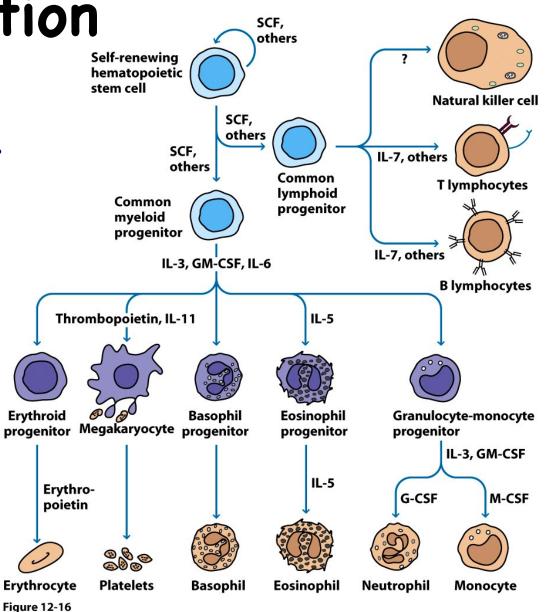
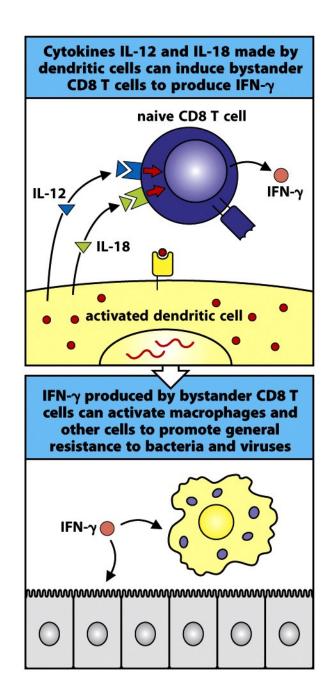
Cytokines (II)

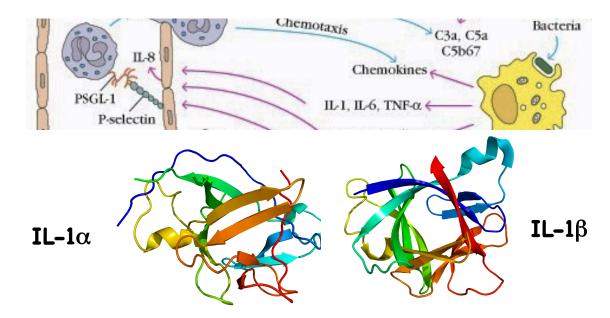

Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel: 4677363 <u>aalshamsan@ksu.edu.sa</u>

Learning Objectives

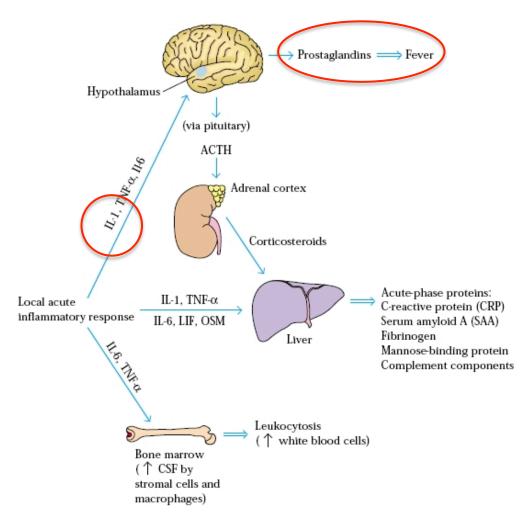
- By the end of this lecture you will be able to:
- (1) Understand the physiological role of IL-1, IL-2, TNF- α , IFN- α/β , and IFN- γ
- ② Describe three mechanisms to antagonize cytokines
- 3 Realize the role of cytokines in disease
- ④ Realize the role of cytokines in therapy

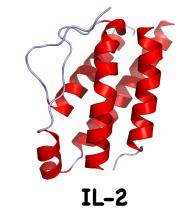
Cytokines function


 Cytokines stimulate the differentiation of stem cells in bone marrow


Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

Cytokines function


 Facilitate the crosstalk between immunocompetent cells



- Synthesized mainly by macrophages, monocytes, DCs, and keratinocytes
- IL-1 α is constitutive while IL-1 β is inducible
- Proinflammatory cytokine
- Upregulate leukocyte adhesion factors

