Lecture 3.1: Algebra of matrix

Basic definitions of matrices are given in Lecture 1.

3.1.1 Properties of a matrix

1. Transpose of a Matrix: A transpose of a matrix is obtained by interchanging rows and corresponding columns of the given matrix. The transpose of the matrix A is denoted A^{t}.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad \mathrm{A}^{\mathrm{t}}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

Properties of the Transpose of a matrix

1. $\left(A^{t}\right)^{t}=A$
2. $(\mathrm{AB})^{\mathrm{t}}=\mathrm{B}^{\mathrm{t}} \mathrm{A}^{\mathrm{t}}$
3. $(k A)^{t}=k A^{t}$, where k is a scalar.
4. $(A+B)^{t}=A^{t}+B^{t}$

2. Symmetric Matrix:

A square matrix is symmetric if $A^{t}=A$.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad \mathrm{A}^{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right], \quad \mathrm{A}^{\mathrm{t}}=\mathrm{A}
$$

3. Skew - symmetric Matrix :

A square matrix is skew symmetric if $\mathrm{A}^{\mathrm{t}}=-\mathrm{A}$.

$$
A=\left[\begin{array}{ccc}
0 & -2 & -3 \\
2 & 0 & -4 \\
3 & 4 & 0
\end{array}\right], \quad A^{t}=\left[\begin{array}{ccc}
0 & 2 & 3 \\
-2 & 0 & 4 \\
-3 & -4 & 0
\end{array}\right], \quad \mathrm{A}^{\mathrm{t}}=-A .
$$

4. Equality of matrix:

Two matrices are equal, if these of same size and corresponding entries are equal.

$$
A=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]
$$

A and B are equal matrices when these of the same size and corresponding entries are equal.

Example:1. Write down the system of equation, if matrices A and B are equal

$$
\mathrm{A}=\left[\begin{array}{ll}
x-2 & y-3 \\
x+y & z+3
\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}
1 & 3+z \\
z & y
\end{array}\right]
$$

Solution: A and B are of the same size, hence

$$
\begin{aligned}
& \mathrm{A}=\mathrm{B} \Rightarrow \\
& x-2=1 \\
& y-3=3+z \\
& x+y=z \\
& z+3=y
\end{aligned}
$$

System of equations are

$$
\begin{aligned}
x & =3 \\
y-z & =6 \\
x+y-z & =0 \\
-y+z & =-3
\end{aligned}
$$

3.1.2 Addition of matrices:

Matrices of the equal size can be added entry wise.

Example:2. Add the following matrices:

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 5 & 4
\end{array}\right]+\left[\begin{array}{lll}
4 & 2 & 8 \\
2 & 4 & 1
\end{array}\right]
$$

Solution. We need to add the pairs of entries, and then simplify for the final answer:

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 5 & 4
\end{array}\right]+\left[\begin{array}{lll}
4 & 2 & 8 \\
2 & 4 & 1
\end{array}\right]=\left[\begin{array}{lll}
1+4 & 0+2 & 2+8 \\
3+2 & 5+4 & 4+1
\end{array}\right]=\left[\begin{array}{ccc}
5 & 2 & 10 \\
5 & 9 & 5
\end{array}\right]
$$

So the answer is:

$$
\left[\begin{array}{ccc}
5 & 2 & 10 \\
5 & 9 & 5
\end{array}\right]
$$

Example:3. Find the value of x and y in the following matrix equation

$$
\left[\begin{array}{cc}
5 & \mathrm{x} \\
3 \mathrm{y} & 2
\end{array}\right]+\left[\begin{array}{ll}
-3 & 2 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
5 & 7
\end{array}\right]
$$

Solution. Using concept of addition of matrices, we simplify left hand side

$$
\left[\begin{array}{cc}
5-3 & x+2 \\
3 y-1 & 2+5
\end{array}\right]=\left[\begin{array}{cc}
2 & x+2 \\
3 y-1 & 7
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
5 & 7
\end{array}\right]
$$

Two matrices are equal when their correspoding entries are equal

$$
\begin{aligned}
& x+2=4 \\
& 2 y-1=5
\end{aligned}
$$

Solving these equations

$$
\begin{aligned}
& x=4-2=2 \\
& 3 y=5+1 \\
& 3 y=6, \quad y=2
\end{aligned}
$$

Solution of matrix equation is $\mathrm{x}=2, \mathrm{y}=2$.

