
    
  A

UTHOR C
OPY

A branch-and-price algorithm for the two-stage
guillotine cutting stock problem
M Mrad

1�, I Meftahi
2
and M Haouari

3

1
King Saud University, Riyadh, Saudi Arabia;

2
University of Carthage, Tunis, Tunisia; and

3
Department of

Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar

We investigate the two-stage guillotine two-dimensional cutting stock problem. This problem commonly
arises in the industry when small rectangular items need to be cut out of large stock sheets. We propose
an integer programming formulation that extends the well-known Gilmore and Gomory model by explicitly
considering solutions that are obtained by both slitting some stock sheets down their widths and others
down their heights. To solve this model, we propose an exact branch-and-price algorithm. To the best of
our knowledge, this is the first contribution with regard to obtaining integer optimal solutions to Gilmore
and Gomory model. Extensive results, on a set of real-world problems, indicate that the proposed algorithm
delivers optimal solutions for instances with up to 809 items and that the hybrid cutting strategy often yields
improved solutions. Furthermore, our computational study reveals that the proposed modelling and
algorithmic strategy outperforms a recently proposed arc-flow model-based solution strategy.
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1. Introduction

In this paper, we consider the following two-dimensional

cutting stock problem. We are given a supply of identical

stock rectangles of length H and width W, and a set I of m

small rectangular items that have to be cut out of the stock

rectangles. Each item sAI is characterized by a height hs, a

width ws, and a demand ds, that corresponds to the number

of units of item s that should be cut out. An important

feature of the problem under consideration is that only

two-stage guillotine cuts are permitted. This cutting process

is achieved in at most two stages: First, a stock rectangle

is slit down its width into strips. Next, these strips are

chopped in turn across their heights. Alternatively, it is

possible to reverse the ordering of the two cutting directions:

that is, start by cutting the stock rectangle across the height

direction and then proceed with the width direction.

Possibly, a final trimming stage might be required to

remove waste and produce an item of a requested size. The

problem is to produce the requested items using a mini-

mum number of stock rectangles. This challenging combi-

natorial optimization problem has a wealth of pertinence to

many practical real applications, especially in wood and

glass industries, where the goal is to minimize the trim loss.

In the sequel, we shall refer to this problem as the Two-

Stage Guillotine Cutting Stock Problem (2G-CSP for short).

Problem 2G-CSP has a long history that goes back to

nearly half a century ago. Indeed, Gilmore and Gomory

(1965) introduced this problem in their seminal paper

on multistage cutting stock problem. They presented a

formulation of 2G-CSP with a huge (exponential) number

of variables and proposed to solve its LP relaxation by

a column generation algorithm, where new cutting patterns

are iteratively added to a restricted model by solving an

integer knapsack subproblem. However, to the best of our

knowledge, the computational performance of this column

generation algorithm has never been assessed in the

literature. Following this pioneering work, an extensive

literature has been published on guillotine cutting stock

problems. Puchinger and Raidl (2007) focused in their

work on the three-stage two-dimensional cutting stock

problem, where in the first stage they applied horizontal

cuts, in the second stage vertical cuts, and in the third stage

horizontal cuts again. They presented integer linear

programming models for both the restricted and unrest-

ricted versions of the problem. The unrestricted version

is formulated as a set covering problem which is solved

using a branch-and-price algorithm. Vanderbeck (2001)

adapted a nested decomposition and a column generation

method used in a recursive form to deal with the two-

dimensional three-staged cutting problem. Furthermore,

the column generation method was also adapted for the
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two-dimensional cutting stock problem with a guillotine

