00, 1470.00) 303.14 270.00

24 2.94 (2.88, 3.01) 873.57 (753.53, 1012.74) 903.51 (793.15, 1029.00) 259.22 235.85

25 3.01 (2.93, 3.08) 1022.35 (859.81, 1215.91) 1038.00 (894.79, 1205.00) 356.10 310.21

26 2.84 (2.77, 2.90) 689.45 (594.70, 799.28) 706.34 (620.99, 803.43) 204.58 182.44

27 2.67 (2.59, 2.74) 464.94 (390.93, 552.97) 480.57 (412.29, 560.15) 162.04 147.86 
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Generalized linear models have found extensive application in biomedical and phar-
maceutical research and development. As more software packages incorporate this capabil-
ity, it will find widespread application in the general industrial research and development
environment. The examples in this section used standard experimental designs in conjuction
with a response distribution from the exponential family. When the experimenter knows in
advance that a GLM analysis will be required it is possible to design the experiment with
this in mind. Optimal designs for GLMs are a special type of optimal design for a nonlinear
model. For more discussion and examples, see Johnson and Montgomery (2009) (2010).

15.2 Unbalanced Data in a Factorial Design

The primary focus of this book has been the analysis of balanced factorial designs—that is,
cases where there are an equal number of observations n in each cell. However, it is not unusual
to encounter situations where the number of observations in the cells is unequal. These unbal-
anced factorial designs occur for various reasons. For example, the experimenter may have
designed a balanced experiment initially, but because of unforeseen problems in running the
experiment, resulting in the loss of some observations, he or she ends up with unbalanced data.
On the other hand, some unbalanced experiments are deliberately designed that way. For
instance, certain treatment combinations may be more expensive or more difficult to run than
others, so fewer observations may be taken in those cells. Alternatively, some treatment combi-
nations may be of greater interest to the experimenter because they represent new or unexplored
conditions, and so the experimenter may elect to obtain additional replication in those cells.

The orthogonality property of main effects and interactions present in balanced data
does not carry over to the unbalanced case. This means that the usual analysis of variance
techniques do not apply. Consequently, the analysis of unbalanced factorials is much more
difficult than that for balanced designs.

In this section, we give a brief overview of methods for dealing with unbalanced fac-
torials, concentrating on the case of the two-factor fixed effects model. Suppose that the
number of observations in the ijth cell is nij. Furthermore, let ni. � nij be the number of
observations in the ith row (the ith level of factor A), n.j � nij be the number of obser-
vations in the jth column (the jth level of factor B), and n.. � nij be the total num-
ber of observations.

15.2.1 Proportional Data: An Easy Case

One situation involving unbalanced data presents little difficulty in analysis; this is the case
of proportional data. That is, the number of observations in the ijth cell is

(15.11)

This condition implies that the number of observations in any two rows or columns is propor-
tional. When proportional data occur, the standard analysis of variance can be employed.
Only minor modifications are required in the manual computing formulas for the sums of
squares, which become
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This produces an ANOVA based on a sequential model fitting analysis, with factor A fit before
factor B (an alternative would be to use an “adjusted” model fitting strategy similar to the one
used with incomplete block designs in Chapter 4—both procedures can be implemented using
the Minitab Balanced ANOVA routine).

As an example of proportional data, consider the battery design experiment in Example
5.1. A modified version of the original data is shown in Table 15.6. Clearly, the data are pro-
portional; for example, in cell 1,1 we have

observations. The results of applying the usual analysis of variance to these data are shown in
Table 15.7. Both material type and temperature are significant, and the interaction is only sig-
nificant at about 	 � 0.17. Therefore, the conclusions mostly agree with the analysis of the
full data set in Example 5.1, except that the interaction effect is not significant.
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■ TA B L E  1 5 . 7
Analysis of Variance for Battery Design Data in Table 15.6

Source of Variance Sum of Squares Degrees of Freedom Mean Square F0

Material types 7,811.6 2 3,905.8 4.78

Temperature 16,090.9 2 8,045.5 9.85

Interaction 6,266.5 4 1,566.6 1.92

Error 8,981.0 11 816.5

Total 39,150.0 19 

■ TA B L E  1 5 . 6
Battery Design Experiment with Proportional Data
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15.2.2 Approximate Methods

When unbalanced data are not too far from the balanced case, it is sometimes possible to use
approximate procedures that convert the unbalanced problem into a balanced one. This, of
course, makes the analysis only approximate, but the analysis of balanced data is so easy that
we are frequently tempted to use this approach. In practice, we must decide when the data are
not sufficiently different from the balanced case to make the degree of approximation intro-
duced relatively unimportant. We now briefly describe some of these approximate methods.
We assume that every cell has at least one observation (i.e., nij � 1).

Estimating Missing Observations. If only a few nij are different, a reasonable pro-
cedure is to estimate the missing values. For example, consider the unbalanced design in
Table 15.8. Clearly, estimating the single missing value in cell 2,2 is a reasonable approach.
For a model with interaction, the estimate of the missing value in the ijth cell that minimizes
the error sum of squares is That is, we estimate the missing value by taking the average of
the observations that are available in that cell.

The estimated value is treated just like actual data. The only modification to the analy-
sis of variance is to reduce the error degrees of freedom by the number of missing observa-
tions that have been estimated. For example, if we estimate the missing value in cell 2,2 in
Table 15.8, we would use 26 error degrees of freedom instead of 27.

Setting Data Aside. Consider the data in Table 15.9. Note that cell 2,2 has only one
more observation than the others. Estimating missing values for the remaining eight cells
is probably not a good idea here because this would result in estimates constituting about
18 percent of the final data. An alternative is to set aside one of the observations in cell 2,2,
giving a balanced design with n � 4 replicates.

The observation that is set aside should be chosen randomly. Furthermore, rather than
completely discarding the observation, we could return it to the design, and then randomly
choose another observation to set aside and repeat the analysis. And, we hope, these two
analyses will not lead to conflicting interpretations of the data. If they do, we suspect that the
observation that was set aside is an outlier or a wild value and should be handled accordingly.
In practice, this confusion is unlikely to occur when only small numbers of observations are
set aside and the variability within the cells is small.

Method of Unweighted Means. In this approach, introduced by Yates (1934), the
cell averages are treated as data and are subjected to a standard balanced data analysis to
obtain sums of squares for rows, columns, and interaction. The error mean square is found as

(15.12)MSE �

�
a

i�1
�
b

j�1
�
nij

k�1
 (yijk � yij.)

2

n.. � ab

yij.
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The nij Values for an Unbalanced Design

Columns

Rows 1 2 3

1 4 4 4

2 4 3 4

3 4 4 4

■ TA B L E  1 5 . 9
The nij Values for an Unbalanced Design

Columns

Rows 1 2 3

1 4 4 4

2 4 5 4

3 4 4 4 



Now MSE estimates �2, the variance of yijk, an individual observation. However, we have done
an analysis of variance on the cell averages, and because the variance of the average in the
ijth cell is �2/nij, the error mean square actually used in the analysis of variance should be an
estimate of the average variance of the , say

(15.13)

Using MSE from Equation 15.12 to estimate �2 in Equation 15.13, we obtain

(15.14)

as the error mean square (with n.. � ab degrees of freedom) to use in the analysis of variance.
The method of unweighted means is an approximate procedure because the sums of

squares for rows, columns, and interaction are not distributed as chi-square random variables.
The primary advantage of the method seems to be its computational simplicity. When the nij

are not dramatically different, the method of unweighted means often works reasonably well.
A related technique is the weighted squares of means method, also proposed by Yates

(1934). This technique is also based on the sums of squares of the cell means, but the terms
in the sums of squares are weighted in inverse proportion to their variances. For further details
of the procedure, see Searle (1971a) and Speed, Hocking, and Hackney (1978).

15.2.3 The Exact Method

In situations where approximate methods are inappropriate, such as when empty cells occur
(some nij � 0) or when the nij are dramatically different, the experimenter must use an exact
analysis. The approach used to develop sums of squares for testing main effects and interac-
tions is to represent the analysis of variance model as a regression model, fit that model to
the data, and use the general regression significance test approach. However, this may be done
in several ways, and these methods may result in different values for the sums of squares.
Furthermore, the hypotheses that are being tested are not always direct analogs of those for
the balanced case, nor are they always easily interpretable. For further reading on the subject,
see the supplemental text material for this chapter. Other good references are Searle (1971a);
Hocking and Speed (1975); Hocking, Hackney, and Speed (1978); Speed, Hocking, and
Hackney (1978); Searle, Speed, and Henderson (1981); Milliken and Johnson (1984); and
Searle (1987). The SAS system of statistical software provides an excellent approach to the
analysis of unbalanced data through PROC GLM.

15.3 The Analysis of Covariance

In Chapters 2 and 4, we introduced the use of the blocking principle to improve the preci-
sion with which comparisons between treatments are made. The paired t-test was the proce-
dure illustrated in Chapter 2, and the randomized block design was presented in Chapter 4.
In general, the blocking principle can be used to eliminate the effect of controllable nui-
sance factors. The analysis of covariance (ANCOVA) is another technique that is occasion-
ally useful for improving the precision of an experiment. Suppose that in an experiment with
a response variable y there is another variable, say x, and that y is linearly related to x.
Furthermore, suppose that x cannot be controlled by the experimenter but can be observed
along with y. The variable x is called a covariate or concomitant variable. The analysis of
covariance involves adjusting the observed response variable for the effect of the concomitant
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variable. If such an adjustment is not performed, the concomitant variable could inflate the
error mean square and make true differences in the response due to treatments harder to
detect. Thus, the analysis of covariance is a method of adjusting for the effects of an uncon-
trollable nuisance variable. As we will see, the procedure is a combination of analysis of
variance and regression analysis.

As an example of an experiment in which the analysis of covariance may be employed,
consider a study performed to determine if there is a difference in the strength of a monofil-
ament fiber produced by three different machines. The data from this experiment are shown
in Table 15.10. Figure 15.3 presents a scatter diagram of strength (y) versus the diameter
(or thickness) of the sample. Clearly, the strength of the fiber is also affected by its thickness;
consequently, a thicker fiber will generally be stronger than a thinner one. The analysis of
covariance could be used to remove the effect of thickness (x) on strength (y) when testing for
differences in strength between machines.

15.3.1 Description of the Procedure

The basic procedure for the analysis of covariance is now described and illustrated for a single-
factor experiment with one covariate. Assuming that there is a linear relationship between the

■ TA B L E  1 5 . 1 0
Breaking Strength Data (y � strength in pounds and x � diameter in 10�3 in.)

Machine 1 Machine 2 Machine 3

y x y x y x

36 20 40 22 35 21

41 25 48 28 37 23

39 24 39 22 42 26

42 25 45 30 34 21

49 32 44 28 32 15

207 126 216 130 180 106 
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Breaking strength (y)
versus fiber diameter (x)



response and the covariate, we find that an appropriate statistical model is

(15.15)

where yij is the jth observation on the response variable taken under the ith treatment or level
of the single factor, xij is the measurement made on the covariate or concomitant variable cor-
responding to yij (i.e., the ijth run), is the mean of the xij values, � is an overall mean, �i is
the effect of the ith treatment, � is a linear regression coefficient indicating the dependency
of yij on xij, and �ij is a random error component. We assume that the errors �ij are NID(0, �2),
that the slope � � 0 and the true relationship between yij and xij is linear, that the regression
coefficients for each treatment are identical, that the treatment effects sum to zero ( �i � 0),
and that the concomitant variable xij is not affected by the treatments.

This model assumes that all treatment regression lines have identical slopes. If the treat-
ments interact with the covariates this can result in non-identical slopes. Covariance analysis
is not appropriate in these cases. Estimating and comparing different regression models is the
correct approach.

Equation 15.15 assumes a linear relationship between y and x. However, any other rela-
tionship, such as a quadratic (for example) could be used.

Notice from Equation 15.15 that the analysis of covariance model is a combination of
the linear models employed in analysis of variance and regression. That is, we have treatment
effects {�i} as in a single-factor analysis of variance and a regression coefficient � as in a
regression equation. The concomitant variable in Equation 15.15 is expressed as (xij � )
instead of xij so that the parameter � is preserved as the overall mean. The model could have
been written as

(15.16)

where �� is a constant not equal to the overall mean, which for this model is �� � � .
Equation 15.15 is more widely found in the literature.

To describe the analysis, we introduce the following notation:
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i�1

x..

yij � � � �i � �(xij � x..) � �ij  �i � 1, 2, . . . , a
j � 1, 2, . . . , n
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(15.24)

(15.25)

Note that, in general, S � T � E, where the symbols S, T, and E are used to denote sums of
squares and cross products for total, treatments, and error, respectively. The sums of squares
for x and y must be nonnegative; however, the sums of cross products (xy) may be negative.

We now show how the analysis of covariance adjusts the response variable for the effect
of the covariate. Consider the full model (Equation 15.15). The least squares estimators of �,
�i, and � are , and

(15.26)

The error sum of squares in this model is

(15.27)

with a(n � 1) � 1 degrees of freedom. The experimental error variance is estimated by

Now suppose that there is no treatment effect. The model (Equation 15.15) would then be

(15.28)

and it can be shown that the least squares estimators of � and � are and .
The sum of squares for error in this reduced model is

(15.29)

with an � 2 degrees of freedom. In Equation 15.29, the quantity (Sxy)
2/Sxx is the reduction in

the sum of squares of y obtained through the linear regression of y on x. Furthermore, note
that SSE is smaller than [because the model (Equation 15.15) contains additional param-
eters {�i}] and that the quantity � SSE is a reduction in sum of squares due to the {�i}.
Therefore, the difference between and SSE, that is, � SSE, provides a sum of squares
with a � 1 degrees of freedom for testing the hypothesis of no treatment effects.
Consequently, to test H0 : �i � 0, compute

(15.30)

which, if the null hypothesis is true, is distributed as Fa�1,a(n�1)�1. Thus, we reject H0: �i � 0
if F0 
 F	,a�1,a(n�1)�1. The P-value approach could also be used.

It is instructive to examine the display in Table 15.11. In this table we have presented
the analysis of covariance as an “adjusted” analysis of variance. In the source of variation col-
umn, the total variability is measured by Syy with an � 1 degrees of freedom. The source of
variation “regression” has the sum of squares (Sxy)

2/Sxx with one degree of freedom. If there
were no concomitant variable, we would have Sxy � Sxx � Exy � Exx � 0. Then the sum of
squares for error would be simply Eyy and the sum of squares for treatments would be Syy �
Eyy � Tyy. However, because of the presence of the concomitant variable, we must “adjust” Syy

and Eyy for the regression of y on x as shown in Table 15.11. The adjusted error sum of squares

F0 �
(SS�E � SSE)/(a � 1)
SSE/[a(n � 1) � 1]

SS�ESS�E

SS�E

SS�E

SS�E � Syy � (Sxy)
2/Sxx

�̂ � Sxy/Sxx�̂ � y..

yij � � � �(xij � x..) � �ij

MSE �
SSE

a(n � 1) � 1

SSE � Eyy � (Exy)
2/Exx

�̂ �
Exy

Exx

�̂ � y.., �̂i � yi. � y.. � �̂(xi. � x..)

