
Des Autom Embed Syst (2013) 17:109–127
DOI 10.1007/s10617-013-9121-6

An adaptive CFAR embedded system architecture
for target detection

Ridha Djemal · Kais Belwafi · Saleh Alshebeili

Received: 23 September 2011 / Accepted: 17 August 2013 / Published online: 21 September 2013
© Springer Science+Business Media New York 2013

Abstract This paper presents field-programmable gate array (FPGA)-based novel forward
and backward automatic censored cell algorithms using a Nios II core processor embed-
ded on a Stratix II FPGA programmable device. These algorithms were recently presented
for target detection in a nonhomogeneous environment, and they operate in a complemen-
tary manner to allow for high-resolution target detection with a time constraint fixed below
0.5 µs. The ACOSD-based constant false alarm rate detector does not require any prior
information regarding the background environment and employs statistical analysis to dy-
namically calculate the threshold at which the ordered cells under investigation are accepted
or rejected. The advantages of the proposed system lie in its simplicity and short processing
time while maintaining a low development cost. For a reference window of 16 range cells,
the experimental results obtained using the Stratix II development kit demonstrate that the
proposed architecture works properly with a processing speed of 100 MHz and an overall
detector execution time of 0.11 µs for each range cell. The designed hardware, which is an
example of system-on-chip architecture, was physically realized in a Stratix II FPGA device,
and the results are presented and discussed.

Keywords Constant false alarm rate · System on chip · Real-time system · Radar system

1 Introduction

A radar system detects and locates objects or targets by transmitting an electromagnetic sig-
nal and receiving echoes from target objects within a volume of coverage. From the received

R. Djemal (B) · S. Alshebeili
Electrical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia
e-mail: rdjemal@ksu.edu.sa

K. Belwafi
Electronic and Microelectronic Laboratory, Monastir University, Monastir 5000, Tunisia

S. Alshebeili
KACST Technology Innovation Centre (RFTONICS), King Saud University, Riyadh 11421,
Saudi Arabia

mailto:rdjemal@ksu.edu.sa


110 R. Djemal et al.

signal, the system extracts necessary information on the targets, related to the object type
(target or clutter), and the locations of the identified objects. If the echo is associated with a
clear or empty background, it can be simply compared with a fixed threshold, and the target
is detected whenever the signal exceeds this threshold. However, in actual cases, the echo is
accompanied by clutter that varies in time and position; therefore, in target extraction, the
threshold should be calculated dynamically from the local background noise/clutter power
and should not be constant. In this respect, the use of adaptive signal processing with a
variable detection threshold is required to decide whether a target is present. The main idea
of the technique is to define a window of cells around the cell under analysis and to deter-
mine the clutter information in that window to calculate the actual threshold in a dynamic
manner [1].

In practice, improving target detection involves suppression of the undesired signal (clut-
ter) over the echo signal present. The situation may differ over the observation space. We
must define the clutter type and describe its properties to readily discriminate targets from
the clutter. Several constant false alarm rate (CFAR) techniques for use in radar systems
have been proposed in the literature, such as the application of cell averaging (CA) and
ordered statistics (OS) [2, 3]. For example, an appropriate reference cell is used in the OS-
CFAR detector to estimate the background noise power level. The OS-CFAR detector incurs
a small additional detection loss over the CA-CFAR detector for homogeneous backgrounds
but can resolve closely spaced interferences. However, it requires a longer processing time
than the CA-CFAR detector; thus, the CA-CFAR technique is the optimal CFAR approach
for homogenous environments.

Other well-developed OS algorithms, such as the Greatest-of-CFAR (GO-CFAR) algo-
rithm, the Smallest-of-CFAR (SO-CFAR) algorithm [4], the Censored Mean-Level Detector
(CMLD) [5], and other OS algorithms [6], have been studied for different scenarios. How-
ever, the assumption of a homogenous environment is no longer valid when the number of
targets changes abruptly (i.e., the case of multiple interfering targets). In such situations, the
performance of the CA-CFAR processor is significantly degraded. Various classes of CFAR
techniques have been proposed to enhance their robustness against a non-homogeneous en-
vironment for different applications [7, 8] in accordance with the background distribution;
however, these implementations have been experimental in the software environment and
have not been validated for a real-time system.

In contrast, a major concern in radar signal processing is the maintenance of the false
alarm rate at a desired constant value (i.e., the CFAR). To achieve a CFAR, the processed
target signal is compared with the cell under consideration using an adaptive threshold de-
tector in a process that requires sufficient knowledge of the statistics (Rayleigh, Weibull,
K-, or lognormal distribution) of the clutter. Another concern is the performance of target
detection within a limited delay to satisfy real-time constraints, which is particularly impor-
tant for high-resolution target detection. To accomplish this task, a design exploration of the
solution space should be carried out for the CFAR detector.

Although the theory of CFAR radar detection has been well established, the implemen-
tation of hardware for a real-time environment is still beyond the currently available high-
computational signal processing operations. When designing or implementing a CFAR sys-
tem, one should anticipate challenges associated with complexity, restricted timing, and
large-scale computation. The recent technological developments in complex hardware soft-
ware systems have allowed for the exploration of digital implementations of the CFAR sys-
tem and new algorithms in a real-time environment. Due to the real-time constraints of
target detection using a high-resolution radar system, system-on-chip (SoC) architecture is
an attractive solution for the real-time CFAR processor. In SoC architecture, all components



An adaptive CFAR embedded system architecture for target detection 111

of a computer, such as the processor and memory, are integrated onto a single chip and
operate in an organized manner. In addition to their flexibility, SoC designs consume less
power and are less expensive and more reliable than multi-chip systems. Recent advances
in field-programmable gate array (FPGA) technology have made SoC fabrication faster and
easier.

