Symmetry Operations and Space Groups

Symmetry Elements

there are $\mathbf{5}$ types in point symmetry

1. center of symmetry (or inversion): point $\overline{\mathbf{1}}$
2. rotation (or proper) axis : line n
3. mirror : plane m
4. rotation-inversion axis : line \bar{n}
5. identity : no element

Center of Symmetry: $\overline{1}$
all points $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \longrightarrow(-\boldsymbol{x},-\boldsymbol{y},-\boldsymbol{z})$ if $\overline{\mathbf{1}}$ is placed at the origin

Crystal Symmetry

32 point groups of crystals compatible with 7 crystal systems
crystallographers use Hermann-Mauguin symmetry symbols

Carl Hermann
German
1898-1961
Charles-Victor Mauguin
French
1878-1958

Center of Symmetry: $\overline{\mathbf{1}}$

a point in the molecule through which if another point on the molecule is taken, will meet an identical point on the molecule an equal distance away

Rotation Axis: n

\mathbf{n} is an integer which gives the degrees of rotation: $\frac{\mathbf{2 \pi}}{\mathbf{n}}$ or $\frac{\mathbf{3 6 0}}{\mathbf{n}}$
\mathbf{n} is the number of times molecule is rotated, each time stopping at an identical appearance, before returning to the starting point

\mathbf{n} is the foldness of the rotation axis
only 2, 3, 4, and 6-fold axes allowed in crystal symmetry

Rotation-Inversion $\overline{\mathbf{n}}$

rotation followed by inversion
this is a different definition than Schoenflies system

Arthur Moritz Schönflies - German 1891
rotation followed by reflection

Mirror: m

plane within the molecule that, when acting as a mirror, reflects the molecule into itself

Representation of Symmetry

point symmetry often represented symbolically in the form of points on a circle (projection of a sphere)
a point above plane is a filled circle:
a point below plane is an open circle:
two points directly on top of each other: starting with one point, find other points generated by symmetry

32 point groups compatible with 7 crystal systems

Monoclinic

$2\left(C_{2}\right)$
$m\left(C_{s}\right)$

monoclinic convention: symmetry located wrt \mathbf{b} axis
2: 2-fold axis along b
\boldsymbol{m} : mirror perpendicular to \mathbf{b}
2/m: 2-fold axis along \mathbf{b}, perpendicular to a mirror

Lattices

14 Bravais lattices have Laue symmetry all have a center of symmetry
center of symmetry very important in crystallography:
centrosymmetric or noncentrosymmetric

Translational Symmetry

in repeating lattices, two additional symmetry elements

translational elements

1. screw axis rotation and translation: $\mathbf{n}_{\mathbf{r}}$
rotation by $\mathbf{3 6 0} / \mathbf{n}$;
followed by translation of \mathbf{r} / \mathbf{n} along that axis (a,b or \mathbf{c})
2-fold screw axis most common: $\mathbf{2}_{1}$
2. glide plane reflection and translation: a,b, $\boldsymbol{c}, \boldsymbol{n}$ or \boldsymbol{d} reflection across plane;
followed by translation of $\mathbf{1 / 2}$ (usually) unit cell parallel to plane along \mathbf{a}, \mathbf{b}, \mathbf{c}, face diagonal (\boldsymbol{n}), or body diagonal (\boldsymbol{d})

Glide Plane - a

http://www.cut-the-knot.org/Curriculum/Geometry/GlideReflection.shtml
Space Groups
translational elements + point symmetry \Rightarrow space groups
in 2-D, referred to as plane groups
there are 17 distinct ways of packing repeating object in 2-D
wallpaper patterns

Space Groups
translational elements +32 crystal point groups;
230 space groups
230 distinct ways of packing repeating object in 3-D