constraint by Cintra et al (2008), who considered the cases

where the stock rectangles have different sizes and where

orthogonal rotations are permitted. Belov and Scheithauer

(2006) proposed an algorithm in which they combined

the branch-and-price approach with the Chvatal-Gomory

cutting planes approach to deal with the one-dimensional

and two-dimensional cutting stock problem. For the two-

dimensional case the problem is solved in two stages. The

set of cutting planes includes two types of cuts: Gomory

fractional and mixed-integer cuts and branching con-

straints cuts. Hifi and Roucairol (2001) considered the

case of weighted and non-weighted variants. They pro-

posed approximate algorithms for the exact cutting, where

trimming is not allowed, and also for the nonexact cutting

where trimming is allowed. The algorithms both generate

horizontal and vertical strips that are combined to obtain

horizontal or vertical cutting patterns. Furthermore, they

proposed exact branch-and-bound algorithms for the

nonexact and the exact cutting variants, respectively. Lodi

and Monaci (2003) reformulate the cutting stock problem

as a two-dimensional knapsack problem where each item is

characterized by a height, a width and a profit, the problem

requires finding a plan of cut of a unique rectangular stock

while maximizing the total profit. They proposed two

integer linear models that can be adapted for different

variants of the problem. Macedo et al (2010) proposed an

arc-flow model for the two-dimensional guillotine cutting

stock problem. They extended the work of Valério de

Carvalho (1999) on the one-dimensional cutting stock

problem. In Macedo et al (2010), a cutting pattern is

viewed as a path in an acyclic graph. They considered two

types of graphs: one for each stage cut. The length of the

arcs in the first-stage graph represents the distinct item

heights. In the second stage, they use a graph for each strip

derived from the first stage. Each graph in the second stage

is constructed based on the items that can be cut from the

corresponding strip. The objective is to minimize the total

flow through the graph corresponding to the first stage.

Furthermore, they extended their formulation to accom-

modate both cutting stage ordering. Recently, the uncon-

strained two-dimensional guillotine-cutting problem (ie, the

number of cutting stages is free) has been investigated

by Clautiaux et al (2011) who proposed a clever graph-

theoretical approach.

In addition to formal approaches, several heuristics have

been proposed so far to deal with these problems. In

particular, Beasley (1985) proposed various optimization-

based heuristics for both staged and non-staged two-

dimensional guillotine cutting problems. Also, Alvarez-

Valdes et al (2007) presented heuristics for the weighted

constrained two-dimensional two-stage cutting-stock pro-

blem. They proposed algorithms that are based on the

greedy randomized adaptive search procedure (GRASP).

In the constructive phase, they used two iterative

procedures: one is based on adding pieces to the partial

solution, while the second is based on adding strips to the

partial solution. In a second phase, a path relinking

approach is invoked to generate high-quality solutions.

Hifi and M’Hallah (2006) proposed approximate algo-

rithms for the constrained two-staged two-dimensional

cutting problem basing on a strip generation procedure

(SGP). This approach consists in constructing a set of

strips and looking then for a good combination of some of

those generated strips. Each item is characterized by a

profit, thus they proposed an integer linear program that

seeks to find cutting patterns that maximize the total profit

while satisfying the demand for each item. This integer

program has been solved using a greedy algorithm. Finally,

they improved the obtained solution using a hill climbing

approach. Riehme et al (1996) investigated approximate

algorithms for the two-dimensional guillotine cutting stock

problem where the stocks are of different types and where

for each type a fixed supply is considered. The solutions are

generated in two phases. In the first phase, they consider the

aggregated demand of the stock pieces having the same

width into one long piece and solve a one-dimensional cut-

ting stock problem to generate strips so as to cover the order

demands. Next, in the second step, the selected strips are cut

into the initial stock pieces. This second phase requires

solving a second one-dimensional cutting stock problem.

In this paper, we propose an exact branch-and-price

(B&P) algorithm for 2G-CSP. More precisely, we make the

following contributions:

(1) To obtain improved solutions, we propose a formula-

tion that considers both stage cutting ordering simulta-

neously. That is, we seek for a solution that both

includes patterns that were obtained by first cutting

across the height direction and then proceeding with

the width direction, and also those obtained by

reversing the cutting process.

(2) We solve the proposed formulation using a branch-

and-price algorithm that builds on the pioneering work

of Gilmore and Gomory. As far as we know, this is the

first contribution with regard to obtaining integer

optimal solutions to the Gilmore and Gomory model.

(3) We present the results of extensive computational

results that provide evidence that the proposed

algorithm delivers integer optimal solutions within

short CPU times. Also, we show that considering the

hybrid cutting strategy offers a significant advantage

over the traditional approach that considers only one

single cutting process.

The remainder of this paper is organized as follows.

Section 2 is devoted to the presentation of the proposed

formulation as well as the column generation algorithm

that is used to solve the LP relaxation. In Section 3,

we provide a description of the branching procedure.
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In Section 4, the performance of our branch-and-price

algorithm is analysed through an extensive computational

study. Finally, we conclude by providing some concluding

remarks and directions for future research.

In the sequel, we shall refer to a pattern that is obtained

by slitting in the first stage the stock rectangle into strips

with heights corresponding to the heights of demanded

rectangles as an h-pattern. Similarly, we refer to the pattern

that is obtained through the reverse cutting process as a

w-pattern.