Exy � �
a

i�1
�
n

j�1
 (xij � xi.)(yij � yi.) � Sxy � Txy

Exx � �
a

i�1
�
n

j�1
 (xij � xi.)

2 � Sxx � Txx



has a(n � 1) � 1 degrees of freedom instead of a(n � 1) degrees of freedom because an addi-
tional parameter (the slope �) is fitted to the data.

Manual computations are usually displayed in an analysis of covariance table such as
Table 15.12. This layout is employed because it conveniently summarizes all the required
sums of squares and cross products as well as the sums of squares for testing hypotheses
about treatment effects. In addition to testing the hypothesis that there are no differences in
the treatment effects, we frequently find it useful in interpreting the data to present the adjust-
ed treatment means. These adjusted means are computed according to

(15.31)

where � Exy /Exx. This adjusted treatment mean is the least squares estimator of � � �i, i � 1,
2, . . . , a, in the model (Equation 15.15). The standard error of any adjusted treatment mean is

(15.32)

Finally, we recall that the regression coefficient � in the model (Equation 15.15) has been
assumed to be nonzero. We may test the hypothesis H0 : � � 0 by using the test statistic

(15.33)

which under the null hypothesis is distributed as F1,a(n�1)�1. Thus, we reject H0 : � � 0 if F0 

F	,1,a(n�1)�1.

F0 �
(Exy)

2/Exx

MSE

Sadjyi.
� �MSE �1

n �
(xi. � x..)

2

Exx
�	1/2

�̂

Adjusted yi. � yi. � �̂(xi. � x..)   i � 1, 2, . . . , a
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■ TA B L E  1 5 . 1 2
Analysis of Covariance for a Single-Factor Experiment with One Covariate

Sums of Squares Adjusted for Regression

Source of Degrees of
and Products

Degrees of
Variation Freedom x xy y y Freedom Mean Square

Treatments a � 1 Txx Txy Tyy

Error a(n � 1) Exx Exy Eyy SSE � Eyy � (Exy)
2/Exx a(n � 1) � 1

Total an � 1 Sxx Sxy Syy � Syy � (Sxy)
2/Sxx an � 2

Adjusted Treatments a � 1
SS�E � SSE

a � 1
SS�E � SSE

SS�E

MSE �
SSE

a(n � 1) � 1

■ TA B L E  1 5 . 1 1
Analysis of Covariance as an “Adjusted” Analysis of Variance

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Regression (Sxy)
2/Sxx 1

Treatments � SSE � Syy � a � 1

(Sxy)
2/Sxx � [Eyy � (Exy)

2/Exx]

Error SSE � Eyy � (Exy)
2/Exx a(n � 1) � 1

Total Syy an � 1

MSE �
SSE

a(n � 1) � 1

(SS�E � SSE)/(a � 1)
MSE

SS�E � SSE

a � 1
SS�E
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E X A M P L E  1 5 . 5

Consider the experiment described at the beginning of Section 15.3. Three different machines produce a monofilament fiber
for a textile company. The process engineer is interested in determining if there is a difference in the breaking strength of
the fiber produced by the three machines. However, the strength of a fiber is related to its diameter, with thicker fibers being
generally stronger than thinner ones. A random sample of five fiber specimens is selected from each machine. The fiber
strength (y) and the corresponding diameter (x) for each specimen are shown in Table 15.10.

The scatter diagram of breaking strength versus the fiber diameter (Figure 15.3) shows a strong suggestion of a linear
relationship between breaking strength and diameter, and it seems appropriate to remove the effect of diameter on strength
by an analysis of covariance. Assuming that a linear relationship between breaking strength and diameter is appropriate, we
see that the model is

Using Equations 15.17 through 15.25, we may compute

From Equation 15.29, we find

with an � 2 � (3)(5) � 2 � 13 degrees of freedom; and from Equation 15.27, we find

with a(n � 1) � 1 � 3(5 � 1) � 1 � 11 degrees of freedom.

� 27.99

� 206.00 � (186.60)2/195.60

SSE � Eyy � (Exy)
2/Exx

� 41.27
� 346.40 � (282.60)2/261.73

SS�E � Syy � (Sxy)
2/Sxx

Exy � Sxy � Txy � 282.60 � 96.00 � 186.60

Exx � Sxx � Txx � 261.73 � 66.13 � 195.60

Eyy � Syy � Tyy � 346.40 � 140.40 � 206.00

Txy �
1
n �

3

i�1
xi.yi. �

(x..)(y..)
an �

1
5

 [(126)(207) � (130)(216) � (106)(184)] �
(362)(603)

(3)(5)
� 96.00

Txx �
1
n �

3

i�1
x2

i. �
x2

..

an �
1
5

 [(126)2 � (130)2 � (106)2] �
(362)2

(3)(5)
� 66.13

Tyy �
1
n �

3

i�1
y2

i. �
y2

..

an �
1
5

 [(207)2 � (216)2 � (180)2] �
(603)2

(3)(5)
� 140.40

Sxy � �
3

i�1
�
5

j�1
xij yij �

(x..)(y..)
an � (20)(36) � (25)(41) � Á � (15)(32) �

(362)(603)
(3)(5)

� 282.60

Sxx � �
3

i�1
�
5

j�1
x2

ij �
x2

..

an � (20)2 � (25)2 � Á � (15)2 �
(362)2

(3)(5)
� 261.73

Syy � �
3

i�1
�
5

j�1
y2

ij �
y2

..

an � (36)2 � (41)2 � Á � (32)2 �
(603)2

(3)(5)
� 346.40

yij � � � �i � �(xij � x..) � �ij  �i � 1, 2, 3
j � 1, 2, . . . , 5
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The sum of squares for testing H0 : �1 � �2 � �3 � 0 is

with a � 1 � 3 � 1 � 2 degrees of freedom. These calculations are summarized in Table 15.13.
To test the hypothesis that machines differ in the breaking strength of fiber produced, that is, H0 : �i � 0, we compute the

test statistic from Equation 15.30 as

Comparing this to F0.10,2,11 � 2.86, we find that the null hypothesis cannot be rejected. The P-value of this test 
statistic is 0.1181. Thus, there is no strong evidence that the fibers produced by the three machines differ in breaking
strength.

The estimate of the regression coefficient is computed from Equation 15.26 as

We may test the hypothesis H0 : � � 0 by using Equation 15.33. The test statistic is

and because F0.01,1,11 � 9.65, we reject the hypothesis that � � 0. Therefore, there is a linear relationship between breaking
strength and diameter, and the adjustment provided by the analysis of covariance was necessary.

The adjusted treatment means may be computed from Equation 15.31. These adjusted means are

and

� 36.00 � (0.9540)(21.20 � 24.13) � 38.80

 Adjusted y3. � y3. � �̂(x3. � x..)

� 43.20 � (0.9540)(26.00 � 24.13) � 41.42

 Adjusted y2. � y2. � �̂(x2. � x..)

� 41.40 � (0.9540)(25.20 � 24.13) � 40.38

 Adjusted y1. � y1. � �̂(x1. � x..)

F0 �
(Exy)

2/Exx

MSE
�

(186.60)2/195.60
2.54

� 70.08

�̂ �
Exy

Exx
�

186.60
195.60

� 0.9540

�
13.28/2

27.99/11
�

6.64
2.54

� 2.61

F0 �
(SS�E � SSE)/(a � 1)
SSE/[a(n � 1) � 1]

� 13.28
SS�E � SSE � 41.27 � 27.99

■ TA B L E  1 5 . 1 3
Analysis of Covariance for the Breaking Strength Data

Sums of Squares and Products
Adjusted for Regression

Source of Degrees of Degrees of Mean
Variation Freedom x xy y y Freedom Square F0 P-Value

Machines 2 66.13 96.00 140.40

Error 12 195.60 186.60 206.00 27.99 11 2.54

Total 14 261.73 282.60 346.40 41.27 13

Adjusted Machines 13.28 2 6.64 2.61 0.1181 
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Comparing the adjusted treatment means with the unadjusted treatment means (the ), we note that the adjusted means are
much closer together, another indication that the covariance analysis was necessary.

A basic assumption in the analysis of covariance is that the treatments do not influence the covariate x because the tech-
nique removes the effect of variations in the . However, if the variability in the is due in part to the treatments, then
analysis of covariance removes part of the treatment effect. Thus, we must be reasonably sure that the treatments do not
affect the values xij. In some experiments this may be obvious from the nature of the covariate, whereas in others it may be
more doubtful. In our example, there may be a difference in fiber diameter (xij) between the three machines. In such cases,
Cochran and Cox (1957) suggest that an analysis of variance on the xij values may be helpful in determining the validity of
this assumption. For our problem, this procedure yields

which is less than F0.10,2,12 � 2.81, so there is no reason to believe that machines produce fibers of different diameters.

F0 �
66.13/2

195.60/12
�

33.07
16.30

� 2.03

xi.xi.

yi.

Diagnostic checking of the covariance model is based on residual analysis. For the
covariance model, the residuals are

where the fitted values are

Thus,

(15.34)

To illustrate the use of Equation 15.34, the residual for the first observation from the
first machine in Example 15.5 is

A complete listing of observations, fitted values, and residuals is given in the following table:

Observed Value, yij Fitted Value, Residual, eij � yij �

36 36.4392 �0.4392

41 41.2092 �0.2092

39 40.2552 �1.2552

42 41.2092 0.7908

49 47.8871 1.1129

40 39.3840 0.6160

48 45.1079 2.8921

39 39.3840 �0.3840

45 47.0159 �2.0159

44 45.1079 �1.1079

35 35.8092 �0.8092

37 37.7171 �0.7171

42 40.5791 1.4209

34 35.8092 �1.8092

32 30.0852 1.9148

ŷijŷij

�  36 � 36.4392 � �0.4392

e11 � y11 � y1. � �̂(x11 � x1.) � 36 � 41.4 � (0.9540)(20 � 25.2)

eij � yij � yi. � �̂(xij � xi.)

� �̂(xij � x..) � yi. � �̂(xij � xi.)

ŷij � �̂ � �̂i � �̂(xij � x..) � y.. � [yi. � y.. � �̂(xi. � x..)]

eij � yij � ŷij



The residuals are plotted versus the fitted values in Figure 15.4, versus the covariate xij in
Figure 15.5 and versus the machines in Figure 15.6. A normal probability plot of the residu-
als is shown in Figure 15.7. These plots do not reveal any major departures from the assump-
tions, so we conclude that the covariance model (Equation 15.15) is appropriate for the break-
ing strength data.

It is interesting to note what would have happened in this experiment if an analysis of
covariance had not been performed, that is, if the breaking strength data (y) had been analyzed
as a completely randomized single-factor experiment in which the covariate x was ignored.
The analysis of variance of the breaking strength data is shown in Table 15.14. We immedi-
ately notice that the error estimate is much longer in the CRD analysis (17.17 versus 2.54).
This is a reflection of the effectiveness of analysis of covariance in reducing error variability.
We would also conclude, based on the CRD analysis, that machines differ significantly in the
strength of fiber produced. This is exactly opposite the conclusion reached by the covariance
analysis. If we suspected that the machines differed significantly in their effect on fiber

ŷij
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strength, then we would try to equalize the strength output of the three machines. However,
in this problem the machines do not differ in the strength of fiber produced after the linear
effect of fiber diameter is removed. It would be helpful to reduce the within-machine fiber
diameter variability because this would probably reduce the strength variability in the fiber.

Analysis of Covariance as an Alternative to Blocking In some situations, the
experimenter may have a choice between either running a completely randomized design
with a covariate or running a randomized block design with the covariate used in some fash-
ion to form the blocks. If the relationship between the covariate and the response is really
well-approximated by a straight line and that is the form of the covariance model that the
experimenter chooses, then either of these approaches is about equally effective. However,
if the relationship isn’t linear and a linear model is assumed, the analysis of covariance will
be outperformed in error reduction by the randomized block design. Randomized block
designs do not make any explicit assumptions about relationships between the nuisance vari-
ables (covariates) and the response. Generally, a randomized block design will have fewer
degrees if freedom for error than a covariance model but the resulting loss of statistical
power is usually quite small. 

15.3.2 Computer Solution

Several computer software packages now available can perform the analysis of covariance.
The output from the Minitab General Linear Models procedure for the data in Example 15.4
is shown in Table 15.15. This output is very similar to those presented previously. In the
section of the output entitled “Analysis of Variance,” the “Seq SS” correspond to a “sequen-
tial” partitioning of the overall model sum of squares, say

whereas the “Adj SS” corresponds to the “extra” sum of squares for each factor, that is,

and

Note that SS (Machine ƒDiameter) is the correct sum of squares to use for testing for no
machine effect, and SS (Diameter ƒMachine) is the correct sum of squares to use for testing the
hypothesis that � � 0. The test statistics in Table 15.15 differ slightly from those computed
manually because of rounding.

The program also computes the adjusted treatment means from Equation 15.31
(Minitab refers to those as least squares means on the sample output) and the standard errors.

SS (Diameter�Machine) � 178.01

SS (Machine �Diameter) � 13.28

�  318.41
�  305.13 � 13.28

SS (Model) � SS (Diameter) � SS (Machine�Diameter)

■ TA B L E  1 5 . 1 4
Incorrect Analysis of the Breaking Strength Data as a Single-Factor Experiment

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square F0 P-Value

Machines 140.40 2 70.20 4.09 0.0442

Error 206.00 12 17.17

Total 346.40 14 



The program will also compare all pairs of treatment means using the pairwise multiple com-
parison procedures discussed in Chapter 3.

15.3.3 Development by the General Regression 
Significance Test

It is possible to develop formally the ANCOVA procedure for testing H0 : �i � 0 in the covari-
ance model

(15.35)

using the general regression significance test. Consider estimating the parameters in the
model (Equation 15.15) by least squares. The least squares function is

(15.36)L � �
a

i�1
�
n

j�1
 [yij � � � �i � �(xij � x..)]

2

yij � � � �i � �(xij � x..) � �ij  �i � 1, 2, . . . , a
j � 1, 2, . . . , n
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■ TA B L E  1 5 . 1 5
Minitab Output (Analysis of Covariance) for Example 15.5

General Linear Model

Factor Type Levels Values

Machine fixed 3 1 2 3

Analysis of Variance for Strength, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P

Diameter 1 305.13 178.01 178.01 69.97 0.000

Machine 2 13.28 13.28 6.64 2.61 0.118

Error 11 27.99 27.99 2.54

Total 14 346.40

Term Coef Std. Dev. T P

Constant 17.177 2.783 6.17 0.000

Diameter 0.9540 0.1140 8.36 0.000

Machine

1 0.1824 0.5950 0.31 0.765

2 1.2192 0.6201 1.97 0.075

Means for Covariates

Covariate Mean Std. Dev.

