Correlation and Regression

fifth Cecture

We will learn in this lecture:

1- Linear Correlation Coefficient of Pearson 2- Simple Linear Regression

Correlation and

Regression

Definition of Correlation :

A correlation is a relationship between two variables. The data can be represented by the ordered pairs (x, y) where x is the independent (or explanatory) variable and y is the dependent (or response) variable.

Example:

A. The relation exits between the number of hours for group of students spent studying for a test and their scores on that test.
B. The relation exits between the high outdoor temperature (in degrees Fahrenheit) and coffee sales (in hundreds of dollars) for a coffee shop for eight randomly selected days.
C. The relation exists between an individual's weight (in pounds) and daily water consumption (in ounces).
D. The relation exists between income per year (in thousand of dollars) and a mount spent on milk per year (in dollars).

Example:

$x=$ hours spent studying,$y=$ scores on that test
$x=$ temperature (in degrees Fahrenheit),$y=$ coffee sales
$\mathrm{x}=$ an individual's weight (in pounds), $\mathrm{y}=$ water consumption
$x=$ money spent on advertising,$y=$ company sales

Scatter plot

Linear Correlation Coefficient of Pearson

Definition of Correlation :

The correlation coefficient is a measure of the strength and the direction of a liner relationship between two variables. The symbol r represents the sample correlation coefficient.

Where n is the number of pairs of data.

Remark

The range of correlation coefficient is $\mathbf{- 1}$ to 1 .

Note
Weak linear correlation coefficient does not mean no any refationship

Example:

A marketing manager conducted a study to determine whether there is a linear relationship between money spent on advertising and company sales. The data are shown in the table below.
A. Calculate the correlation coefficient for the advertising expenditures and company sales data.
B. Display the data in a scatter plot then determine the types of correlation.
C. What can you conclude

Advertising expenses	2.4	1.6	2	2.6	1.4	1.6	2	2.2
Company sales	225	184	220	240	180	184	186	215

$$
\frac{n \sum X Y-\sum X \sum Y}{\left.{ }^{2}-\left(\sum X\right)^{2}\right]\left[n \sum Y^{2}-\left(\sum Y\right)^{2}\right]}
$$

XY	Y^{2}	X^{2}	Y	X
540	50.625	5.76	225	2.4
294.4	33.856	2.56	184	1.6
440	48.400	4	220	2.0
			240	2.6
			180	1.4
			184	1.6
			186	2.0
			215	2.2

Total

XY	Y^{2}	X^{2}	Y	X	
540	50.625	5.76	225	2.4	
294.4	33.856	2.56	184	1.6	
440	48.400	4	220	2.0	
624	57.600	6.76	240	2.6	
252	32.400	1.96	180	1.4	
294.4	33.856	2.56	184	1.6	
372	34.596	4	186	2.0	
473	46.225	4.84	215	2.2	
3289.8	337.558	32.44	1634	15.8	Total

$$
\frac{n \sum X Y-\sum X \sum Y}{\left.2^{2}-\left(\sum X\right)^{2}\right]\left[n \sum Y^{2}-\left(\sum Y\right)^{2}\right]}
$$

$$
8(3289.8)-15.8(1634)
$$

$$
\boldsymbol{r}=\frac{\sqrt{\left[8(32.44)-(15.8)^{2}\right]\left[8(337.558)-(1634)^{2}\right]}}{\sqrt{2}}
$$

Simple Linear Regression

The equation of a regression line for an independent variable X and a dependent variable Y is:

$$
\boldsymbol{Y}=\boldsymbol{m} X+\boldsymbol{b}
$$

where Y is the predicted Y-value for a given X-value.
The slope m and Y-intercept b are given by:

where $\overline{\boldsymbol{Y}}$ is the mean of the Y-value in the data set and \bar{X} is the mean of the X-value.

Example:

A marketing manager conducted a study to determine whether there is a linear relationship between money spent on advertising and company sales. The data are shown in the table below.

Find the equation of the regression line for the advertising expenditures and company sales data

Advertising expenses	2.4	1.6	2	2.6	1.4	1.6	2	2.2
Company sales	225	184	220	240	180	184	186	215

$\boldsymbol{b}=\overline{\boldsymbol{Y}}-\boldsymbol{m} \overline{\boldsymbol{X}}$

XY	Y^{2}	X^{2}	Y	X
540	50.625	5.76	225	2.4
294.4	33.856	2.56	184	1.6
440	48.400	4	220	2.0
624	57.600	6.76	240	2.6
252	32.400	1.96	180	1.4
294.4	33.856	2.56	184	1.6
372	34.596	4	186	2.0
473	46.225	4.84	215	2.2
3289.8	337.558	32.44	1634	15.8

XY	Y^{2}	X^{2}	Y	X
540	50.625	5.76	225	2.4
294.4	33.856	2.56	184	1.6
440	48.400	4	220	2.0

$\boldsymbol{m}=\frac{\boldsymbol{n} \sum X Y-\sum X \sum \boldsymbol{Y}}{\boldsymbol{n} \sum X^{2}-\left(\sum X\right)^{2}}$

$$
m=\frac{8(3289.9)-15.8(1634)}{\left[8(32.44)-(15.8)^{2}\right]}
$$

The equation of a regression line

Company sales