In this paper, a Nios II processor FPGA-based platform is used to implement automatic
censored ordered statistics detector (ACOSD) CFAR algorithms. These recently proposed
CFAR-based detectors should be able to operate robustly to detect a target automatically
and to determine the number of interferences close to the target to obtain a lognormal clutter
distribution. The SoC architecture of the CFAR detector is implemented on an Altera Stratix
II EP2S60 FPGA chip. The design goal is to implement a forward ACOSD (F-ACOSD) and
backward ACOSD (B-ACOSD) to achieve a processing delay of less than 500 ns, which is
suitable for high-resolution radar applications in a desert environment [9].

The remainder of this paper is organized as follows. In Sect. 2, the fundamentals of CFAR
theory and the related research on hardware realization for several types of CFAR algorithms
are described. Section 3 presents the relevant mathematical formulas and algorithms for both
the F-ACOSD and B-ACOSD. The SoC FPGA-based design architecture for the detectors is
explained in Sect. 3.4. Section 4 presents the simulation and realization of the system. The
conclusions and future research plans are discussed in Sect. 5.

2 Related work

A detection method is needed in radar systems to determine the power threshold above
which any return can be considered as originating from a target. If the threshold is too
low, then more targets are detected, but there are a relatively high number of false alarms.
Conversely, if the threshold is too high, then fewer targets are detected but with fewer false
alarms. For most radar detectors, the threshold is set to realize the required probability of
a false alarm Pf a . If the background of noise, clutter, and interference are constant in time
and space, then a fixed threshold level that provides a specified probability of a false alarm
can be chosen. However, under natural conditions, unwanted clutter and interference sources
affect the noise level spatially and temporally. In this case, an adaptive threshold can be used
in which the threshold level is raised and lowered to maintain the constant probability of a
false alarm. This technique is called CFAR detection.

A typical CFAR processor is shown in Fig. 1. The input signals are set serially in a shift
register. The contents of the cells surrounding the cell under test, X(0), are processed using
a CFAR processor to obtain the adaptive threshold, T . The value of X(0) is then compared
with the threshold to make a decision. The cell under consideration is declared a target if its
value exceeds the threshold value.

The conventional cell-averaging (CA)-CFAR technique proposed by [10] sets the thresh-
old adaptively by estimating the mean level in a window of N range cells. Many CFAR
algorithms have been developed in recent years. We can categorize a CFAR algorithm into
one of four models according to the clutter power distribution and interfering targets.

• When a transition occurs in the clutter power distribution, we can use, for example,
greatest-of-selection logic for the CA-CFAR detector (GO-CFAR) [11] to control the in-
crease in the probability of a false alarm. If one or more interfering targets are present,
the GO-CFAR detector performs target detection poorly. Thus, previous studies have sug-
gested that an SO-CFAR algorithm employing smallest-of-selection logic should be used
instead of the GO-CFAR algorithm for the CA-CFAR detector [12].



112 R. Djemal et al.

Fig. 1 Block diagram of a typical CFAR algorithm

• When the clutter background is composed of homogeneous white Gaussian noise in addi-
tion to interfering targets, the CMLD can be used as a target detector. The CMLD censors
target samples and estimate the noise level from the remaining noise sample. Additionally,
the trimmed mean-level CFAR (TM-CFAR) detector [3] implements trimmed averaging
after ordering the samples in the window. When the number of interfering targets is not
known a priori, the generalized CMLD (GCMLD), for which the number of interfering
targets is determined and their corresponding samples are then sampled, can be used as
well as the OS-CFAR detector, which chooses one ordered sample to represent the es-
timated noise level in the cell under consideration. If transition occurs not only in the
clutter power distribution but also in the interfering targets, a commonly used technique
is the generalized two-level CMLD (GTL-CMLD) [13], which uses an automatic censor-
ing algorithm of the unwanted samples when both interfering targets and extended clutter
are present in the reference window of the cell under consideration.

• The last category considers non-Gaussian clutter distribution. The lognormal, Weibull,
gamma, and K-distributions have been used to represent the envelope-detected non-
Gaussian clutter distribution. Publications on CFAR detection for Weibull clutter have
been reported. For example, the maximum-likelihood CFAR (ML-CFAR) algorithm has
been presented [14], and its performance was analyzed for the case in which both the
scale and shape parameters are unknown. Furthermore, the optimal Weibull CFAR (OW-
CFAR) algorithm, for which the test statistics are expressed according to the estimate of
the mean power of the Weibull clutter, has been proposed [15].

The theoretical developments of CFAR detection have clearly not been followed by hard-
ware implementation. Few attempts to implement the hardware of CFAR processors have
been reported. In particular interest is the parallel pipelined hardware implementation of a
CA-CFAR-based target detection system in a noisy environment using TMS320C6203 dig-
ital signal processor (DSP) and FPGA devices [16]. The processing time achieved for this
implementation was approximately 420 ms using 32 reference cells with eight guard cells.
Another example of OS-CFAR using the Virtex-II-V2MB100 development kit has an exe-
cution time for the detection algorithms of 0.48 ms (0.6 µs for each range cell) for a dataset
of 800 samples using only 16 reference cells [17]. These proposed delays are not suitable for
high-resolution detection, which requires a delay of less than 0.5 µs per range cell. Versatile
hardware architectures for CFAR processors based on a linear insertion sorter implementing



An adaptive CFAR embedded system architecture for target detection 113

CA, OS, SO, and GO variants of the CFAR algorithm have been presented [18]. Even if the
proposed architecture is configurable to switch between all variants within one clock cycle,
no information related to real-time applications has been presented. Other implementations
of CA-CFAR and OS-CFAR using parallel structures have been presented using a DSP and
FPGA [19], but the execution delays were not optimized. As mentioned above, many parts
of the target detector have been implemented using a DSP and hardware technologies; the
performance of the new CFAR techniques in the presence of noise with a lognormal dis-
tribution operating in real time remains unknown. Alsuwailem et al. [20] implemented an
automatic censoring CFAR detector, known as the TM-CFAR and Automatic Censored Cell
Averaging (ACCA) ordered data variability CFAR detector. However, the implementation
did not consider the real-time aspects, and offline validation was carried out without al-
lowing interactive interaction with the architecture environment. Furthermore, no standard
interface was given to facilitate communication with the radar system environment. Winkler
et al. [21] used a SoC design containing a reconfigurable processor for an automotive radar
sensor in which the processor controlled all custom logic and input/output tasks.