Diameter 24.13 4.324

Least Squares Means for Strength

Machine Mean Std. Dev.

1 40.38 0.7236

2 41.42 0.7444

3 38.80 0.7879 
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and from L/ � � L/ �i � L/ � � 0, we obtain the normal equations

(15.37a)

(15.37b)

(15.37c)

Adding the a equations in Equation 15.37b, we obtain Equation 15.37a because
� 0, so there is one linear dependency in the normal equations. Therefore,

it is necessary to augment Equations 15.37 with a linearly independent equation to obtain a
solution. A logical side condition is � 0.

Using this condition, we obtain from Equation 15.37a

(15.38a)

and from Equation 15.37b

(15.38b)

Equation 15.37c may be rewritten as

after substituting for . But we see that

and

Therefore, the solution to Equation 15.37c is

which was the result given previously in Section 15.3.1, Equation 15.26.
We may express the reduction in the total sum of squares due to fitting the full model

(Equation 15.15) as

� y2
../an � Tyy � (Exy)

2/Exx

� y2
../an � Tyy � (Exy/Exx)(Txy � Sxy)

� y2
../an � �

a

i�1
 (yi. � y..)yi. � (Exy/Exx) �

a

i�1
 (xi. � x..)yi. � (Exy/Exx)Sxy

�  (y..)y.. � �
a

i�1
 [yi. � y.. � (Exy/Exx)(xi. � x..)]yi. � (Exy/Exx)Sxy

R(�, �, �) � �̂y.. � �
a

i�1
�̂iyi. � �̂Sxy

�̂ �
Sxy � Txy

Sxx � Txx
�

Exy

Exx

�
a

i�1
 (xi. � x..) �

n

j�1
 (xij � x..) � Txx

�
a

i�1
 (yi. � y..) �

n

j�1
 (xij � x..) � Txy

�̂i

�
a

i�1
 (yi. � y..) �

n

j�1
 (xij � x..) � �̂ �

a

i�1
 (xi. � x..) �

n

j�1
 (xij � x..) � �̂Sxx � Sxy

�̂i � yi. � y.. � �̂(xi. � x..)

�̂ � y..

�a
i�1 �̂i

(xij � x..)�a
i�1 �n

j�1

�� �
a

i�1
�̂i �

n

j�1
 (xij � x..) � �̂Sxx � Sxy

�i� n�̂ � n�̂i � �̂ �
n

j�1
 (xij � x..) � yi.   i � 1, 2, . . . , a

�� an�̂ � n �
a

i�1
�̂i � y..

������



This sum of squares has a � 1 degrees of freedom because the rank of the normal equations
is a � 1. The error sum of squares for this model is

(15.39)

with an � (a � 1) � a(n � 1) � 1 degrees of freedom. This quantity was obtained previously
as Equation 15.27.

Now consider the model restricted to the null hypothesis, that is, to H0 : �1 � �2 � � � � �
�a � 0. This reduced model is

(15.40)

This is a simple linear regression model, and the least squares normal equations for this model are

(15.41a)

(15.41b)

The solutions to these equations are and , and the reduction in the total
sum of squares due to fitting the reduced model is

(15.42)

This sum of squares has two degrees of freedom.
We may find the appropriate sum of squares for testing H0 : �1 � �2 � � � � � �a � 0 as

(15.43)

using Tyy � Syy � Eyy. Note that R(� ƒ�, �) has a � 1 � 2 � a � 1 degrees of freedom and is
identical to the sum of squares given by � SSE in Section 15.3.1. Thus, the test statistic
for H0 : �i � 0 is

(15.44)

which we gave previously as Equation 15.30. Therefore, by using the general regression sig-
nificance test, we have justified the heuristic development of the analysis of covariance in
Section 15.3.1.

15.3.4 Factorial Experiments with Covariates

Analysis of covariance can be applied to more complex treatment structures, such as factorial
designs. Provided enough data exists for every treatment combination, nearly any complex
treatment structure can be analyzed through the analysis of covariance approach. We now
show how the analysis of covariance could be used in the most common family of factorial
designs used in industrial experimentation, the 2k factorials.

F0 �
R(���, �)/(a � 1)

SSE/[a(n � 1) � 1]
�

(SS�E � SSE)/(a � 1)
SSE/[a(n � 1) � 1]

SS�E

� Syy � (Sxy)
2/Sxx � [Eyy � (Exy)

2/Exx]

� y2
../an � Tyy � (Exy)

2/Exx � y2
../an � (Sxy)

2/Sxx

R(� ��, �) � R(�, �, �) � R(�, �)

� y2
../an � (Sxy)

2/Sxx

�  (y..)y.. � (Sxy/Sxx)Sxy

R(�, �) � �̂y.. � �̂Sxy

�̂ � Sxy/Sxx�̂ � y..

�̂Sxx � Sxy

an�̂ � y..

yij � � � �(xij � x..) � �ij  �i � 1, 2, . . . , a
j � 1, 2, . . . , n

� Eyy � (Exy)
2/Exx

� Syy � Tyy � (Exy)
2/Exx

� �
a

i�1
�
n

j�1
y2

ij � y2
../an � Tyy � (Exy)

2/Exx

SSE � �
a

i�1
�
n

j�1
y2

ij � R(�, �, �)

15.3 The Analysis of Covariance 667



668 Chapter 15 ■ Other Design and Analysis Topics

Imposing the assumption that the covariate affects the response variable identically
across all treatment combinations, an analysis of covariance table similar to the procedure
given in Section 15.3.1 could be performed. The only difference would be the treatment sum
of squares. For a 22 factorial with n replicates, the treatment sum of squares (Tyy) would be
(1/n) . This quantity is the sum of the sums of squares for factors A,
B, and the AB interaction. The adjusted treatment sum of squares could then be partitioned
into individual effect components, that is, adjusted main effects sum of squares SSA and SSB,
and an adjusted interaction sum of squares, SSAB.

The amount of replication is a key issue when broadening the design structure of the
treatments. Consider a 23 factorial arrangement. A minimum of two replicates is needed to
evaluate all treatment combinations with a separate covariate for each treatment combination
(covariate by treatment interaction). This is equivalent to fitting a simple regression model to
each treatment combination or design cell. With two observations per cell, one degree of
freedom is used to estimate the intercept (the treatment effect), and the other is used to esti-
mate the slope (the covariate effect). With this saturated model, no degrees of freedom are avail-
able to estimate the error. Thus, at least three replicates are needed for a complete analysis of
covariance, assuming the most general case. This problem becomes more pronounced as the
number of distinct design cells (treatment combinations) and covariates increases.

If the amount of replication is limited, various assumptions can be made to allow some
useful analysis. The simplest assumption (and typically the worst) that can be made is that the
covariate has no effect. If the covariate is erroneously not considered, the entire analysis and
subsequent conclusions could be dramatically in error. Another choice is to assume that there
is no treatment by covariate interaction. Even if this assumption is incorrect, the average
affect of the covariate across all treatments will still increase the precision of the estimation
and testing of the treatment effects. One disadvantage of this assumption is that if several
treatment levels interact with the covariate, the various terms may cancel one another out and
the covariate term, if estimated alone with no interaction, may be insignificant. A third choice
would be to assume some of the factors (such as some two-factor and higher interactions) are
insignificant. This allows some degrees of freedom to be used to estimate error. This course
of action, however, should be undertaken carefully and the subsequent models evaluated thor-
oughly because the estimation of error will be relatively imprecise unless enough degrees of
freedom are allocated for it. With two replicates, each of these assumptions will free some
degrees of freedom to estimate error and allow useful hypothesis tests to be performed. Which
assumption to enforce should be dictated by the experimental situation and how much risk the
experimenter is willing to assume. We caution that in the effects model-building strategy if a
treatment factor is eliminated, then the resulting two “replicates” of each original 23 are not
truly replicates. These “hidden replicates” do free �1 degrees of freedom for parameter esti-
mation but should not be used as replicates to estimate pure error because the execution of the
original design may not have been randomized that way.

To illustrate some of these ideas, consider the 23 factorial design with two replicates and
a covariate shown in Table 15.16. If the response variable y is analyzed without accounting
for the covariate, the following model results:

The overall model is significant at the 	 � 0.01 level with R2 � 0.786 and MSE � 470.82.
The residual analysis indicates no problem with this model except the observation with y �
103.01 is unusual.

If the second assumption, common slopes with no treatment by covariate interaction, is
chosen, the full effects model and the covariate effect can be estimated. The JMP output  is shown
in Table 15.17. Notice that the MSE has been reduced considerably by considering the covariate.
The final resulting analysis after sequentially removing each nonsignificant interaction and the

ŷ � 25.03 � 11.20A � 18.05B � 7.24C � 18.91AB � 14.80AC

y2
ij. � y2

.../(2)(2)n�2
i�1 �2

j�1
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■ TA B L E  1 5 . 1 6
Response and Covariate Data for a 23 with 2 Replicates

A B C x y

�1 �1 �1 4.05 �30.73

1 �1 �1 0.36 9.07

�1 1 �1 5.03 39.72

1 1 �1 1.96 16.30

�1 �1 1 5.38 �26.39

1 �1 1 8.63 54.58

�1 1 1 4.10 44.54

1 1 1 11.44 66.20

�1 �1 �1 3.58 �26.46

1 �1 �1 1.06 10.94

�1 1 �1 15.53 103.01

1 1 �1 2.92 20.44

�1 �1 1 2.48 �8.94

1 �1 1 13.64 73.72

�1 1 1 �0.67 15.89

1 1 1 5.13 38.57 

■ TA B L E  1 5 . 1 7
JMP Analysis of Covariance for the Experiment in Table 15.16, Assuming a Common Slope

Response Y

Summary of Fit

RSquare 0.971437

RSquare Adj 0.938795

Root Mean Square Error 9.47287

Mean of Response 25.02875

Observations for (or Sum Wgts) 16

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 8 21363.834 2670.48 29.7595

Error 7 628.147 89.74 Prob > F

C. Total 15 21991.981 <.0001*

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

Intercept �1.015872 5.454106 �0.19 0.8575

X 4.9245327 0.928977 5.30 0.0011*

X1 9.4566966 2.39091 3.96 0.0055*
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X2 16.128277 2.395946 6.73 0.0003*

X3 2.4287693 2.536347 0.96 0.3702

X1*X2 �15.59941 2.448939 �6.37 0.0004*

X1*X3 �0.419306 3.72135 �0.11 0.9135

X2*X3 �0.863837 2.824779 �0.31 0.7686

X1*X2*X3 1.469927 2.4156 0.61 0.5621

Sorted Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

X2 16.128277 2.395946 6.73 0.0003*

X1*X2 �15.59941 2.448939 �6.37 0.0004*

x 4.9245327 0.928977 5.30 0.0011*

X1 9.4566966 2.39091 3.96 0.0055*

X3 2.4287693 2.536347 0.96 0.3702

X1*X2*X3 1.469927 2.4156 0.61 0.5621

X2*X3 �0.863837 2.824779 �0.31 0.7686

X1*X3 �0.419306 3.72135 �0.11 0.9135
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main effect C is shown in Table 15.18. This reduced model provides an even smaller MSE than
does the full model with the covariate in Table 15.17.

Finally, we could consider a third course of action, assuming certain interaction terms
are negligible. We consider the full model that allows for different slopes between treatments
and treatment by covariate interaction. We assume that the three-factor interactions (both ABC
and ABCx) are not significant and use their associated degrees of freedom to estimate error in
the most general effects model that can be fit. This is often a practical assumption. Three-
factor and higher interactions are usually negligible in most experimental settings. We used
JMP for the analysis, and the results are shown in Table 15.19. The type III sums of squares
are the adjusted sums of squares that we require.

With a near-saturated model, the estimate of error will be fairly imprecise. Even with
only a few terms being individually significant at the 	 � 0.05 level, the overall sense is that
this model is better than the two previous scenarios (based on R2 and the mean square for
error). Because the treatment effects aspect of the model is of more interest, we sequentially
remove terms from the covariate portion of the model to add degrees of freedom to the esti-
mate of error. If we sequentially remove the ACx term followed by BCx, the MSE decreases  and
several terms are insignificant. The final model is shown in Table 15.20 after sequentially
removing Cx, AC, and BC.

This example emphasizes the need to have degrees of freedom available to estimate
experimental error in order to increase the precision of the hypothesis tests associated with
the individual terms in the model. This process should be done sequentially to avoid eliminat-
ing significant terms masked by a poor estimate of error.

Reviewing the results obtained from the three approaches, we note that each method
successively improves the model fit in this example. If there is a strong reason to believe that
the covariate does not interact with the factors, it may be best to make that assumption at the
outset of the analysis. This choice may also be dictated by software. Although experimental
design software packages may only be able to model covariates that do not interact with
treatments, the analyst may have a reasonable chance of identifying the major factors influ-
encing the process, even if there is some covariate by treatment interaction. We also note that
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■ TA B L E  1 5 . 1 8
JMP Analysis of Covariance, Reduced Model for the Experiment in Table 15.16

Response Y

Whole Model

Summary of Fit

RSquare 0.96529

RSquare Adj 0.952668

Root Mean Square Error 8.330324

Mean of Response 25.02875

Observations (or Sum Wgts) 16

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 4 21228.644 5307.16 76.4783

Error 11 763.337 69.39 Prob > F

C. Total 15 21991.981 <.0001*

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

Intercept �1.878361 3.224761 �0.58 0.5720

X 5.0876125 0.465535 10.93 <.0001*

X1 9.3990071 2.089082 4.50 0.0009*

X2 16.064472 2.090531 7.68 <.0001*

X1*X2 �15.48994 2.105895 �7.36 <.0001*

■ TA B L E  1 5 . 1 9
JMP Output for the Experiment in Table 15.16

Response Y

Summary of Fit

RSquare 0.999872

RSquare Adj 0.999044

Root Mean Square Error 1.18415

Mean of Response 25.02875

Observations (or Sum Wgts) 16

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 13 21989.177 1691.48 1206.292

Error 2 2.804 1.40 Prob > F

C. Total 15 21991.981 0.0008*
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Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

Intercept 10.063551 1.018886 9.88 0.0101*

x 2.1420242 0.361866 5.92 0.0274*

X1 13.887593 1.29103 10.76 0.0085*

X2 19.4443 1.12642 17.26 0.0033*

X3 5.0908008 1.114861 4.57 0.0448*

X1*X2 �19.59556 0.701412 �27.94 0.0013*

X1*X3 �0.23434 1.259161 �0.19 0.8695

X2*X3 �0.368071 0.887678 �0.41 0.7186

X1*(x-5.28875) 2.1171372 0.429771 4.93 0.0388*

X2*(x-5.28875) 3.0175357 0.364713 8.27 0.0143*

X3*(x-5.28875) �0.096716 0.356887 �0.27 0.8118

X1*X2*(x-5.28875) �2.949107 0.190284 �15.50 0.0041*

X1*X3*(x-5.28875) �0.012116 0.415868 �0.03 0.9794

X2*X3*(x-5.28875) 0.0848196 0.401999 0.21 0.8524

Sorted Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

X1*X2 �19.59556 0.701412 �27.94 0.0013*

X2 19.4443 1.12642 17.26 0.0033*

X1*X2*(x-5.28875) �2.949107 0.190284 �15.50 0.0041*

X1 13.887593 1.29103 10.76 0.0085*

X2*(x-5.28875) 3.0175357 0.364713 8.27 0.0143*

x 2.1420242 0.361866 5.92 0.0274*

X1*(x-5.28875) 2.1171372 0.429771 4.93 0.0388*

X3 5.0908008 1.114861 4.57 0.0448*

X2*X3 �0.368071 0.887678 �0.41 0.7186

X3*(x-5.28875) �0.096716 0.356887 �0.27 0.8118

X2*X3*(x-5.28875) 0.0848196 0.401999 0.21 0.8524

X1*X3* �0.23434 1.259161 �0.19 0.8695

X1*X3*(x-5.28875) �0.012116 0.415868 �0.03 0.9794
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all the usual tests of model adequacy are still appropriate and are strongly recommended as
part of the ANCOVA model building process.