2. An integer programming formulation

In this section, we present a formulation for 2G-CSP that is

a generalization of the Gilmore and Gomorys model who

considered one single cutting ordering. Prior to providing

the formulation, we present the following notation:

Parameters:

mh number of distinct values of heights

mw number of distinct values of widths

h(k) kth smallest height (k¼ 1, . . . ,mh)

w(k) kth smallest width (k¼ 1, . . . ,mw)

ph number of h-patterns

pw number of w-patterns

pi
h number of one-dimensional patterns that are

obtained by chopping in the second stage a strip

with height h(i) (i¼ 1, . . . ,mh) and width W into

rectangles corresponding to demanded items

pi
w number of one-dimensional patterns that are

obtained by chopping in the second stage a strip

with width w(i) (i¼ 1, . . . ,mw) and height H into

rectangles corresponding to demanded items

aij
h number of strips of height h(i) that are included in

the jth h-pattern, i¼ 1, . . . ,mh, j¼ 1, . . . ,ph

aij
w number of strips of width w(i) that are included in

the jth w-pattern, i¼ 1, . . . ,mw, j¼ 1, . . . ,pw

bsik
h number of rectangles of type s that are included in

the kth pattern of the strip with height h(i), sAI:

hsph(i), k¼ 1, . . . , pi
h, i¼ 1, . . . ,mh

bsik
w number of rectangles of type s that are included in

the kth pattern of the strip with width w(i), sAI:

wspw(i), k¼ 1, . . . , pi
w, i¼ 1, . . . ,mw

Decision variables:

xj
h number of stock rectangles that are cut in the first

stage according to the jth h-pattern, j¼ 1, . . . ,ph

xj
w number of stock rectangles that are cut in the first

stage according to the jth w-pattern, j¼ 1, . . . ,ph

yik
h number of strips with height h(i) and width W that

are chopped in the second stage according to

pattern k, k¼ 1, . . . , pi
h, i¼ 1, . . . ,mh

yik
w number of strips with width w(i) and height H that

are chopped in the second stage according to

pattern k, k¼ 1, . . . pi
w, i¼ 1, . . . ,mw

The formulation can be stated as follows:

Minimize
X

t2fh;wg

Xpt

j¼1
xtj ð1Þ

subject to

Xpt

j¼1
atijx

t
jX

Xpti

k¼1
ytik; i ¼ 1; . . . ;mt; t 2 fh;wg; ð2Þ

X

t2fh;wg

Xmt

i¼1

Xpti

k¼1
btsiky

t
ikXds; s ¼ 1; . . . ;m; ð3Þ

xtjX0; j ¼ 1; . . . ; pt; t 2 fh;wg ð4Þ

ytikX0; k ¼ 1; . . . ; pti ; i ¼ 1; . . . ;mt; t 2 fh;wg ð5Þ

ðx; yÞ integer: ð6Þ
The objective function (1) is to minimize the total

number of h-patterns and w-patterns. Constraint (2)

require that the total number of strips obtained in the first

stage cut are larger than1 or equal to those used in the

second stage cut. Constraint (3) ensures that the strips that

are cut in the second stage produce the required demands.

Finally, constraints (4)–(6) impose that the variables are

nonnegative integers.

2.1. Solution of the LP relaxation by column generation

Since Model (l)–(6) includes a huge number of variables,

we solve its LP relaxation by column generation. At this

point, it is worth mentioning that the historical develop-

ment of this fundamental mathematical programming

approach is intimately related to cutting stock applications.

Indeed, in their pioneering work on cutting stock

problems, Gilmore and Gomory (1961, 1963, 1965) laid

the foundations of the column generation technique and

paved the way for its rich applications in integer

programming.

2.1.1. Generation of an x-variable with minimum reduced

cost. Assume that ðuh1; . . . ; uh
mh ; u

w
1 ; . . . ; uwmw ; v1; . . . ; vmÞt is

a vector of nonnegative dual variables. Thus, the reduced

cost of a first-stage variable xj
h is chj ¼ 1�

Pmh

i¼1 a
h
iju

h
i :

Hence, a minimum reduced cost variable is obtained by

solving the following integer knapsack problem:

Maxmize
Xmh

i¼1
uhi a

h
ij ð7Þ

M Mrad et al—Branch-and-price algorithm for the two-stage guillotine cutting stock problem 3
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subject to

Xmh

i¼1
hðiÞa

h
ijpH; ð8Þ

ahijX0; integer; i ¼ 1; . . . ;mh ð9Þ

This problem is solved by dynamic programming as a

longest path problem in an acyclic graph. For the sake of

clarity, and even though this transformation belongs to

folklore, we briefly describe the reduction to a longest

path problem. The underlying acyclic digraph G¼ (V,A)

is constructed as follows. A node (i,y) is associated to

each state that corresponds to fillings items with heights

from {h(1), . . . , h(i)} into a knapsack with capacity y
(i¼ 1, . . . ,mh, y¼ 0, . . . ,H). There is an arc that links

node (i, y) to node (i 0, y0) if and only if: (i) i 0 ¼ iþ 1, and

(ii) y0 ¼ yþ khi 0 (where k is a nonnegative integer). This

arc corresponds to the decision of filling k units of item i 0’
into the knapsack. Hence, its cost is kuhi 0 . Moreover, we

include two additional nodes: a ‘start’ node (0, 0) and an

‘end’ node (mhþ 1,H). There is an arc that links node (0, 0)

to node (1,y) having a cost Iy/h1mu1
h (y¼ 0,h1, . . . ,

IH/h1mh1). Also, each node (mh, y) (y¼ 0, . . . ,H) is linked

by a zero-cost arc to node (mhþ 1, H).