Almarshad et al. [22] recently introduced automatic censoring detectors called ACOSD
CFAR detectors. The algorithm is able to censor an unknown number of interfering targets
in lognormal clutter automatically. Because of the enhanced radar resolution, the lognormal
distribution is more reliable than the Rayleigh distribution in representing the amplitude
of clutter. Meanwhile, the automatic censoring algorithms developed for Rayleigh clutter,
as presented in [23], cannot be directly extended to cases in which the clutter samples are
drawn from a lognormal distribution. It has recently been reported that a hardware imple-
mentation of the F-ACOSD target detector on a Stratix II development board can operate at
up to 115 MHz with a delay of 0.29 µs for each range cell under a lognormal distribution
[24]. Therefore, it is necessary to investigate the performance of the system after including
appropriate interface delays related to interfaces and wrappers. In the remainder of this pa-
per, we consider a new implementation, namely, the ACOSD-CFAR algorithms proposed
in [22] for SoC implementation using Nios II core processors embedded within an FPGA.
Using the MicroC/OSII real-time operating system integrated with the Nios II processor and
an adequate optimization technique, we attempt to divide the total delay presented in [24,
25] by two without any restriction on the performance of the ACOSD algorithms.

3 ACOSD detection algorithms

In the case of ACOSD CFAR algorithms, detection consists of two steps: removing the inter-
fering reference cells (censoring step) and the actual detection (detection step). Both steps
are performed dynamically using a suitable set of ranked cells to estimate the unknown
background level and to set the adaptive thresholds accordingly. This detector does not re-
quire any prior information regarding the clutter parameters, nor does it require the number
of interfering targets. In a CFAR processor, the radar outputs {X(i) : i = 0,1, . . . ,N} are
stored in a tapped delay line. The cell with subscript i = 0 is the cell under consideration
and contains the signal that will be judged as either belonging to a target or not. The last
N surrounding cells are auxiliary cells used in the CFAR procedure. In the ACOSD CFAR
algorithm, the N surrounding cells are ranked in ascending order according to their magni-
tudes:

X(1) ≤ X(2) ≤ · · ·X(p) ≤ · · · ≤ X(N) (1)

After sorting, the sorted cells are sent to the detection stage.



114 R. Djemal et al.

3.1 B-ACOSD detection algorithms

In the B-ACOSD algorithm, the sample X(N) is compared with the adaptive threshold, Tci ,
where i takes a value from zero to X. To begin the comparison, the threshold is defined by

Tc0 = X(1)1−α0X(p)α0 , (2)

where X(p) is the pth largest sample and α0 is a constant chosen to achieve the desired
probability of false censoring (Pf c). Using Monte Carlo simulation, values of p > N/2 are
observed to yield sufficient detection performance [22]. Given the first threshold:

• If X(N) < Tc0, then X(N) belongs to a clutter sample without interference and the algo-
rithm terminates;

• If X(N) > Tc0, then X(N) is a return echo from an interfering target. In this case, X(N) is
censored and the algorithm proceeds to compare the sample X(N − 1) with the following
threshold to determine whether it corresponds to an interfering target or a clutter sample
without interference:

Tc1 = X(1)1−α1X(p)α1 . (3)

At the (k + 1)th step, the sample X(N − k) is compared with the threshold Tck , and a
decision is made according to the test

X(N − k)
H1
≷
H0

Tck; 0 ≤ k < N − p; where Tck = X(1)1−αkX(p)αk . (4)

H1 represents the case where X(N − k), and thus, the subsequent samples X(N −
k + 1),X(N − k + 2), . . . ,X(N) correspond to clutter samples with interference. H0 de-
notes the case in which X(N − k) is a clutter sample without interference. Successive tests
are repeated as long as the hypothesis H1 is deemed true. The algorithm stops when the cell
under investigation is deemed homogeneous (i.e., a clutter sample only) or, in the extreme
case, when all N − p highest cells have been tested, that is, k = N − p. Figure 2 presents a
block diagram of the B-ACOSD algorithm.

In the detection step, the cell under consideration, X0, is compared with the threshold
Tak to decide whether a target is present according to

X0

H1
≷
H0

Tak; 0 ≤ k < N − p + 1. (5)

Hypothesis H1 denotes the presence of a target in the test cell, whereas hypothesis H0 de-
notes that there is no target.

In the B-ACOSD CFAR algorithm, the threshold Tak is defined as

Tak = X(1)1−βkX(N − k)βk , (6)

where the value of β is selected for the designed probability of a false alarm (Pf a) and k is
the number of interfering targets found in the censoring step.

3.2 The F-ACOSD detection algorithm

The F-ACOSD algorithm starts by comparing sample X(p +1) with the threshold T̂c0 given
by

T̂c0 = X(1)α̂0X(p)1−α̂0 , (7)



An adaptive CFAR embedded system architecture for target detection 115

Fig. 2 Block diagram of the B-ACOSD algorithm

where α̂0 is a constant chosen to achieve the desired (Pf c) for the F-ACOSD algorithm. In
contrast to the B-ACOSD algorithm, if X(p+1) > T̂c0, the algorithm decides that X(p+1)

is a return echo from an interfering target and terminates. If, by contrast, X(p + 1) < T̂c0,
the algorithm decides that the sample X(p + 1) corresponds to a clutter sample without
interference, and then the detector compares the sample X(p + 2) with the threshold given
by

T̂c1 = X(1)α̂1X(p)1−α̂1 (8)

This comparison is performed to determine whether the sample corresponds to an interfering
target or a clutter sample without interference. At the (k+1)th step, the sample X(p+k+1)

is compared with the threshold T̂ck , and a decision is made according to the test

X(p + k + 1)
H1
≷
H0

T̂ck; 0 ≤ k < N − p (9)



116 R. Djemal et al.

where

T̂ck = X(1)α̂kX(p + k)1−α̂k (10)

H1 represents the case in which X(p + k + 1); thus, the subsequent samples X(p +
k + 2), . . . ,X(N) correspond to clutter samples with interference, whereas H0 denotes the
case in which X(p + k + 1) is a clutter sample without interference. The successive tests
are repeated as long as hypothesis H0 is declared true. The algorithm terminates when the
cell under investigation is deemed non-homogeneous (i.e., clutter plus interference sample)
or, in the extreme case, when the entire N − p highest cells are tested, that is, k = N − p.

