
King Saud University 

College of Computer & Information Science 

CSC111 – Tutorial13 

Arrays – II – 

All Sections 

---------------------------------------------------------------------- 

Objectives::::    
 

This tutorial focuses on the following concepts: 

• Passing an array element as method arguments/parameters. 

• To know how to access array elements. 

• To know how to iterate over arrays using loops 

• To know how to manipulate arrays 

• To know how to add elements to array and delete them 

• To know how to search arrays 

• Showing an example of ArrayIndexOutOfBound Exception. 

• Showing an example of NullPointer Exception. 

• Declaring an instance variable as an array. 

• Creating an Array of Objects.  

• Creating an Array of a primitive type. 

• Sending an array of a primitive type as an argument of a method. 

• Sending an array of a class type as an argument of a method. 

• Methods that return an array. 

• Stepping through array elements. 

• Swapping array elements of both primitive and Class types (reversing arrays). 

  



Exercise 1Exercise 1Exercise 1Exercise 1    

1. Write a method add that receives an array of integers arr, the number of the 

elements in the array arr and an integer n. It then adds the integer n to the array arr 

if the number of elements in the array is less than its size. Method add uses another 

method find that checks if the integer n is in the array or not. Method add returns 

false if n can not be added or is already in arr. 

2. Write a method flipCoin that receives an array of boolean flips and the number of 

coin flips so far. The method randomly flips a coin by calling method nextBoolean of 

class java.util.Random and stores the new flip in array flips if array is not full. 

3. Write a method deleteTweet that receives your tweets, their number and a tweet 

that you would like to remove. The method then searches for the tweet and delete it 

from your twitter history. If tweet was not found, an error message is reported. 

4. Write a method findMove that receives the history of moves made by a robot, the 

number of moves so far and a move. A move consists of two parts dx and dy which 

represent the amount of units traveled on x and y axis. The history is stored in two 

arrays one for each axis. The method looks up the move and returns its index in the 

two arrays otherwise it returns -1.  

 

  



SolutionSolutionSolutionSolution    

1)  

  

 public int find(int[] arr, int num, int n){ 

  for (int i = 0; i < num; i++) { 

   if (arr[i] == n) { 

    return i; 

   } 

  } 

  return -1; 

 } 

 

 public boolean add (int[] arr, int num, int n) { 

  if (num < arr.length) { 

   if (find(arr, num, n) == -1){ 

    arr[num] = n; 

    num++; 

    return true; 

   } 

   else 

    System.out.println("ERROR: ELEMENT ALREADY"  

       + " ADDED."); 

  } else 

   System.out.println("ERROR: ARRAY IS FULL"); 

  return false; 

 } 

 

 

 



2)  

 

  

 public void flipCoin (boolean[] flips, int num) { 

  if (num < flips.length) { 

   java.util.Random r = new java.util.Random(); 

   boolean newFlip = r.nextBoolean(); 

   flips[num] = newFlip; 

   num++; 

  } else 

   System.out.println("ERROR: CAN NOT FLIP COIN"); 

 } 

 

 

 

3)  

 

  

 public void deleteTweet(String[] tweets, int numOfTweets,  

      String tweet) { 

  boolean found = false; 

  for (int i = 0; i < numOfTweets && !found; i++) { 

   if (tweets[i].equalsIgnoreCase(tweet)) { 

    tweets[i] = tweets[numOfTweets]; 

    found = true; 

   } 

  } 

  if (!found) 

   System.out.println("ERROR: TWEET IS " 

      + "ALREADY DELETED"); 

 } 

 



4)  
 

  

 public int findMove(double[] xMoves, double[] yMoves,  

   double dx, double dy, int numMoves) { 

  for (int i = 0; i < numMoves; i++) 

   if ((xMoves[i] == dx) && (yMoves[i] == dy)) 

    return i; 

  return -1; 

 } 

 

 

 

 

 

 

 

 

 

  



Exercise 2 

Suppose we have the following class Customer: 

 

 

 

 

 

 

 

 

 

 

Part A Part A Part A Part A ––––    passing passing passing passing an array elementan array elementan array elementan array element    as an argumentas an argumentas an argumentas an argument::::    

In a different class, suppose you created an array of objects of type Customer and an 

array of type double to store prices as follows: 

 

 

 

 

 

Q1: Write a code to call the method equalsC to compare the 1st element and the 

2nd element of the array cmr.   

