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Abstract: In the present work, a new Zn(II) perchlorate complex with 2,2’–bipyridyl of formulation
{[Zn(bipy)2(H2O)](ClO4)2} (1) was obtained and well analyzed. This chemosensor was evaluated as a
selective sensor for acetone among the several different organic solvents(CH3OH, EtOH, i–PrOH,
i–BuOH, CHCl3, CH2Cl2, CCl4, C6H6, C7H8, C8H10, C2H3N, C3H7NO, C4H8O2, C3H6O3) in a
fluorescence turn–off response in accordance with theoretical calculations. Sensing experiments were
performed at ambient temperature which shows the acetone molecule distinctly reduces transfer of
energy barrier to complex 1 and hence, produces remarkable luminescent quenching. Also, the weak
intermolecular hydrogen–bonding interactions thanks to the presence of various hydrogen bonding
donors and acceptors, exist between ligand molecules, which were broken during fluorescence,
resulting in quenching. The stoichiometry ratio and association constant were evaluated using
Benesi–Hildebrand relation giving 1:1 stoichiometry between complex 1 and acetone. Additionally,
DFT results can also explicate the significant response on complex 1 upon addition of acetone. This
work is vital in a new loom for the detection of acetone and other ketones.
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1. Introduction

Acetone is a toxic reagent found extensively in nature, and acetone poisoning can occur through
various external modes, such as inhalation, ingestion or direct body contact to living creatures because
of its easy volatilization and toxicity. It is mostly harmful to the central nervous system’s overall
health. Similarly, this harmful chemical affects both cardiovascular and digestive health. Acetone
is also highly toxic to the respiratory tract and the urinary system [1]. Acetone is predicted to stay
mainly in the environmental compartment to which it is released. This is true when acetone is released
into water (more than 99% is predicted to remain in water). As a result, it is of vital consequence
to plan a novel sensor to detect acetone at a ppm level which is extremely beneficial not only for
environment safety but also for the safety of human beings [2]. Supramolecular interactions play a
critical task in the structural role of many molecules. It is well established that the important purposes
of coordination complexes in comprising supramolecular interactions have become a wide area of
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field [3,4], as it is effortless to preparation, easy process, cheap materials, simple availability and
can be used as a sensors for useful applications. In this context, the heterocyclic bipyridyl ligands
have been much studied because of the facts that the electron donating ability from its nitrogen
atoms. Furthermore, the donation of electron and ability of nitrogen to coordinate further create the
environment in biological systems [5–7]. Literature report supports that the complexes isolated from
bipyridine ligand exhibit interesting photophysical behaviors and widely applicable [8–10]. Several
other properties like short response time, high sensitivity, ease of detection, and cost–effectiveness,
make the luminescent complexes potential for the use in fluorescence sensing. These molecules can be
applicable to detect organic volatile solvent and explosive materials for example, trinitrotoluene and
dinitrotoluene [11–18]. Hence, it is of much importance to explore the the nature and dynamics of
bipyridyl ligands and the metal complexes obtain from this ligand. Late transition metal ions (e.g., d10

systems) coordinated to entities capable of supramolecular interactions, such as N– or O–based ligands,
can fluoresce remarkably [16–20]. In the recent past, luminescent properties of Zn(II) coordination
complexes of 2,2’–bipyridyl (bpy) has been studied which possesses essential properties both in the
solid state [21,22] and in solution [23,24].

Most importantly, it has a π conjugated system that can be utilized for photoluminescence. It is
well–known that Zn2+, Cd2+, and Ln3+ are usually adopted as luminescent cations, and we shall exploit
these in our future work. An additional advantage of using Zn(II) d10 system in fluorescence sensing
is their selectivity toward certain solvents such as acetone [17]. The detection of different solvents
has received great attention because of the increasing solvent toxicity and wastewater, which are
relevant for environmental and industrial monitoring, human health, food safety, etc. Sun et al. have
pleasingly explained the selective nature of d10 systems and π conjugated ligands in their experimental
investigation [14–16,19].