Another situation involving covariates arises often in practice. The experimenter has
available a collection of experimental units, and these units can be described or characterized
by some measured quantities than have the potential to affect the outcome of the experiment
in which they are used. This happens frequently in clinical studies where the experimental
units are patients and they are characterized in terms of factors such as gender, age, blood pres-
sure, weight, or other parameters relevant to the specific study. The design factors for the
experiment can include type of pharmacological agent, dosage, and how frequently the dose
is administered. The experimenter wants to select a subset of the experimental units that is
optimal with respect to the design factors that are to be studied. In this type of problem the
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■ TA B L E  1 5 . 2 0
JMP Output for the Experiment in Table 15.16, Reduced Model

Response Y

Summary of Fit

RSquare 0.999743

RSquare Adj 0.99945

Root Mean Square Error 0.898184

Mean of Response 25.02875

Observations (or Sum Wgts) 16

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 8 21986.334 2748.29 3406.688

Error 7 5.647 0.81 Prob > F

C. Total 15 21991.981 <.0001*

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

Intercept 10.234044 0.544546 18.79 <.0001*

x 2.05036 0.118305 17.33 <.0001*

X1 13.694768 0.273254 50.12 <.0001*

X2 19.709839 0.272411 72.35 <.0001*

X3 5.4433644 0.321496 16.93 <.0001*

X1*X2 �19.40839 0.27236 �71.26 <.0001*

X1*(x-5.28875) 2.0628522 0.121193 17.02 <.0001*

X2*(x-5.28875) 3.0321079 0.116027 26.13 <.0001*

X1*X2*(x-5.28875) �3.031387 0.11686 �25.94 <.0001*

Sorted Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|

X2 19.709839 0.272411 72.35 <.0001*

X1*X2 �19.40839 0.27236 �71.26 <.0001*

X1 13.694768 0.273254 50.12 <.0001*

X2(x-5.28875) 3.0321079 0.116027 26.13 <.0001*

X1*X2*(x-5.28875) �3.031387 0.11686 �25.94 <.0001*

x 2.05036 0.118305 17.33 <.0001*

X1*(x-5.28875) 2.0628522 0.121193 17.02 <.0001*

X3 5.4433644 0.321496 16.93 <.0001*

experimenter knows the values of the covariates in advance of running the experiment and
wants to obtain the best possible design taking the values of the covariates into account. This
design problem can be solved using the D-optimality criterion 9 the mathematical details are
beyond the scope of this book, but see the supplemental material for this chapter).

To illustrate, suppose that a chemical manufacturer is producing an additive for motor oil.
He knows that final properties of his additive depend on two design factors that he can control
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and also to some extent on the viscosity and molecular weight of one of the basic raw materi-
als. There are 40 samples of this raw material available for use in his experiment. Table 15.21
contains the viscosity and molecular weight measurements for the 40 raw material samples.

Figure 15.8 is a scatter plot of the viscosity and molecular weight data in Table 15.21.
As the manufacturer suspects, there is a relationship between the two quantities.

■ TA B L E  1 5 . 2 1
Viscosity and Molecular Weight Data

Sample Viscosity Molecular Weight

1 32 1264
2* 33.5 1250
3 37 1290
4* 30.9 1250
5* 50 1325
6 37 1296
7 55 1340
8 58 1359
9* 46 1278

10 44 1260
11* 58.3 1329
12 31.9 1250
13* 32.5 1246
14* 59 1304
15* 57.8 1303
16* 60 1336
17 33 1275
18* 36 1290
19 57.1 1326
20 58.3 1330
21* 32 1264
22* 33.5 1250
23* 37 1290
24* 30.9 1250
25* 50 1325
26* 37 1296
27* 55 1340
28 58 1359
29* 46 1278
30 44 1260
31 58.3 1329
32 31.9 1250
33 32.5 1246
34 59 1304
35 57.8 1303
36 60 1336
37 33 1275
38* 36 1290
39* 57.1 1326
40 58.3 1330
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■ TA B L E   1 5 . 2 2
The 20-Run D-optimal Design from JMP

Run Viscosity Molecular Weight X3 X4

1 44 1260 1 1
2 32.5 1246 1 �1
3 36 1290 �1 �1
4 60 1336 �1 1
5 30.9 1250 1 1
6 33.5 1250 �1 1
7 59 1304 �1 �1
8 58 1359 1 1
9 37 1290 �1 1

10 33 1275 1 �1
11 58.3 1330 1 �1
12 32 1264 �1 �1
13 57.1 1326 1 �1
14 58.3 1329 �1 1
15 46 1278 �1 �1
16 57.8 1303 1 1
17 31.9 1250 �1 1
18 37 1296 1 1
19 55 1340 �1 �1

20 50 1325 1 �1

There are two quantitative factors x3 and x4 that the manufacturer suspects affect the
final properties of his product. He wants to conduct a factorial experiment to study these two
factors. Each run of the experiment will require one sample of the available 40 samples of raw
material. He feels that a 20-run experiment will be adequate to investigate the effects of the
two factors. Table 15.22 is the D-optimal design from JMP assuming a main effects plus 

■ F I G U R E  1 5 . 8 Scatter Plot of the Viscosity 
versus Molecular Weight Data from Table 15.21.
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two-factor interaction in the design factors and a sample size of 20. The 20 raw material sam-
ples that are selected by the D-optimal algorithm are indicated in Table 15.21 with asterisks
in the sample column. Figure 15.9 is the scatter plot of viscosity versus molecular weight
with the selected samples shown in larger dots. Notice that the selected samples “spread out”
over the boundary of the convex hull of points. This is consistent with the tendency of D-opti-
mal designs to spread observations to the boundaries of the experimental region. The design
points selected in the two factors x3 and x4 correspond to a 22 factorial experiment with 
n � 5 replicates.

Table 15.23 presents the relative variance of the coefficients for the model for the 
D-optimal design. Notice that the design factors are all estimated with the best possible
precision (relative variance � 1/N � 1/20 � 0.05) while the covariates are estimated with
different precisions that depends on their spread in the original set of 40 samples. The alias
matrix is shown in Table 15.24. The numbers in the table are the correlations between
model terms. All correlations are small, a consequence of the D-optimality criterion
spreading the design points out as much as possible.

■ F I G U R E  1 5 . 9 Scatter Plot of the Viscosity 
versus Molecular Weight Data from Table 15.21, with
the Selected Design Points Shown as Larger Dots
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■ TA B L E  1 5 . 2 3
Relative Variances of the Coefficients for the D-Optimal Design in Table 15.22

Effect Relative Variance

Intercept 0.058

Viscosity 0.314

Molecular Weight 0.516

X3 0.050

X4 0.050

X3X4 0.050
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15.4 Repeated Measures

In experimental work in the social and behavioral sciences and some aspects of engineering
the physical sciences, and business, the experimental units are frequently people. Because of
differences in experience, training, or background, the differences in the responses of differ-
ent people to the same treatment may be very large in some experimental situations. Unless
it is controlled, this variability between people would become part of the experimental error,
and in some cases, it would significantly inflate the error mean square, making it more dif-
ficult to detect real differences between treatments. In many repeated measures the experi-
mental units are not necessarily people; they could be different stores in a marketing study,
or plants, or experimental animals, and so on. We typically think of these experimental units
as subjects.

It is possible to control this variability between people or “projects” by using a design
in which each of the a treatments is used on each person. Such a design is called a repeated
measures design. In this section, we give a brief introduction to repeated measures experi-
ments with a single factor.

Suppose that an experiment involves a treatments and every treatment is to be used
exactly once on each of n subjects. The data would appear as in Table 15.25. Note that the
observation yij represents the response of subject j to treatment i and that only n subjects are
used. The model that we use for this design is

(15.45)yij � � � �i � �j � �ij

■ TA B L E  1 5 . 2 4
The Alias Matrix

Effect 12 13 14 23 24 34

Intercept 0.417 0.066 0.007 0.084 0.005 0

Viscosity �0.19 �0.2 �0.15 �0.24 �0.18

Molecular weight 0.094 0.252 0.33 0.387 0.415 0

X3 0.011 �0.01 0.008 �0.14 �0.02 0

X4 0.063 0.019 0.005 0 �0.12 0

X3X4 �0.09 �0.03 �0.04 �0.04 �0.042 1

■ TA B L E  1 5 . 2 5
Data for a Single-Factor Repeated Measures Design

Subject
Treatment

Treatment 1 2 ��� n Totals

1 y11 y12 ��� y1n y1.

2 y21 y22 ��� y2n y2.

a ya1 ya2 yan ya.

Subject Totals y.1 y.2 ��� y.n y..

ooooo
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where �i is the effect of the ith treatment and �j is a parameter associated with the jth sub-
ject. We assume that treatments are fixed (so �i � 0) and that the subjects employed
are a random sample of subjects from some larger population of potential subjects. Thus,
the subjects collectively represent a random effect, so we assume that the mean of �j is
zero and that the variance of �j is . Because the term �j is common to all a measure-
ments on the same subject, the covariance between yij and is not, in general, zero. It is
customary to assume that the covariance between yij and is constant across all 
treatments and subjects.

Consider an analysis of variance partitioning of the total sum of squares, say

(15.46)

We may view the first term on the right-hand side of Equation 15.46 as a sum of squares that
results from differences between subjects and the second term as a sum of squares of differ-
ences within subjects. That is,

The sums of squares SSBetween Subjects and SSWithin Subjects are statistically independent, with
degrees of freedom

The differences within subjects depend on both differences in treatment effects and
uncontrolled variability (noise or error). Therefore, we may decompose the sum of squares
resulting from differences within subjects as follows:

(15.47)

The first term on the right-hand side of Equation 15.47 measures the contribution of the dif-
ference between treatment means to SSWithin Subjects, and the second term is the residual varia-
tion due to error. Both components of SSWithin Subjects are independent. Thus,

with the degrees of freedom given by

respectively.
To test the hypothesis of no treatment effect, that is,

we would use the ratio

(15.48)

If the model errors are normally distributed, then under the null hypothesis, H0 : �i � 0, the
statistic F0 follows an Fa�1,(a�1)(n�1) distribution. The null hypothesis would be rejected if F0 

F	,a�1,(a�1)(n�1).

F0 �
SSTreatment/(a � 1)

SSE/(a � 1)(n � 1)
�

MSTreatments

MSE

H1� At least one �i Z 0
H0� �1 � �2 � Á � �a � 0

n(a � 1) � (a � 1) � (a � 1)(n � 1)

SSWithin Subjects � SSTreatments � SSE
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n
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■ TA B L E  1 5 . 2 6
Analysis of Variance for a Single-Factor Repeated Measures Design

Degrees of
Source of Variation Sums of Squares Freedom Mean Square F0

1. Between subjects n � 1

2. Within subjects n(a � 1)

3. Treatments a � 1

4. Error Subtraction: line (2) � line (3) (a � 1)(n � 1)

5. Total an � 1�
a

i�1
�
n

j�1
y2

ij �
y2

..

an

MSE �
SSE

(a � 1)(n � 1)

MSTreatment

MSE
MSTreatment �

SSTreatment

a � 1�
a

i�1

y2
i.

n �
y2

..

an

�
a

i�1
�
n

j�1
y2

ij � �
n

j�1

y2
.j

a

�
n

j�1

y2
.j

a �
y2

..

an

The analysis of variance procedure is summarized in Table 15.26, which also gives con-
venient computing formulas for the sums of squares. Readers should recognize the analysis
of variance for a single-factor design with repeated measures as equivalent to the analysis for
a randomized complete block design, with subjects considered to be the blocks. Residual
analysis and model adequacy checking is done exactly as in the RCBO.

15.1. Reconsider the experiment in Problem 5.24. Use the
Box–Cox procedure to determine whether a transformation on
the response is appropriate (or useful) in the analysis of the
data from this experiment.

15.2. In Example 6.3 we selected a log transformation for
the drill advance rate response. Use the Box–Cox procedure
to demonstrate that this is an appropriate data transformation.

15.3. Reconsider the smelting process experiment in
Problem 8.23, where a 26�3 fractional factorial design was
used to study the weight of packing material that is stuck to
carbon anodes after baking. Each of the eight runs in the
design was replicated three times, and both the average weight
and the range of the weights at each test combination were
treated as response variables. Is there any indication that a
transformation is required for either response?

15.4. In Problem 8.25 a replicated fractional factorial design
was used to study substrate camber in semiconductor manufac-
turing. Both the mean and standard deviation of the camber
measurements were used as response variables. Is there any
indication that a transformation is required for either response?

15.5. Reconsider the photoresist experiment in Problem
8.26. Use the variance of the resist thickness at each test com-
bination as the response variable. Is there any indication that
a transformation is required?
15.6. In the grill defects experiment described in Problem
8.30, a variation of the square root transformation was
employed in the analysis of the data. Use the Box–Cox
method to determine whether this is the appropriate 
transformation.
15.7. In the central composite design of Problem 12.11, two
responses were obtained, the mean and variance of an oxide
thickness. Use the Box–Cox method to investigate the poten-
tial usefulness of transformation for both of these responses.
Is the log transformation suggested in part (c) of that problem
appropriate?

15.8. In the 33 factorial design of Problem 12.12 one of the
responses is a standard deviation. Use the Box–Cox method to
investigate the usefulness of transformations for this response.
Would your answer change if we used the variance as the
response?