It is easily realized that there is a one-to-one correspon-

dence between each path in G between nodes (0, 0) and

(mhþ 1,H) and each feasible knapsack solution, with both

solutions having the same total profit.

Similarly, a minimum reduced-cost variable associated

with a w-pattern is obtained through solving the following

integer knapsack problem:

Maximize
Xmw

i¼1
uwi a

w
ij ð10Þ

subject to

Xmw

i¼1
wðiÞa

w
ijpW ; ð11Þ

awijX0; integer; i ¼ 1; . . . ;mw ð12Þ

2.1.2. Generation of a y-variable with minimum reduced

cost. The reduced cost of a second-stage variable yik
h is

ghik ¼ uhi �
P

s2I :hsphðiÞ
bhsikus: Thus, a variable yik

h with

minimum reduced cost is obtained by solving the

following integer knapsack problem:

xhi ¼Max
X

s2I :hsphðiÞ

usbhsik ð13Þ

subject to
X

s2I :hsphðiÞ

wib
h
sikpW ; ð14Þ

bhsikX0; integer; s 2 I : hsphðiÞ ð15Þ

Clearly, if xi
h4 ui

h then the pattern variable correspond-

ing to the derived optimal solution should enter the basis.

Assume that the items are indexed in nondecreasing

heights (that is, h1p� � �phm). Also, define Fs(x) as the

optimal value of the integer knapsack problem that is

defined on the item set {1, 2, . . . , s} and capacity x. Hence,

we have xi
h¼Fs(W) where s is the largest index such that

hs¼ h(i). We have:

F0(0)¼ 0

Fs(x)¼max0pzpIx/wsm{Fs�1(x�zws)þ zus} for xA[0,W],

s¼ 1, . . . ,m.

It is easy to check that if an acyclic graph, that is similar

to the one described in Section 2.1.1, is used to solve the

integer knapsack problem defined by (13)–(15), then the

value of Fs (x) (xA[0,W], s¼ 1, . . . ,m) is just equal to the

value of a longest path between nodes (0, 0) and (s,x).

Consequently, the values of xi
h can be computed through

finding a longest path problem (which amounts to solving a

single integer knapsack problem).

Remark 1 To improve the efficacy of the approach,

we append to Model (13)–(15) the following valid

constraints:

X

s2I :hs¼hðiÞ
bhsikX1; ð16Þ

bhsikpds s 2 I : hsphðiÞ: ð17Þ

Constraint (16) requires that an h-pattern of height h(i)
should necessarily include at least one item having this

height. Also, constraint (17) enforces that the number of

units of an item that are included in a pattern should not

exceed the demand for this item.

Similarly, the reduced cost of a variable yik
w is

gik
w¼ ui

w�
P

s¼ 1
m bsik

w us . A variable with minimum reduced

cost is obtained by solving the following integer knapsack

problem:

xwi ¼Max
X

s2I :wspwðiÞ

usbwsik ð18Þ

subject to
X

s2I :wspwðiÞ

hib
w
sikpH; ð19Þ

bwsikX0; integer; s 2 I : wspwðiÞ ð20Þ

If xi
w4ui

w then the pattern variable corresponding to the

derived optimal solution should enter the basis.

In our implementation, at each iteration of the column

generation algorithm, we solve four different pricing

problems: two of them correspond to x-variables, while

4 Journal of the Operational Research Society
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the others correspond to y-variables. In addition, to

accelerate the convergence of the column generation

algorithm, each time the pricing problem is solved by

dynamic programming, several columns with negative

reduced cost columns are generated.

3. Branching strategy

Instead of branching on the original (x, y)-variables, we

branch on arc variables that appear in the equivalent arc-

flow model. This branching strategy is similar to the one

that has been implemented by Valério de Carvalho (1999)

for solving the one-dimensional bin packing problem (or

equivalently, the one-dimensional cutting stock problem).

For the sake of clarity, we briefly describe the arc-flow

model.