Due to simplicity, and its easy reaction process, planar ligand and its mononuclear Zn(II) complexes
are considered as an excellent choice for fluorescence sensing [25]. Recently, Hui Li et al. have
demonstrated that molecular Zn(II) with salphen-based Schiff base complexes exhibited remarkable
abilities of fluorescent recognition to iodide anions in tetrahydrofuran (THF) [26]. Similarly, Michael J.
Knapp’s group have shown that monometallic Zn(II) complex is quenched extraordinarily in solution
by nitroaromatics and 2,3–dimethyl–2,3–dinitrobutane (DMNB), which is a chemical signature of
explosives [27], which proves that Zn(II)-complex-based materials can not only sense harmful solvents
but also can detect explosive materials.

Considering these, we have synthesized Zn(II) complex {[Zn(bipy)2(H2O)](ClO4)2}(1) and
characterized by single X–ray crystallography, NMR spectroscopy, TGA, IR spectroscopy, elemental
analysis, UV–Vis spectroscopy, and fluorescence spectroscopy. From the experimental and theoretical
investigation, we conclude that the complex 1 could selectively detect the acetone without the
requirement of any additional processes such as preactivation, heating, or pH variation and, hence can
be utilized as chemosensor for acetone and other ketones family.The results could be relevant not only
to the Zn(II) d10 system but also to related systems involving bpy–like ligands, e.g., pyridyl–imidazole
derivatives, imidazolinones, etc.

2. Material and Methods

2.1. Materials

ZnClO4·6H2O (Fluka), 2,2’–bipyridine (Alfa Aesar) was used as received. All solvents, such
as methanol, ethanol, isopropanol, isobutanol, chloroform, dichloromethane, carbon tetrachloride,
benzene, toluene, ethylbenzene, acetonitrile, dimethyformamide, ethyl acetate, dimethyl carbonate,
acetone, cyclohexanone, 4–heptanone and 5–nonanone (Sigma-Aldrich) were utilized as received.
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2.2. Methods and Instrumentation

Microanalysis (CHN) was carried out with a Carlo Erba Analyzer Model 1108. Molar conductance
was measured at room temperature on a Digsun electronic conductivity bridge. An FTIR spectrometer
(Interspec 2020) was used for recording the IR spectra of samples in KBr pellets in the range
4000–400 cm−1. Electronic spectra were recorded on UV–1700 PharmaSpec UV–Vis spectrophotometer
(Shimadzu). Emission spectra were recorded on a Shimadzu RF–6000 fluorescence spectrophotometer.
TGA was performed on a Universal V3.8 B TA SDT Q600 Build 51 thermal analyzer under a nitrogen
atmosphere using alumina powder as the reference material. 1H and 13C NMR spectra were recorded
at 25 ◦C on a JEOL 400 NMR spectrometer.

2.3. Crystal Structure Determination

Detailed crystal structure measurement has been given in full in the Supplementary Material.

2.4. Synthesis

The complex {[Zn(bipy)2(H2O)](ClO4)2}(1) was obtained by dissolving 2 mmol of 2,2’–bpy (0.312 g)
and 1 mmol ZnClO4·6H2O (0.372 g) in 30 mL ethanol. The solution was stirred at room temperature.
A colorless precipitate appeared after ca. 6 h, which was re-dissolved in water/acetonitrile (20:80)
mixture and kept for crystal growth. After seven days, colorless, needle-shaped crystals were obtained,
which were washed with hexane and stored for further analysis. Yield, 60%; m.p., 265 ◦C. Anal. Calc.
for C20H18Cl2N4O9Zn (%) C, 40.39; H, 3.05; N, 9.42, Found: C, 41.48; H, 2.99; N, 9.35. Conductivity
(1 × 10−3 M, DMSO): 210.0 Ω−1cm2 mol−1 (1:2 electrolyte). IR (KBr, cm−1): 3481 (OH, H2O); 3101 (CH,
aromatic); 1442 (CH, aromatic); 1601, 1576, 1493 (bipyridyl N); 1100 (ClO4); 413 (Zn–O); 415 (Zn–N).
UV–vis (DMSO, nm): 209, 295.