15.5 Problems



680 Chapter 15 ■ Other Design and Analysis Topics

15.9. Problem 12.10 suggests using ln (s2) as the response
[refer to part (b)]. Does the Box–Cox method indicate that a
transformation is appropriate?

15.10. Myers, Montgomery, Vining and Robinson (2010)
describe an experiment to study spermatozoa survival. The
design factors are the amount of sodium citrate, the amount of
glycerol, and equilibrium time, each at two levels. The
response variable is the number of spermatozoa that survive
out of 50 that were tested at each set of conditions. The data
are shown in the following table:

Sodium Equilibrium Number
Citrate Glycerol Time Survived

� � � 34

� � � 20

� � � 8

� � � 21

� � � 30

� � � 20

� � � 10

� � � 25

Analyze the data from this experiment with logistic 
regression.

15.11. A soft drink distributor is studying the effectiveness
of delivery methods. Three different types of hand trucks have
been developed, and an experiment is performed in the com-
pany’s methods engineering laboratory. The variable of inter-
est is the delivery time in minutes (y); however, delivery time
is also strongly related to the case volume delivered (x). Each
hand truck is used four times and the data that follow are
obtained. Analyze these data and draw appropriate conclu-
sions. Use 	 � 0.05.

Hand Truck Type

1 2 3

y x y x y x

27 24 25 26 40 38

44 40 35 32 22 26

33 35 46 42 53 50

41 40 26 25 18 20

15.12. Compute the adjusted treatment means and the stan-
dard errors of the adjusted treatment means for the data in
Problem 15.11.

15.13. The sums of squares and products for a single-factor
analysis of covariance follow. Complete the analysis and draw
appropriate conclusions. Use 	 � 0.05.

Sums of Squares 
Source of Degrees of and Products
Variation Freedom x xy y

Treatment 3 1500 1000 650

Error 12 6000 1200 550

Total 15 7500 2200 1200

15.14. Find the standard errors of the adjusted treatment
means in Example 15.5.

15.15. Four different formulations of an industrial glue are
being tested. The tensile strength of the glue when it is applied
to join parts is also related to the application thickness. Five
observations on strength (y) in pounds and thickness (x) in
0.01 inches are obtained for each formulation. The data are
shown in the following table. Analyze these data and draw
appropriate conclusions.

Glue Formulation

1 2 3 4
y x y x y x y x

46.5 13 48.7 12 46.3 15 44.7 16

45.9 14 49.0 10 47.1 14 43.0 15

49.8 12 50.1 11 48.9 11 51.0 10

46.1 12 48.5 12 48.2 11 48.1 12

44.3 14 45.2 14 50.3 10 48.6 11

15.16. Compute the adjusted treatment means and their stan-
dard errors using the data in Problem 15.15.

15.17. An engineer is studying the effect of cutting speed on
the rate of metal removal in a machining operation. However,
the rate of metal removal is also related to the hardness of the
test specimen. Five observations are taken at each cutting
speed. The amount of metal removed (y) and the hardness of
the specimen (x) are shown in the following table. Analyze the
data using an analysis of covariance. Use 	 � 0.05.

Cutting Speed (rpm)

1000 1200 1400
y x y x y x

68 120 112 165 118 175

90 140 94 140 82 132

98 150 65 120 73 124

77 125 74 125 92 141

88 136 85 133 80 130

15.18. Show that in a single-factor analysis of covariance
with a single covariate a 100(1 � 	) percent confidence inter-
val on the ith adjusted treatment mean is

yi. � �̂(xi. � x..) 
 t	/2,a(n�1)�1
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Using this formula, calculate a 95 percent confidence interval
on the adjusted mean of machine 1 in Example 15.5.

15.19. Show that in a single-factor analysis of covariance
with a single covariate, the standard error of the difference
between any two adjusted treatment means is

15.20. Discuss how the operating characteristic curves for the
analysis of variance can be used in the analysis of covariance.

15.21. Three different Pinot Noir wines were evaluated by a
panel of eight judges. The judges are considered a random
panel of all possible judges. The wines are evaluated on a 100-
point scale. The wines were presented in random order to each
judge, and the following results obtained.

SAdjyi.�Adjyj.
� �MSE �2

n �
(xi. � xj.)

2

Exx
�	1/2

�MSE�1
n �

(xi. � xi..)
2

Exx
�	1/2 Wine

Judge 1 2 3

1 85 88 93

2 90 89 94

3 88 90 98

4 91 93 96

5 92 92 95

6 89 90 95

7 90 91 97

8 91 89 98

Analyze the data from this experiment. Is there a difference in
wine quality? Analyze the residuals and comment on model
adequacy.
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I Cumulative Standard Normal Distributiona

z 0.00 0.01 0.02 0.03 0.04 z

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.0
0.1 0.53983 0.54379 0.54776 0.55172 0.55567 0.1
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.2
0.3 0.61791 0.62172 0.62551 0.62930 0.63307 0.3
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.4

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.5
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.6
0.7 0.75803 0.76115 0.76424 0.76730 0.77035 0.7
0.8 0.78814 0.79103 0.79389 0.79673 0.79954 0.8
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.9

1.0 0.84134 0.84375 0.84613 0.84849 0.85083 1.0
1.1 0.86433 0.86650 0.86864 0.87076 0.87285 1.1
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 1.2
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 1.3
1.4 0.91924 0.92073 0.92219 0.92364 0.92506 1.4

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 1.5
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 1.6
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 1.7
1.8 0.96407 0.96485 0.96562 0.96637 0.96711 1.8
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 1.9

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 2.0
2.1 0.98214 0.98257 0.98300 0.98341 0.93882 2.1
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 2.2
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 2.3
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 2.4

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 2.5
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 2.6
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 2.7
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 2.8
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 2.9

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 3.0
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 3.1
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 3.2
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 3.3
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 3.4

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 3.5
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 3.6
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 3.7
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 3.8
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 3.9

aReproduced with permission from Probability and Statistics in Engineering and Management Science, 3rd edition, by W. W. Hines
and D. C. Montgomery, Wiley, New York, 1990.

�(z) � � z

��

1
�2�

e�u2/2 du
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I Cumulative Standard Normal Distribution (Continued)

z 0.05 0.06 0.07 0.08 0.09 z

0.0 0.51994 0.52392 0.52790 0.53188 0.53586 0.0
0.1 0.55962 0.56356 0.56749 0.57142 0.57534 0.1
0.2 0.59871 0.60257 0.60642 0.61026 0.61409 0.2
0.3 0.63683 0.64058 0.64431 0.64803 0.65173 0.3
0.4 0.67364 0.67724 0.68082 0.68438 0.68793 0.4

0.5 0.70884 0.71226 0.71566 0.71904 0.72240 0.5
0.6 0.74215 0.74537 0.74857 0.75175 0.75490 0.6
0.7 0.77337 0.77637 0.77935 0.78230 0.78523 0.7
0.8 0.80234 0.80510 0.80785 0.81057 0.81327 0.8
0.9 0.82894 0.83147 0.83397 0.83646 0.83891 0.9

1.0 0.85314 0.85543 0.85769 0.85993 0.86214 1.0
1.1 0.87493 0.87697 0.87900 0.88100 0.88297 1.1
1.2 0.89435 0.89616 0.89796 0.89973 0.90147 1.2
1.3 0.91149 0.91308 0.91465 0.91621 0.91773 1.3
1.4 0.92647 0.92785 0.92922 0.93056 0.93189 1.4

1.5 0.93943 0.90462 0.94179 0.94295 0.94408 1.5
1.6 0.95053 0.95154 0.95254 0.95352 0.95448 1.6
1.7 0.95994 0.96080 0.96164 0.96246 0.96327 1.7
1.8 0.96784 0.96856 0.96926 0.96995 0.97062 1.8
1.9 0.97441 0.97500 0.97558 0.97615 0.97670 1.9

2.0 0.97982 0.98030 0.98077 0.98124 0.98169 2.0
2.1 0.98422 0.98461 0.98500 0.98537 0.98574 2.1
2.2 0.98778 0.98809 0.98840 0.98870 0.98899 2.2
2.3 0.99061 0.99086 0.99111 0.99134 0.99158 2.3
2.4 0.99286 0.99305 0.99324 0.99343 0.99361 2.4

2.5 0.99461 0.99477 0.99492 0.99506 0.99520 2.5
2.6 0.99598 0.99609 0.99621 0.99632 0.99643 2.6
2.7 0.99702 0.99711 0.99720 0.99728 0.99736 2.7
2.8 0.99781 0.99788 0.99795 0.99801 0.99807 2.8
2.9 0.99841 0.99846 0.99851 0.99856 0.99861 2.9

3.0 0.99886 0.99889 0.99893 0.99897 0.99900 3.0
3.1 0.99918 0.99921 0.99924 0.99926 0.99929 3.1
3.2 0.99942 0.99944 0.99946 0.99948 0.99950 3.2
3.3 0.99960 0.99961 0.99962 0.99964 0.99965 3.3
3.4 0.99972 0.99973 0.99974 0.99975 0.99976 3.4

3.5 0.99981 0.99981 0.99982 0.99983 0.99983 3.5
3.6 0.99987 0.99987 0.99988 0.99988 0.99989 3.6
3.7 0.99991 0.99992 0.99992 0.99992 0.99992 3.7
3.8 0.99994 0.99994 0.99995 0.99995 0.99995 3.8
3.9 0.99996 0.99996 0.99996 0.99997 0.99997 3.9

�(z) � � z

��

1
�2�

e�u2/2 du
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II Percentage Points of the t Distributiona

	
� 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62

2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 23.326 31.598

3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924

4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.265 0.727 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959

7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.019 4.785 5.408

8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041

9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437

12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318

13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221

14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015

17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965

18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922

19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819

22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792

23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767

24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707

27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690

28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674

29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646

40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551

60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373

0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

� � Degrees of freedom.
aAdapted with permission from Biometrika Tables for Statisticians, Vol. 1, 3rd edition, by E. S. Pearson and H. O. Hartley, Cambridge University Press, Cambridge,
1966.
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III Percentage Points of the �2 Distributiona

	
� 0.995 0.990 0.975 0.950 0.500 0.050 0.025 0.010 0.005

1 0.00 � 0.00 � 0.00 � 0.00 � 0.45 3.84 5.02 6.63 7.88

2 0.01 0.02 0.05 0.10 1.39 5.99 7.38 9.21 10.60

3 0.07 0.11 0.22 0.35 2.37 7.81 9.35 11.34 12.84

4 0.21 0.30 0.48 0.71 3.36 9.49 11.14 13.28 14.86

5 0.41 0.55 0.83 1.15 4.35 11.07 12.38 15.09 16.75

6 0.68 0.87 1.24 1.64 5.35 12.59 14.45 16.81 18.55

7 0.99 1.24 1.69 2.17 6.35 14.07 16.01 18.48 20.28

8 1.34 1.65 2.18 2.73 7.34 15.51 17.53 20.09 21.96

9 1.73 2.09 2.70 3.33 8.34 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 9.34 18.31 20.48 23.21 25.19

11 2.60 3.05 3.82 4.57 10.34 19.68 21.92 24.72 26.76

12 3.07 3.57 4.40 5.23 11.34 21.03 23.34 26.22 28.30

13 3.57 4.11 5.01 5.89 12.34 22.36 24.74 27.69 29.82

14 4.07 4.66 5.63 6.57 13.34 23.68 26.12 29.14 31.32

15 4.60 5.23 6.27 7.26 14.34 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 15.34 26.30 28.85 32.00 34.27

17 5.70 6.41 7.56 8.67 16.34 27.59 30.19 33.41 35.72

18 6.26 7.01 8.23 9.39 17.34 28.87 31.53 34.81 37.16

19 6.84 7.63 8.91 10.12 18.34 30.14 32.85 36.19 38.58

20 7.43 8.26 9.59 10.85 19.34 31.41 34.17 37.57 40.00

25 10.52 11.52 13.12 14.61 24.34 37.65 40.65 44.31 46.93

30 13.79 14.95 16.79 18.49 29.34 43.77 46.98 50.89 53.67

40 20.71 22.16 24.43 26.51 39.34 55.76 59.34 63.69 66.77

50 27.99 29.71 32.36 34.76 49.33 67.50 71.42 76.15 79.49

60 35.53 37.48 40.48 43.19 59.33 79.08 83.30 88.38 91.95

70 43.28 45.44 48.76 51.74 69.33 90.53 95.02 100.42 104.22

80 51.17 53.54 57.15 60.39 79.33 101.88 106.63 112.33 116.32

90 59.20 61.75 65.65 69.13 89.33 113.14 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 99.33 124.34 129.56 135.81 140.17

� � Degrees of freedom.
aAdapted with permission from Biometrika Tables for Statisticians, Vol. 1, 3rd edition by E. S. Pearson and H. O. Hartley, Cambridge University Press, Cambridge,
1966.
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IV Percentage Points of the F Distribution (Continued)

�1 Degrees of Freedom for the Numerator (�1)

�2 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76

5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.96 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52
26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47

30 2.88 2.49 2.28 2.14 2.03 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19
2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00�
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�1 Degrees of Freedom for the Numerator (�1)

�2 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.55 1.43 1.35 1.25
3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00�
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IV Percentage Points of the F Distribution (Continued)

�1 Degrees of Freedom for the Numerator (�1)

�2 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1 997.2 1001 1006 1010 1014 1018 
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49

15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94

25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83
29 5.59 4.20 1.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31
5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00�
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�1 Degrees of Freedom for the Numerator (�1)

�2 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 4052 4999.5 5403 5625 5764 5859 5928 5982 6022 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.00 26.50 26.41 26.32 26.22 26.13
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.34 2.26 2.17 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00�
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aAdapted with permission from Biometrika Tables for Statisticians, Vol. 2, by E. S. Pearson and H. O. Hartley, Cambridge
University Press, Cambridge, 1972.
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V Operating Characteristic Curves for the Fixed Effects Model Analysis 
of Variance (Continued)
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VI Operating Characteristic Curves for the Random Effects Model Analysis 
of Variancea
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aReproduced with permission from Engineering Statistics, 2nd edition, by A. H. Bowker and G. J. Lieberman, Prentice Hall, Inc.,
Englewood Cliffs, N.J., 1972.
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VI Operating Characteristic Curves for the Random Effects Model Analysis 
of Variance (Continued)
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VI Operating Characteristic Curves for the Random Effects Model Analysis 
of Variance (Continued)
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VI Operating Characteristic Curves for the Random Effects Model Analysis 
of Variance (Continued)
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VII Percentage Points of the Studentized Range Statistica

q0.01( p, f )

p

f 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 90 135 164 186 202 216 227 237 246 253 260 266 272 272 282 286 290 294 298