In the detection step, the CUT X0 is compared with the threshold T̂ak to determine
whether a target is present according to

X0

H1
≷
H0

T̂ak; 0 ≤ k < N − p + 1 (11)

Hypothesis H1 denotes the presence of a target in the test cell, whereas hypothesis H0 de-
notes the absence of a target. In the F-ACOSD algorithm, the threshold T̂ak is defined as

T̂ak = X(1)β̂kX(p + k)1−β̂k (12)

where the value of βk is selected according to the design probability of false alarm Pf α for
k interfering targets found in the censoring step.

To eliminate noise, which corrupts the potential target, we considered the lognormal dis-
tribution that is close to the distribution for the desert environment [26] and calculated the as-
sociated statistical parameters, such as αk and βk , which were obtained using the B-ACOSD
depending on the probability of a false alarm Pf a and the window dimensions p and N .
These parameters are useful in calculating the adaptive threshold, which is a key element of
the proposed algorithms.

Threshold selection is an important aspect of the algorithms [22]. The thresholds should
be selected such that there is a low probability of hypothesis test error in a homogeneous en-
vironment. A Monte Carlo simulation comprising 500,000 independent runs was performed
using computer simulation to obtain the threshold values, maintaining low values of Pf a and
Pf c based on statistical analysis. Table 1 provides the threshold parameters αk and βk ob-
tained using the B-ACOSD with Pf a = 0.001 and Pf c = 0.01. Table 2 provides values of α̂k

and β̂k for the F-ACOSD with the same probabilities. These parameters are used in the pro-
posed system implementation to simplify the adaptive threshold computation and improve
target estimation. Furthermore, the proposed ACOSD algorithms are implemented and sim-
ulated to demonstrate functionality and check the correctness of the algorithm, including all
components regardless of the timing analysis.

Table 1 Threshold parameters for B-ACOSD (Pf c = 0.001 and Pf c = 0.01)

(N,p) K

1 2 3 4 5 6 7 8 9 10 11 12 13

(16,12) αk 2.596 2.038 1.709 1.443 – – – – – – – – –

βk 1.635 1.889 2.12 2.37 2.64 – – – – – – – –

(36,24) αk 2.538 2.154 1.953 1.812 1.7 1.601 1.523 1.443 1.369 1.3 1.225 1.153 –

βk 1.35 1.465 1.566 1.65 1.73 1.8 1.87 1.94 2.02 2.1 2.18 2.265 2.345



An adaptive CFAR embedded system architecture for target detection 117

Table 2 Threshold parameters for F-ACOSD (Pf a = 0.001 and Pf c = 0.01)

(N,p) K

1 2 3 4 5 6 7 8 9 10 11 12 13

(16,12) α̂k 1.442 1.465 1.535 1.745 – – – – – – – – –

β̂k 2.64 2.37 2.12 1.889 1.635 – – – – – – – –

(36,24) α̂k 1.15 1.152 1.154 1.158 1.16 1.167 1.174 1.191 1.21 1.264 1.311 1.467 –

β̂k 2.345 2.265 2.18 2.1 2.02 1.94 1.87 1.8 1.73 1.65 1.566 1.465 1.35

3.3 Nios II based ACOSD system development flow

Our high-resolution and real-time target detection requires critical timing, less than 500 ns,
and a constant false alarm rate obtained by maintaining the desired values of the probability
of false censoring Pf α = 10−3 and the probability of false censoring Pf c = 10−1. To achieve
the desired probabilities, the threshold parameters (α and β) are obtained from Monte-Carlo
simulations and from a performance evaluation of the proposed target detector using Matlab
without considering the timing constraints, which will be studied in the embedded system
design process. All of these parameters should be considered as requirements in the system
design. The main challenges associated with embedded systems are maintaining a minimal
cycle time and reducing the system cost with increasing system requirements and complexi-
ties. Three alternatives can be explored, according to the requirements of the application, as
follows:

• Develop embedded design software: In this design flow, the application is defined as
software code embedded within FPGA-based hardware architecture, running on the inte-
grated core processors. This solution requires a complete software development environ-
ment, such as the Nios II IDS environment provided by Altera. If the adequacy between
the target architecture and embedded software is well designed to satisfy the system re-
quirements with respect to the application, this solution becomes very interesting because
it allows the virtual prototype of our application to be obtained within a reasonable time
and at a reasonable cost.

• Develop an Intellectual Property (IP)—based architecture using VHDL or Verilog lan-
guage at the RTL level and integrate this IP in the embedded system as a coprocessor
or accelerator. This approach can be used when the previous solution cannot provide the
required performance. The time to obtain the prototype is highly important, and the cost
of the design is increased in comparison with that of the previous approach. A typical
design example is presented in [27] in which the application is a real-time watermarking
technique for video application.

• Combine both the hardware and software implementation for the same application and
perform a co-simulation around the FPGA-based processor architecture. In this case,
many solutions can be applied using glue logic components, a custom logic instruction
approach, and accelerator components for critical functions. In [28], we presented a hard-
ware/software implementation based on the integration of a custom instruction approach
to implement the BACOSD technique for radar target detection. However, this implemen-
tation provided a delay close to 500 ns, which is the critical time for high-resolution target
detection.