Sol: 

 

 

 

public class Customer { 

 

 private int id; 

 private String name; 

 private double totalSales; 

 <Constructors, Setters, and Getters are here> 

 public void addSales(double price) 

 { 

  totalSales = totalSales + price; 

 } 

  

 public boolean equalsC(Customer c) 

 { 

  return (this.id == c.id &&  

   this.name.equalsIgnoreCase(c.name) &&  

   this.totalSales == c.totalSales); 

 } 

} 

Customer[] cmr = new Customer[3]; 

double[] prices = new double[3]; 

 

// Create objects for 1st and 2nd elements of cmr: 

cmr[0] = new Customer(1, "Ahmad", 0); 

cmr[1] = new Customer(2, "Saleh", 0);   

 

prices[0] = 10.0; prices[1] = 20.0; prices[2] = 30.0; 

   

if(cmr[0].equalsC(cmr[1])) 

 System.out.println("They are Equal!"); 

  OR 
if(cmr[1].equalsC(cmr[0])) 

 System.out.println("They are Equal!"); 

Note that we are sending a single 

element, which is sending a single object 

of type Customer to the method. 



Q2: Write a code to call the method addSales from the 1st customer. We want to 

add (send) the 2nd element from the array prices. 

Sol: 

 

 

 

Part B Part B Part B Part B ––––    Dealing with runtime errors:Dealing with runtime errors:Dealing with runtime errors:Dealing with runtime errors:    

 

Q3: Suppose we run this code fragment: 

 

 

What will happen? 

a. Nothing, it will return the ID of the 3rd customer to be assigned to the variable id. 

b. There is a compilation error. 

c. There is a runtime error. 

Sol: 

 

 

- The answer is C, we got a runtime error which is a Null Pointer Exception. 

- This happened because we tried to retrieve a value of an instance variable (from 

within an instance method) for an object that hasn’t been created! 

- In other words, we created an array of objects, but we did NOT create each object 

of the array. 

- That means we need to write the following statement before line 24 above: 

 

 

 

 

22 cmr[0].addSales(prices[1]);   

24 int id = cmr[2].getId();   

Exception in thread "main" java.lang.NullPointerException 
 at Tutorial13E1.main(Tutorial13E1.java:24)  

23 cmr[2] = new Customer(3, "Any Name", 0);  



Q4: Suppose we run this code fragment: 

 

 

What will be the output, if any? 

a. Name0 = Ahmad Name1 = Saleh Name2 = Any Name 

b. There is a compilation error. 

c. There is a runtime error. 

Sol: 

 

 

- The answer is C, we got a runtime error which is an Array Index Out Of Bound 

Exception. 

- This happened because we tried to access the element cmr[3] which is not part 

of the array since the array has only 3 elements (indexed from 0 to 2). 

- In other words, the error was caused from this operator (it should be “<”): 

 

  

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 3 

 at Tutorial13E1.main(Tutorial13E1.java:29)  

28 for (int i = 0; i <= cmr.length; i++) 
29  System.out.print("Name " + i + " = " + cmr[i].getName());  

28 for (int i = 0; i <= cmr.length; i++) 
29  System.out.print("Name " + i + " = " + cmr[i].getName());  



Exercise 3 

Part A:Part A:Part A:Part A:    

Suppose we have the UML diagram for these two classes: 

Tutorial13 

- name: String 

- id: integer 

- grades: double[] 

- DEFAULT_SIZE: private static final integer 

+ Tutorial13() 