3. Results and Discussion

3.1. Synthesis and Characterization

The product {[Zn(bipy)2(H2O)](ClO4)2}(1) was characterized using single X–ray crystallography,
NMR, TGA, IR, elemental analysis, and UV–Vis spectroscopy (Supplementary Material, Scheme S1).
The complex is stable toward air and moisture.

3.2. X-ray Structure

The ORTEP structure of complex 1 is shown in Supplementary Material, Figure S1. This complex
crystallizes in the monoclinic space group P21/n (Z = 4) with a pentacoordinated Zn(II) center.
The crucial parameters of the Zn complex are listed in Supplementary Material, Table S1.

Complex 1 adopts a square pyramidal geometry by coordinating through the N atoms of the two
bipyridyl molecules and O atom of one water molecule. Two uncoordinated perchlorate anions present
in the lattice complete the charge balance and are extensively involved in hydrogen bonding. The unit
cell of complex 1 shows the coordination of the four Zn(II) ions with the uncoordinated perchlorate
anions (Figure 1).
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Figure 2 shows the space-filling model of complex 1. The Zn–N bond distances are in the range
2.061 (3)–2.104 (3) Å, while the Zn–O bond distance is 2.028 Å (Supplementary Materials, Table S2). All
the bond angles are in the range 79.03 (13)–178.83(13) (◦).

Crystals 2020, 10, x FOR PEER REVIEW 4 of 12 Figure 2 shows the space-filling model of complex 1. The Zn–N bond distances are in the range 
2.061 (3)–2.104 (3) Å, while the Zn–O bond distance is 2.028 Å (Supplementary Materials, Table S2). 
All the bond angles are in the range 79.03 (13)–178.83(13) (°).  

Figure 2. Model of complex {[Zn(bipy)2(H2O)](ClO4)2}(1). 

All the bond lengths and bond angles of the synthesized complex are almost the same as that of 
similar coordination complexes [28]. The complex exhibits hydrogen bonding between the bonded 
water molecule and non-bonded perchlorate anions. The oxygen atoms (O2, O3, O4) of one of the 
perchlorate anions are involved in C–H O intermolecular interactions with the H atoms of the 
bonded bipyridyl molecule in the range 2.525(13)–2.966(27) Å. O atoms (O7, O8, O9) of another 
perchlorate anion are involved in C–H O intermolecular interactions with the H atoms of the 
coordinated bipyridyl molecule, in the range 2.477(11)–3.004(28) Å. 

3.3. NMR Spectral Studies 

The chemical shifts were identified by their intensity and multiplicity patterns. The total number 
of protons as calculated from the integration curves was in agreement with the expected molecular 
composition of the compound. The complexation between the metal cation and the complex 
decreased the electron density at the N atoms, weakening the shielding effect on the neighboring 
protons and causing a downfield shift of the signal. The 1H NMR spectrum of complex1in DMSO–d6 

displays several interesting features in comparison to the free bipyridyl ligand (Supplementary 
Materials, Figure S2). Complex 1 exhibited a merged and intense peak at 3.42 ppm compared to the 
distinct signal of coordinated H2O, due to overlapping and fast O–H exchange with coordinated 
water molecule and residual water content of DMSO–d6 [29]. Signals due to aromatic protons 
appeared in the range 7.8–8.7 ppm, while the signals at 1.0 ppm correspond to trace amounts of lattice 
ethanol. In the 13C NMR spectrum, signals from aromatic carbon appeared at 123–149 ppm 
(Supplementary Materials, Figure S3). 

