12. Deflections of Beams and Shafts

CHAPTER OBJECTIVES

 Use various methods to
determine the deflection
and slope at specific pts
on beams and shafts:

1. Integration method
2. Discontinuity functions

3. Method of
superposition
4. Moment-area method
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12. Deflections of Beams and Shafts

12.1 THE ELASTIC CURVE

« |tis useful to sketch the deflected shape of the
loaded beam, to “visualize” computed results and
partially check the results.

 The deflection diagram of the longitudinal axis that
passes through the centroid of each x-sectional
area of the beam is called the elastic curve.
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12. Deflections of Beams and Shafts

12.1 THE ELASTIC CURVE
 Draw the moment diagram *f"’(’: :ﬂﬂ"f

for the beam first before -
creating the elastic curve. s

e Use beam convention as

(a)
shown and established _MKQ‘)_M

iIn chapter 6.1.

Negative internal moment
concave downwards

(b)
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12. Deflections of Beams and Shafts

12.1 THE ELASTIC CURVE

P, P,
For example, due to roller | , |
and pin supports at Band o C £
D, displacements at Band .
D is zero. o [\//\ l
For region of -ve
moment AC, elastic
curve concave downwards. I L

. . . B4 cy 3

Within region of +ve A/  ofccion poin
moment CD, elastic curve

concave upwards.

At pt C, there is an inflection pt where curve
changes from concave up to concave down (zero
moment).
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12. Deflections of Beams and Shafts

12.1 THE ELASTIC CURVE

P
l )M
(a) A . I

D C

(b)
/ Moment diagram

C
© A ’ TAc

Y e L

Inflection point D
Elastic curve
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12. Deflections of Beams and Shafts

12.1 THE ELASTIC CURVE

Moment-Curvature Relationship |

e X axis extends +ve to the | WW - ' .
right, along longitudinal axis —
of beam. ®

A differential element of undeformed width
dx is located.

 yaxis extends +ve upwards from x axis.

It measures the displacement of the centroid on x-
sectional area of element.

 A“localized” y coordinate is specified for the
position of a fiber in the element.

« Itis measured +ve upward from the neutral axis.
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12. Deflections of Beams and Shafts

12.1 THE ELASTIC CURVE

Moment-Curvature Relationship o

« Limit analysis to the case of initially straight
beam elastically deformed by loads applied
perpendicular to beam’s x axis and Iymg In

— de

the x-v plane of symmetry for beam’s PP
x-sectional area. 9

* |Internal moment M deforms S (I _.,f.r'j.-w
element such that angle between j
X-SeCtlonS IS d 9‘ dCf%fI':EIi::iOI'I dcf;:;:;iﬂn

 Arc dx is a part of the elastic curve ®
that intersects the neutral axis for each x-section.

» Radius of curvature for this arc defined as the
distance p, measured from center of curvature O’
to dx.
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12. Deflections of Beams and Shafts

12.1 THE ELASTIC CURVE

Moment-Curvature Relationship
« Strain in arc ds, at position y from neutral axis, is

_ ds'—ds
ds
But ds =dx = pd@ and ds'=(p — y)d&
[(,0— y)d@—pdﬁs] o
ode

__¢ (12-1)

&

r

E =
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12. Deflections of Beams and Shafts

12.1 THE ELASTIC CURVE

Moment-Curvature Relationship

« If material is homogeneous and shows linear-
elastic behavior, Hooke’s law applies. Since
flexure formula also applies, we combing the
equations to get

1 e=olE, o=-My/l > i_M (12-2)

o EI

o = radius of curvature at a specific pt on elastic curve

(1/pis referred to as the curvature).

M = internal moment in beam at pt where is to be
determined.

E = material’s modulus of elasticity.

| = beam’s moment of inertia computed about neutral
axis.
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12. Deflections of Beams and Shafts

12.1 THE ELASTIC CURVE

Moment-Curvature Relationship
 Elis the flexural rigidity and is always positive.

* 3Sign for p depends on the direction of the
moment.

 As shown, when M is +ve, p extends above the
beam. When M is —ve, p extends below the beam.

i

Inflection —p
point
M=0

(J
0 —M
+M / M —
M/j/ 1\* 9
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12. Deflections of Beams and Shafts

12.1 THE ELASTIC CURVE

Moment-Curvature Relationship
« Using flexure formula, o= -My/l, curvature is also

1 o

p By

 Egns 12-2 and 12-3 valid for either small or large
radii of curvature.