+ Tutorial13(name: String, id: int, grades: double[]) 

+ setters 

+ getters 

+ fillGrades(): void 

+ swapGradesArray(gradesToBeSwapped: double[]): void 

+ addBonus(bonusAmount: double): double[] 

 

 

Tutorial13Test 

 

+ main 

+ foundId(s: Tutorial13[], id: int, LastIndexReached: int): Boolean 

+ findIndexById(s: Tutorial13[], id: int): int 

+ swapStudentInfoArray(StudentInfoToBeSwapped: Tutorial13[]): void 

 

 

- Note that all methods of the class Tutorial13Test are static. 

- Try to write the methods using their description, before you look at the code. 

 

 

 



Now, here is the class Tutorial13 with constructors, setters and getters code: 

 

 

  

import java.util.Scanner; 

 

public class Tutorial13 { 

  

 private String name; 

 private int id; 

 private double[] grades; 

  

 private static final int DEFAULT_SIZE = 10; 

  

 public Tutorial13() 

 { 

  name = "no name"; 

  id = -1; 

  grades = new double[DEFAULT_SIZE]; 

 } 

  

 public Tutorial13(String newName, int newId, double[] newGrades) 

 { 

  name = newName; 

  id = newId; 

  grades = newGrades; 

 } 

 

 public String getName() { 

  return name; 

 } 

 

 public void setName(String name) { 

  this.name = name; 

 } 

 

 public int getId() { 

  return id; 

 } 

 

 public void setId(int id) { 

  this.id = id; 

 } 

 

 public double[] getGrades() { 

  return grades; 

 } 

 

 public void setGrades(double[] grades) { 

  this.grades = grades; 
 } 

 

//The rest of the methods will be here, and they are  

discussed in the next pages. 

} 



In the class Tutorial13: 

- The method fillGrades() steps through the grades array of a certain student. 

The values are read from the user. Here is the method’s code: 

 

 

 

 

 

 

- The method addBonus(double bonusAmount) will add a double value to all 

the elements of the grades array of the current student. The value added is 

received using the parameter bonusAmount. After it finished adding the bonus to 

all the grades, the method returns the whole array to the invoker. Here is the 

method’s code: 

 

 

 

 

 

 

 

// This method will fill the grades of the current student: 

public void fillGrades() 

{ 

 Scanner kb = new Scanner(System.in); 

   

 for(int i = 0; i < grades.length; i++) 

 { 

System.out.println("Enter grade #" + (i+1) + " of the student " + name + ":"); 

  grades[i] = kb.nextDouble(); 

 } 

} 

// This method will receive a bonus amount to be added to all 

// the current student's grades. 

// Then, it returns the array grades to the invoker. 

public double[] addBonus(double bonusAmount) 

{ 

 // For readability, lets store the size of the array in the variable n: 

 int n = grades.length; 

   

 for(int i = 0; i < n; i++)  

 { 

  grades[i] = grades[i] + bonusAmount; 

 } 

  

 return grades; 

} 



- The method swapGradesArray(double[] gradesToBeSwapped) will 

swap the elements of the grades array. The swapping process is done as 

following (grades array has n elements): 

o The 1st element is swapped with the last element (n-1). 

o The 2nd element is swapped with the element (n-2). 

o The 3rd element is swapped with the element (n-3). 

o And so on … 

 

 

 

 

 

 

 

 

 

 

 

 

- Note that this is a swapping of double elements, so the values are exchanged. 

- In the next page we show an illustration of how the swapping is done. 

 

 

 

 

 

// This method will swap the elements of the grades array of size n, 

// we will swap the 1st element (0) with the last element (n-1), 

// the 2nd element (1) with the element (n-2) and so on... 