3.4. Thermal Studies 

Thermogravimetric analysis of complex 1 was carried out from 25 to 800 °C to study its pyrolysis 
pattern. The thermogram of the complex 1 (Supplementary Materials, Figure S4) suggests that weight 
loss occurs in five steps over the temperature range 75–160, 210–350, 320–360, 365–600 and 610–800 °C. 
These were in close agreement with the proposed structure. The weight loss in the temperature range 
75–160 °C confirmed the removal of traces of ethanol while that in the range 210–350 °C corresponded 
to the removal of coordinated water molecules [30,31]. This conclusion was based on the fact that the 
water molecules are extensively hydrogen bonded with the neighboring perchlorate anions, and, 
hence, required more heat compared with the lattice water molecules. The weight loss in the range 
320–360 °C corresponded to the removal of both the perchlorate anions. At 365–600 °C, the compound 
exhibited ~41% weight loss, corresponding to the decomposition of the bipyridyl group. Finally, the 
plateau from 710 to 850 °C corresponded to the formation of zinc oxide as the final product. 

3.5. IR Spectroscopy 

The infrared spectrum of complex 1 (Supplementary Material, Figure S5) shows a band of the 
relatively weak peak at 3101 cm–1 owing to aromatic –CH stretching and a sharp, intense peak at 1442 
cm–1 owing to aromatic –CH bending. Absorption bands at 1601, 1576, and 1493 cm–1 were consistent 

Figure 2. Model of complex {[Zn(bipy)2(H2O)](ClO4)2}(1).

All the bond lengths and bond angles of the synthesized complex are almost the same as that of
similar coordination complexes [28]. The complex exhibits hydrogen bonding between the bonded
water molecule and non-bonded perchlorate anions. The oxygen atoms (O2, O3, O4) of one of the
perchlorate anions are involved in C–H······O intermolecular interactions with the H atoms of the
bonded bipyridyl molecule in the range 2.525(13)–2.966(27) Å. O atoms (O7, O8, O9) of another
perchlorate anion are involved in C–H······O intermolecular interactions with the H atoms of the
coordinated bipyridyl molecule, in the range 2.477(11)–3.004(28) Å.

3.3. NMR Spectral Studies

The chemical shifts were identified by their intensity and multiplicity patterns. The total number
of protons as calculated from the integration curves was in agreement with the expected molecular
composition of the compound. The complexation between the metal cation and the complex decreased
the electron density at the N atoms, weakening the shielding effect on the neighboring protons and
causing a downfield shift of the signal. The 1H NMR spectrum of complex1in DMSO–d6 displays
several interesting features in comparison to the free bipyridyl ligand (Supplementary Materials,
Figure S2). Complex 1 exhibited a merged and intense peak at 3.42 ppm compared to the distinct signal
of coordinated H2O, due to overlapping and fast O–H exchange with coordinated water molecule
and residual water content of DMSO–d6 [29]. Signals due to aromatic protons appeared in the range
7.8–8.7 ppm, while the signals at 1.0 ppm correspond to trace amounts of lattice ethanol. In the 13C
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NMR spectrum, signals from aromatic carbon appeared at 123–149 ppm (Supplementary Materials,
Figure S3).

3.4. Thermal Studies

Thermogravimetric analysis of complex 1 was carried out from 25 to 800 ◦C to study its pyrolysis
pattern. The thermogram of the complex 1 (Supplementary Materials, Figure S4) suggests that weight
loss occurs in five steps over the temperature range 75–160, 210–350, 320–360, 365–600 and 610–800 ◦C.
These were in close agreement with the proposed structure. The weight loss in the temperature range
75–160 ◦C confirmed the removal of traces of ethanol while that in the range 210–350 ◦C corresponded
to the removal of coordinated water molecules [30,31]. This conclusion was based on the fact that the
water molecules are extensively hydrogen bonded with the neighboring perchlorate anions, and, hence,
required more heat compared with the lattice water molecules. The weight loss in the range 320–360 ◦C
corresponded to the removal of both the perchlorate anions. At 365–600 ◦C, the compound exhibited
~41% weight loss, corresponding to the decomposition of the bipyridyl group. Finally, the plateau
from 710 to 850 ◦C corresponded to the formation of zinc oxide as the final product.