Endogenous pyrogen

- Synthesized mainly by T cells
- Massively induced after T cell activation

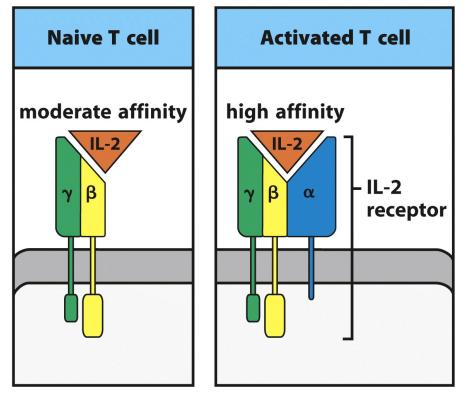
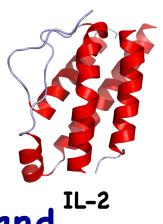



Figure 9.20 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

- Autocrine stimulation is necessary for activation and proliferation of both CD8⁺ and CD4⁺ cells
- Increases the synthesis of perforin

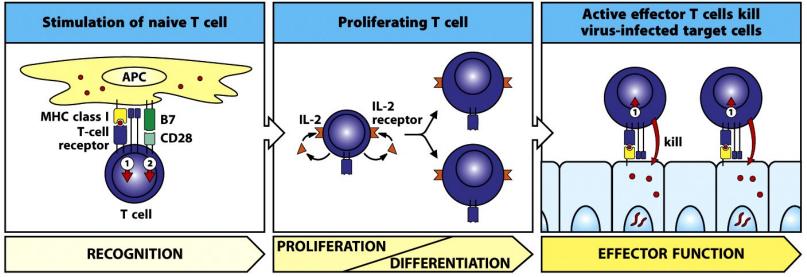
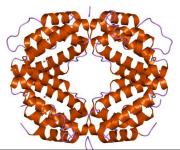
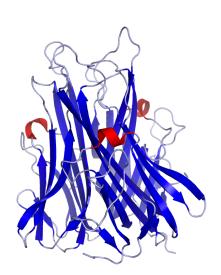
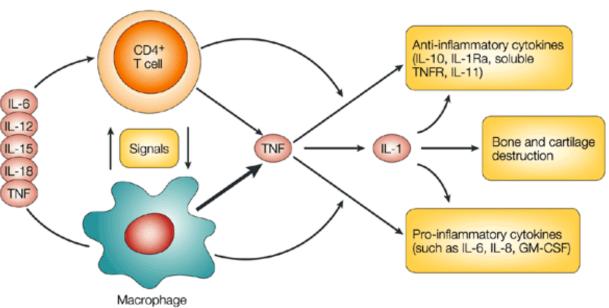



Figure 8-25 Immunobiology, 7ed. (© Garland Science 2008)

Interferons

- A group of proteins produced by virusinfected cells, or some immune cells, that can induce generalized antiviral state
 - Type I IFN (IFN- α , and IFN- β) are produced by virus-infected cells as well as monocytes, macrophages, and fibroblasts
 - Type II IFN (IFN- γ) produced by APCs and activated T cells, recruits $T_H 1$ to the site of inflammation, downregulates the activity of $T_H 2$ cells, upregulates vascular adhesion molecules, upregulates MHC-I/II, and activate macrophages at the site of infection
 - Type III IFN (IFN- λ) contains 3 molecules called IFN- λ 1, IFN- λ 2 and IFN- λ 3 (also called IL29, IL28A and IL28B respectively) that play a role in stimulating the immune system against viruses


Targets of IFN- $\!\gamma$



Target cell	Action
Epithelium & Endothelium	Activation and upregulation of adhesion molecules
NK cell	Increase NK cell cytotoxic activity
Т _н cell	T _H activation, orientation toward T _H 1, inhibition of T _H 2 activity
Neutrophils and macrophages	Activation of intracellular killing machinery
Other cells	Upregulation of MHC-I and MHC-II

Tumor Necrosis Factor alpha

 Secreted mainly by macrophages, monocytes, neutrophils, and activated T cells and NK cells. It causes inflammation, acute phase response, neutrophil activation, and death of many cell types