// Note that we swap values here. 

public void swapGradesArray(double[] gradesToBeSwapped) 

{ 

 // First, declare a temporary variable to store the value to be swapped. 

 double temp; 

   

 // For readability, lets store the size of the array in the variable n: 

 int n = gradesToBeSwapped.length; 

   

 // Now, loop to the half of the array,  

 // we do not need to reswap the rest of the elements! 

 for(int i = 0; i < n/2; i++)  

 { 

  temp = gradesToBeSwapped[i]; 

  gradesToBeSwapped[i] = gradesToBeSwapped[(n-1)-i]; // note that the last element 

is (n-1). 

  gradesToBeSwapped[(n-1)-i] = temp; 

 } 
} 



- Assume that we have this grades array that contains 5 grades: 

� n = 5, (n/2) = 2 

20 15 30 10 25 

Indices:    0   1   2   3   4 

- At the beginning, the current grade will be the value of grades[0] which is 20: 

 

 

 

- The value of grades[i] will be swapped with the value of grades[(n-1)-i]. 

When  i = 0, then (n-1)-i = (5-1)-0 = 4.  

� grades[0] will be swapped with grades[4]. 

 

- The array will look like this, and the current grade will be the value of 

grades[1] which is 15: 

 

 

- Again, The value of grades[i] will be swapped with the value of grades[(n-1)-

i]. When  i = 1, then (n-1)-i = (5-1)-1 = 3.  

� grades[1] will be swapped with grades[3]. 

 

- The array will look like this, and the current grade will be the value of 

grades[2] which is 30: 

 

 

- However, now that i = 2, the loop will end since i is not < (n/2). 

� 2 < 2 evaluates to false. 

   

- Now the swapping is done. 

 

- End of the Class Tutorial13. 

20 15 30 10 25 

25 15 30 10 20 

25 10 30 15 20 



In the class Tutorial13Test: 

- We have the main method, and three other static helping methods. We will 

discuss the helping methods first. Then, we will discuss the main method later. 

 

- The method foundId(Tutorial13[] s, int id, int 

lastIndexReached)will look for a student ID and return true if the student 

was found.  This method will help us to avoid adding an existing ID, since IDs must 

be unique. It will receive a student information array, which is an array of class 

Tutorial13 type (array of objects). In addition, it will receive the ID of the 

student we are looking for, and the last index reached so we look for previous 

elements only! (The rest of the elements will be null!). 

 

 

 

 

 

 

 

 

 

 

- If you did not understand the method, you can look at how we used it in the main 

method and it should clarify this method. 

 

// This method will look for an ID, and returns true if the ID was found in the 

// studentInfo array. Note that we will loop over the previous elements of 

// the studentInfo array (hence the parameter lastIndexReached), since we 

// haven't filled the rest of the elements yet! 

 

public static boolean foundId(Tutorial13[] s, int id, int lastIndexReached) 

{ 

 boolean found = false; 

   

 for(int i = 0; i < lastIndexReached; i++) 

 { 

  if(s[i].getId() == id) 

   found = true; 

 } 

   

 return found; 
} 



- The method findIndexById(Tutorial13[] s, int id) will look for the 

location of the student who’s ID is id in the student information array. It will 

return the location (index) if ID is found; otherwise, it will return -1 if not found. 

 

 

 

 

 

 

 

- The method swapStudentInfoArray(Tutorial13[] StudentInfoToBeSwapped) 

will swap the elements of the studentInfo array. The swapping process is done 

as following (studentInfo array has n elements): 

o The 1st element is swapped with the last element (n-1). 

o The 2nd element is swapped with the element (n-2). 

o The 3rd element is swapped with the element (n-3). 

o And so on … 

-  

 

  

// This method will look for the location of the student who’s ID is id, 

// and returns the location (index) if found, or -1 if not found. 

 

public static int findIndexById(Tutorial13[] s, int id) 

{ 

 for(int i = 0; i < s.length; i++) 

 { 

  if(s[i].getId() == id) 

   return i; 

 } 

   

 return -1; 
} 

// This method will swap the elements of the StudentInfo array of size n, 

// we will swap the 1st element (0) with the last element (n-1), 

// the 2nd element (1) with the element (n-2) and so on... 