3.5. IR Spectroscopy

The infrared spectrum of complex 1 (Supplementary Material, Figure S5) shows a band of the
relatively weak peak at 3101 cm−1 owing to aromatic –CH stretching and a sharp, intense peak at
1442 cm−1 owing to aromatic –CH bending. Absorption bands at 1601, 1576, and 1493 cm−1 were
consistent with the coordination of the N atom to the metal center [32]. The corresponding peaks
were observed at slightly lower frequencies in the free bipyridyl ligand. Besides, a strong –OH
band at 3481 cm−1 was also observed for complex 1, owing to the presence of coordinated water
molecules [33]. The crystal structure of complex 1 suggests that there are no interactions between the
metal center and the anions, although there is a weak hydrogen bond between one of the perchlorate
oxygen atoms and the aqua group of the cation. The T2 mode near 1100 cm−1 appears as an intense
band, characteristic of perchlorate anions. The several smaller bands observed between 600 and
700 cm−1 are indicative of significant interactions between the perchlorate group and the cation.
The splitting observed in this region may arise because of various factors, and the region is generally
less informative than the lower-energy region. This conclusion is borne out by the results obtained for
the coordinated perchlorates.

The medium-intensity bands in the region 413–415 cm−1 corresponded to (Zn–O) and (Zn–N) [34],
thus providing additional evidence for the formation of complex 1.

3.6. Electronic Spectra

The UV spectrum of complex 1 exhibited bands at 209 nm, which corresponded to the π–π*
transitions due to the long-lived triplet excited state of the aromatic moiety. This band undergoes a
hypsochromic shift concerning the free bipyridyl ligands. Additionally, ligand to metal charge transfer
(LMCT) transitions for the complex were observed at around 295 nm (Supplementary Materials,
Figure S6). No d–d electronic transitions were observed because of completely filled d-orbital [35].

3.7. Fluorescence Sensing Property

It is reported that the d10–based ions possessing a closed–shell electronic configuration with
π–conjugated skeleton have a trivial impact on the excited state profile, while other metal ions
with different electronic configurations quench the luminescence, especially in solvents such as
acetone [16–20]. To explore the potential applications of our synthesized Zn–based coordination
complex in probing small organic molecules, we examined the outcome of organic solvents on the
fluorescence of the complex 1.

The fluorescence of the complex 1(1.0 × 10−5 M) was studied in DMSO at room temperature.
The complex 1 exhibited remarkable fluorescence, and intense emission bands were observed at 330 nm
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(λex = 295 nm). It is well known that the arrangement of certain structural features like rigidity of
aromatic backbone of the ligands can enhance the intra/intermolecular interactions, thus favoring
the energy transfer [18,20]. Generally, the enhancement in fluorescence intensity of metal complexes
with π–conjugated ligands is much more as compared to free ligand, because the latter hampers the
deformation of the ligand and provoke nonradiative relaxation [36].

The fluorescence sensing experiment with the synthesized complex 1 was performed in the
presence of different organic solvents (Figure 3). The spectral response shows drastic decline in the
emission intensity of complex 1 maximum at 325 nm in presence of acetone.
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For a detailed examination of the sensitivity of the complex 1 for sensing acetone, the quenching
efficiencies of the complex 1 with increasing amounts of acetone (0–1.05 mM) was investigated which
exhibits that the emission profile decreases sharply in presence of added amounts of acetone (Figure 4).
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The value of the association constant gives an idea of the strength of binding between the complex
and the added molecule. In order to have a quantitative estimate of the association of complex 1 (10 µM)
with the increasing concentration of acetone (0–1.05 mM), we have exploited the fluorescence titration
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data to determine the association constant, using the modified Benesi–Hildebrand equation [37] as
given below