(12-3)
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12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

« Let's represent the curvature in terms of vand x.

g
[1+(dudx)2j|

*  Substitute into Eqn 12-2

" / / EI (12-4)
[1+(d0dx)2}
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12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

* Most engineering codes specify limitations on
deflections for tolerance or aesthetic purposes.

« Slope of elastic curve determined from dv/dx is
very small and its square will be negligible
compared with unity.

« Therefore, by approximation 1/p = d?v/dx?, Eqn
12-4 rewritten as d2o M

dx? El

 Differentiate each side w.r.t. x and substitute
V = dM/dx, we get
d ( d U\

| E ol ) =V(x)  (12-6)

(12-5)

13
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12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

« Differentiating again, using —w = dV/dx yields

2 )
da° Eld—U ~w(x) (12-7)

dx? dx )

* Flexural rigidity is constant along beam, thus

4

d v
El = =-w(x) (12-8)

dx

dv
EISY=V(x)  (12-9)

dx

d°v

El- > =M(x) (12-10)
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12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

 Generally, it is easier to determine the internal
moment M as a function of x, integrate twice, and
evaluate only two integration constants.

* For convenience in writing each moment
expression, the origin for each x coordinate can be

selected arbitrarily.
Sign convention and coordinates
 Use the proper signs for M, V and w.

v 0’ O’ v
W
_ I 1 =
Y Y P Elastic curve Elastic curve +p
P
1'1' }1"
+M ( T J ) +M ds do do ds
\ J

; +0 +0

+V +V +dv T p— - T dv
. . . +v +v

Positive sign convention ‘ X X
+X - dx ldx +x

(a)
Positive sign convention Positive sign convention 15
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12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

 Positive deflection v iIs upward.

 Positive slope angle 6 will be measured
counterclockwise when X Is positive to the right.

 Positive slope angle 6 will be measured clockwise
when X Is positive to the left.

16
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12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

JEESESTEy S E—

-

P p
w W
lvvv\riil l %vvw\rvwrvv l
Al@ | D

B C O B C LJ_
‘ }—x1—> —XZ‘—‘ X3*‘

X2 "] (c)

X1
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12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Boundary and continuity conditions

 Possible boundary
conditions are

shown here. 5
;\

=10
A=0
Fixed end

| e

M=10
Internal pin or hinge

©2005 Pearson Education South Asia Pte Ltd
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Roller

18



12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Boundary and continuity conditions

« If a single x coordinate cannot be used to express
the egn for beam’s slope or elastic curve, then
continuity conditions must be used to evaluate

some of the integration constants.
r'- 0< x1 <a , a <x2 <(a+b)

P
\ | _.
s — 1 Jo V1 (a) = V2 (a)
O<x1<a ,0=<x2<b ‘ EB

T
’ |

— ﬂwf
01(a)=-02(b) ot

Al Xy—]
7]
Education South Asia F\/I:Id ( ) V2 (b) {h}

©2005 Pearson



12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Procedure for analysis

Elastic curve

 Draw an exaggerated view of the beam’s elastic
curve.

 Recall that zero slope and zero displacement
occur at all fixed supports, and zero displacement
occurs at all pin and roller supports.

« Establish the x and v coordinate axes.

 The x axis must be parallel to the undeflected
beam and can have an origin at any pt along the
beam{: with +ve direction either to the right or to
the left.

20
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12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Procedure for analysis

Elastic curve

« If several discontinuous loads are present,
establish x coordinates that are valid for each
region of the beam between the discontinuties.

 Choose these coordinates so that they will
simplify subsequent algrebraic work.

21
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12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Procedure for analysis
Load or moment function

 For each region in which there is an x coordinate,
express that loading w or the internal moment M
as a function of x.

* |n particular, always assume that M acts in the
+ve direction when applying the egn of moment
equilibrium to determine M = f(x).

22
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12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Procedure for analysis
Slope and elastic curve

 Provided El is constant, apply either the load egn
El d*v/dx* = —w(x), which requires four integrations
to get v= 1(x), or the moment egns
El d°v/dx? = M(x), which requires only two
iIntegrations. For each integration, we include a
constant of integration.