tetragonal		Space Groups			I4	I4 ${ }_{1}$
4	P4	P41	$\mathbf{P 4} \mathbf{2}^{1}$	P43		
$\overline{4}$	$\mathbf{P} \overline{4}$	I $\overline{4}$				
4/m	P4/m	$\mathrm{P} 42 / \mathrm{m}$	P4/n	$\mathrm{P} 42 / n$	I4/m	I $4_{1} / a$
422	P422	P42,2	P4122	P4, $\mathbf{2 1}_{12}$	P4222	$\mathbf{P 4} \mathbf{2}_{1} \mathbf{2}$
	P43 22	$\mathrm{P4}_{3} \mathbf{2 1}_{1}{ }^{2}$	1422	I4,22		
4 mm	P4mm	P4bm	$\mathrm{P4}_{2} \mathrm{~cm}$	$\mathrm{P4}_{2}$ nm	P4cc	P4nc
	$\mathrm{P4}_{2} \boldsymbol{m} \boldsymbol{c}$	$\mathrm{P}_{2}{ }_{2} \boldsymbol{c} \boldsymbol{c}$	I4mm	I4cm	I4 ${ }_{1} m$ m	$\mathrm{I}_{1} \mathrm{c}$ cd
$\overline{42} \mathrm{~m}$	$\mathbf{P} \mathbf{4} 2 m$	$\mathrm{P} \overline{42} c$	$\mathbf{P} \overline{42}{ }_{1} m$	$\mathbf{P} \overline{42}{ }_{1} c$	$\mathbf{P} \overline{4} m 2$	$\overline{\mathbf{P}} \mathbf{c} 2$
	$\mathbf{P} \overline{4} \mathbf{2} \boldsymbol{b}$	$\mathbf{P} \overline{4} \boldsymbol{n} \mathbf{2}$	I $\overline{4} \boldsymbol{m} 2$	$\mathbf{I} \overline{4} \boldsymbol{c} 2$	I42m	I42d
4/mmm	$\mathrm{P} 4 / \mathrm{mmm}$	P4/mec	$\mathrm{P} 4 / \mathrm{nbm}$	P4/nnc	$\mathrm{P} 4 / \mathrm{mbm}$	P4/mnc
	$\mathrm{P} 4 / \mathrm{nmm}$	P4/nnc	$\mathrm{P}_{2} / \mathrm{mmc}$	$\mathbf{P} 4_{2} / \mathrm{mcm}$	$\mathrm{P}_{2} / \mathrm{nb} \boldsymbol{c}$	$\mathbf{P} 42 / \mathrm{nnm}$
	$\mathrm{P}_{2} / \boldsymbol{m b c}$	$\mathbf{P} 4_{2} /$ mnm	$\mathrm{P} 4_{2} / \mathrm{nm} \boldsymbol{c}$	$\mathbf{P} 4_{2} / \mathrm{ncm}$	I4/mmm	14/mcm
	$\mathrm{I}_{1} /$ amd	I4 $1^{\text {/acd }}$				

cubic						
23	P23	F23	123	$\mathbf{P} 2,3$	$\mathbf{I} 2,3$	
m3	Pm3	Pn3	Fm3	Fd3	Im3	Pa3
432	P432	$\mathbf{P} \mathbf{4}_{2} 32$	F432	F4 32	I432	P43 32
	$\mathbf{P} 4_{1} 32$	$I 4_{1} 32$				
$\overline{43 m}$	$\mathbf{P} \overline{4} 3 m$	$F^{\frac{1}{4} 3 m}$	I43m	P $\overline{43} \boldsymbol{n}$	$\overline{\mathrm{F} 3} \boldsymbol{c}$	I43d
$m 3 m$	$\mathrm{Pm} 3 \mathrm{~m}$	Pn3n	Pm3n	Pn3m	Fm3m	Fm 3 c
	$\mathrm{F} d 3 m$	$\mathrm{F} d 3 c$	Im3m	$\mathbf{I} a 3 d$		

Space Groups

all compounds crystallize in one or more of these space groups usually possible to find $\mathbf{P 1}$, but always try to find the highest possible symmetry.
structures observed in all 230 space groups
$\sim 95 \%$ of all structures: monoclinic, triclinic, orthorhombic
$\sim 83 \%$ of all structures: $\mathbf{P 2} / \boldsymbol{c}, \mathbf{P 1}, \mathbf{P 2}_{1} \mathbf{2}_{1} \mathbf{2}_{\mathbf{1}}, \mathbf{C} 2 / \boldsymbol{c}, \mathbf{P} \mathbf{2}_{1}, \mathbf{P b c a}$