3.1. The arc-flow model

To begin with, we introduce the basic idea that has been

proposed by Valério de Carvalho (1999) for the one-

dimensional cutting stock problem. Given that the stock

height is H and the height of item k is hk (k¼ 1, . . . ,m), we

construct an associated acyclic directed graph G in the

following way. The set of vertices is V¼ {0, 1, . . . ,H} and

the set of arcs is A¼ {(i, j): 0pio jpH and j�i¼ hk,

k¼ 1, . . . ,m}[ {(i, j ): 0piojpH and j�i¼ 1}. A key

observation is that a valid path in G between nodes 0

and H is equivalent to a cutting pattern. Also, a flow fij in

arc (i, j ) corresponds to the number of items k of size

( j�i)¼ hk placed at position i from the beginning of a stock

sheet and corresponds to the unoccupied portions of the

bin if ( j�i)¼ 1. The objective is to minimize the total flow

between nodes 0 and H. Given that, many paths in the

graph described above may include the same set of items,

Valério de Carvalho (1999) provides reduction criteria that

reduce the number of arcs in the graph as well as the

symmetry of the solution space.

Example 1 Let H¼ 8 and consider three items 1, 2, and 3

of sizes 4, 3 and 2 respectively. The corresponding graph

after using the reduction criteria with 8 nodes and 12 arcs is

represented in Figure 1. A cutting pattern x¼ (1, 0, 2) is

represented in Figure 2.

Recently, Macedo et al (2010) have extended this flow

model to the two-dimensional guillotine cutting stock

problem. They considered two distinct graphs: one for each

cutting stage. Let Gh
0 and Gw

0 denote the graphs that corres-

pond to the first-stage cutting by considering cuts along the

height and width directions, respectively. Also, let Gsh
h (with

ShA{1, . . . ,mh}) and Gsw
w (with swA{1, . . . ,mw}) denote the

graphs that correspond to the second-stage cutting by

considering the height and width directions, respectively.

The arc weights correspond to those items that belong to

the corresponding strips. Interestingly, Macedo et al (2010)

described several graph reduction procedures that aim at

discarding unnecessary arcs and break symmetry.

3.2. Branching scheme

Assume that at a given node of the search tree, the LP

relaxation is solved using the column generation algorithm.

Then, the optimal (continuous) solution is converted into

the corresponding arc-flow models variables. The value of

each arc is set equal to the sum of the decision variables

corresponding to the patterns that include this arc. If

fractional arc-flows are detected, then we branch on the

largest arc having a fractional flow that is the nearest to the

source node 0. Let (i, j) be the selected arc and fij the flow

on this arc. Then, we create two nodes by appending the

constraints fij pIfijm and fijXJfijn respectively.

Example 2 Let H¼ 8 and the distinct height values are 4, 3

and 2. Assume that the three following h-patterns have been

generated: Pattern 1: (1, 0, 2), Pattern 2: (0, 2, 0), and

Pattern 3: (1, 1, 0). The optimal solution of the LP

relaxation is x1
h¼ 2, x2

h¼ 1.5, and x3
h¼ 0.5. These patterns

as well as the corresponding arc-flows are depicted in

Figure 3. We see from this figure that the largest arc having a

fractional flow is arc (0, 4). We have f04¼x1
hþx3

h¼ 2.5.

Thus, two nodes are created. In the first descendant node, we

append the cut x1
hþ x3

hp2, and the second one we append the

cut x1
hþx3

h
X3.

The dual information relative to each branching

constraint is easily taken in consideration in the pricing

problem which is the longest path problem on the same

2

3 4 5

1

4 6 80 1 2 3 5 7 12

116 901 87

Figure 1 Graph corresponding to Example 1.

1

4 6 80

98

Figure 2 Path corresponding to the pattern (1, 0, 2).
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graph of the arc-flow formulation. The branching nodes

are processed using a depth-first search strategy.

3.3. Upper bound computation

To derive a tight upper bound that might be useful to

accelerate the convergence of the B&P, we implemented the

following approach. After solving at the root node of the

LP relaxation, we consider the resulting reduced master

program and solve it as an integer LP using a commercial

solver. In so doing, we generate a feasible heuristic

solution.

4. Computational results

The proposed branch-and-price algorithm was coded in

C++ and implemented on a Pentium IV 2.2 GHz Personal

Computer with 4 GB RAM. All LPs were solved using the

commercial solver CPLEX 11.0. The CPU time limit was

set equal to 2h.

The test-bed utilized for the computational study

includes 43 real 2G-CSP instances from the wood industry

(Macedo et al, 2010). These instances are of unequal sizes:

while the smallest one includes 16 identical items (that is,

m¼ 1), the largest one exhibits 809 items and 31 different

sizes.