TNF- α

Cytokine [†]	Secreted by [‡]	Targets and effects
	SOME CYTOKINES O	F INNATE IMMUNITY
Interleukin 1 (IL-1)	Monocytes, macrophages, endothelial cells, epithelial cells	Vasculature (inflammation); hypothalamus (fever); liver (induction of acute phase proteins)
Tumor necrosis factor-α (TNF-α)	Macrophages	Vasculature (inflammation); liver (induction of acute phase proteins); loss of muscle, body fat (cachexia); induction of death in many cell types; neutrophil activation
Interleukin 12 (IL-12)	Macrophages, dendritic cells	NK cells; influences adaptive immunity (promotes T _H 1 subset)
Interleukin 6 (IL-6)	Macrophages, endothelial cells	Liver (induces acute phase proteins); influences adaptive immunity (proliferation and antibody secretion of B œll lineage
Interferon α (IFN- α) (this is a family of molecules)	Macrophages	Induces an antiviral state in most nucleated cells; increases MHC class I expression; activates NK cells
Interferon β (IFN-β)	Fibroblasts	Induces an antiviral state in most nucleated cells; increases MHC class I expression; activates NK cells
	SOME CYTOKINES OF	ADAPTIVE IMMUNITY
Interleukin 2 (IL-2)	T cells	T-cell proliferation; can promote AICD. NK cell activation and proliferation; B-cell proliferation
Interleukin 4 (IL-4)	T _H 2 cells, mast cells	Promotes T _H 2 differentiation; isotype switch to IgE
Interleukin 5 (IL-5)	T _H 2 cells	Eosinophil activation and generation
Transforming growth factor β (TGF- β)	T cells, macrophages, other cell types	Inhibits T-cell proliferation and effector functions; inhibits B-cell proliferation; promotes isotype switch to IgA; inhibits macrophages
Interferon γ (IFN-γ)	T _H 1 cells, CD8 ⁺ cells, NK cells	Activates macrophages; increases expression MHC class I and class II molecules; increases antigen presentation

*Many cytokines play roles in more than one functional category.

[†]Only the major cell types providing cytokines for the indicated activity are listed; other cell types may also have the capacity to synthesize the given cytokine.

[‡]Also note that activated cells generally secrete greater amounts of cytokine than unactivated cells.

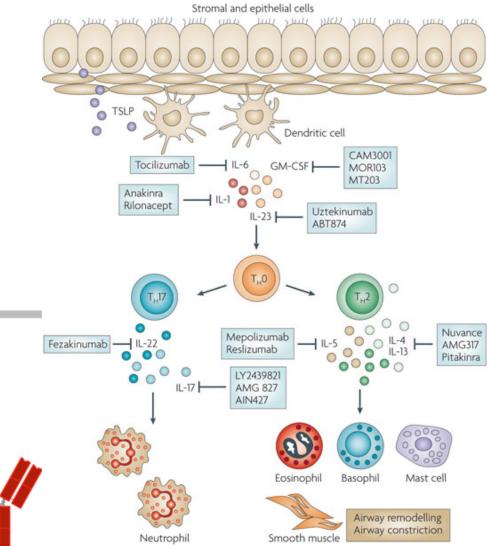
- Cytokine antagonists be one of the following:
 1) Regulatory soluble proteins in blood stream
 2) Viral proteins
 - **3** Pharmaceuticals

• Cytokine antagonists be one of the following:

 Regulatory soluble proteins in blood stream:
 Some can block cytokines receptors e.g. IL-1R antagonist (IL-Ra)
 Soluble cytokine receptors obtained by enzymatic

cleavage of the extracellular part of the receptor e.g. sIL-2R

- Cytokine antagonists be one of the following:
 - Viral proteins:
 Cytokine homologs
 Cytokine binding proteins
 Homologs of cytokine receptors
 Interference with intracellular signaling
 Interference with cytokine secretion

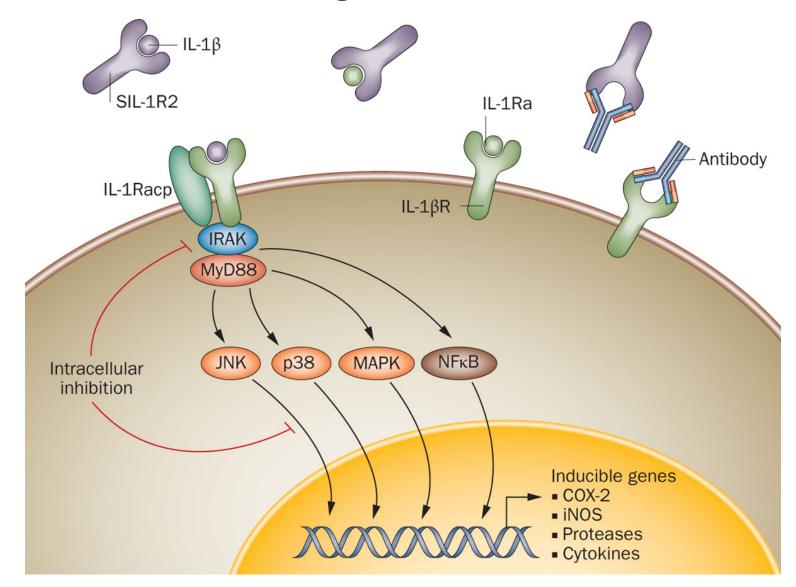

 Cytokine antagonists be one of the following:

③ Pharmaceuticals: Mostly biological (e.g. mAb)

-zu-

-xizu-

-u-



Components Substem for origin / source

Source substems: mouse (top left), chimeric (top right), humanized (bottom left), chimeric/humanized (bottom middle), and human (bottom right) monoclonal antibodies. Human parts are shown in red, non-human parts in blue.