« Constants are evaluated using boundary
conditions for the supports and the continuity
conditions that apply to slope and displacement at
pts where two functions meet.
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12. Deflections of Beams and Shafts

12.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Procedure for analysis
Slope and elastic curve

* Once constants are evaluated and substituted
back into slope and deflection egns, slope and
displacement at specific pts on elastic curve can
be determined.

 The numerical values obtained is checked
graphically by comparing them with sketch of the
elastic curve.

 Realize that +ve values for slope are
counterclockwise if the x axis extends +ve to the
right, and clockwise if the x axis extends +ve to
the left. For both cases, +ve displacement is
upwards. 24
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12. Deflections of Beams and Shafts

EXAMPLE 12.1

Cantilevered beam shown is subjected to a vertical
load P at its end. Determine the egn of the elastic
curve. El is constant.

] .1

Elastic curve ‘

L g

(a)
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12. Deflections of Beams and Shafts

EXAMPLE 12.1 (SOLN)

Elastic curve: Load tends
to deflect the beam.
By inspection, the internal

AY B
moment can be mL o~
represented throughout — \

. - L |
the beam using a
single x coordinate. @

Moment function: From free-body diagram, with M

acting in the +ve direction, we have I
——L
I 'Y

M =-Px
(b)

X

©2005 Pearson Education South Asia Pte Ltd 26



12. Deflections of Beams and Shafts

EXAMPLE 12.1 (SOLN)

Slope and elastic curve:
Applying Egn 12-10 and integrating twice yields

2
d v

EI—Z:—PX (1)
ax
do Px?

El —=——+C 2
-, TG (2)

3
EIu=—Pg+C1x+C2 (3)
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12. Deflections of Beams and Shafts

EXAMPLE 12.1 (SOLN)

Slope and elastic curve:

Using boundary conditions dv/dx=0atx=L,and v=0
atx =L, Eqn (2) and (3) becomes

OZ——+C1

3
OZ—Pé_-FC]_L-FCZ
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12. Deflections of Beams and Shafts

EXAMPLE 12.1 (SOLN)

Slope and elastic curve:

Thus, C, = PL?/2 and C, = PL3/3. Substituting these
results into Eqns (2) and (3) with 8= dv/dx, we get

P
6?:—E(L2 —xz)

Maximum slope and displacement occur at A (x = 0),
PL? pL>

9, = - __PL
AT oE YAT T3E)
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12. Deflections of Beams and Shafts

EXAMPLE 12.1 (SOLN)

Slope and elastic curve:

Positive result for 6, indicates counterclockwise
rotation and negative result for A indicates that v, is
downward.

Consider beam to have a length of 5 m, support load
P = 30 kN and made of A-36 steel having
E. = 200 GPa.
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12. Deflections of Beams and Shafts

EXAMPLE 12.1 (SOLN)

Slope and elastic curve:

Using methods in chapter 11.3, assuming allowable
normal stress is equal to yield stress o, = 250 MPa,
then a W310x39 would be adequate

(I = 84.8(10°%) mm?).

From Eqns (4) and (5),

PL? P

Q) = —_
AT oE YAT T 3E)
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12. Deflections of Beams and Shafts

EXAMPLE 12.1 (SOLN)

Slope and elastic curve:
From Eqns (4) and (5),

30 kN(10° N/kN)x{5 m(10° mm/m)ZT

O =0.0221 rad

" 2[20000%) Nimm? [84.810° ) mm?*

30 kN(10% N/KN )< [5 m(10° mm/m)ZT

D =—/3.7 mm

~ 3/200(10%) N/mm? [84.8(10° ) mm* )

32



12. Deflections of Beams and Shafts

EXAMPLE 12.1 (SOLN)

Slope and elastic curve:

Since ¢, = (dv/dx)? = 0.000488 << 1, this justifies the
use of Eqn 12-10 than the more exact 12-4.
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12. Deflections of Beams and Shafts

EXAMPLE 12.1 (SOLN)

SOLUTION 2

Using Eqn 12-8 to solve the problem. Here w(x) =0
for 0 < x <L, so that upon integrating once, we get the

form of Eqn 12-19

34
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12. Deflections of Beams and Shafts

EXAMPLE 12.1 (SOLN)

Solution I

Shear constant C'; can be evaluated at x = O, since
V, =-P. Thus, C', = —P. Integrating again yields the
form of Egqn 12-10,

d3v

El -, =-P
0

N X

C

C
CX2

El

= —Px+C',=M

Here, M=0atx =0, so C’, =0, and as a result, we
obtain Eqn 1 and solution proceeds as before.