2 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 32.6 33.4 31.4 34.8 35.4 36.0 36.5 37.0 37.5 37.9

3 8.26 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 17.1 17.5 17.9 18.2 18.5 18.8 19.1 19.3 19.5 19.8

4 6.51 8.12 9.17 9.96 10.6 11.1 11.5 11.9 12.3 12.6 12.8 13.1 13.3 13.5 13.7 13.9 14.1 14.2 14.4

5 5.70 6.97 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81 11.93

6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.49 9.65 9.81 9.95 10.08 10.21 10.32 10.43 10.54

7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71 8.86 9.00 9.12 9.24 9.35 9.46 9.55 9.65

8 4.74 5.63 6.20 6.63 6.96 7.24 7.47 7.68 7.87 8.03 8.18 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03

9 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.32 7.49 7.65 7.78 7.91 8.03 8.13 8.23 8.32 8.41 8.49 8.57

10 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.48 7.60 7.71 7.81 7.91 7.99 8.07 8.15 8.22

11 4.39 5.14 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25 7.36 7.46 7.56 7.65 7.73 7.81 7.88 7.95

12 4.32 5.04 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06 7.17 7.26 7.36 7.44 7.52 7.59 7.66 7.73

13 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90 7.01 7.10 7.19 7.27 7.34 7.42 7.48 7.55

14 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77 6.87 6.96 7.05 7.12 7.20 7.27 7.33 7.39

15 4.17 4.83 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66 6.76 6.84 6.93 7.00 7.07 7.14 7.20 7.26

16 4.13 4.78 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56 6.66 6.74 6.82 6.90 6.97 7.03 7.09 7.15

17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48 6.57 6.66 6.73 6.80 6.87 6.94 7.00 7.05

18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41 6.50 6.58 6.65 6.72 6.79 6.85 6.91 6.96

19 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34 6.43 6.51 6.58 6.65 6.72 6.78 6.84 6.89

20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.29 6.37 6.45 6.52 6.59 6.65 6.71 6.76 6.82

24 3.96 4.54 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11 6.19 6.26 6.33 6.39 6.45 6.51 6.56 6.61

30 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 6.01 6.08 6.14 6.20 6.26 6.31 6.36 6.41

40 3.82 4.37 4.70 4.93 5.11 5.27 5.39 5.50 5.60 5.69 5.77 5.84 5.90 5.96 6.02 6.07 6.12 6.17 6.21

60 3.76 4.28 4.60 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60 5.67 5.73 5.79 5.84 5.89 5.93 5.98 6.02

120 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.38 5.44 5.51 5.56 5.61 5.66 5.71 5.75 5.79 5.83

3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65

f � Degrees of freedom.
aFrom J. M. May, “Extended and Corrected Tables of the Upper Percentage Points of the Studentized Range,” Biometrika, Vol. 39, pp. 192–193, 1952. Reproduced by permission of the trustees of Biometrika.
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q0.05(p, f )

p

f 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 18.1 26.7 32.8 37.2 40.5 43.1 45.4 47.3 49.1 50.6 51.9 53.2 54.3 55.4 56.3 57.2 58.0 58.8 59.6

2 6.09 8.28 9.80 10.89 11.73 12.43 13.03 13.54 13.99 14.39 14.75 15.08 15.38 15.65 15.91 16.14 16.36 16.57 16.77

3 4.50 5.88 6.83 7.51 8.04 8.47 8.85 9.18 9.46 9.72 9.95 10.16 10.35 10.52 10.69 10.84 10.98 11.12 11.24

4 3.93 5.00 5.76 6.31 6.73 7.06 7.35 7.60 7.83 8.03 8.21 8.37 8.52 8.67 8.80 8.92 9.03 9.14 9.24

5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 8.21

6 3.46 4.34 4.90 5.31 5.63 5.89 6.12 6.32 6.49 6.65 6.79 6.92 7.04 7.14 7.24 7.34 7.43 7.51 7.59

7 3.34 4.16 4.68 5.06 5.35 5.59 5.80 5.99 6.15 6.29 6.42 6.54 6.65 6.75 6.84 6.93 7.01 7.08 7.16

8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48 6.57 6.65 6.73 6.80 6.87

9 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74 5.87 5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.65

10 3.15 3.88 4.33 4.66 4.91 5.12 5.30 5.46 5.60 5.72 5.83 5.93 6.03 6.12 6.20 6.27 6.34 6.41 6.47

11 3.11 3.82 4.26 4.58 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.98 6.06 6.14 6.20 6.27 6.33

12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.51 5.61 5.71 5.80 5.88 5.95 6.02 6.09 6.15 6.21

13 3.06 3.73 4.15 4.46 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79 5.86 5.93 6.00 6.06 6.11

14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.56 5.64 5.72 5.79 5.86 5.92 5.98 6.03

15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.57 5.65 5.72 5.79 5.85 5.91 5.96

16 3.00 3.65 4.05 4.34 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 5.52 5.59 5.66 5.73 5.79 5.84 5.90

17 2.98 3.62 4.02 4.31 4.52 4.70 4.86 4.99 5.11 5.21 5.31 5.39 5.47 5.55 5.61 5.68 5.74 5.79 5.84

18 2.97 3.61 4.00 4.28 4.49 4.67 4.83 4.96 5.07 5.17 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79

19 2.96 3.59 3.98 4.26 4.47 4.64 4.79 4.92 5.04 5.14 5.23 5.32 5.39 5.46 5.53 5.59 5.65 5.70 5.75

20 2.95 3.58 3.96 4.24 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43 5.50 5.56 5.61 5.66 5.71

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 5.18 5.25 5.32 5.38 5.44 5.50 5.55 5.59

30 2.89 3.48 3.84 4.11 4.30 4.46 4.60 4.72 4.83 4.92 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.48

40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74 4.82 4.90 4.98 5.05 5.11 5.17 5.22 5.27 5.32 5.36

60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81 4.88 4.94 5.00 5.06 5.11 5.15 5.20 5.24

120 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71 4.78 4.84 4.90 4.95 5.00 5.04 5.09 5.13

2.77 3.32 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 4.68 4.74 4.80 4.84 4.88 4.93 4.97 5.01�
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VIII Critical Values for Dunnett’s Test for Comparing Treatments with a Controla

d0.05(a � 1, f )
Two-Sided Comparisons

a � 1 � Number of Treatment Means (Excluding Control)

f 1 2 3 4 5 6 7 8 9

5 2.57 3.03 3.29 3.48 3.62 3.73 3.82 3.90 3.97
6 2.45 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71
7 2.36 2.75 2.97 3.12 3.24 3.33 3.41 3.47 3.53
8 2.31 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41
9 2.26 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32

10 2.23 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24
11 2.20 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19
12 2.18 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14
13 2.16 2.48 2.65 2.78 2.87 2.94 3.00 3.06 3.10
14 2.14 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07

15 2.13 2.44 2.61 2.73 2.82 2.89 2.95 3.00 3.04
16 2.12 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02
17 2.11 2.41 2.58 2.69 2.78 2.85 2.90 2.95 3.00
18 2.10 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98
19 2.09 2.39 2.55 2.66 2.75 2.81 2.87 2.92 2.96

20 2.09 2.38 2.54 2.65 2.73 2.80 2.86 2.90 2.95
24 2.06 2.35 2.51 2.61 2.70 2.76 2.81 2.86 2.90
30 2.04 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86
40 2.02 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81
60 2.00 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77

120 1.98 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73

1.96 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69

d0.01(a � 1, f )
Two-Sided Comparisons

a � 1 � Number of Treatment Means (Excluding Control)

f 1 2 3 4 5 6 7 8 9

5 4.03 4.63 4.98 5.22 5.41 5.56 5.69 5.80 5.89
6 3.71 4.21 4.51 4.71 4.87 5.00 5.10 5.20 5.28
7 3.50 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89
8 3.36 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62
9 3.25 3.63 3.85 4.01 4.12 4.22 4.30 4.37 4.43

10 3.17 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28
11 3.11 3.45 3.65 3.79 3.89 3.98 4.05 4.11 4.16
12 3.05 3.39 3.58 3.71 3.81 3.89 3.96 4.02 4.07
13 3.01 3.33 3.52 3.65 3.74 3.82 3.89 3.94 3.99
14 2.98 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93

15 2.95 3.25 3.43 3.55 3.64 3.71 3.78 3.83 3.88
16 2.92 3.22 3.39 3.51 3.60 3.67 3.73 3.78 3.83
17 2.90 3.19 3.36 3.47 3.56 3.63 3.69 3.73 3.79
18 2.88 3.17 3.33 3.44 3.53 3.60 3.66 3.71 3.75
19 2.86 3.15 3.31 3.42 3.50 3.57 3.63 3.68 3.72

20 2.85 3.13 3.29 3.40 3.48 3.55 3.60 3.65 3.69
24 2.80 3.07 3.22 3.32 3.40 3.47 3.52 3.57 3.61
30 2.75 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52
40 2.70 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44
60 2.66 2.90 3.03 3.12 3.19 3.25 3.29 3.33 3.37

120 2.62 2.85 2.97 3.06 3.12 3.18 3.22 3.26 3.29
2.58 2.79 2.92 3.00 3.06 3.11 3.15 3.19 3.22

f � Degrees of freedom.
aReproduced with permission from C. W. Dunnett, “New Tables for Multiple Comparison with a Control,” Biometrics, Vol. 20,
No. 3, 1964, and from C. W. Dunnett, “A Multiple Comparison Procedure for Comparing Several Treatments with a Control,”
Journal of the American Statistical Association, Vol. 50, 1955.
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VIII Critical Values for Dunnett’s Test for Comparing Treatments with a Control
(Continued)

d0.05(a � 1, f )
One-Sided Comparisons

a � 1 � Number of Treatment Means (Excluding Control)

f 1 2 3 4 5 6 7 8 9

5 2.02 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30
6 1.94 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12
7 1.89 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01
8 1.86 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92
9 1.83 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86

10 1.81 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81
11 1.80 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77
12 1.78 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74
13 1.77 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71
14 1.76 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69

15 1.75 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67
16 1.75 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65
17 1.74 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64
18 1.73 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62
19 1.73 2.03 2.20 2.31 2.40 2.47 2.52 2.57 2.61

20 1.72 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60
24 1.71 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57
30 1.70 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54
40 1.68 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51
60 1.67 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2.48

120 1.66 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45
1.64 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42

d0.01(a � 1, f )

One-Sided Comparisons

a � 1 � Number of Treatment Means (Excluding Control)

f 1 2 3 4 5 6 7 8 9

5 3.37 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03
6 3.14 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59
7 3.00 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30
8 2.90 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09
9 2.82 3.19 3.40 3.55 3.66 3.75 3.82 3.89 3.94

10 2.76 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83
11 2.72 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74
12 2.68 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67
13 2.65 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61
14 2.62 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56

15 2.60 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52
16 2.58 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48
17 2.57 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.45
18 2.55 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42
19 2.54 2.83 2.99 3.10 3.18 3.25 3.31 3.36 3.40

20 2.53 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38
24 2.49 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31
30 2.46 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24
40 2.42 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18
60 2.39 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12

120 2.36 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06
2.33 2.56 2.68 2.77 2.84 2.89 2.93 2.97 3.00�
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IX Coefficients of Orthogonal Polynomialsa

n � 3 n � 4 n � 5 n � 6 n � 7

Xj P1 P2 P1 P2 P3 P1 P2 P3 P4 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P6

1 �1 1 �3 1 �1 �2 2 �1 1 �5 5 �5 1 �1 �3 5 �1 3 �

2 0 �2 �1 �1 3 �1 �1 2 �4 �3 �1 7 �3 5 �2 0 1 �7 4 �6

3 1 1 1 �1 �3 0 �2 0 6 �1 �4 4 2 �10 �1 �3 1 1 �5 15

4 3 1 1 1 �1 �2 �4 1 �4 �4 2 10 0 �4 0 6 0 �20

5 2 2 1 1 3 �1 �7 �3 �5 1 �3 �1 1 5 15

6 5 5 �1 �7 �4 �6

7 3 5 1 3 1 1

2 6 20 4 20 10 14 10 70 70 84 180 28 252 28 84 6 154 84 924

� 1 3 2 1 1 1 2 1 1

n � 8 n � 9 n � 10

Xj P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

1 �7 7 �7 7 �7 1 �4 28 �14 14 �4 4 �9 6 �42 18 �6 3

2 �5 1 5 �13 23 �5 �3 7 7 �21 11 �17 �7 2 14 �22 14 �11

3 �3 �3 7 �3 �17 9 �2 �8 13 �11 �4 22 �5 �1 35 �17 �1 10

4 �1 �5 3 9 �15 �5 �1 �17 9 9 �9 1 �3 �3 31 3 �11 6

5 1 �5 �3 9 15 �5 0 �20 0 18 0 �20 �1 �4 12 18 �6 �8

6 3 �3 �7 �3 17 9 1 �17 �9 9 9 1 1 �4 �12 18 6 �8

7 5 1 �5 �13 �23 �5 2 �8 �13 �11 4 22 3 �3 �31 3 11 6

8 7 7 7 7 7 1 3 7 �7 �21 �11 �17 5 �1 �35 �17 1 10

9 4 28 14 14 4 4 7 2 �14 �22 �14 �11

10 9 6 42 18 6 3

168 168 264 616 2184 264 60 2772 990 2002 468 1980 330 132 8580 2860 780 660

� 2 1 1 3 2

aAdapted with permission from Biometrika Tables for Statisticians, Vol. 1, 3rd edition by E. S. Pearson and H. O. Hartley, Cambridge University Press, Cambridge, 1966.
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64

Designs with 3 Factors

(a) 23�1; 1/2 fraction of Resolution III

3 factors in 4 runs Design Generators

C � AB

Defining relation: I � ABC

Aliases
A � BC
B � AC
C � AB

Designs with 4 Factors

(b) 24�1; 1/2 fraction of Resolution IV

4 factors in 8 runs Design Generators

D � ABC

Defining relation: I � ABCD

Aliases

Designs with 5 Factors

(c) 25�2; 1/4 fraction of Resolution III

5 factors in 8 runs Design Generators

D � AB E � AC

Defining relation: I � ABD � ACE � BCDE

Aliases

(d) 25�1; 1/2 fraction of Resolution V
5 factors in 16 runs Design Generators

E � ABCD

Defining relation: I � ABCDE

Aliases

Each main effect is aliased with a single 4-factor interaction.