Nature Reviews | Drug Discovery

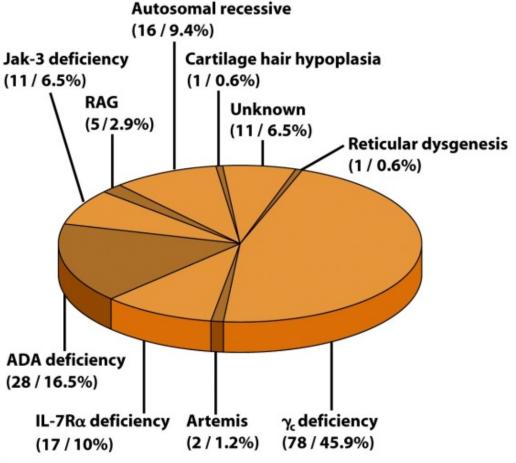
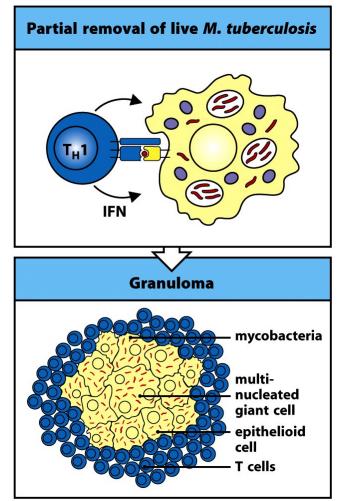
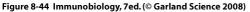
Cytokine Antagonists

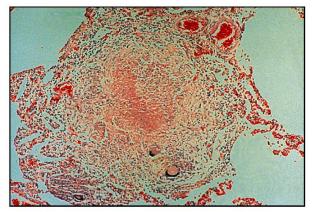
Cytokine-Related Disease

- SCID
- Defective IFN-y receptors
- Septic shock
- Bacterial toxic shock
- Chagas's disease
- CAPS
- Rheumatoid arthritis (RA)

Severe Combined Immunodeficiency

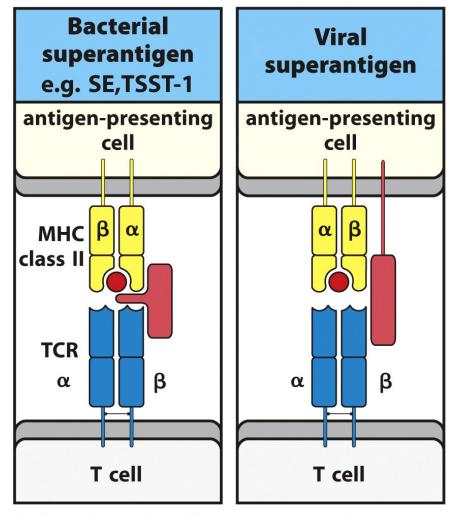
- SCID is an immunodeficiency disease caused by several genetic reasons
- Low number of circulating lymphocytes
- Defective thymus
- Non-proliferating T cells
- Usually fatal in early years of life
- Patient susceptible of all kinds of infections


Figure 20-3a Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

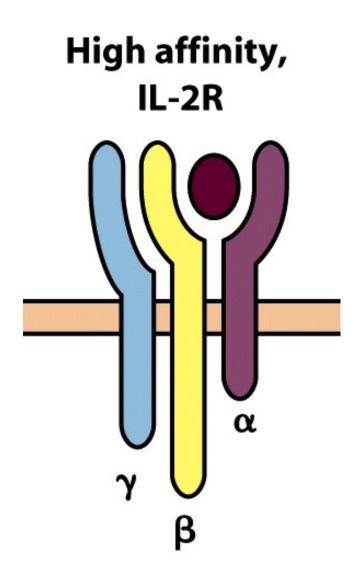
Defective IFN-y receptors

• Patients suffer from mycobacterial infection



Septic shock

- Bacterial Septic Shock
- Certain Gram –ve bacteria e.g. <u>E. coli</u>
- Symptoms: severe drop in blood pressure, fever, diarrhea, blood clotting
- Endotoxin (LPS) bind TLRs (TLR4) on dendritic cells and macrophages
- Over production IL-1 and TNF- $\!\alpha$
- Cytokine imbalance causes abnormal temp, abnormal respiration, capillary leakage, tissue injury, organ failure
- Treatment: TNF- α mAb and rIL-1R α