In the remainder of the paper, we consider the first approach for both FACOSD and
BACOSD CFAR-based high-resolution target detection techniques as depicted in Fig. 3.



118 R. Djemal et al.

Fig. 3 Proposed design flow for
the ACOSD system

Our main contribution consists of providing an adequate combination of target architecture
and the embedded design software to satisfy the system requirements.

The design and implementation of a real-time target detection system in the context of
SoC architecture requires the consideration of several problems with respect to the following
design flow:

• Hardware design steps: In this step, the embedded system-based hardware architecture is
defined. It incorporates a fast version of the Nios II core processor with on-chip memories
and a JTAG-UART interface interconnected using the Avalon fabric. A MicroC/OS real-
time operating system is also selected and integrated within the Nios II core processor to
execute the ANSI-C software code related to the proposed CFAR application.

• Software design steps: This step consists of the design of a pure software architecture
using a high-level language (HLL). The target detection code is developed with the ANSI-
C language and is run at first on the Instruction Set Simulator (ISS) of the Nios II core
processor in the Nios II-IDE environment of Aletra. Once simulated and checked, the
code is integrated on the FPGA code runs on the Nios II processor within the FPGA
using a micro-C operating system, and real-time validation is performed.

• System design step: This step consists of the integration of both FPGA-based hardware
architecture and software code within the same platform. The adequacy between the sys-
tem architecture and target techniques is explored by operating many optimizations on
the algorithm (sorting, look up, threshold computation) as well as the system architec-
ture (cache optimization, memory organization) to meet the high-resolution and real-time
requirements.



An adaptive CFAR embedded system architecture for target detection 119

3.4 Implementation of the ACOSD-CFAR architecture on a Nios II development board

The software implementation of the CFAR algorithms can be achieved using microproces-
sors or DSPs, and the performance of such implementation depends on the complexity of
the implemented CFAR techniques and the required performance according to the envi-
ronment in which the detector will be used. However, a high-resolution detector in a non-
homogeneous environment has a severe timing constraint where the false alarm rate is main-
tained under a fixed Pf a . Hardware/software integrated architecture with embedded core
processors is required. In our case study, the Altera Nios II development board was consid-
ered for the implementation of the COSD-CFAR target detector. The core of the board is the
Altera Stratix II EP2S60F672C3 FPGA. To implement the SoC CFAR-based architecture,
we must first define the SoC architecture, which is the basis for our design implementation.
This architecture is generated automatically using a system on a programmable chip (SoPC)
development tool to integrate all IPs, the Altera mega-function, memory and interfaces, and
HDL code with the appropriate test benches. For our application, the following components
are required to build the CFAR-based SoC.

• A software Nios II core processor. We selected a powerful version of the Nios II/f core
processor with a 32-bit data path, 2-kB data cache, and 4-kB instruction cache.

• JTAG UART interfaces with a simplified configuration, allowing target connection-
downloaded software and possessing an interface for on-chip trace data.

• A timer for time-based system routines. A 32-bit timer is selected.
• A flash and SDRAM memory controller. This component is comprised of common flash

interface-compliant (CFI) flash memory devices. According to the hardware platform,
we selected the AMD29LV128M123R_Byte interface. Furthermore, an external memory
controller was integrated into our SoC configuration.

• An Avalon tri-state bridge. The Avalon interface represents the system bus that intercon-
nects all memories with the Nios II core processor. In our configuration, the Avalon MM
tri-state bridge shares external system connections with the SRAM and flash memories.

• A phase-locked loop (PLL) clock to synchronize the system design.

Once all of the components are generated, each mapping phase can be obtained by auto-
assigning addresses to generate the entire SoC architecture and carrying out pin assignments.
Based on this configuration, the total architecture is synthesized using the predefined VHDL
components to provide a feature called real-time ISP, which allows a device’s configuration
flash memory to be loaded with the proposed design.

3.5 A layered approach to software design development

Software development is a significant aspect of the proposed ACOSD design architecture.
It consists of the HLL code intended for execution on a processor Nios II ISS. The Nios II
ISS is a software model of an Instruction Set Architecture that is used to debug code before
downloading it on a target board. It provides limited models of a few hardware peripherals
(timer, UART, flash, and SDRAM on-chip memories).

Our conceptual software layered architectural approach suggests that programs can be
structured as a series of three layers with a sequence of well-defined interfaces between the
layers. This design effectively isolates each layer from the layers above and below it so that
one can change the internal aspects of any layer without having to change any of the other
layers in the program. The proposed layered architecture isolates the hardware/software
components, enabling the organization shown in Fig. 4.



120 R. Djemal et al.

Fig. 4 Layered representation of
the ACOSD model for an
embedded system architecture

Because this code is intended to run in real time, the ISS is equipped with a real-time op-
erating system (MicroC/OS). Figure 4 presents a typical ACOSD-CFAR-based application,
which is intended to run on a Nios II-based architecture integrating a real-time operating
system.

• Software application layer: In this layer, we defined the ANSI-C codes for both FACOSD
and BACOSD using the appropriate application programming interface, MicroC/OS II
API, for software development. Many optimizations were considered to meet the real-
time requirements.

• Application Programming Interface Layer: This layer, which abstracts details of the hard-
ware complexity for software development, integrates three main parts, the specific API
(MicroC/OS II), the communication interconnect (Avalon interconnect), the hardware
communication abstraction, and the abstract interface (device) [29].

• Hardware component layer: In our design, this layer is based on the Nios II processor
core, represented by its ISS, which is tailored to support the software application and
its real-time operating system. This real-time operating system architecture has several
objectives, one of which is to centralize the control of the limited hardware resources.

3.6 Block diagram of the architecture

The overall SoC design consists of five main modules, as shown in Fig. 5, including the Nios
II processor, which is dedicated to the execution of the F-ACOSD and B-ACOSD CFAR
algorithms, on-chip ROM input/ROM interface, output/RAM interface, and JTAG UART
interface. All blocks are connected by an Avalon interface. This interface allows our system
to interact easily with external devices, such as external memories or any other component
capable of integration with the Avalon interface. The processor masters all communications
between the hardware and executes the CFAR program using the MicroC/OS II operating
system.