35
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12. Deflections of Beams and Shafts

EXAMPLE 12

The simply supported beam shown in Fig. 12-11a supports the triangular
distributed loading, Determine its maximum deflection. £7 is constant.

2
Wiy
_ 2wy
//m/ﬂ/ﬂ\l\l\h\»\ =k
-
s
E:""-—-._____\____ ________{ | | | l) L] |
T “Elastic curve x v
X
L | L -3
| 2 | 2 | wy L
q
(a) (b)

36
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12. Deflections of Beams and Shafts

Solution |

Flasiie Curve. Due to symmetry, only one x coordinate is needed for
the solution, in this case 0 = x = L/2. The beam deflects as shown in
Fig. 12-11a. Notice that maximum deflection occurs at the center since
the slope is zero at this point.

Woment Function.  The distributed load acts downward, and therefore,
It is positive according to our sign convention. A free-body diagram of
the segment on the left is shown in Fig. 12-115. The equation for the
distributed loading is

2wy

w=——x (1)
Hence,
2
WX x Hr‘n_r_.
+ ZMya=0; M+ — | = =0
L NA I3 (3) 1 (x)
WDIS WUL
M= - I x
AL 4

37
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12. Deflections of Beams and Shafts

©2005 Pearson Educ:

Slope and Elastic Curve.
Using Eq. 12-10 and integrating twice, we have

dz-z_:l Wi S WUL
EIS " - M= 2,3 + 2 2
e 3r” 4 " 2)
dv Wy wpL
of e 4, M= 20 6
dx 1207 g !
EI Wo s Mok s o i e
v = — —x X
60L 24 g -

The constants of integration are obtained by applving the boundary
condition v = 0 at x = 0 and the symmetry condition that dv/dx = 0

at x = L/2. This leads to

SwyL?
= — — D
L 192 2
Hence,
dv W wi L Swil?
EI == = 0 4 0 70
dx 121 8 102
Wi WUL = SH-‘DLE
Elv= ——x + =
Y= TeoL 24 ¥ 192 ¢

Determining the maximum deflection at x = L/2, we have
- 1-‘1.-‘0.[.4

Vmaxy = _12DEI Ans.

ool el e 11

38



12. Deflections of Beams and Shafts

EXAMPLE 123

The simply supported beam shown in Fig. 12-12¢ is subjected to the
concentrated force P. Determine the maximum deflection of the beam.
ET is constant.

[
=

e mrm iy -
=1

(a)

39
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12. Deflections of Beams and Shafts

Flastic Curve. The beam deflects as shown in Fig, 12-125. Two coordinates
must be used, since the moment becomes discontinuous at P. Here we will
take x| and x,, having the same origin at A, so that 0 = x; < 2a and
2a < x; = 3a.

Woment Funciion.  From the free-body diagrams shown in Fig. 12-12¢,

P

l) Ml = ?Il
M,
P 2P
E“—ﬁa M, = x; = P(x; ~ 2a) = -(3a — x))
P
3 Slope and Elastic Curve.  Applying Eq. 12-10 for M, and integrating
twice vyields 5
d (] P
El — =—
i’ x - 2a) dx? 3!
2a Y dv P
By | 32 El — =—x’+C (1)
AR Il) dx 6
L |
Xa |V2 3
3 Likewise for M,,
d*v, 2P
ic) El d.l:zz = T{Sﬂ — .rg}
| dv, 2P X
Fig. 12-12 EI == {3 e e 3
2P(3 , x°
. - | — —— | 4+ . +
©2005 F Eflb 3 (2 i1x> 6 ) C_.,Ig Cq (4} 40