// Note that we swap objects here. 

public static void swapStudentInfoArray(Tutorial13[] StudentInfoToBeSwapped) 

{ 

 // First, declare a temporary variable to store the object to be swapped. 

 Tutorial13 temp; // Note that no need for using "new", since we do not need the 

       // variable for creating a new object here, 

       // but just for using it as a temporary object holder. 

   

 // For readability, lets store the size of the array in the variable n: 

 int n = StudentInfoToBeSwapped.length; 

   

 // Now, loop to the half of the array,  

 // we do not need to re-swap the rest of the elements! 

 for(int i = 0; i < n/2; i++)  

 { 

  temp = StudentInfoToBeSwapped[i]; 

  StudentInfoToBeSwapped[i] = StudentInfoToBeSwapped[(n-1)-i]; // note that the 

last element is (n-1). 

  StudentInfoToBeSwapped[(n-1)-i] = temp; 

 } 

} 



- To illustrate, assume that we have this studentInfo array that contains 4 

students  � n = 4, (n/2) = 2 

- Remember that studentInfo is an array of objects. Each element contains a 

reference to an object of type Tutorial13. 

Index:             0     1       2           3 

 

 

 

 

 

- At the beginning, the current student will be referenced at studentInfo[0] 

which is the object containing ID = 111: 

 

 

 

 

 

 

 

- The reference at studentInfo[i] will be swapped with the reference at 

studentInfo[(n-1)-i]. So, when  i = 0, then (n-1)-i = (4-1)-0 = 3.  

� studentInfo[0] will be swapped with studentInfo[3]. 

 

- The array will look like this, and the current student will be referenced at 

studentInfo[1] which is the object containing ID = 222: 

 

 

 

 

 

    

    

    

“Ahmad” 

111             

… 

“Saleh”  

222             

… 

“Saud”   

444             

… 

“Ahmad” 

333             

… 

“Saud”   

444             

… 

“Saleh”  

222             

… 

“Ahmad”   

111             

… 

“Ahmad” 

333             

… 

“Ahmad” 

111             

… 

“Saleh”  

222             

… 

“Saud”   

444             

… 

“Ahmad” 

333             

… 



- Again, The reference at studentInfo[i] will be swapped with the reference at 

studentInfo[(n-1)-i]. So, when  i = 1, then (n-1)-i = (4-1)-1 = 2.  

� studentInfo[1] will be swapped with studentInfo[2]. 

 

-  The array will look like this, and the current student will be referenced at 

studentInfo[2] which is the object containing ID = 222: 

 

 

 

 

 

- However, now that i = 2, the loop will end since i is not < (n/2). 

� 2 < 2 evaluates to false. 

   

- Now the swapping is done. 

 

 

- The main method: For our program, we want to do the following: 

1. Create an array of objects studentInfo that contains students’ information. 

2. Loop over the studentInfo array and create objects as elements of the array. 

I.e. adding elements to the array of objects "studentInfo": 

a) First, we ask the user to give us the ID of the current student. Then, 

before we ask the user for the rest of the information, we check if the ID 

is unique or not. 

b) Then, we ask the user to give us the name the current student. 

c) After that, we set up the grades array of the current student. 

d) Now, we can create the object to store the current student information. 

    

“Saud”   

444             

… 

“Ahmad”  

333             

… 

“Ahmad”   

111             

… 

“Saleh”  

222             

… 



e) Now that the studentInfo is created, we will fill the current student’s 

grades. I.e. fill the elements of the "grades" array of the current 

student. 

3. After we finish looping over all the students, and fill their information, we want 

to try out our interesting methods! 

4. First, we will swap a certain student's grades after we give him a bonus of 2 to all 

his grades. 

• Print the grades array of the selected student to assure that the bonus adding 

and the swapping worked properly. 