trigonal/rhombohedral							
3	P3	P31	P3 ${ }_{2}$	R3			
$\overline{3}$	P $\overline{3}$	R $\overline{3}$					
32	P312	P321	P3 12	P3 21	P3 $\mathbf{2}^{12}$	P3221	R32
3m	P3m1	P31m	P3c1	P31c	R3m	R3 \boldsymbol{c}	
$\overline{3} \boldsymbol{m}$	P $\overline{3} 1 m$	$\mathbf{P} \mathbf{3} 1 c$	$\mathrm{P} \mathbf{3} \boldsymbol{m} \mathbf{1}$	$\mathbf{P} \overline{3} c \mathbf{1}$	$\mathbf{R} \overline{3} m$	$\mathbf{R} \overline{3} c$	
hexagonal							
$\frac{6}{6}$	$\begin{aligned} & \text { P6 } \\ & \text { P } \end{aligned}$	P6 ${ }_{1}$	P65	$\mathbf{P 6}{ }_{2}$	P6 ${ }_{4}$	P63	
6/m	P6/m	$\mathrm{P}_{3} / \mathrm{m}$					
622	P622	P6122	$\mathrm{P6}_{5} 22$	$\mathbf{P 6}_{2} 22$	$\mathrm{Pb}_{4} 22$	$\mathrm{P6}_{3} 22$	
6 mm	P6mm	P6cc	$\mathrm{P6}_{3} \mathrm{~cm}$	$\mathrm{Pb}_{3} \boldsymbol{m c}$	$6 m 2$	P6m2	P6c2
$\overline{6}$	P62m	P62c		P-62			
$\overline{6} m 2$	$\mathbf{P} \overline{6} m 2$	$\mathrm{P} \overline{6} c 2$	$\mathbf{P} \overline{\mathbf{6}} \boldsymbol{m}$	P62 \boldsymbol{c}			
6/mmm	P6/mmm	P6/mec	$\mathrm{P}_{3} / \mathrm{mcm}$	$\mathrm{P}_{3} / \mathrm{mmc}$			

	Symmetry
$\mathbf{7}$ crystal systems:	point symmetry of external lattice
$\mathbf{1 4}$ Bravais lattices:	translational symmetry of lattice points
$\mathbf{3 2}$ point groups:	point symmetry of external crystal
$\mathbf{2 3 0}$ space groups:	translational symmetry inside crystal
	molecules

Space Group Nomenclature

space group name comes from Bravais lattice symbol, modified for translational symmetry
easy to understand the components of many names, especially
monoclinic and orthorhombic:
$\mathbf{P} 2_{1} / c \quad$ (P 2-1 on c)
primitive unit cell (1 lattice point)
2-fold screw axis along b (unique axis)
\boldsymbol{c} glide (translation along \mathbf{c} axis) in ac plane (\perp to \mathbf{b})
Pbca primitive unit cell (1 lattice point)
\boldsymbol{b} glide (translation along \mathbf{b} axis) in be plane (\perp to \mathbf{a})
\boldsymbol{c} glide (translation along \mathbf{c} axis) in ac plane (\perp to \mathbf{b})
\boldsymbol{a} glide (translation along a axis) in ab plane (\perp to \mathbf{c})
Standard and Non-standard Settings
sometimes a space group that is not on the list of 230 is given
in a publication
some space groups can be derived which are identical with
another space group \Rightarrow choice depends on convention
$\mathbf{P} \mathbf{2}_{\mathbf{1}} / \boldsymbol{a}$ identical with $\mathbf{P} \mathbf{2}_{1} / c$ switching a and \mathbf{c} label in monoclinic
does not change the symmetry
$\mathbf{P} \mathbf{2}_{\mathbf{1}} / \boldsymbol{n}$ alternate setting of $\mathbf{P} \mathbf{2}_{1} / \boldsymbol{c}$ c \mathbf{c}^{\prime}
$\boldsymbol{\beta}$ closer to 90° preferred
$\mathbf{P n a m}$ same as $\mathbf{P n m a}$

Equivalent Positions, Asymmetric Unit and Z

equivalent positions are divided into:
general positions
special positions
asymmetric unit along with general and special positions allows an interpretation of \mathbf{Z} (number of molecules in unit cell), and possible molecular symmetry

Equivalent Positions

space groups used to locate symmetry related atoms in unit cell for example, if a benzene ring is located on a mirror:
locate $3 \mathbf{C}$ and $3 \mathbf{H}$,

asymmetric unit is the smallest part that generates the rest of the unit cell contents by all symmetry operations of space group