12. Deflections of Beams and Shafts

The four constants are evaluated using rwo boundary conditions, namely,
x1 = 0, vy = 0and x; = 3a, v; = 0. Also, fwo continuity conditions must
be applied at B, that is, dv| /dx; = dvy/dx; at xy = 2, = 2a and v, = v
at x; = x; = 2a. Substitution as specified results in the following four

equations:
2P (3 3a)’
¥, = Oat x; = 3a; 0 = —(—a[&‘na]g — () ) + C3(3a) + G,
3 \2 6
dv,(2a)  dwy(2a) P EP( {EH}E)
= : —(2a)" + Cy = —| 3a(2a) — + C;
dx, dx, g (20)° + €1 =757 3a20) — 3
P .. 2P (3 2a)’
v(2a) = ©v5(24); E(EH]J + Cy(2a) + C; = T(%a[za}g _ ! 6} ) + C5(2a) + Cy
Solving these equations, we get
4
C, = - EPHE C; =0
22 4
C;= ——Pa* C,=—-Pa’
9 3
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12. Deflections of Beams and Shafts

Thus, Eqs. 1-4 become
doy, P , 4Pa

= 5
dx, G6EI"' ~ 9EI (3)
P . 4P
= 3 6
T REITY T 9Er M (6)
dv, 2Pa_ _ P , 2P 7)
dx, EI* 3EI* OET
Pa , P , 22Pa N 4Pa’ ®)
= —Xx3" — X+ — X
2T Er"? T 9Er™ 9EI "% 3E]

By inspection of the elastic curve, Fig. 12—-125, the maximum deflection
occurs at [, somewhere within region AB. Here the slope must be zero.

From Eq. 5, 1 4
—x——=a* =0
6 9
x; = 1.633a
Substituting into Eq. 6, i
P a
Vpax — — U484 EHI Ans.

The negative sign indicates that the deflection is downward.

©2005 Pearson Education South Asia Pte Ltd
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12. Deflections of Beams and Shafts

EXAMPLE 12.4

Beam is subjected to load P at its end. Determine
the displacement at C. El is a constant.

=x1— P—»fzi
A e _E— Tk

I— 2a
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12. Deflections of Beams and Shafts

EXAMPLE 12.4 (SOLN)

Elastic curve

Beam deflects into shape shown. Due to loading, two
X coordinates will be considered, 0 < x, < 2a and

0 <X, < a, where X, is directed to the left from C since
internal moment is easy to formulate.

P

=1 f‘_"‘li

(a)
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12. Deflections of Beams and Shafts

EXAMPLE 12.4 (SOLN)

Moment functions |
. . —I|—-| |-—.J.'2
Using free-body diagrams, D” M, (T —

we have v, 2

p ;
M]_:—EX]_ M2 :—PX2 z (b)
Slope and Elastic curve: Applying Eqn 10-12,
for 0<x, <2a EIdZU21=—Ex1
dx, 2
dv, P _.
Eld—)(l——le +C, 1)

Elo, =—%x13+c:1x1+c2 (2)
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12. Deflections of Beams and Shafts

EXAMPLE 12.4 (SOLN)

Slope and Elastic curve:
Applying Eqn 10-12,

2
for0<x,<a S 2 = _px,
dx,°
2
Elij';)j:—sz%Cg (3)

El Uy = —I;)X23 + C3X2 + C4 (4)
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12. Deflections of Beams and Shafts

EXAMPLE 12.4 (SOLN)

Slope and Elastic curve:

The four constants of integration determined using
three boundary conditions, v, =0 atx, =0, v, =0 at
X, = 2a, and v, =0 at x, = a and a discontinuity eqgn.

Here, continuity of slope at roller requires
dv,/dx, = —dw,/dx, at x, = 2a and x, = a.

n=0atx =0, 0=0+0+C2

vy=0atx =2a; 0= —1F;(2a)2 +Cy(2a)+C,
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12. Deflections of Beams and Shafts

EXAMPLE 12.4 (SOLN)

Slope and Elastic curve:

v, =0 at X, =a; O:—Za3+C3a+C4

dv(2a)  duy(a). P. ~ P, \
b T d?(z , —Z(Za) +C1——(—2(a) +C3)

Solving, we obtain
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12. Deflections of Beams and Shafts

EXAMPLE 12.4 (SOLN)

Slope and Elastic curve:
Substituting C; and C, into Eqn (4) gives

P 3 7Pa’®_  Pa’

6E| 2 2

Uy = +
oEl El

Displacement at C is determined by setting x, = 0,

~ Pa’

TR

©2005 Pearson Education South Asia Pte Ltd 49



12. Deflections of Beams and Shafts

EXAMPLE 12.4 (SOLN)

 |f several different loadings act on the beam the
method of integration becomes more tedious to apply,
because separate loadings or moment functions must be

written for each region of the beam.