5.  Then, swap the whole studentInfo array. 

• Print the studentInfo array to assure that the swapping worked properly. 

6. We are done! 

 

 

Part B:Part B:Part B:Part B:    

 

- Look at the sample run in the next page and try to write the main program yourself 

by using all the 6 steps above and the sample run.  



- Let us assume that this is a normal sample run for our program: 

 Enter how many students you want to enter: 

3 

Enter the ID of student #1 : 

111 

Enter the name of student #1 : 

Ahmad 

Enter how many grades you want to enter for student #1 : 

4 

Enter grade #1 of the student Ahmad: 

10 

Enter grade #2 of the student Ahmad: 

20 

Enter grade #3 of the student Ahmad: 

30 

Enter grade #4 of the student Ahmad: 

40  

Enter the ID of student #2 : 

222 

Enter the name of student #2 : 

Saleh 

Enter how many grades you want to enter for student #2 : 

5  

Enter grade #1 of the student Saleh: 

15 

Enter grade #2 of the student Saleh: 

10 

Enter grade #3 of the student Saleh: 

22 

Enter grade #4 of the student Saleh: 

31 

Enter grade #5 of the student Saleh: 

9 

Enter the ID of student #3 : 

333 

Enter the name of student #3 : 

Saud 

Enter how many grades you want to enter for student #3 : 

2 

Enter grade #1 of the student Saud: 

50 

Enter grade #2 of the student Saud: 

20 

 

==== Done Adding ==== 

 

Now, enter the Id of the student that you want to give a bonus and swap his grades: 

111 

student 111 grades in order: 

42.0, 32.0, 22.0, 12.0,  

 

Now, we will swap the whole studentInfo array! 

StudentInfo IDs in order: 

333, 222, 111,  

======================== 

Tutorial 13 is Finished! 

======================== 



- After knowing our program’s steps and looking at a sample run, let us write the 

main method together based on the 6 steps above: 

 

1. Create an array of objects studentInfo that contains students’ information. Here 

is the code fragment for that: 

 

 

 

 

 

 

 

2. Loop over the studentInfo array and create objects as elements of the array: 

a) First, we ask the user to give us the ID the current student. Then, before we ask 

the user for the rest of the information, we check if the ID is unique or not. 

 

 

 

 

 

 

 

import java.util.Scanner; 

public class Tutorial13Test { 

 public static void main(String[] args) { 

 

  int studentsNum, gradesNum; // To store arrays sizes 

  int id; 

  Scanner kb = new Scanner(System.in); 

  double[] studentGrades; // a temporary array to store the grades 

         // of a current student. 

  

  // Now let us create an array of objects to contain students' information: 

  System.out.println("Enter how many students you want to enter:"); 

  studentsNum = kb.nextInt();  // studentInfo's array size. 
  Tutorial13[] studentInfo = new Tutorial13[studentsNum];  // � Array of Objects. 

  . . .  

Program 

header + 

local 

variables 

declaration. 

1 

// Now we loop over the studentInfo array and create objects as elements of the array: 

// i.e. Adding elements to the array of objects "studentInfo". 

for(int i = 0; i < studentInfo.length; i++) 

{    

 // First, we ask the user to give us the id the current student: 

 System.out.println("Enter the ID of student #" + (i+1) + " :"); 

 id = kb.nextInt(); 

    

 // Before creating the current student object, 

 // we need to check if the ID is already entered (unique ID): 

 while(foundId(studentInfo, id, i)) //while the ID is not unique. 

 { // i here is the last index reached,  

  // saves searching in empty elements (null elements). 

  System.out.println("The ID you entered is not unique!"); 

  System.out.println("Enter the ID of student #" + (i+1) + " again:"); 

  id = kb.nextInt(); 

 } 

 . . . <The Rest of the for-Loop comes next>  

Loop over all the array! 

While the 

entered 

ID already 

exist in 

the array! 



b) Then, we ask the user to give us the name the current student. 