1
∆F

=
1

∆Fmax
+

1
K∆Fmax

1
[L]

(1)

Where ∆F = Fx– F0 and ∆Fmax = F∞ – F0, where F0, Fx and F∞ are the fluorescence intensities of
complex 1 in the absence of acetone, at an intermediate acetone concentration, and at a concentration
allowing complete interaction, respectively; K is the association constant and [L] is the acetone
concentration. The double reciprocal plot of 1/∆F against 1/[Acetone] gives a straight line (Figure 5).
From this plot, we have confirmed 1:1 stoichiometry between complex 1 and acetone. The assessment
constant (K) is calculated from the ratio of the intercept to the slope of the linear plot in Figure 5 and
the value of K was 1.5 × 103 M−1. The high value of the association constant assumes that complex 1
had great potential for the detection of trace amount of acetone.Crystals 2020, 10, x FOR PEER REVIEW 7 of 12 
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The limit of detection was calculated from the increamental amount of added acetone based on a
reported procedure [38]. To achieve the slope, the emission profile of complex 1 at 325 nm was plotted
versus concentration of acetone (Supplementary Material, Figure S7) and the limit of detection was
calculated with the help of following equation:

Detection limit = 3σ/M (2)

Where σ is the standard deviation of blank measurement and M is the slope between the
fluorescence intensity and acetone concentration. The detection limit was found to be in order of
1.80 × 10−5 M. Hence, complex 1 confirms the selective estimation for acetone was calculated to
be 18 µM.

The addition of other solvents did not exhibit any remarkable quenching. These outcomes revealed
that the complex 1 selectively detect the acetone. At the same time, the sensing ability of complex 1
towards the acetone was not affected by other organic solvents (Figure 6). It means that the complex 1
can effectively sense acetone even if the taster is impure with additional solvents. Besides, we did not
preactivate our system by means of any other physical parameters like heating, pH maintenance, or
any other external factor, which is in contrast to lanthanides and a few other coordination complexes
that require preactivation [39–41].



Crystals 2020, 10, 324 8 of 13

Crystals 2020, 10, x FOR PEER REVIEW 7 of 12 

 

Figure 5. Double reciprocal plot for 1:1 association between complex {[Zn(bipy)2(H2O)](ClO4)2}(1) and 
acetone. 

The limit of detection was calculated from the increamental amount of added acetone based on 
a reported procedure [38]. To achieve the slope, the emission profile of complex 1 at 325 nm was 
plotted versus concentration of acetone (Supplementary Material, Figure S7) and the limit of 
detection was calculated with the help of following equation: 

Detection limit=3 /M (2) 

Where  is the standard deviation of blank measurement and M is the slope between the 
fluorescence intensity and acetone concentration. The detection limit was found to be in order of 
1.80×10 5 M. Hence, complex 1 confirms the selective estimation for acetone was calculated to be 18 
μM. 

The addition of other solvents did not exhibit any remarkable quenching. These outcomes 
revealed that the complex 1 selectively detect the acetone. At the same time, the sensing ability of 
complex 1 towards the acetone was not affected by other organic solvents (Figure 6). It means that 
the complex 1 can effectively sense acetone even if the taster is impure with additional solvents. 
Besides, we did not preactivate our system by means of any other physical parameters like heating, 
pH maintenance, or any other external factor, which is in contrast to lanthanides and a few other 
coordination complexes that require preactivation[39–41]. 

 

Figure 6. Quenching efficiency of complex {[Zn(bipy)2(H2O)](ClO4)2}(1) upon the addition of different 
organic solvents, except for acetone (blue) and subsequent addition of acetone (red). 

Figure 6. Quenching efficiency of complex {[Zn(bipy)2(H2O)](ClO4)2}(1) upon the addition of different
organic solvents, except for acetone (blue) and subsequent addition of acetone (red).