In a first set of experiments, we assess the performance of

our branch-and-price algorithm as well as three two-stage

cutting strategies: (i) W: Only w-patterns are considered in

the first cutting stage, (ii)H: Only h-patterns are considered

in the first cutting stage, and (iii) H&W: Both w-patterns

and h-patterns are considered in the first stage. Basically,

the two former cutting strategies are precisely those

described in the original work of Gilmore and Gomory

(1965). However, the solution of these integer models has

never been reported in the literature. The results are

displayed in Table 1. In this table, we display for each

instance the number of different items (n), and the total

number of items (nt). Also, we report, for each cutting

strategy, the value of the LP relaxation (LP), the value of

the integer solution (Exact), the CPU time (Time), and the

total number of explored nodes (NN). Note that the values

with (�) represent the best solutions founded within the

time limit of 7200 s.

Looking at Table 1, we see that the B&P algorithm

efficiently delivered proven optimal solutions for the

cutting strategies W, H, and W&H, for 38, 43, and 39

instances, respectively. Furthermore, for all non-solved

instances, the B&P output approximate solutions that

often exhibit unitary absolute gaps. Interestingly, we see

that the cutting strategy W&H strictly outperformed both

W and H for six instances. Furthermore, we observe that

the problems are often quickly solved at the root node.

Hence, we found that the average CPU time of the solved

instances for the cutting strategy W&H is only 14.14 s.

In addition, we compared the performance of our B&P

when the cutting strategy W&H is considered with the arc-

flow model of Macedo et al (2010). This latter model was

solved using CPLEX 11.0. The results are reported in

Table 2. In this table, we indicate for each instance and for

each solution strategy whether an optimal solution has

been obtained within the 2-h time limit and we report the

CPU time required to solve it (Time 1 and Time 2,

respectively).

We see from Table 2 that the arc-flow model failed to

deliver optimal solutions for eight instances (instead of 5

for the B&P algorithm). Furthermore, it requires signifi-

cantly longer CPU times. In particular, we observe that for

the problem instance A-19, the ratio of the CPU time of the

compact model to the average CPU time of the B&P is 311

to 1.

Pushing our analysis a step further, we also considered

an additional set of 12 benchmark instances of Cintra et al

(2008). These instances are labelled gcut-1, . . . , gcut-12,

respectively. The results are displayed in Table 3. We see

from this table that these 12 instances are easily solved

both by the proposed B&P and also by the arc flow model.

Moreover, we considered five additional hard instances

initially proposed by Cintra for the rectangular knapsack

problem. These instances are labelled gcut-13, . . . , gcut-17,

respectively. In order to convert these instances into

instances for the 2S-CSP, we randomly generated for each

item a demand from U[1, 100]. The results are displayed in

Table 4. We observe from this table, that none of these five

hard instances was solved by the arc flow model.

Furthermore, we see that for three instances, even the LP

relaxation of the compact model remained unsolved after

reaching the 2-h CPU time limit. However, the B&P

successfully solved two instances and delivered solutions

with unitary gaps for two unsolved instances.
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3xf

Figure 3 Arc-flows corresponding to Example 2.