 

 

 

 

c)  After that, we set up the grades array of the current student. 

 

 

 

 

d)  Now, we can create the object to store the current student information. 

 

 

 

 

e) Now that the studentInfo is created, we will fill the current student’s 

grades. I.e. fill the elements of the "grades" array of the current student. 

 

 

 

. . .  

 

 // Then, we ask the user to give us the name the current student: 

 System.out.println("Enter the name of student #" + (i+1) + " :"); 
 String name = kb.next(); 

 . . . 

. . .  

 

 // After that, we set up the grades array of the current student: 

 System.out.println("Enter how many grades you want to enter for student #" + (i+1) + " :"); 

 gradesNum = kb.nextInt(); 

 studentGrades = new double[gradesNum];  

 . . . 

Create an empty array who’s size is 

entered from the user! 

. . .  

 

 // Now, we can create the object to store the current student information: 

 studentInfo[i] = new Tutorial13(name, id, studentGrades); // we used the 2nd constructor 

here.  

. . . 

Note how we send a whole array as an 

argument. 

. . .  

 

// Now that the studentInfo is created, let us fill their grades: 

// i.e. fill the elements of the "grades" array of the current student. 

studentInfo[i].fillGrades(); 

 } 

 System.out.println("\n==== Done Adding ====\n");  

 

. . . 

Simply invoke the fillGrades() method for the 

current object! 

This marks the end of the for-Loop. 



3. After we finish looping over all the students, and fill their information, we want to 

try out our interesting methods! 

4. First, we will swap a certain student's grades after we give him a bonus of 2 to all his 

grades. 

 

 

 

 

 

 

 

 

 

• Print the grades array of the selected student to assure that the bonus adding and the 

swapping worked properly. 

 

 

 

 

 

 

 

 

 

  

. . .  

// Now, let us swap a certain student's grades after we give him a bonus of 2 to all his 

grades: 

System.out.println("Now, enter the Id of the student that you want to give a bonus and swap 

his grades:"); 

id = kb.nextInt(); 

int index = findIndexById(studentInfo, id); 

if(index != -1) 

{  

 double [] g = studentInfo[index].addBonus(2); // add 2 to all this student grades. 

 studentInfo[index].swapGradesArray(g); 

} 

else 

 System.out.println("ID not Found!"); 

. . . 

Get the index of the entered student ID, then 

use this index to access the actual object! 

. . .  

 

// To make sure that the swapping was done correctly,  

// we will print the grades of the student selected: 

System.out.println("student " + studentInfo[index].getId() + " grades in order:"); 

studentGrades = studentInfo[index].getGrades(); 

// Note that we used the array "studentGrades" above, 

// since we were done using it. 

for(int i = 0; i < studentGrades.length ; i++) 

{ 

 System.out.print(studentGrades[i] + ", "); 

} 
System.out.println();  

. . . 

GetGrades() is a method that returns a 

whole array! 



5. Then, swap the whole studentInfo array. 

 

 

 

 

• Print the studentInfo array to assure that the swapping worked properly. 

 

 

 

 

 

 

 

7. We are done! 

 

 

 

 

 

. . .  

 

 // Now, let us swap the whole studentInfo array: 

 System.out.println("\nNow, we will swap the whole studentInfo array!"); 

 Tutorial13Test.swapStudentInfoArray(studentInfo);   

 // we called the static method above using the class name. 
 . . . 

. . .  

 

// To make sure that the swapping was done correctly,  

// we will print the ID'd of the students in the array: 

System.out.println("StudentInfo IDs in order:"); 

for(int i = 0; i < studentInfo.length; i++) 

{ 

 System.out.print(studentInfo[i].getId() + ", "); 

} 

System.out.println(); 

  
. . . 

. . .  

 

System.out.println("========================"); 

 System.out.println("Tutorial 13 is Finished!"); 

 System.out.println("========================"); 

}  