3.1.3 Scalar Multiplication:

If a matrix is multiplied by a scalar α, then each entry is multiplied by scalar α.

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 0 \\
1 & 1 & 2
\end{array}\right], \quad 2 \mathrm{~A}=2\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 0 \\
1 & 1 & 2
\end{array}\right], \quad 2 \mathrm{~A}=\left[\begin{array}{lll}
2 & 4 & 6 \\
4 & 2 & 0 \\
2 & 2 & 4
\end{array}\right] \\
& 3 A=\left[\begin{array}{lll}
3 & 6 & 9 \\
6 & 3 & 0 \\
3 & 3 & 6
\end{array}\right]
\end{aligned}
$$

3.1.4 Matrix Multiplication:

The product of two matrices A and B is possible if the number of columns of A is equal to number of rows in B , the method is being explained by following example:

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 6 & 0
\end{array}\right]_{2 \times 3}, \quad B=\left[\begin{array}{cccc}
4 & 1 & 4 & 3 \\
0 & -1 & 3 & 1 \\
2 & 7 & 5 & 2
\end{array}\right]_{3 \times 4} \\
& \text { A } \mathrm{x} \quad \mathrm{~B}=\mathrm{C} \\
& 2 \times 3 \quad 3 \times 4 \quad 2 \times 4 \\
& A B=\left[\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24}
\end{array}\right] \\
& \mathrm{c}_{11}=1 \mathrm{x} 4+2 \mathrm{x} 0+4 \mathrm{x} 2=4+0+8=12 \\
& \mathrm{c}_{12}=1 \mathrm{x} 1+2 \mathrm{x}(-1)+4 \mathrm{x} 7=1-2+28=27 \\
& \mathrm{c}_{13}=1 \times 4+2 \times 3+4 \times 5=4+6+20=30 \\
& \mathrm{c}_{14}=1 \mathrm{x} 3+2 \mathrm{x} 1+4 \mathrm{x} 2=3+2+8=13 \\
& \mathrm{c}_{21}=2 \mathrm{x} 4+6 \times 0+0 \times 2=8+0+0=8 \\
& \mathrm{c}_{22}=2 \mathrm{x} 1+6 \mathrm{x}(-1)+0 \times 7=2-6+0=-4 \\
& c_{23}=2 \times 4+6 \times 3+0 \times 5=8+18+0=26 \\
& c_{24}=2 \times 3+6 \times 1+0 \times 2=6+6+0=12 \\
& \mathrm{AB}=\left[\begin{array}{cccc}
12 & 27 & 30 & 13 \\
8 & -4 & 26 & 12
\end{array}\right]
\end{aligned}
$$

NOTE: $A B \neq B A$

Lecture 3.2 : Inverse of matrix and power of matrix

3.2.1 Inverse of a 2×2 matrix

Consider a 2x2 matrix $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
If $\mathrm{ad}-\mathrm{bc} \neq 0$, then $\mathrm{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Note: Multiple $(a d-b c)$ is called the determinant of matrix $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
Example: Find inverse of matrix $A=\left[\begin{array}{ll}3 & 2 \\ 4 & 5\end{array}\right]$

$$
\begin{aligned}
& \mathrm{ad}-\mathrm{bc}=3 \times 5-2 \times 4=15-8=7 \\
& \mathrm{~A}^{-1}=\frac{1}{7}\left[\begin{array}{cc}
5 & -2 \\
-4 & 3
\end{array}\right] .
\end{aligned}
$$