BC � ADE   DE � ABC
AE � BCD   CE � ABD
AD � BCE   CD � ABE
AC � BDE   BE � ACD
AB � CDE   BD � ACE

CD � BE � ABC � ADE
BC � DE � ACD � ABE

E � AC � BCD
D � AB � BCE
C � AE � BDE
B � AD � CDE
A � BD � CE

AD � BC
AC � BD
AB � CD
D � ABC
C � ABD
B � ACD
A � BCD
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64 (Continued)

Designs with 6 Factors

(e) 26�3; 1/8 fraction of Resolution III

6 factors in 8 runs

Design Generators

D � AB E � AC F � BC

Defining relation: I � ABD � ACE � BCDE � BCF � ACDF � ABEF � DEF

Aliases

A � BD � CE � CDF � BEF E � AC � DF � BCD � ABF

B � AD � CF � CDE � AEF F � BC � DE � ACD � ABE

C � AE � BF � BDE � ADF CD � BE � AF � ABC � ADE � BDF � CEF

D � AB � EF � BCE � ACF

(f) 26�2; 1/4 fraction of Resolution IV
6 factors in 16 runs

Design Generators

E � ABC F � BCD

Defining relation: I � ABCE � BCDF � ADEF

Aliases

A � BCE � DEF AB � CE

B � ACE � CDF AC � BE

C � ABE � BDF AD � EF

D � BCF � AEF AE � BC � DF

E � ABC � ADF AF � DE

F � BCD � ADE BD � CF

ABD � CDE � ACF � BEF BF � CD

ACD � BDE � ABF � CEF

2 blocks of 8: ABD � CDE � ACF � BEF

(g) 26�1; 1/2 fraction of Resolution VI
6 factors in 32 runs

Design Generators

F � ABCDE

Defining relation: I � ABCDEF

Aliases

Each main effect is aliased with a single 5-factor interaction.

Each 2-factor interaction is aliased with a single 4-factor interaction.

ABC � DEF ACE � BDF

ABD � CEF ACF � BDE

ABE � CDF ADE � BCF

ABF � CDE ADF � BCE

ACD � BEF AEF � BCD

2 blocks of 16: ABC � DEF 4 blocks of 8: AB � CDEF

ACD � BEF

AEF � BCD
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64 (Continued)

Designs with 7 Factors

(h) 27�4; 1/16 fraction of Resolution III
7 factors in 8 runs

Design Generators
D � AB E � AC F � BC G � ABC

Defining relation: I � ABD � ACE � BCDE � BCF � ACDF � ABEF � DEF � ABCG
� CDG � BEG � ADEG � AFG � BDFG � CEFG � ABCDEFG

Aliases
A � BD � CE � FG E � AC � DF � BG
B � AD � CF � EG F � BC � DE � AG
C � AE � BF � DG G � CD � BE � AF
D � AB � EF � CG

(i) 27�3; 1/8 fraction of 7 Resolution IV
factors in 16 runs

Design Generators
E � ABC F � BCD G � ACD

Defining relation: I � ABCE � BCDF � ADEF � ACDG � BDEG � ABFG � CEFG
Aliases

A � BCE � DEF � CDG � BFG AB � CE � FG E � ABC � ADF � BDG � CFG AF � DE � BG
B � ACE � CDF � DEG � AFG AC � BE � DG F � BCD � ADE � ABG � CEG AG � CD � BF
C � ABE � BDF � ADG � EFG AD � EF � CG G � ACD � BDE � ABF � CEF BD � CF � EG
D � BCF � AEF � ACG � BEG AE � BC � DF

ABD � CDE � ACF � BEF � BCG � AEG � DFG
2 blocks of 8: ABD � CDE � ACF � BEF � BCG � AEG � DFG

(j) 27�2; 1/4 fraction of 7 Resolution IV
factors in 32 runs

Design Generators
F � ABCD G � ABDE

Defining relation: I � ABCDF � ABDEG � CEFG
Aliases

A � AB � CDF � DEG BC � ADF CE � FG ACE � AFG
B � AC � BDF BD � ACF � AEG CF � ABD � EG ACG � AEF
C � EFG AD � BCF � BEG BE � ADG CG � EF BCE � BFG
D � AE � BDG BF � ACD DE � ABG BCG � BEF
E � CFG AF � BCD BG � ADE DF � ABC CDE � DFG
F � CEG AG � BDE CD � ABF DG � ABE CDG � DEF
G � CEF

2 blocks of 16: ACE � AFG 4 blocks of 8: ACE � AFG
BCE � BFG

AB � CDF � DEG

(k) 27�1; 1/2 fraction of Resolution VII
7 factors in 64 runs

Design Generators
G � ABCDEF

Defining relation: I � ABCDEFG
Aliases

Each main effect is aliased with a single 6-factor interaction.
Each 2-factor interaction is aliased with a single 5-factor interaction.
Each 3-factor interaction is aliased with a single 4-factor interaction.

2 blocks of 32: ABC 4 blocks of 16: ABC
CEF
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64 (Continued)

Designs with 8 Factors

(l) 28�4; 1/16 fraction of Resolution IV

8 factors in 16 runs

Design Generators

E � BCD F � ACD G � ABC H � ABD

Defining relation: I � BCDE � ACDF � ABEF � ABCG � ADEG � BDFG � CEFG � ABDH

� ACEH � BCFH � DEFH � CDGH � BEGH � AFGH � ABCDEFGH

Aliases

A � CDF � BEF � BCG � DEG � BDH � CEH � FGH AB � EF � CG � DH

B � CDE � AEF � ACG � DFG � ADH � CFH � EGH AC � DF � BG � EH

C � BDE � ADF � ABG � EFG � AEH � BFH � DGH AD � CF � EG � BH

D � BCE � ACF � AEG � BFG � ABH � EFH � CGH AE � BF � DG � CH

E � BCD � ABF � ADG � CFG � ACH � DFH � BGH AF � CD � BE � GH

F � ACD � ABE � BDG � CEG � BCH � DEH � AGH AG � BC � DE � FH

G � ABC � ADE � BDF � CEF � CDH � BEH � AFH AH � BD � CE � FG

H � ABD � ACE � BCF � DEF � CDG � BEG � AFG

2 blocks of 8: AB � EF � CG � DH

(m) 28�3; 1/8 fraction of Resolution IV

8 factors in 32 runs

Design Generators

F � ABC G � ABD H � BCDE

Defining relation: I � ABCF � ABDG � CDFG � BCDEH � ADEFH � ACEGH � BEFGH

Aliases

A � BCF � BDG AE � DFH � CGH DE � BCH � AFH

B � ACF � ADG AF � BC � DEH DH � BCE � AEF

C � ABF � DFG AG � BD � CEH EF � ADH � BGH

D � ABG � CFG AH � DEF � CEG EG � ACH � BFH

E � BE � CDH � FGH EH � BCD � ADF � ACG � BFG

F � ABC � CDG BH � CDE � EFG FH � ADE � BEG

G � ABD � CDF CD � FG � BEH GH � ACE � BEF

H � CE � BDH � AGH ABE � CEF � DEG

AB � CF � DG CG � DF � AEH ABH � CFH � DGH

AC � BF � EGH CH � BDE � AEG ACD � BDF � BCG � AFG

AD � BG � EFH

2 blocks of 16: ABE � CEF � DEG 4 blocks of 8: ABE � CEF � DEG

ABH � CFH � DGH

EH � BCD � ADF � ACG � BFG
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64 (Continued)

Designs with 8 Factors (Continued)

(n) 28�2; 1/4 fraction of 8 Resolution V

factors in 64 runs
Design Generators

G � ABCD H � ABEF
Defining relation: I � ABCDG � ABEFH � CDEFGH

Aliases
AB � CDG � EFH BG � ACD EF � ABH ADH � BFG �
AC � BDG BH � AEF EG � AEG � BGH �
AD � BCG CD � ABG EH � ABF AFG � CDE � FGH
AE � BFH CE � FG � AGH � CDF � EGH
AF � BEH CF � FH � ABE BCE � CDH � EFG
AG � BCD CG � ABD GH � BCF � CEF � DGH
AH � BEF CH � ACE � BCH � CEG � DFH
BC � ADG DE � ACF � BDE � CEH � DFG
BD � ACG DF � ACH � BDF � CFG � DEH
BE � AFH DG � ABC ADE � BDH � CFH � DEG
BF � AEH DH � ADF � BEG � CGH � DEF

2 blocks of 32: CDE � FGH 4 blocks of 16: CDE � FGH
ACF
BDH

Designs with 9 Factors

(o) 29�5; 1/32 fraction of Resolution III

9 factors in 16 runs

Design Generators

E � ABC F � BCD G � ACD H � ABD J � ABCD
Defining relation: I � ABCE � BCDF � ADEF � ACDG � BDEG � ABFG � CEFG � ABDH

� CDEH � ACFH � BEFH � BCGH � AEGH � DFGH � ABCDEFGH � ABCDJ
� DEJ � AFJ � BCEFJ � BGJ � ACEGJ � CDFGJ � ABDEFGJ � CHJ
� ABEHJ � BDFHJ � ACDEFHJ � ADGHJ � BCDEGHJ � ABCFGHJ � EFGHJ

Aliases

A � FJ
B � GJ
C � HJ
D � EJ
E � DJ
F � AJ
G � BJ
H � CJ
J � DE � AF � BG � CH

AB � CE � FG � DH
AC � BE � DG � FH
AD � EF � CG � BH
AE � BC � DF � GH
AG � CD � BF � EH
AH � BD � CF � EG

2 blocks of 8: AB � CE � FG � DH
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64 (Continued)

Designs with 9 Factors (Continued)

(p) 29�4; 1/16 fraction of Resolution IV

9 factors in 32 runs
Design Generators

F � BCDE G � ACDE H � ABDE J � ABCE
Defining relation: I � BCDEF � ACDEG � ABFG � ABDEH � ACFH � BCGH � DEFGH � ABCEJ

� ADFJ � BDGJ � CEFGJ � CDHJ � BEFHJ � AEGHJ � ABCDFGHJ
Aliases

A � BFG � CFH � DFJ AD � CEG � BEH � FJ BJ � ACE � DG � EFH
B � AFG � CGH � DGJ AE � CDG � BDH � BCJ � GHJ CD � BEF � AEG � HJ
C � AFH � BGH � DHJ AF � BG � CH � DJ CE � BDF � ADG � ABJ � FGJ
D � AFJ � BGJ � CHJ AG � CDE � BF � EHJ CJ � ABE � EFG � DH
E � AH � BDE � CF � EGJ DE � BCF � ACG � ABH � FGH
F � ABG � ACH � ADJ AJ � BCE � DF � EGH EF � BCD � DGH � CGJ � BHJ
G � ABF � BCH � BDJ BC � DEF � GH � AEJ EG � ACD � DFH � CFJ � AHJ
H � ACF � BCG � CDJ BD � CEF � AEH � GJ EH � ABD � DFG � BFJ � AGJ
J � ADF � BDG � CDH BE � CDF � ADH � ACJ � FHJ EJ � ABC � CFG � BFH � AGH

AB � FG � DEH � CEJ BH � ADE � CG � EFJ AEF � BEG � CEH � DEJ
AC � DEG � FH � BEJ

2 blocks of 16: AEF � BEG � CEH � DEJ 4 blocks of 8: AEF � BEG � CEH � DEJ
AB � FG � DEH � CEJ
CD � BEF � AEG � HJ

(q) 29�3; 1/8 fraction of 9 Resolution IV
factors in 64 runs

Design Generators
G � ABCD H � ACEF J � CDEF

Defining relation: I � ABCDG � ACEFH � BDEFGH � CDEFJ � ABEFGJ � ADHJ � BCGHJ
Aliases

A � DHJ AC � BDG � EFH BF �
B � AD � BCG � HJ BG � ACD � CHJ
C � AE � CFH BH � CGJ
D � AHJ AF � CEH BJ � CGH
E � AG � BCD CD � ABG � EFJ
F � AH � CEF � DJ CE � AFH � DFJ
G � AJ � DH CF � AEH � DEJ
H � ADJ BC � ADG � GHJ CG � ABD � BHJ
J � ADH BD � ACG CH � AEF � BGJ

AB � CDG BE � CJ � DEF � BGH
DE � CFJ GJ � BCH AFJ � BEG � DFH
DF � CEJ ABE � FGJ AGH � DGJ
DG � ABC ABF � EGJ AGJ � BEF � DGH
EF � ACH � CDJ ABH � BDJ BCE �
EG � ABJ � EFG � BDH BCF �
EH � ACF ACJ � CDH BDE � FGH
EJ � CDF ADE � EHJ BDF � EGH

FG � ADF � FHJ BEH � DFG
FH � ACE AEG � BFJ BFH � DEG
FJ � CDE AEJ � BFG � DEH CEG �

GH � BCJ AFG � BEJ CFG �
2 blocks of 32: CFG 4 blocks of 16: CFG �

AGJ � BEF � DGH
ADE � EHJ
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64 (Continued)

Designs with 10 Factors

(r) 210�6; 1/64 fraction of Resolution III

10 factors in 16 runs

Design Generators
E � ABC F � BCD G � ACD H � ABD J � ABCD K � AB

Defining relation: I � ABCE � BCDF � ADEF � ACDG � BDEG � ABFG � CEFG � ABDH
� CDEH � ACFH � BEFH � BCGH � AEGH � DFGH � ABCDEFGH � ABCDJ
� DEJ � AFJ � BCEFJ � BGJ � ACEGJ � CDFGI � ABDEFGJ � CHJ
� ABEHJ � BDFHJ � ACDEFHJ � ADGHJ � BCDEGHJ � ABCFGHJ � EFGHJ � ABK
� CEK � ACDFK � BDEFK � BCDGK � ADEGK � FGK � ABCEFGK � DHK
� ABCDEHK � BCFHK � AEFHK � ACGHK � BEGHK � ABDFGHK � CDEFGHK � CDJK
� ABDEJK � BFJK � ACEFJK � AGJK � BCEGJK � ABCDFGJK � DEFGJK � ABCHJK
� EHJK � ADFHJK � BCDEFHJK � BDGHJK � ACDEGHJK � CFGHJK � ABEFGHJK

Aliases

A � FJ � BK J � DE � AF � BG � CH
B � GJ � AK K � AB � CE � FG � DH
C � HJ � EK AC � BE � DG � FH
D � EJ � HK AD � EF � CG � BH
E � DJ � CK AE � BC � DF � GH
F � AJ � GK AG � CD � BF � EH � JK
G � BJ � FK AH � BD � CF � EG
H � CJ � DK

2 blocks of 8: AG � CD � BF � EH � JK

(s) 210�5; 1/32 fraction of Resolution IV

10 factors in 32 runs
Design Generators

F � ABCD G � ABCE H � ABDE J � ACDE K � BCDE
Defining relation: I � ABCDF � ABCEG � DEFG � ABDEH � CEFH � CDGH � ABFGH � ACDEJ

� BEFJ � BDGJ � ACFGJ � BCHJ � ADFHJ � AEGHJ � BCDEFGHJ � BCDEK
� AEFK � ADGK � BCFGK � ACHK � BDFHK � BEGHK � ACDEFGHK � ABJK
� CDFJK � CEGJK � ABDEFGJK � DEHJK � ABCEFHJK � ABCDGHJK � FGHJK

