
Updated Updated Updated Updated

Updated Updated Updated Updated

King Saud University Programming Assignment No

Computer Science Department, Process Management

CSC227: Operating Systems

Instructions:

 You can work in a group of not more than 3 students

 Last day to submit the project is: to be announced later

 To get the marks you (group) must demonstrate the project and explains the

implementation.

MULTIPROGRAMMING OS SIMULATION:
BATCH PROCESSING AND MEMORY ALLOCATION

Introduction:

It is required in this project, to write a program in Java that simulates the behavior of the

multiprogramming operating system. At the end of the simulation, you are expected to

output some statistics regarding the behavior of the system. In the following sections, we

will introduce the hardware specification, the multiprogramming OS features and the jobs

requirements.

Available computer system for the simulation has:

Hardware:

The computer hardware is assumed to have:

1. A RAM of size 192MB, where 32MB is used to store the OS.

2. A single core CPU that executes one instruction each unit of time.

3. An IO device for input and output operations.

4. An internal clock that allows to measure time in milliseconds.

Operating System:

The operating system is the multiprogramming OS. We would be interested in only 2

features in this simulation: The Job and CPU scheduling.

1. Job Scheduling: The system implements multiprogramming batch processing.

2. A long term scheduler selects jobs in sequence and allocates them the needed

memory until the 90% of the memory is full. A job is loaded only if there is enough

memory to satisfy its first memory requirement.

3. Each required memory block should be contiguous but a process may have more than

one block of memory in different locations of the memory

4. The short term scheduler will allocate processes to the CPU in First-In-First-Out

sequence. Each process will remain in the CPU until the end of its CPU burst then it

will perform an I/O burst for the requested period of time before becoming ready

again.

5. A process will have several CPU-burst / IO burst sequences at described in the

example below. In each CPU burst a process may require additional memory or

decide to free part of its memory.

6. If a process requires additional memory and there is not enough memory to satisfy its

request, it should be put in Waiting state until there is enough memory for it.

Updated Updated Updated Updated

Updated Updated Updated Updated

7. Any process that is put in WAITING state for IO or memory allocation will be put at

the end of the ready queue after the end of its waiting.

8. If all processes are in Waiting state, only if all waiting for memory allocation, this is a

deadlock. The system should declare a deadlock and select the largest waiting process

to be killed in order to get some free memory for the other processes.

9. At any moment the processes will have one of the states, READY, WAITING,

RUNNING, TERMINATED, KILLED.

10. When the job queue is empty and all processes are killed or terminated, the system

should write a file containing statistics about all processes and their final status

TERMINATED or KILLED.

11. Every 100 milliseconds, the long term scheduler will wake-up, check the memory and

load more jobs until the 90% of the memory is full.

Program specifications:

Each job in the jobs queue is defined as a sequence of several CPU-burst / IO burst as

follows:

Job description Explanation

Name

15 11

3

5 4

6

3 -6

1

3 0

-1

Process name

CPU-burst of 15ms – Memory required 11 MB

IO burst of 3ms

CPU-burst of 5ms – Additional memory required 4 MB

IO burst of 6ms

CPU-burst of 3ms – Free 6 MB of the allocated memory

IO burst of 1ms

CPU-burst of 3ms – No change in memory

Job terminates after the last CPU-burst

Initialization phase:

You should perform the following steps before running the simulation:

1. Load all jobs in the jobs file into a jobs queue in memory

2. Start the system clock (in milliseconds)

3. Start the long term scheduler that check the first job in the job queue, check if there is

enough memory for it and then:

a. create a process for that job,

b. allocate its memory

c. put it in the Ready queue,

d. remove it from the jobs queue

4. Load the RAM with the maximum number of user programs, then go to sleep for

100ms.

5. Start the simulation run which consists of a simulation of the Machine Execution

Cycle. At each millisecond, the scheduler will check if a job CPU-burst has ended

and if the I/O burst of a process has ended. It should also check if any waiting process

can be reactivated and put in the ready queue.

Output from the simulation:

A text file containing statistics about all processes and their final status TERMINATED

or KILLED. Statistics about a process should contain:

Updated Updated Updated Updated

Updated Updated Updated Updated

a. Process ID

b. Program name

c. When it was loaded into the ready queue.

d. Number of times it was in the CPU.

e. Total time spent in the CPU

f. Number of times it performed an IO.

g. Total time spent in performing IO

h. Number of times it was waiting for memory.

i. Time it terminated or was killed

j. Its final state: Killed or Terminated

Bonus:

Build a graphical interface representing the memory and showing dynamically how

memory is allocated or released by processes. This interface should show the time and

the process under execution at any moment.