8 constants of
i integration

50
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12. Deflections of Beams and Shafts

*12.3 DISCONTINUITY FUNCTIONS

« A simplified method for finding the egn of the
elastic curve for a multiply loaded beam using a
single expression, formulated from the loading on
the beam , w = w(x), or the beam’s internal
moment, M = M(x) is discussed below.

Discontinuity functions
Macaulay functions

« Such functions can be used to describe distributed
loadings, written generally as

(x—a)" ={0 for x < a
{(x-a)" forx>a (12-11)

n>0
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12. Deflections of Beams and Shafts

*12.3 DISCONTINUITY FUNCTIONS

Discontinuity functions
Macaulay functions

e Xrepresents the coordinate position of a pt along
the beam

« aisthe location on the beam where a
“discontinuity” occurs, or the pt where a distributed
loading begins.

« The functions describe both uniform load and
triangular load.
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12. Deflections of Beams and Shafts

*12.3 DISCONTINUITY FUNCTIONS

Discontinuity functions

Macaulay functions

Loading | Loading Function Shear V = f w(x)dx

Moment M = [Vdx
W () Sl et

AT | LW = Mo(x-'-a)_z V= Mo.(x‘_a)._l M= M0<x_a)0

S w=Pla L e pamaf M= Py

S wEwbeal TV = wefral s, o M= o el

el g ¥ = e el e M e el
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12. Deflections of Beams and Shafts

Macaulay Functions. For purposes of beam or shaft deflection,
Macaulay functions, named after the mathematician W. H. Macaulay, can
be used to describe distributed loadings. These functions can be written
in general form as

' w0 ory <'a
<x ,H_.h.a>n ot N e L
e ot e ) forx 2 a (12-11)

Here x represents the coordinate position of a point along the beam, and
a is the location on the beam where a “discontinuity” occurs, namely the
point where a distributed loading begins. Note that the Macaulay function
(x — a)" is written with angle brackets to distinguish it from the
ordinary function (x — a)", written with parentheses. As stated by the
equation, only when x = ais (x — a)" = (x — a)", otherwise it is zero.
Furthermore, these functions are valid only for exponential values
n = 0. Integration of Macaulay functions follows the same rules as for
ordinary functions, i.e.,

/(x —a)tdx = fo =7 +C /(X i gYidy = [ a)tt = 1,22
n+1 :

Note how the Macaulay functions describe both the uniform load
wo (n = 0) and triangular load (n = 1), shown in Table 12-2, items 3
and 4. This type of description can, of course, be extended to distributed
loadings having other forms. Also, it is possible to use superposition with
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12. Deflections of Beams and Shafts

Singularity Functions. These functions are only used to describe the

point location of concentrated forces or couple moments acting on a

beam or shaft. Specifically, a concentrated force P can be considered as a

special case of a distributed loading, where the intensity of the loading is m

w = P/e such thatits length is €, where € =0, Fig. 12-15.The area under s

this loading diagram is equivalent to F, positive upward, and so we will ) _J J
}’

_use the singularity function

sneea vk s k(s Jorag e di
. :P(x l 1 Z{P forx=a S

_to describe the force P. Here n = —1 so that the units for w are force per
l_ength, as it should be. Furthermore, the function takes on the value of P Fig. 12-15
only at the point x = a where the load occurs, otherwise it 1s zero.
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12. Deflections of Beams and Shafts

TS

In a similar manner, a couple moment My, considered positive

clockwise, is a limit as € — 0 of two distributed loadings as shown in

Fig. 12-16. Here the following function describes its value. * “l B
a
o
0 forx # a
= Mylx —a) 2= 12-14
Toa "
N
The exponent n = —2, in order to ensure that the units of w, force per B - l __
length, are maintained. x __L
a 1
Fig. 12-16

- Application of Egs. 12-11 through 12-15 provides a rather direct
means for expressing the loading or the internal moment in a beam as a
function of x. When doing so, close attention must be paid to the signs of
the external loadings. As stated above, and as shown in Table 12-2,
concentrated forces and distributed loads are positive upward, and couple
‘moments are positive clockwise. If this sign convention is followed, then
the internal shear and moment are in accordance with the beam sign
_Convention established in Sec. 6.1.