Properties of Inverse

1. $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{A} \mathrm{A}^{-1}=\mathrm{I}$
2. If A and B are invertible matrices of the same size , then $A B$ is also invertible and

$$
(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}
$$

3.2.2 Power of a matrix

1. $\quad A^{0}=I$
2. $\quad A^{n}=A . A . A . . . A \quad(n-f a c t o r s)$, where $\mathrm{n}>0$.
3. $A^{-n}=\left(A^{-1}\right)^{n}=A^{-1} \cdot A^{-1} \cdot A^{-1} \ldots \cdot \mathrm{~A}^{-1} \quad(\mathrm{n}$ - factors), where $\mathrm{n}>0$.
4. $A^{r} A^{s}=A^{r+s}$
5. $\quad\left(\mathrm{A}^{\mathrm{r}}\right)^{s}=\mathrm{A}^{15}$
6. $\left(A^{-1}\right)^{-1}=A$
7. $\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n}, \quad \mathrm{n}=0,1,2, \ldots$
8. $(k A)^{-1}=\frac{1}{k} A^{-1}$, where k is a scalar.

Example:4. Let A be an invertible matrix and suppose that inverse of 7A is

$$
\left[\begin{array}{cc}
-2 & 7 \\
1 & -3
\end{array}\right], \text { find matrix A }
$$

Solution: $(7 \mathrm{~A})^{-1}=\frac{1}{7} A^{-1}=\left[\begin{array}{cc}-2 & 7 \\ 1 & -3\end{array}\right]$

$$
\begin{aligned}
& A^{-1}=7\left[\begin{array}{cc}
-2 & 7 \\
1 & -3
\end{array}\right]=\left[\begin{array}{cc}
-14 & 49 \\
7 & -21
\end{array}\right] \\
& A=\left(A^{-1}\right)^{-1}=-\frac{1}{49}\left[\begin{array}{cc}
-21 & -49 \\
-7 & -14
\end{array}\right]=\frac{7}{49}\left[\begin{array}{ll}
3 & 7 \\
1 & 2
\end{array}\right]=\frac{1}{7}\left[\begin{array}{ll}
3 & 7 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

Example:5. Let A be a matrix $\left[\begin{array}{ll}2 & 0 \\ 4 & 1\end{array}\right]$ compute $\mathrm{A}^{3}, \mathrm{~A}^{-3}, \mathrm{~A}^{2}-2 \mathrm{~A}+\mathrm{I}$.
Solution:

$$
\begin{gathered}
A^{2}=A A=\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right] \\
A^{3}=A^{2} A=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
8 & 0 \\
28 & 1
\end{array}\right] \\
A^{-3}=\left(A^{3}\right)^{-1}=\frac{1}{8}\left[\begin{array}{cc}
1 & 0 \\
-28 & 8
\end{array}\right] \\
A^{2}-2 A+I=\left[\begin{array}{cc}
4 & 0 \\
12 & 1
\end{array}\right]-\left[\begin{array}{ll}
4 & 0 \\
8 & 2
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
4 & 0
\end{array}\right]
\end{gathered}
$$

Example:6. Find inverse of the matrix

$$
A=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Solution:

$$
\begin{gathered}
\mathrm{ad}-\mathrm{bc}=\cos ^{2} \theta+\sin ^{2} \theta=1, \\
A^{-1}=\frac{1}{1}\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
A^{-1}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
\end{gathered}
$$

Lecture 3.3 Inverse by Elementary Matrix

3.3.1 Elementary Matrix

An nxn matrix is called elementary matrix, if it can be obtained from nxn identity matrix by performing a single elementary row operation.

Examples: $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is a 3×3 identity matrix.
Elementary matrices $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} can be obtained by single row operation.

$$
\begin{aligned}
& E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right]-3 R_{3} \\
& E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & -2
\end{array}\right]-2 R_{3}+R_{2} \\
& E_{3}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \mathrm{R}_{1} \leftrightarrow \mathrm{R}_{3}
\end{aligned}
$$

NOTE:

When a matrix A is multiplied from the left by an elementary matrices E, the effect is same as to perform an elementary row operation on A .

