IE-352
Section 1, CRN: 32997
Section 2, CRN: 5022
Second Semester 1431-32 H (Spring-2011) - 4(4,1,1)
MANUFACTURING PROCESSES - 2
Thursday, May 12, 2011 (9/6/1432H)
Exercise: Cutting Speed and Material Removal

Name:	Student Number:
42	

Effect of Cutting Speed and Material Removal

		Hardness (HB)	Ferrite	Pearlite
(1)	As cast	265	20%	80%
(2)	As cast	215	40	60
(3)	As cast	207	60	40
(4)	Annealed	183	97	3
(5)	Annealed	170	100	-

Consider the figure above showing the effect of workpiece hardness and microstructure on tool life in turning ductile cast iron. Assuming that a workpiece is cast at 265 HB , calculate the reduction in the quantity and percentage of material removed during the total tool life when the cutting speed in increased from 60 to $120 \frac{\mathrm{~m}}{\mathrm{~min}}$.

Given:

(1) condition in the tool life vs. V graph
$V_{1}=60 \frac{\mathrm{~m}}{\mathrm{~min}}$
$V_{2}=120 \frac{\mathrm{~m}}{\mathrm{~min}}$

Req:

a) Material cut during life of tool \#1 - material cut during life of tool \#2,
i.e. $m a t_{1}-m a t_{2}$
b) \%ge decrease in material cut,
i.e. $\frac{m a t_{1}-m a t_{2}}{m a t_{1}} * 100$

Solution:

a) From graph (left)

At $V_{1}=60 \frac{m}{\min } \Rightarrow$ tool life $\approx 40 \mathrm{~min}$ (by using interpolation) \Rightarrow
$\Rightarrow \mathrm{mat}_{1}=60 \frac{\mathrm{~m}}{\mathrm{~min}} * 40 \mathrm{~min}=2400 \mathrm{~m}$
At $V_{2}=120 \frac{m}{\min } \Rightarrow$ tool life $\approx 5 \mathrm{~min} \Rightarrow$
$\Rightarrow \mathrm{mat}_{2}=120 \frac{\mathrm{~m}}{\min } * 5 \mathrm{~min}=600 \mathrm{~m}$
$\Rightarrow \boldsymbol{m a t}_{\mathbf{1}}-\boldsymbol{m a t}_{\mathbf{2}}=2400 m-600 m=1800 \boldsymbol{m}$
b) $\Rightarrow \frac{m a t_{1}-m a t_{2}}{m a t_{1}} * 100=\frac{1800}{2400} * 100=75 \%$
i.e. doubling cutting speed results in reducing 75\% of material cut

- Note that it is apparent from this exercise that decreasing cutting speed results in more material removed between tool changes.
- However, also note that as cutting speed is reduced, a longer machining time is required for the same operation, which has an adverse economic impact (since more energy is consumed).