12. Deflections of Beams and Shafts

)

w=275kN(x = 0)™" + L5kN-m(x — 3m)2 — 3 kN/m(x —

M =275kN(x = 0)' + 1L.5kN-m(x - 3m)® ~ ——(x — 3m)2 —

1.5 kN-m 2 kbl
. Yy ¥ Y ¥y vy vy vy Yy
B
| . A
17 3m 3m
2.75 kN (b) B,

3m)? - 1 kN;’mz&; :31;1)717 |

The reactive force at B is not included here since x 1s never greater than
6 m, and furthermore, this value is of no consequence in calculating the
slope or deflection. We can determine the moment expression directly

from Table 12-2, rather than integrating this expression twice. In either
case,

3 kN/m 1 kN/m?

> (x =3m)?

| -

= 2.75x + 15(x = 3)° = 1.5(x — 3)% —~ ~(x — 3)

©2005 Pearson Education South Asia Pte Ltd
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The deflection of the beam can now be determined after this equation
is integrated two successive times and the constants of integration are

evaluated using the boundary conditions of zero displacement at A
and B.

Y



12. Deflections of Beams and Shafts

*12.3 DISCONTINUITY FUNCTIONS

Procedure for analysis
Elastic curve

« Sketch the beam’s elastic curve and identify the
boundary conditions at the supports.

» Zero displacement occurs at all pin and roller
supports, and zero slope and zero displacement
occurs at fixed supports.

« Establish the x axis so that it extends to the right
and has its origin at the beam’s left end.

Load or moment function

« (Calculate the support reactions and then use the
discontinuity functions in Table 12-2 to express
either the loading w or the internal moment M as a
function of x.

58
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12. Deflections of Beams and Shafts

*12.3 DISCONTINUITY FUNCTIONS

Procedure for analysis
Load or moment function

« (Calculate the support reactions and then use the
discontinuity functions in Table 12-2 to express
either the loading w or the internal moment M as a
function of x.

 Make sure to follow the sign convention for each
loading as it applies for this equation.

* Note that the distributed loadings must extend all
the way to the beam’s right end to be valid. If this
does not occur, use the method of superposition.
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12. Deflections of Beams and Shafts

*12.3 DISCONTINUITY FUNCTIONS

Procedure for analysis
Slope and elastic curve

«  Substitute w into El d*v/dx* = —w(X) or M into the
moment curvature relation El d?v/dx? = M, and
integrate to obtain the eqns for the beam’s slope
and deflection.

« Evaluate the constants of integration using the
boundary conditions, and substitute these
constants into the slope and deflection egns to
obtain the final results.

 When the slope and deflection egns are evaluated
at any pt on the beam, a +ve slope is
counterclockwise, and a +ve displacement is
upward.
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12. Deflections of Beams and Shafts

EXAMPLE 12.5

Determine the egn of the elastic curve for the
cantilevered beam shown. El is constant.

7 1
& kMN/m I”t”

'I’l‘l'l‘nl-llvlr 50 kN-m
.q 3

——

- 3 m -—!-— ~ m—l

(a)

C
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12. Deflections of Beams and Shafts

EXAMPLE 12.5 (SOLN)

Elastic curve

The loads cause the beam to deflect as shown. The
boundary conditions require zero slope and
displacement at A.

T 1-
8 kN/m 12 kN

IR Rsom
A Hb\ C
S m - 4|114|

(a)
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12. Deflections of Beams and Shafts

EXAMPLE 12.5 (SOLN)

Loading functions

Support reactions shown on free-body diagram. Since
distributed loading does not extend to C as required,
use superposition of loadings to represent same
effect.