Example: 1.

$$
\text { Let } A \text { be a } 3 \times 4 \text { matrix, } A=\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
1 & 4 & 4 & 0
\end{array}\right] \text { and }
$$

E be 3×3 elementary matrix obtained by row operation $3 R_{1}+R_{3}$ from an Identity matrix

$$
\mathrm{E}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]
$$

$$
\mathrm{EA}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
1 & 4 & 4 & 0
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
2 & -1 & 3 & 6 \\
4 & 4 & 10 & 9
\end{array}\right], 3 \mathrm{R}_{1}+\mathrm{R}_{3} .
$$

3.3.2 Method for finding Inverse of a matrix

To find the inverse of an invertible matrix, we must find a sequence of elementary row operations that reduces A to the identity and then perform this same sequence of operations on I_{n} to obtain A^{-1}.

$$
[\mathrm{A} \mid \mathrm{I}] \text { to }\left\lfloor\mathrm{I} \mid \mathrm{A}^{-1}\right\rfloor
$$

Example:2. Find inverse of a matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 7\end{array}\right]$ by using Elementary matrix method.

Solution:

$$
\begin{aligned}
{[A \mid I] } & =\left[\begin{array}{ll|ll}
1 & 4 & 1 & 0 \\
2 & 7 & 0 & 1
\end{array}\right] \\
& \approx\left[\begin{array}{cc|c}
1 & 4 & 1 \\
0 & 0 \\
0 & -1 & -2 \\
\hline
\end{array}\right]-2 R_{1}+R_{2} \\
& \approx\left[\begin{array}{cc|cc}
1 & 4 & 1 & 0 \\
0 & 1 & 2 & -1
\end{array}\right]-\mathrm{R}_{2} \\
& \approx\left[\begin{array}{cc|c}
1 & 0 & -7 \\
0 & 1 & 4 \\
0 & -1
\end{array}\right]-4 \mathrm{R}_{2}+\mathrm{R}_{1} \\
& =\left[I \mid A^{-1}\right]
\end{aligned}
$$

$$
A^{-1}=\left[\begin{array}{cc}
-7 & 4 \\
2 & -1
\end{array}\right]
$$

Example:3. Use Elementary matrix method to find inverses of

$$
A=\left[\begin{array}{ccc}
3 & 4 & -1 \\
1 & 0 & 3 \\
2 & 5 & -4
\end{array}\right] \quad \text { if } \mathrm{A} \text { is invertible. }
$$

Solution:

$$
\begin{aligned}
& {[A \mid I] }=\left[\begin{array}{ccc|ccc}
3 & 4 & -1 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
3 & 4 & -1 & 1 & 0 & 0 \\
2 & 5 & -4 & 0 & 0 & 1
\end{array}\right] R_{1} \leftrightarrow R_{2} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 4 & -10 & 1 & -3 & 0 \\
0 & 5 & -10 & 0 & -2 & 1
\end{array}\right]-3 R_{1}+R_{2},-2 R_{1}+R_{3} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 4 & -10 & 1 & -3 & 0 \\
0 & 1 & 0 & -1 & -2 & 1
\end{array}\right]-R_{2}+R_{3} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 & 1 \\
0 & 0 & -1 & \frac{1}{2} & \frac{-7}{10} & \frac{-2}{5}
\end{array}\right] \quad R_{2} \leftrightarrow R_{3}, \frac{\left(-4 R_{3}+R_{2}\right)}{10} \\
& \approx\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{3}{2} & \frac{-11}{10} & \frac{-6}{5} \\
0 & 1 & 0 & -1 & 1 & 1 \\
0 & 0 & 1 & \frac{-1}{2} & \frac{7}{10} & \frac{2}{5}
\end{array}\right]-3 R_{3}+R_{1},--R_{3} \\
& \approx\left[\begin{array}{lll}
I \mid A^{-1}
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{cccc}
\frac{3}{2} & \frac{-11}{10} & \frac{-6}{5} \\
-1 & 1 & 1 \\
\frac{-1}{2} & \frac{7}{10} & \frac{2}{5}
\end{array}\right] .
\end{aligned}
$$