6 Journal of the Operational Research Society



      AUTHOR COPY

Table 1 Performance of the branch-and-price algorithm

Instance n nt W H W&H

LP Exact Time NN LP Exact Time NN LP Exact Time NN

A-1 2 24 3 3 0.11 0 3.3 4 0.07 0 3 3 0.04 0
A-2 4 38 36 36 0.03 0 36 36 0.05 0 36 36 0.09 0
A-3 2 17 8 8 0.02 0 8 8 0.02 0 8 8 0.04 0
A-4 2 16 2.67 3 0.02 0 2.67 3 0.02 0 2.67 3 0.06 0
A-5 8 138 12.36 13 0.18 0 12.53 13 0.18 0 12.21 13 0.40 0
A-6 2 7 1.89 2 0.03 0 2 2 0.03 0 1.89 2 0.02 0
A-7 5 58 13.06 14 0.04 0 13.13 14 0.05 0 13 13 0.08 0
A-8 1 16 1.07 2 0.04 0 1.07 2 0.01 0 1.07 2 0.02 0
A-9 30 770 58.04 59 5.75 0 60.67 61 4.24 0 58.03 59 11.90 0
A-10 3 44 2.3 3 0.05 0 1.97 3 0.12 3 1.97 3 0.35 6
A-11 20 724 47.19 48 2.17 0 45.76 46 22.44 2 45.61 46 3.16 0
A-12 3 44 14 14 0.02 0 14 14 0.032 0 14 14 0.05 0
A-13 8 304 13.35 14 0.24 0 13.53 14 0.14 0 13.2 14 0.47 0
A-14 31 809 67.13 68 7.34 0 66.82 67 13.23 0 66.21 67 10.89 0
A-15 12 339 39.06 40 0.47 0 38.94 39 0.69 1 38.51 39 1.31 0
A-16 27 744 84.03 85 7.36 0 82.26 83 2.25 0 81.92 82 11.90 0
A-17 3 135 4.82 5 0.11 0 4.70 5 0.05 0 4.70 5 0.06 0
A-18 20 559 66.90 68 25.17 58 64.96 65 1.10 0 64.05 65 2.79 0
A-19 27 507 54.93 56 47.62 46 57.23 58 4.40 0 54.72 55 8.67 0
A-20 10 515 25.08 26 0.44 0 26.10 27 0.31 0 25.03 26 0.60 0
A-21 21 450 26.67 27 1.85 0 27.32 28 2.82 0 26.39 27 3.24 0
A-22 1 24 2.4 3 0.04 0 2.4 3 0.04 0 2.4 3 0.02 0
A-23 8 248 12.67 13 0.25 0 12.92 14 3883.36 98 700 12.52 13 0.62 0
A-24 107 217 34.13 36* 7200 907 34.36 35 152.45 0 33.93 35* 7200 1258
A-25 75 156 17.03 18 114.11 3 17.33 18 184.48 10 16.80 18* 7200 2052
A-26 34 61 7.15 8 5.83 0 7.08 8 6.21 0 6.94 7 109.08 190
A-27 79 180 18.85 20* 7200 1631 19.21 20 101.62 0 18.69 20* 7200 1820
A-28 54 106 10.56 12* 7200 7078 11.17 12 37.53 0 10.43 11 181.26 19
A-29 82 218 27.15 31* 7200 588 27.29 28 101.11 0 26.89 28* 7200 2010
A-30 24 39 3.83 5 4.24 3 3.68 4 2.30 0 3.58 4 7.24 0
A-31 36 64 7.73 8 7.99 0 7.49 8 8.74 0 7.47 8 19.79 0
A-32 99 184 26.13 27 163.44 0 26.90 27 42.89 0 25.92 26 108.99 0
A-33 134 309 34.01 41* 7200 129 34.67 35 125.6 0 33.77 36* 7200 406
A-34 26 46 5.40 6 1.82 0 5.21 6 1.18 0 5.18 6 2.61 0
A-35 68 144 16.30 18* 7200 4000 16.40 17 12.03 0 16.06 17 43.57 0
A-36 16 52 8.88 9 0.36 1 8.88 9 0.54 1 8.88 9 0.46 0
A-37 8 78 4.58 5 0.13 0 4.63 5 0.36 0 4.53 5 0.34 0
A-38 42 160 22.29 23 5.57 0 22.12 23 3.11 0 21.81 22 9.92 0
A-39 11 22 3.28 4 0.25 0 3.06 4 0.74 0 3.05 4 0.58 0
A-40 40 163 15.87 17 5.85 11 15.90 17* 7200 32 250 15.43 16 7.10 0
A-41 32 71 17.33 18 0.92 0 19 19 2.53 2 17.2 18 2.54 0
A-42 8 13 7.25 8 0.06 0 7.17 8 0.06 0 7.13 8 0.10 0
A-43 11 22 6.75 7 0.12 0 6.38 7 0.40 0 6.38 7 0.97 0
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5. Conclusion

In this paper, we have addressed the two-stage guillotine

two-dimensional cutting stock problem. This problem

commonly arises in the wood, steel, or aluminium industry

when small rectangular items need to be cut out of large

stock rectangles. We have proposed a model that

generalizes the well-known Gilmore and Gomory model

by explicitly considering a hybrid cutting strategy that

yields a mix of both h-patterns and w-patterns. To solve

this model, we proposed an exact branch-and-price

algorithm that is based on a branching scheme initially

introduced by Valério de Carvalho (1999) in the context of

the one-dimensional bin packing. To the best of our

knowledge, this is the first contribution with regard to

obtaining integer optimal solutions to Gilmore and

Gomory model. We have provided the results of computa-

tional results to demonstrate the efficacy of the modelling

and algorithmic strategy as well as the benefit of the hybrid

cutting strategy. Furthermore, we provided evidence that

the proposed solution strategy outperforms a recently

proposed arc-flow model-based solution strategy.