The SoC utilizes a Nios II soft-core processor. Nios II is a 32-bit embedded-processor
architecture designed specifically for the Altera family of FPGAs. Nios II has key features,
such as custom instructions and easy custom peripheral management. Nios II is offered in
three different configurations, including Nios II/f (fast), Nios II/s (standard), and Nios II/e
(economy). We chose to use the Nios II/f core because it is faster and able to meet the
real-time constraints. The input signal from an envelope detector can be sent directly to
the Avalon bus through an input interface or can first be stored in the 16-MB flash ROM



An adaptive CFAR embedded system architecture for target detection 121

Fig. 5 Block diagram of the
implemented ACOSD target
detector

provided by a development board and connected to the system through a flash ROM driver.
The censoring results are stored in a 2-MB external SSRAM that is controlled by a SSRAM
driver.

4 Experimental implementation and validation

The main objective in this section is to demonstrate the functionality of the hardware for
the proposed F-ACOSD CFAR architecture. To this end, the complete architecture, in-
cluding the associated input target data ROM and output target detection RAM, was built
around a single FPGA chip, with a minimum set of function units and minimal features
and cost. Specifically, the proposed CFAR processor was targeted for the Stratix FPGA chip
(EP2S60ES device). The Stratix II development kit EP2S60 DSP was selected to prototype
the proposed target detector. This board serves as a platform for use in high-performance
digital signal processing applications. It is normally employed to design, verify, and evalu-
ate systems prior to final stand-alone single-chip implementation. We used SoPC Builder,
which is an integrated tool of the Quartus II tool that allows designers to build SoC archi-
tectures easily without the need to integrate the system manually. In our implementation, we
considered the following configuration, including

• A Nios II/f core with a 2-kB data cache and a 2-kB instruction cache
• An internal ROM with controller
• An external flash memory of 2 MB with a controller
• JTAG UART adapter
• An Avalon interface
• PLL device operating at 100 MHz for clock generation

4.1 Design issues

For the software, we considered MicroC/OS II for the development language of the ACOSD
CFAR algorithms using the Nios II integrated development environment. In the first trial
implementation of F-ACOSD and B-ACOSD, we found that the computations of Tck and Tak



122 R. Djemal et al.

are critical points, accounting for approximately 92 % of the total time (200 µs), which does
not meet the delay requirement for the real-time execution of the ACOSD target detector.
Only 8 % of the total time is devoted to the shifting and sorting operations. To reduce the
required time of approximately 200 µs, we considered many design explorations related to
critical components, such as the Tck and Tak threshold values, sorting module, and adaptive
threshold computation component.

• Optimization of the threshold computation: In terms of hardware, computation of the
exponential Eqs. (4), (6), and (10)–(12) is difficult and expensive, especially for a floating-
point calculation. To reduce the hardware complexity and to decrease the computational
time, Eqs. (4) and (6) are converted to logarithmic form as Eqs. (13) and (14), respectively.

logTck = (1 − αk) logX(1) + αk logX(p), (13)

logTak = (1 − βk) logX(1) + βk logX(N − k). (14)

In the proposed form, exponential computations become simple multiplication operations,
and multiplication becomes an addition operation. After implementation, the solution ap-
pears inappropriate because at each point in time, we must calculate the logarithm of the
cell under test and the logarithm of all cells X(p + k + 1); therefore, we propose to use a
look-up table (LUT), as defined below.

• Implementation of a LUT: For Eqs. (13) and (14), it is difficult and time-consuming to
calculate the logarithms for all cell values directly. To circumvent this problem, a LUT is
built. The LUT contains the range of a lognormal distribution with μ = 1 and σ = 1.1 and
is based on the real radar input measurements given in [22]. The proposed LUT supports
up to 2,000 values, which allows resolution following the change in the number repre-
sentation to logarithmic form. For example, with 64-kB ROM, we achieve a resolution of
approximately 0.0312, and using 32-kB on-chip ROM, which is available for our Stratix
II prototyping board, this resolution is reduced to 0.0624.

• Approximation of the logarithmic function: To optimize the available size of the mem-
ory used for the LUT and to achieve acceptable resolution in calculating the logarithmic
function, we approximated the function by computing its values with steps of 0.03 for the
range of X from one to 10, 0.1 for the range of X from 10 to 100, and one for the range
of X from 100 to 2,000.

Figure 6 presents the interpolated logarithmic function and original logarithmic function,
which differ by approximately 10−3. This technique allows us to obtain the fixed resolution
with a small on-chip memory limited to 32 kB. Additionally, we considered a fixed-point
COSD CFAR simulation to minimize the complexity of the architecture because the floating
point does not provide any significant information for the given resolution. To implement
the logarithmic function required for the threshold calculation, we considered two on-chip
memories, each with a M4K block [30]. In the first configuration, we put all logarithmic
values for all inputs up to 400, where the second configuration provides the logarithmic
value for the remaining values of X(i) up to 2,000. As depicted in Fig. 7, the pseudo-code
presents the memory access to these look up tables with different base addresses (06440000h
and 06448000h) using the Nios II Hardware Abstraction Layer macro, IORD_16DIRECT,
to read access at the location with base + offset by bypassing the data cache.

• Optimization of the sorting module: As reported in [24], the even-odd bubble-sorting
module yields a delay that is proportional to the number of cells in the tape delay memory



An adaptive CFAR embedded system architecture for target detection 123

Fig. 6 Approximation of the
logarithmic function for the
threshold calculation

Fig. 7 ANSI-C pseudo code of the logarithmic calculation running on a Nios II core processor

Table 3 Timing results of the ACOSD CFAR architecture

ACOSD implementation B-ACOSD F-ACOSD

Direct Implementation 200 µs 200 µs

Using the cordic method 5.106 µs 5.106 µs

With the logarithmic function 20 µs 20 µs

Using the logarithmic function interpolation 4.3 µs 4.3 µs

Using LUT optimization 0.7 µs 0.7 µs

After sorting optimization 0.49 µs 0.49 µs

After cache memory optimization 0.11 µs 0.11 µs

(16 clock cycles for the proposed architecture). We carried out an optimization procedure
to reduce this delay to two clock cycles using a sorted list and inserting the new cell in
the appropriate location using pointers.