Aliases
A � EFK � DGK � CHK � BJK AH � BDE � BFG � DFJ � EGJ � CK
B � EFJ � DGJ � CHJ � AJK AJ � CDE � CFG � DFH � EGH � BK
C � EFH � DGH � BHJ � AHK AK � EF � DG � CH � BJ
D � EFG � CGH � BGJ � AGK BC � ADF � AEG � HJ � DEK � FGK
E � DFG � CFH � BFJ � AFK BD � ACF � AEH � GJ � CEK � FHK
F � DEG � CEH � BEJ � AEK BE � ACG � ADH � FJ � CDK � GHK
G � DEF � CDH � BDJ � ADK BF � ACD � AGH � EJ � CGK � DHK
H � CEF � CDG � BCJ � ACK BG � ACE � AFH � DJ � CFK � EHK
J � BEF � BDG � BCH � ABK BH � ADE � AFG � CJ � DFK � EGK
K � AEF � ADG � ACH � ABJ CD � ABF � GH � AEJ � BEK � FJK

AB � CDF � CEG � DEH � FGH � JK CE � ABG � FH � ADJ � BDK � GJK
AC � BDF � BEG � DEJ � FGJ � HK CF � ABD � EH � AGJ � BGK � DJK
AD � BCF � BEH � CEJ � FHJ � GK CG � ABE � DH � AFJ � BFK � EJK
AE � BCG � BDH � CDJ � GHJ � FK DE � FG � ABH � ACJ � BCK � HJK
AF � BCD � BGH � CGJ � DHJ � EK DF � ABC � EG � AHJ � BHK � CJK
AG � BCE � BFH � CFJ � EHJ � DK

2 blocks of 16: AK � EF � DG � CH � BJ
4 blocks of 8: AK � EF � DG � CH � BJ

AJ � CDE � CFG � DFH � EGH � BK
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64 (Continued)

Designs with 10 Factors (Continued)

(t) 210�4; 1/16 fraction of Resolution IV
10 factors in 64 runs

Design Generators
G � BCDF H � ACDF J � ABDE K � ABCE

Defining relation: I � BCDFG � ACDFH � ABGH � ABDEJ � ACEFGJ � BCEFHJ � DEGHJ � ABCEK

� ADEFGK � BDEFHK � CEGHK � CDJK � BFGJK � AFHJK � ABCDGHJK
Aliases

A � BGH AD � CFH � BEJ BK � ACE � FGJ

B � AGH AE � BDJ � BCK CD � BFG � AFH � JK

C � DJK AF � CDH � HJK CE � ABK � GHK

D � CJK AG � BH CF � BDG � ADH

E � AH � CDF � BG � FJK CG � BDF � EHK

F � AJ � BDE � FHK CH � ADF � EGK

G � ABH AK � BCE � FHJ CJ � DK

H � ABG BC � DFG � AEK CK � ABE � EGH � DJ

J � CDK BD � CFG � AEJ DE � ABJ � GHJ

K � CDJ BE � ADJ � ACK DF � BCG � ACH

AB � GH � DEJ � CEK BF � CDG � GJK DG � BCF � EHJ

AC � DFH � BEK BJ � ADE � FGK DH � ACF � EGJ

EF � GJ � DEH � BFK AEG � BEH � CFJ � DFK

EG � DHJ � CHK GK � CEH � BFJ AEH � BEG

EH � DGJ � CGK HJ � DEG � AFK AFG � BFH � CEJ � DEK

EJ � ABD � DGH HK � CEG � AFJ AGJ � CEF � BHJ

EK � ABC � CGH ABF � FGH AGK � DEF � BHK

FG � BCD � BJK ACG � BCH � EFJ BCJ � EFH � BDK

FH � ACD � AJK ACJ � EFG � ADK BEF � CHJ � DHK

FJ � BGK � AHK ADG � BDH � EFK CDE � EJK

FK � BGJ � AHJ AEF � CGJ � DGK CFK � DFJ

2 blocks of 32: AGJ � CEF � BHJ 4 blocks of 16: AGJ � CEF � BHJ

AGK � DEF � BHK

CD � BFG � AFH � JK
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64 (Continued)

Designs with 11 Factors

(u) 211�7; 1/128 fraction of Resolution III

11 factors in 16 runs

Design Generators

E � ABC F � BCD G � ACD H � ABD J � ABCD K � AB L � AC

Defining relation: I � ABCE � BCDF � ADEF � ACDG � BDEG � ABFG � CEFG � ABDH

� CDEH � ACFH � BEFH � BCGH � AEGH � DFGH � ABCDEFGH � ABCDJ

� DEJ � AFJ � BCEFJ � BGJ � ACEGJ � CDFGJ � ABDEFGJ � CHJ

� ABEHJ � BDFHJ � ACDEFHJ � ADGHJ � BCDEGHJ � ABCFGHJ � EFGHJ � ABK

� CEK � ACDFK � BDEFK � BCDGK � ADEGK � FGK � ABCEFGK � DHK

� ABCDEHK � BCFHK � AEFHK � ACGHK � BEGHK � ABDFGHK � CDEFGHK � CDJK

� ABDEJK � BFJK � ACEFJK � AGJK � BCEGJK � ABCDFGJK � DEFGJK � ABCHJK

� EHJK � ADFHJK � BCDEFHJK � BDGHJK � ACDEGHJK � CFGHJK � ABEFGHJK � ACL

� BEL � ABDFL � CDEFL � DGL � ABCDEGL � BCFGL � AEFGL � BCDHL

� ADEHL � FHL � ABCEFHL � ABGHL � CEGHL � ACDFGHL � BDEFGHL � BDJL

� ACDEJL � CFJL � ABEFJL � ABCGJL � EGJL � ADFGJL � BCDEFGJL � AHJL

� BCEHJL � ABCDFHJL � DEFHJL � CDGHJL � ABDEGHJL � BFGHJL � ACEFGHJL � BCKL

� AEKL � DFKL � ABCDEFKL � ABDGKL � CDEGKL � ACFGKL � BEFGKL � ACDHKL

� BDEHKL � ABFHKL � CEFHKL � GHKL � ABCEGHKL � BCDFGHKL � ADEFGHKL � ADJKL

� BCDEJKL � ABCFJKL � EFJKL � CGJKL � ABEGJKL � BDFGJKL � ACDEFGJKL � BHJKL

� ACEHJKL � CDFHJKL � ABDEFHJKL � ABCDGHJKL � DEGHJKL � AFGHJKL � BCEFGHJKL

Aliases

A � FJ � BK � CL J � DE � AF � BG � CH

B � GJ � AK � EL K � AB � CE � FG � DH

C � HJ � EK � AL L � AC � BE � DG � FH

D � EJ � HK � GL AD � EF � CG � BH

E � DJ � CK � BL AE � BC � DF � GH � KL

F � AJ � GK � HL AG � CD � BF � EH � JK

G � BJ � FK � DL AH � BD � CF � EG � JL

H � CJ � DK � FL

2 blocks of 8: AE � BC � DF � GH � KL
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64 (Continued)

Designs with 11 Factors (Continued)

(v) 211�6; 1/64 fraction of Resolution IV

11 factors in 32 runs

Design Generators

F � ABC G � BCD H � CDE J � ACD K � ADE L � BDE

Defining relation:

I � ABCF � BCDG � ADFG � CDEH � ABDEFH � BEGH � ACEFGH � ACDJ � BDFJ � ABGJ � CFGJ

� AEHJ � BCEFHJ � ABCDEGHJ � DEFGHJ � ADEK � BCDEFK � ABCEGK � EFGK � ACHK � BFHK

� ABDGHK � CDFGHK � CEJK � ABEFJK � BDEGJK � ACDEFGJK � DHJK � ABCDFHJK � BCGHJK

� AFGHJK � BDEL � ACDEFL � CEGL � ABEFGL � BCHL � AFHL � DGHL � ABCDFGHL

� ABCEJL � EFJL � ADEGJL � BCDEFGJL � ABDHJL � CDFHJL � ACGHJL � BFGHJL � ABKL

� CFKL � ACDGKL � BDFGKL � ABCDEHKL � DEFHKL � AEGHKL � BCEFGHKL � BCDJKL

� ADFJKL � GJKL � ABCFGJKL � BEHJKL � ACEFHJKL � CDEGHJKL � ABDEFGHJKL

Aliases

A � BCF � DFG � CDJ � BGJ � EHJ � DEK � CHK � FHL � BKL

B � ACF � CDG � EGH � DFJ � AGJ � FHK � DEL � CHL � AKL

C � ABF � BDG � DEH � ADJ � FGJ � AHK � EJK � EGL � BHL � FKL

D � BCG � AFG � CEH � ACJ � BFJ � AEK � HJK � BEL � GHL

E � CDH � BGH � AHJ � ADK � FGK � CJK � BDL � CGL � FJL

F � ABC � ADG � BDJ � CGJ � EGK � BHK � AHL � EJL � CKL

G � BCD � ADF � BEH � ABJ � CFJ � EFK � CEL � DHL � JKL

H � CDE � BEG � AEJ � ACK � BFK � DJK � BCL � AFL � DGL

J � ACD � BDF � ABG � CFG � AEH � CEK � DHK � EFL � GKL

K � ADE � EFG � ACH � BFH � CEJ � DHJ � ABL � CFL � GJL

L � BDE � CEG � BCH � AFH � DGH � EFJ � ABK � CFK � GJK

AB � CF � GJ � KL AE � HJ � DK AH � EJ � CK � FL AL � FH � BK BH � EG � CL � FK

AC � BF � DJ � HK AF � BC � DG � HL AJ � CD � BG � EH BD � CG � FJ � EL CE � DH � JK � GL

AD � FG � CJ � EK AG � DF � BJ AK � DE � CH � BL BE � GH � DL EF � GK � JL

ABD � CDF � ACG � BFG � EFH � BCJ � AFJ � DGJ � BEK � GHK � AEL � HJL � DKL

ABE � CEF � DFH � AGH � EGJ � BHJ � BDK � CGK � FJK � ADL � FGL � CJL � EKL

ABH � DEF � AEG � CFH � BEJ � GHJ � BCK � AFK � DGK � ACL � BFL � DJL � HKL

ACE � BEF � ADH � FGH � DEJ � CHJ � CDK � BGK � EHK � AJK � DFL � AGL � BJL

AEF � BCE � DEG � BDH � CGH � FHJ � DFK � AGK � BJK � CDL � BGL � EHL � AJL

2 blocks of 16: AB � CF � GJ � KL 4 blocks of 8: AB � CF � GJ � KL

AD � FG � CJ � EK

BD � CG � FJ � EL
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64 (Continued)

Designs with 12 Factors

(w) 212�8; 1/256 fraction Resolution III

of 12 factors in 16 runs

Design Generators

E � ABC F � ABD G � ACD H � BCD
J � ABCD K � AB L � AC M � AD

Aliases

A � HJ � BK � CL � DM
B � GJ � AK � EL � FM
C � FJ � EK � AL � GM
D � EJ � FK � GL � AM
E � DJ � CK � BL � HM
F � CJ � DK � HL � BM
G � BJ � HK � DL � CM
H � AJ � GK � FL � EM
J � DE � CF � BG � AH
K � AB � CE � DF � GH
L � AC � BE � DG � FH

M � AD � BF � CG � EH
AE � BC � FG � DH � KL � JM
AF � BD � EG � CH � JL � KM
AG � EF � CD � BH � JK � LM

2 blocks of 8: AE � BC � FG � DH � KL � JM

Designs with 13 Factors

(x) 213�9; 1/512 fraction of Resolution III

13 factors in 16 runs

Design Generators

E � ABC F � ABD G � ACD H � BCD
J � ABCD K � AB L � AC M � AD N � BC

Aliases

A � HJ � BK � CL � DM � EN
B � GJ � AK � EL � FM � CN
C � FJ � EK � AL � GM � BN
D � EJ � FK � GL � AM � HN
E � DJ � CK � BL � HM � AN
F � CJ � DK � HL � BM � GN
G � BJ � HK � DL � CM � FN
H � AJ � GK � FL � EM � DN
J � DE � CF � BG � AH � MN
K � AB � CE � DF � GH � LN
L � AC � BE � DG � FH � KN

M � AD � BF � CG � EH � JN
N � BC � AE � FG � DH � KL � JM
AF � BD � EG � CH � JL � KM
AG � EF � CD � BH � JK � LM

2 blocks of 8: AF � BD � EG � CH � JL � KM
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X Alias Relationships for 2k�p Fractional Factorial Designs with k � 15 and n � 64 (Continued)

Designs with 14 Factors

(y) 214�10; 1/1024 fraction of Resolution III
14 factors in 16 runs

Design Generators

E � ABC F � ABD G � ACD H � BCD J � ABCD
K � AB L � AC M � AD N � BC O � BD

Aliases

A � HJ � BK � CL � DM � EN � FO
B � GJ � AK � EL � FM � CN � DO
C � FJ � EK � AL � GM � BN � HO
D � EJ � FK � GL � AM � HN � BO
E � DJ � CK � BL � HM � AN � GO
F � CJ � DK � HL � BM � GN � AO
G � BJ � HK � DL � CM � FN � EO
H � AJ � GK � FL � EM � DN � CO
J � DE � CF � BG � AH � MN � LO
K � AB � CE � DF � GH � LN � MO
L � AC � BE � DG � FH � KN � JO

M � AD � BF � CG � EH � JN � KO
N � BC � AE � FG � DH � KL � JM
O � BD � AF � EG � CH � JL � KM

AG � EF � CD � BH � JK � LM � NO
2 blocks of 8: AG � EF � CD � BH � JK � LM � NO

Designs with 15 Factors

(z)  215�11; 1/2048 fraction of Resolution III
5 factors in 16 runs

Design Generators

E � ABC F � ABD G � ACD H � BCD J � ABCD
K � AB L � AC M � AD N � BC O � BD P � CD

Aliases

A � HJ � BK � CL � DM � EN � FO � GP
B � GJ � AK � EL � FM � CN � DO � HP
C � FJ � EK � AL � GM � BN � HO � DP
D � EJ � FK � GL � AM � HN � BO � CP
E � DJ � CK � BL � HM � AN � GO � FP
F � CJ � DK � HL � BM � GN � AO � EP
G � BJ � HK � DL � CM � FN � EO � AP
H � AJ � GK � FL � EM � DN � CO � BP
J � DE � CF � BG � AH � MN � LO � KP
K � AB � CE � DF � GH � LN � MO � JP
L � AC � BE � DG � FH � KN � JO � MP

M � AD � BF � CG � EH � JN � KO � LP
N � BC � AE � FG � DH � KL � JM � OP
O � BD � AF � EG � CH � JL � KM � NP
P � CD � EF � AG � BH � JK � LM � NO
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