Table 2 Comparison of the B&P and the arc-flow model-based
approach

Instance n nt B&P Arc-flow model Time2/
Time1

Solved Time1 Solved Time 2

A-1 2 24 Yes 0.04 Yes 0.12 3.00
A-2 4 38 Yes 0.09 Yes 0.16 1.78
A-3 2 17 Yes 0.04 Yes 0.12 3.00
A-4 2 16 Yes 0.06 Yes 0.15 2.50
A-5 8 138 Yes 0.4 Yes 1.07 2.68
A-6 2 7 Yes 0.02 Yes 0.11 5.50
A-7 5 58 Yes 0.08 Yes 0.21 2.63
A-8 1 16 Yes 0.02 Yes 0.07 3.50
A-9 30 770 Yes 11.9 Yes 567.31 47.67
A-10 3 44 Yes 0.35 Yes 0.43 1.23
A-11 20 724 Yes 3.16 Yes 28.19 8.92
A-12 3 44 Yes 0.05 Yes 0.19 3.80
A-13 8 304 Yes 0.47 Yes 2.68 5.70
A-14 31 809 Yes 10.89 Yes 293.71 26.97
A-15 12 339 Yes 1.31 Yes 4.68 3.57
A-16 27 744 Yes 11.9 Yes 292.73 24.60
A-17 3 135 Yes 0.06 Yes 0.28 4.67
A-18 20 559 Yes 2.79 Yes 18.25 6.54
A-19 27 507 Yes 8.67 Yes 2694.6 310.79
A-20 10 515 Yes 0.6 Yes 3.38 5.63
A-21 21 450 Yes 3.24 Yes 162.93 50.29
A-22 1 24 Yes 0.02 Yes 0.07 3.50
A-23 8 248 Yes 0.62 Yes 1.5 2.42
A-24 107 217 No 7200 No 7200 1.00
A-25 75 156 No 7200 No 7200 1.00
A-26 34 61 Yes 109.08 Yes 101.71 0.93
A-27 79 180 No 7200 No 7200 1.00
A-28 54 106 Yes 181.26 No 7200 39.72
A-29 82 218 No 7200 No 7200 1.00
A-30 24 39 Yes 7.24 Yes 64.72 8.94
A-31 36 64 Yes 19.79 Yes 137.64 6.96
A-32 99 184 Yes 108.99 No 7200 66.06
A-33 134 309 No 7200 No 7200 1.00
A-34 26 46 Yes 2.61 Yes 10.7 4.10
A-35 68 144 Yes 43.57 No 7200 165.25
A-36 16 52 Yes 0.46 Yes 2.42 5.26
A-37 8 78 Yes 0.34 Yes 0.71 2.09
A-38 42 160 Yes 9.92 Yes 1151 116.03
A-39 11 22 Yes 0.58 Yes 1.13 1.95
A-40 40 163 Yes 7.1 Yes 22.3 3.14
A-41 32 71 Yes 2.54 Yes 5.84 2.30
A-42 8 13 Yes 0.1 Yes 0.26 2.60
A-43 11 22 Yes 0.97 Yes 0.63 0.65

Table 3 Performance of the branch-and-price algorithm and
arc flow model on instances gcut-1..gcut-12

Instance n nt B&P Arc-flow model

W&H W&H

LP Exact Time(s) NN Exact Time(s)

gcut-1 10 669 293.25 294 0.08 0 294 0.10
gcut-2 20 982 344.25 345 0.18 0 345 0.24
gcut-3 30 1489 332.13 333 0.59 0 333 0.38
gcut-4 50 2751 835.83 836 4.49 25 836 0.86
gcut-5 10 645 196.83 197 0.69 28 197 0.17
gcut-6 20 1064 342.67 343 0.40 0 343 0.31
gcut-7 30 1626 591 591 1.97 13 591 0.46
gcut-8 50 2363 690 690 4.87 0 690 1.75
gcut-9 10 590 130.67 131 0.26 3 131 0.27
gcut-10 20 830 293 293 0.63 0 293 0.49
gcut-11 30 1298 329.38 330 1.96 0 330 1.25
gcut-12 50 2081 671.5 672 7.32 0 672 2.48

Table 4 Performance of the branch and price approach and arc-flow model on instances gcut-13..gcut-17

Instance n nt B&P Arc-flow model

W&H W&H

LP Exact Time (s) NN LP Exact Time(S)

gcut-13 32 1694 91.69 92 27.42 0 91.68 Unsolved 7200
gcut-14 34 1652 74.34 75 37.10 0 74.34 Unsolved 7200
gcut-15 52 2360 70.80 72 7200 262 Unsolved Unsolved 7200
gcut-16 62 3170 86.59 88 7200 114 Unsolved Unsolved 7200
gcut-17 82 4019 94.76 99 7200 35 Unsolved Unsolved 7200
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Future work needs to be focused on designing effective

exact approaches to a variant of 2G-CSP with multiple

stock sizes. This variant assumes that the stock rectangles

have unequal sizes and costs. Despite the practical

industrial relevance of this latter model, it has received

scant attention in the literature. We believe that an issue

worthy of future investigation is to extend the ideas

discussed in this paper for optimally solving this challen-

ging cutting stock problem.
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