• Cache optimization: To accelerate execution, we increased the cache memory size from 8
to 64 kB and found that the total delay was reduced to 0.11 µs, which is a good result for
high-resolution target detection. Table 3 summarizes the timing results of the implemen-
tation of the ACOSD CFAR algorithms.



124 R. Djemal et al.

Table 4 The hardware
implementation results Allocated resources Percentage of occupation

Logic gates 20 %

Total register 5,810

Total pins 44 %

Total blocks memory 76 %

DSP blocks 3 %

Total PLL 17 %

4.2 Design results and resource usage

To evaluate our embedded COSD-CFAR technique, we considered a software code for the
overall algorithm after carrying out optimization over the Nios II processor; the software
is downloaded to the FPGA. The core coprocessor is responsible for delivery to all cells
in the architecture and for sending the results back to an interactive window via the JTAG
UART interface connected to the Avalon interconnect. The synthesis results for the overall
CFAR architecture are presented in Table 4. The memory requirement for our architecture
is approximately 76 %, where only 20 % of the logic gates have been used. Furthermore, we
have used 3 % of the DSP blocks and 44 % of the input/output blocks with 5,810 registers.
We have only checked the design using 2,000 cells because of the memory limitation. If
we increase this number, we cannot complete the routing of the design within the Stratix II
FPGA device; thus, we are working within the limited memory resources.

The FPGA implementation result for the SoC architecture with N = 16 and p = 12 il-
lustrates that the Nios processor can achieve a maximum operating frequency of 100 MHz.
After many optimizations, the processing time to perform a single run is 0.11 s. This pro-
cessing time is below the real-time requirement of 0.5 s [24]. For demonstration purposes,
the default configuration of the processor is 16-bit data samples, 16 reference cells, and two
guard cells. The processor was tested and verified by generating 256 data samples drawn
from a lognormal distribution. The dataset was downloaded to 16 × 256 ROM. The output
array of the target presence indication result was saved in 1 × 256 RAM.

During the validation phase, we checked both the timing features and performance of the
proposed system in terms of false alarm and false censoring. The clutter follows a lognor-
mal distribution, where the pulses are distributed according to the Rayleigh shape. These
assumptions are performed to emulate the desert environment. The noise of the signal-to-
clutter ratio (SCR) varies from 10 to 25 dB. No degradation is registered in this respect for
all signals for which the SCR exceeds 10 dB. However, if the SNR is decreased by less than
10 dB, the Pf a exceeds 10−3. This degradation does not affect our target detector because
the typical SCR exceeds 15 dB in practice, and in this case, our algorithm performs well, as
depicted in Fig. 8.

In order to verify that the approximations carried out on the logarithmic function do not
affect the required performance of the proposed algorithms in terms of false alarm, we mea-
sured the false alarm rate directly from the embedded system. The following figure presents
the results of these measurements displayed by the Nios-II core processor for different val-
ues of SNR (20 and 30 dB). We confirm that the Pf a is quite below 10−3 required for high
resolution target detection and the approximation used before is well justified.



An adaptive CFAR embedded system architecture for target detection 125

Fig. 8 Threshold estimation using the FPGA-based ACOSD embedded system architecture

5 Conclusion

This paper reported the hardware implementation of an ACOSD CFAR target detector for
lognormal clutter based on the ACOSD algorithm. This proposed SoC architecture has the
advantages of being simple and fast and requiring low development cost. The performance
of the prototype hardware setup demonstrated the concept of the proposed CFAR processor.
This programmable hardware, with its significant improvement in processing speed, will
make it possible to increase the resolution of radar range cells and will open new avenues
for further useful real-time applications.

The proposed FPGA implementation integrates a Nios II core processor within the FPGA
with internal memories and controllers using the Avalon switch fabric. The proposed archi-
tecture allows for the detection of each cell under consideration within a delay of 0.11 µs,
which meets the real-time requirement of 0.5 s. The total processing delay for the 256 cells
given by the Stratix II development Kit (EP2S60ES device) is approximately 0.028 ms for
a configuration using 16 reference cells and two guard cells. Furthermore, the required re-
sources are less than the available FPGA resources with significant use of the internal mem-
ories. If we consider 32 cells, for example, we must optimize the sorting module and compu-
tation of the logarithmic function to fit the overall architecture within the same platform. We
checked the false alarm rate for different values of the SCR (varying from 10 to 25 dB) on
the proposed embedded system as shown in the Fig. 9, and we found results that were con-



126 R. Djemal et al.

Fig. 9 Performance evaluation of the Real-time Target ACOSD detectors

sistent with those obtained by Monte Carlo simulations. A small degradation was registered
when the SCR was less than 10 dB. However, this result did not affect the performance of
our system because the SCR is greater than 10 dB in practice. For future work, other types
of CFAR algorithms, such as the Automatic Censored Cell Averaging Detector (ACCAD)
CFAR detector, can be implemented within the same SoC to realize a generic CFAR detector
architecture for different algorithms.

Acknowledgements The work reported in this paper was supported by the National Plan for Science and
Technology (NPST) at King Saud University (project number: ADV-170-2-08).