’HB]-;Nm 8 kN/m 2 KN
T\JrHHHHqHHH'L
az KN SOKN- fgkaL:T Lre

5m 4 m

(b)
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12. Deflections of Beams and Shafts

EXAMPLE 12.5 (SOLN)

Loading functions

Therefore, w52 kN(x-0) " - 258 kN-m(x—0)* —8KN /m(x—0)°
+50 kN-m(x~5m) " +8 kN/m(x—~5 m)’

The 12-kN load is not included, since x cannot be

greater than 9 m. Because dV/dx = —w(x), then by

integrating, neglect constant of integration since
reactions are included in load function, we have

V =52(x-0) —258(x—0) " —8(x~0)
+50(x—5) " +8(x~5)
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12. Deflections of Beams and Shafts

EXAMPLE 12.5 (SOLN)

Loading functions
Furthermore, dM/dx =V, so integrating again yields

M =—258<x—o>°+52<x—0>1—1 (8)x—0)" +50(x~5)" + 1(8)<x—5>2

( 258 +52% — 4%* +4(x ~5)" +50(x )<N m

The same result can be obtained directly from Table
12-2.
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12. Deflections of Beams and Shafts

EXAMPLE 12.5 (SOLN)

Slope and elastic curve
Applying Eqgn 12-10 and integrating twice, we have

2
El ‘;‘Z) = —258+52X — 4X? +50(x —5)° + 4/x —5)°
X
£1 90— o5y 1 26x% — 443 +50(x 5" +ﬂ<x—5>3 +C4
dx 3 3

Elv = -129x° +236x3 —:13x4 +25(x—5)°

+:13<x ~5)* +Cx+C,
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12. Deflections of Beams and Shafts

EXAMPLE 12.5 (SOLN)

Slope and elastic curve

Since dvidx=0atx=0,C,=0;and v=0atx=0, so
C,=0. Thus

L= i(—129x2 +§x3 —}x4
El 3 3

125(x—5)2 +:1))<x—5>4) m
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12. Deflections of Beams and Shafts

Determine the maximum deflection of the beam shown in Fig. 12-20a.

ET is constant.
8 kN

| ;
__‘_-_'_'_'—'--_
e / ) ¢B
4 D
I A

20 m !

120 kN-m

! 10 my

B kM (a)

30 m:

(b)
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12. Deflections of Beams and Shafts

Poading Function.  The reactions have been calculated and are shown
on the free-body diagram in Fig, 12-2056. The loading function for the
beam can be written as

w=8kN{x—0)"'—6KkN{x —10m)~"
The couple moment and force at B are not included here, since they are
located at the right end of the beam, and x cannot be greater than 30 m.
Applying dV/dx = —w{x), we get
V = —-8(x — 0)" + 6(x — 10)°

In a similar manner, dM /dx = V yields

M = —8(x — 0)! + 6{x — 10)!

= (—8x + 6{x — 1)) kN - m

Slope and Elastic Curve. Integrating twice yields
2

v |
EI —— = —8x + 6(x — 10)

d.
El d—z = —4x2 + 3{x — 10)2 + C

4 . .
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12. Deflections of Beams and Shafts

From Eq. 1, the boundary condition ¥ = 0 atx = 10 m and v = 0 at
x = 30 m gives
0 = —1333 + (10 — 10)° + Cy(10) + G
0 = —36000 + (30 — 10)° + C,(30) + G,
Solving these equations simultaneously for C; and C,, we get C; = 1333
and C; = —12 000. Thus,

EI ? = —ax? + 3(x — 10)® + 1333 (2)
A
4 .
Elv = — =i + (x — 10)* + 1333x — 12000 (3)

e

From Fig, 12-20a4, maximum displacement may occur either at C, or at
D where the slope dv/dx = 0.To obtain the displacement of C.setx = 0

in Eqg. 3. We get )
B S e ge 12 000 kN - m?
El

Ve =
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12. Deflections of Beams and Shafts

To locate point D, use Eq. 2 with x = 10 m and dv/dx = 0.

0 = —4xp® + 3(xp — 10)* + 1333
IDE + EIDID — 1633 =0
Solving for the positive root,

Xp=203m
Hence, from Eq. 3,
4 .
Elvp = — E[EG.E}J + (203 — 10}3 + 1333(20.3) — 12 000
5000 kN - m’ )
vp = El F15.

Comparing this value with -, we see that vy, = 2¢.
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