Bacterial toxic shock

- Many bacteria produce toxins that act as superantigens
- Bind simultaneously to Class II MHC and T cell receptor, activating T cell despite antigenic specificity
- Toxic Shock Syndrome Toxin-1 causes massive increase in IL-1 and TNF- α

Chagas's disease

- Caused by <u>Trypanosoma</u> <u>cruzi</u> and eventually leads in the chronic form to several types of cardiomyopathy
- Accompanied by severe immunosuppression due to reduction in CD25

CAPS

- Cryopyrin-associated periodic syndrome
- Combined inherited diseases causes over-production of IL-1 $\!\beta$
- Shot intense inflammation, rashes, fever, eye redness, joint pain, deafness

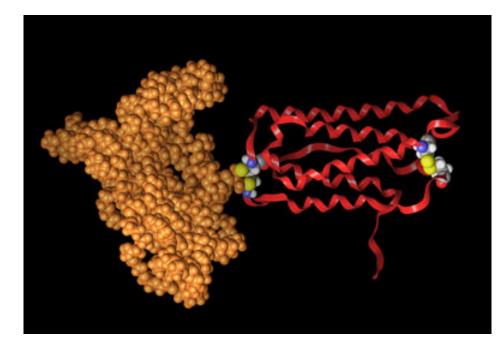
Rheumatoid arthritis (RA)

- Synovial macrophages produces high levels of TNF-a and IL-2
- Stimulation of polymorphonuclear leukocytes
- Release of other cytokines and factors
- Bone degradation

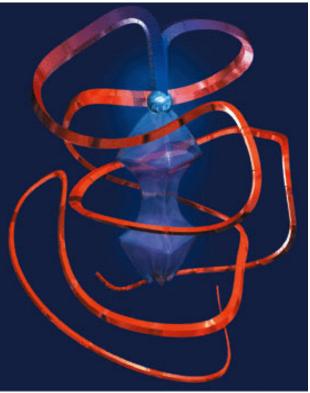
Cytokine-based therapies

- Problems with cytokine-based therapy include:
- Effective dose levels
- Short half-life
- Potent biological response modifiers
- Can cause unpredictable side effects

- IL-11 has many actions including proliferation and differentiation of platelet progenitors
- Recombinant IL-11 (oprelvekin) is indicated to prevent severe thrombocytopenia following immunosuppressive therapy in patients with non-myeloid malignancies


IFN- α IFN- β and IFN- γ

 Used for treatment of several diseases ranging from viral infections such as hepatitis C to malignancies such as leukemias and lymphomas



Peg-Intron

- Chemical attachment of polyethylene glycol (PEG) to IFN- $\!\alpha$

Interferon alfa is surrounded by a PEG chain.

Source: Hepatitis-care.de

Agent	Nature of agent	Clinical application
Enbrel	Chimeric TNF-receptor/IgG constant region	Rheumatoid arthritis
Remicade or Humira	Monoclonal antibody against TNF- α receptor	Rheumatoid arthritis Crohn's disease
Roferon	Interferon α -2a*	Hepatitis B Hairy-cell leukemia Kaposi's sarcoma
Intron A	Interferon α -2b	Hepatitis C [†] Melanoma
Betaseron	Interferon β–1b	Multiple sclerosis
Avonex	Interferon β–1a	Multiple sclerosis
Actimmune	Interferon γ –1 β	Chronic granulomatous disease (CGD) Osteopetrosis
Neupogen	G-CSF (hematopoietic cytokine)	Stimulates production of neutrophils Reduction of infection in cancer patients treated with chemotherapy, AIDS patients
Leukine	GM-CSF (hematopoietic cytokine)	Stimulates production of myeloid cells after bone marrow transplantation
Neumega or Neulasta	Interleukin-11 (IL-11), a hematopoietic cytokine	Stimulates production of platelets
Epogen	Erythopoietin (hematopoietic cytokine)	Stimulates red-blood-cell production

[†]Normally used in combination with an antiviral drug (ribavirin) for hepatitis C treatment.

You are now able to:

- ✓ Understand the physiological role of IL-1, IL-2, TNF- α , IFN- α/β , and IFN- γ
- ✓ Describe three mechanisms to antagonize cytokines
 ✓ Realize the role of cytokines in disease
 ✓ Realize the role of cytokines in therapy