Equivalent Positions from Centering
for centered groups, add the following to each \mathbf{P} general position: $\begin{array}{ll} \text { A } & \boldsymbol{x}, \boldsymbol{y}+1 / 2, z+1 / 2 \\ \text { C } & x+1 / 2, y+1 / 2, z \\ \text { F } & x+1 / 2, y+1 / 2, z \\ & x+1 / 2, y, z+1 / 2 \\ & x, y+1 / 2, z+1 / 2 \\ \text { I } & x+1 / 2, y+1 / 2, z+1 / 2 \\ \text { R } & x+2 / 3, y+1 / 3, z+1 / 3 \\ & x+1 / 3, y+2 / 3, z+2 / 3 \end{array}$

Transforming Coordinates
$\bar{x}-1 / 4=-(x+1 / 4)=-(x-1 / 4+1 / 2)=-(x+1 / 2)=\bar{x}-1 / 2=\bar{x}+1 / 2$ (by adding 1)
$y+1 / 4=y-1 / 4+1 / 2=y+1 / 2$
$\bar{x}+1 / 4=(\bar{x}-1 / 4)+1 / 2=\bar{x}+1 / 2+1 / 2=\bar{x}$ (by subtracting 1)

Transforming Coordinates

$\left.\begin{array}{rl}\text { related by a change in } \operatorname{sign} \\ \text { related by a change in } \operatorname{sign}\end{array} \begin{array}{l}x, y, z \\ \bar{x}, \bar{y}, \bar{z}\end{array}\right] \begin{aligned} & \bar{x}+1 / 2, y+1 / 2, \bar{z} \\ & x+1 / 2, \bar{y}+1 / 2, z\end{aligned}$
finally, change to preferred setting $\mathbf{P} 2_{1} / \boldsymbol{c}$; switch \boldsymbol{x} and \boldsymbol{z}

$$
\begin{aligned}
& x, y, z \\
& \bar{x}, \bar{y}, \bar{z} \\
& \bar{x}, y+1 / 2, \bar{z}+1 / 2 \\
& x, \bar{y}+1 / 2, z+1 / 2
\end{aligned}
$$

Transforming Coordinates $\begin{aligned} & \begin{array}{l} \bar{x}-1 / 4=-(x+1 / 4)=-(x-1 / 4+1 / 2)=-(x+1 / 2)=\bar{x}-1 / 2=\bar{x}+1 / 2 \\ \quad(\text { by adding } 1) \\ y+1 / 4=y-1 / 4+1 / 2=y+1 / 2 \end{array} \end{aligned}$

Special Positions

if an object is located at $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}=\mathbf{0}, \mathbf{0}, \mathbf{0}$;
only unique point generated by symmetry is at $0,1 / 2,1 / 2$

$$
\begin{array}{ll}
\text { also true for: } \quad \begin{array}{l}
\mathbf{0}, \mathbf{0}, 1 / 2
\end{array} \longrightarrow 0,1 / 2,0 \\
& \longrightarrow 1 / 2,0,1 / 2 \longrightarrow 1 / 2,0 \\
1 / 2,0,0 & \longrightarrow 1 / 2,1 / 2,1 / 2
\end{array}
$$

Special Positions

$\mathbf{0}, \mathbf{0}, \mathbf{0}$	$\mathbf{0}, 1 / 2,1 / 2$
$\mathbf{0}, \mathbf{0}, 1 / 2$	$\mathbf{0}, 1 / 2, \mathbf{0}$
$1 / 2, \mathbf{0}, 1 / 2$	$1 / 2,1 / 2,0$
$1 / 2, \mathbf{0}, \mathbf{0}$	$1 / 2,1 / 2,1 / 2$

note: an object (molecule) at a special position has to have the same symmetry as the special position
in $\mathbf{P} \mathbf{2}_{1} / c$, a center of symmetry
$\mathbf{Z}=\mathbf{4}$ for an object on a general position in $\mathbf{P} \mathbf{2}_{1} / \boldsymbol{c}$
$\mathbf{Z}=\mathbf{2}$ for an object on a special position in $\mathbf{P} \mathbf{2}_{1} / \boldsymbol{c}$ asymmetric unit is $1 / 2$ of the molecule

Special Positions

an atom on a special position has at least one fixed coordinate; part of the atom generates the rest:
one fixed position (axis \perp to plane) for an atom on a mirror two fixed positions (other axes) for an atom on a rotation axis three fixed positions for an atom on an inversion center

International Tables for Crystallography

International Tables for Crystallography

$P 2_{1} / c$	$C_{2 k}^{b}$	$2 / m$	Monoclinic
No. 14	$P 12_{1} / c 1$		

esigee axis b, cete choce 1

0 one 1