The quenching was nearly proportional to the acetone concentration, and complete quenching
was observed upon the addition of 1.05 mM of acetone. This demonstrates that complex 1 selectively
senses even minimal amounts of acetone and, hence, may considered as a potential candidate for the
selective sensing of acetone.

In order to explore whether the interaction between the –C=O bond of acetone and the frameworks
of complex 1 caused the fluorescence quenching, the fluorescence of various ketones was examined.
Figure 7 demonstrates that ketones such as cyclohexanone, 4–heptanone, and 5–nonanone exhibited
the highest quenching. This suggests that the fluorescence quenching may be caused by the interaction
between the –C=O bond of ketone and the frameworks of complex 1.
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The observed fluorescence-quenching effect may be attributed to the interactions between the
Zn(II) metal ion framework of complex 1 and acetone, since Zn(II) is oxophilic in nature, and it might
be possible that acetone may bond with the Zn(II) complex through supramolecular interaction. Upon
excitation, an energy transfer from the ligands to the acetone molecules occurred and resulted in
fluorescence quenching. It would be very interesting to determine further, regarding our theory,
whether we get X-ray crystal structure from acetone-rich solution. This would show whether the
ketone coordinates to Zn(II), but despite our efforts we could not get such a crystal.
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3.8. DFT Studies

To get a deeper insight into the mechanism of the fluorescence-quenching behaviors of complex
1 with acetone, a series of DFT calculations were carried out. Firstly, we have screened the energies
of frontier molecular orbitals of all the solvents and complex 1 (Supplementary Material, Figure S8).
From the analysis of the highest occupied molecule orbital (HOMO) and lowest occupied molecule
orbital (LUMO) energies of solvents, it was found that the HOMO energy of acetone, benzene, toluene
and ethyl benzene is greater than the HOMO energy of complex 1 alone. Addition of these solvents
to complex 1 may restrict the π–π* intramolecular charge transfer (responsible for the fluorescence),
occurring from one bipyridyl moiety to another, as HOMO and LUMO are mainly located on both of the
bipyridyl moiety of complex 1 after the formation of either ground state or excited state charge-transfer
CT adduct. However, our observed experimental results suggest that only acetone molecules restricted
the intermolecular charge transfer of complex 1, because quenching is observed only in the case of
acetone. Surprisingly, the HOMO energies of benzene, toluene and ethyl benzene are greater than
acetone, yet fluorescence quenching is observed only in the presence of acetone (if HOMO energy is
the only factor).

To find out the reason for this, we optimized complex 1 with each solvent used for sensing and
analyzed their geometric parameters and frontier molecular orbital (FMO) distributions (Supplementary
Material, Figure S9). The FMO analysis of adducts of complex 1 with solvent suggests that HOMO and
LUMO separately located on only acetone and one bipyridyl moiety of complex 1, respectively, while
in all other cases mixed distributions of FMOs were observed (Figure 8). Hence, in all other cases,
especially in benzene, toluene and ethyl benzene, which form adducts of complex 1, the intermolecular
π–π* charge transfer is still not affected after adduct formation.
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Furthermore, we have also carried out electron localization function (ELF) analysis to explore
the nature of non-covalent forces which stabilize the acetone–Zn(II) complex 1 adduct. The ELF
analysis suggested that the acetone–Zn(II) complex 1 stabilized through the lone pair···π interaction
between the lone pair of the carbonyl group and the π cloud of the bipyridyl moiety of complex 1
(Supplementary Material, Figure S10) while, in all other cases, distances and geometric orientation of
other solvents and Zn(II) complex are not compatible to form any kind of non-covalent interaction
(Supplementary Material, Figure S11). In short, the observed selective fluorescence-quenching effect in
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the presence of acetone can be attributed to the lone pair···π interactions between the bipyridyl moiety of
the complex 1 framework and the carbonyl group of acetone, which form a stable acetone–Zn(II) adduct.