References

1. Barkat M (2005) Signal detection and estimation. Artech House, Norwood
2. Blake S (1982) OS-CFAR theory for multiple target and nonuniform clutter. IEEE Trans Aerosp Electron

Syst 24(6):785–790
3. Rohling H (1983) Radar CFAR thresholding in clutter and multiple target situations. IEEE Trans Aerosp

Electron Syst 19(4):608–621
4. Meziani HA, Soltani F (2006) Performance analysis of some CFAR detectors in homogenous and non-

homogenous Pearson-distributed clutter. Signal Process 86:2115–2122
5. Larouissi T, Barkat M (2006) Performance analysis of order-statistic CFAR detectors in time diver-

sity systems for partially correlated chi-square targets and multiple target situations. Signal Process
86(7):1617–1631



An adaptive CFAR embedded system architecture for target detection 127

6. Mezache A, Soltani F (2007) A novel threshold optimization of ML-CFAR detector in Weibull clutter
using fuzzy-neural networks. Signal Process 87:2100–2110

7. Khalighi MA, Bastani MH (2000) Adaptive CFAR processor for nonhomogenous environment. IEEE
Trans Aerosp Electron Syst 36(3):889–897

8. Saarnisaari H, Henttu P, Juntti M (2005) Iterative multidimensional impulse detectors for communica-
tions based on the classical diagnostic methods. IEEE Trans Commun 53(3):395–398

9. Alshebeili S, Alhumaidi SM, Obied AM, Seddiq YM (2009) FPGA-based implementation of a CFAR
processor using Batcher’s sort and LUT arithmetic. In: 4th international design and test workshop (IDT),
Riyadh-KSA, pp 1–6

10. Finn HM, Johnson RS (1968) Adaptive detection mode with threshold control as a function of spatially
sampled clutter level estimates. RCA Rev 29:414–463

11. Sawyers JH, Hansen VG (1980) Detectability loss due to greatest of selection in a cell-averaging CFAR.
IEEE Trans Aerosp Electron Syst 16:115–118

12. Weiss M (1982) Analysis of some modified cell-averaging CFAR processors in multiple target situations.
IEEE Trans Aerosp Electron Syst 15(1):102–114

13. Barkat M, Himonas SD, Varshney PK (1989) CFAR detection for multiple target situations. IEE Proc, F,
Radar Signal Process 136(5):193–210

14. Ravid R, Levanon N (1992) Maximum-likelihood CFAR for Weibull background. IEE Proc, F, Radar
Signal Process 139(3):256–264

15. Anastassopoulos V, Lampropoulos G (1995) Optimal CFAR detection in Weibull clutter. IEEE Trans
Aerosp Electron Syst 31(1):52–64

16. Torres C, Lopez S, Cumplido R (2004) A configurable FPGA-based hardware architecture for adaptive
processing of noisy signals for target detection based on constant false alarm rate (CFAR) algorithms.
In: Global signal processing conference, Santa Clara, CA, pp 214–218

17. Bencheikh ML, Magaz B (2008) An efficient FPGA implementation of the OS-CFAR processor. In:
International Radar symposium, Wroclaw, pp 1–4

18. Cumplido R, Uribe C, Del Campo F, Perez R (2010) A versatile hardware architecture for a constant
false alarm rat processor based on alinear insertion sorter. Digit Signal Process 20:1733–1747

19. Ali JK, Yassen ZT, Saed TR (2007) An FPGA-based implementation of CA-CFAR processor. Asian J
Inf Technol 6(4):511–514

20. Alsuwailem AM, Alshebeili SA, Alamar M (2008) Design and implementation of a configurable real-
time FPGA-based TM-CFAR processor for radar target detection. J Act Passiv Electron Devices 3(3–
4):241–256

21. Detlefsen J, Siart U, Buchlert J, Wagner M, Winkler V (2004) FPGA-based signal processing of an
automotive radar sensor. In: First European Radar conference, Amsterdam, pp 245–248

22. Almarshad MN, Barkat M, Alshebeili SA (2007) A Monte Carlo simulation for two novel automatic
censoring techniques of radar interfering targets in log-normal clutter. Signal Process 88(3):719–732

23. Alsuwailem AM, Alhowaish MH, Alshebeili SA, Qasim SM (2009) Field programmable gate array-
based design and realization of automatic censored cell averaging constant false alarm rate detector
based on ordered data variability. IET Circuits Devices Syst 3(1):12–21

24. Djemal R (2010) A real-time FPGA-based implementation of target detection technique in non-
homogenous environment. In: Design and technology of integrated system in nanoscale era (DTIS),
Hammamet, Tunisia, pp 1–6

25. Rosyadi I, Djemal R, Alshebeili S (2009) Design and implementation of real-time automatic censor-
ing system on chip for radar detection. In: World academic of science, engineering and technology
(WASET), Penang, Malaysia, pp 318–324

26. Winter EM, Schlangen MJ, Hendrickson CR Comparisons of target detection in clutter using data from
the 1993 FOPEN experiments (Technical report). Naval Command, Control and Ocean Surveillance
Center (NCCOSC), RDT&E Division, San Diego, CA 92152-5001

27. Karmani S, Djemal R, Tourki R (2007) A blind watermarking algorithm implementation for digital
images and video. Int J Soft Comput 2(2):292–301

28. Djemal R, Belwafi K, Kaaniche W, Alshbeili SA (2011) An FPGA-based implementation of HW/SW
architecture for CFAR radar target detector. In: International conference on microelectronics (ICM),
Tunisia, pp 1–6

29. Cesario W, Gauthier L, Lyonnard D, Nicolescu G, Jerraya AA (2004) Object-based hardware/software
component interconnection model for interface design in system-on-a-chip circuits. J Syst Softw 70:229–
244

30. Atera Corporation (2007) Stratix II architecture, Stratix II device family— Data sheet SII1002-4.3, May
2007


	An adaptive CFAR embedded system architecture for target detection
	Abstract
	Introduction
	Related work
	ACOSD detection algorithms
	B-ACOSD detection algorithms
	The F-ACOSD detection algorithm
	Nios II based ACOSD system development ﬂow
	Implementation of the ACOSD-CFAR architecture on a Nios II development board
	A layered approach to software design development
	Block diagram of the architecture

	Experimental implementation and validation
	Design issues
	Design results and resource usage

	Conclusion
	Acknowledgements
	References