Upon excitation, electron transfer from the acetone molecule to the bipyridyl moiety of complex 1
occurred, due to which the intermolecular π–π* charge transfer between bipyridyl moieties is broken
and fluorescence quenching occurs (Figure 9).
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In brief, the acetone molecule distinctly reduces energy transfer to complex
{[Zn(bipy)2(H2O)](ClO4)2}(1), to produce remarkable luminescent quenching, which is absent in
the rest of the solvent molecules. Additionally, weak intermolecular hydrogen-bonding interactions,
thanks to the presence of various hydrogen bonding donors and acceptors, may also exist between
bipyridyl moieties which were broken, resulting in quenching.

4. Conclusions

A new Zn(II) perchlorate complex with 2,2’–bipyridyl of formulation {[Zn(bipy)2(H2O)](ClO4)2}
(1) was prepared and characterized by single X–ray crystallography, NMR, TGA, IR, elemental analysis,
and UV–Vis spectroscopy. Due to the presence of intermolecular interactions in the complex, as
observed in the packing diagrams, these complexes participated in fluorescence sensing. Upon
excitation, electron transfer from the acetone molecule to the bipyridyl moiety of Zn(II) complex
occurs, due to which intermolecular π–π* charge transfer between bipyridyl moieties is broken and
fluorescence quenching occurs. The high quenching efficiency and excellent selectivity of the complex
for acetone and other ketones make it a potential functional material for the detection of ketones, which
was further proved by DFT analysis. This study provides new physical insights into the rational design
of coordination-complex-based functional materials. Future work in this direction will be crucial to
elucidate the specific roles of d10–based complexes in sensing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/4/324/s1,
Table S1. Crystallographic data of {[Zn(bipy)2(H2O)](ClO4)2} (1); Table S2. Selected bond lengths [Å] and
bond angles [◦] of {[Zn(bipy)2(H2O)](ClO4)2} (1); Table S3. The origin of the transitions from IR, NMR,
UV-Vis and TGA and its description. Scheme S1. Synthetic scheme of complex {[Zn(bipy)2(H2O)](ClO4)2}
(1); Figure S1.Thermal ellipsoidal presentation of the molecular structure of complex {[Zn(bipy)2(H2O)](ClO4)2}
(1) with 30% probability factor; Figure S2. The 1H NMR spectrum of complex {[Zn(bipy)2(H2O)](ClO4)2} (1) in
DMSO-d6 at room temperature; Figure S3. The 13C NMR spectrum of complex {[Zn(bipy)2(H2O)](ClO4)2} (1) in
DMSO-d6 at room temperature.; Figure S4. Thermogravimetric analysis of complex {[Zn(bipy)2(H2O)](ClO4)2}
(1); Figure S5. IR spectrum of complex {[Zn(bipy)2(H2O)](ClO4)2} (1); Figure S6. UV-Vis Spectrum of
complex {[Zn(bipy)2(H2O)](ClO4)2} (1); Fiure S7. Normalized response of fluorescence signal of complex
{[Zn(bipy)2(H2O)](ClO4)2} (1) in the presence of increasing amount of acetone (0 to 1.05 mM) predissolved in
DMSO. (λex= 295nm; λem= 325nm); Figure. S8. Frontier molecular orbital of various molecules used in sensing

http://www.mdpi.com/2073-4352/10/4/324/s1


Crystals 2020, 10, 324 11 of 13

studies; Figure S9. Frontier molecular orbital of the aggregate of complex {[Zn(bipy)2(H2O)](ClO4)2}(1) with
the various used solvents; Figure S10. Electron localization function (ELF) map of the aggregate of complex
{[Zn(bipy)2(H2O)](ClO4)2}(1) in different solvents; Figure S11. B3LYP/DFT optimized structures of the aggregate
of complex {[Zn(bipy)2(H2O)](ClO4)2} (1) in presence of various organic solvents for sensing. The d···d’ distance
in angstrom represents the nearest distance between the carbon atoms of bipyridyl moiety of Zn(II)-complex and
different solvents.
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