Lecture 2.1: Elementary Row operations

2.1.1 Elementary Row operations:

Elementary row operations are steps for solving the linear system of equations:
I. Interchange two rows.
II. Multiply a row with non zero real number.
III. Add a multiple of one row to another row.

Note: Elementary row operations produce same results when operated either on a system or on its augmented matrix form.

2.1.2 Methods for solving System of Linear equations

1. Gaussian Elimination Method
 2. Gauss - Jordan Elimination Method

2.1.3 Gaussian Elimination Method

STEP 1. by using elementary row operations

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & A_{12} & A_{13} & B_{1} \\
0 & 1 & A_{23} & B_{2} \\
0 & 0 & 1 & B_{3}
\end{array}\right]
$$

STEP 2. Find solution by back - substitutions.

Example:3. Solve the system of linear equations by Gaussian- elimination method

$$
\begin{aligned}
x_{1}+x_{2}+2 x_{3} & =8 \\
-x_{1}-2 x_{2}+3 x_{3} & =1 \\
3 x_{1}-7 x_{2}+4 x_{3} & =10
\end{aligned}
$$

Solution: Augmented matrix is

$$
[\mathrm{A} \vdots \mathrm{~b}]=\left[\begin{array}{cccc}
1 & 1 & 2 & \mathbf{8} \\
-1 & -2 & 3 & \mathbf{1} \\
3 & -7 & 4 & \mathbf{1 0}
\end{array}\right]
$$

STEP 1.
$a_{11=1}$ is the leading entry, we want to reduce a_{21} and a_{31} to zero. Add R_{1} and R_{2} and add- $\mathbf{3} R_{1}$ to R_{3}
$\approx\left[\begin{array}{ccrl}1 & 1 & 2 & 8 \\ 0 & -1 & 5 & 9 \\ 0 & -10 & -2 & -14\end{array}\right] \quad R_{1}+R_{2,}-3 R_{1}+R_{3}$

To create a leading entry in the row R_{2} multiply a_{22} by (-1), and to reduce a_{32} and a_{22} multiple row R_{2} by $\mathbf{- 1 0}$ and add to row R_{3}.
$\approx\left[\begin{array}{cccc}1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & -52 & -104\end{array}\right]-\mathrm{R}_{2,} \quad 10 \mathrm{R}_{2}+\mathrm{R}_{3}$
To create a leading entry in row R_{3} divide a_{33} by (-52),

$$
\approx\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & 1 & 2
\end{array}\right]-\mathrm{R}_{3} / 52
$$

Equivalent system of equations form is:

$$
\begin{gathered}
\boldsymbol{x}_{1}+x_{2}+2 x_{3}=8 \\
x_{2}-5 x_{3}=-9 \\
x_{3}=2
\end{gathered}
$$

STEP 2. Back Substitution $\quad x_{3}=2$

$$
x_{2}=5 x_{3}-9=10-9=1
$$

$$
\boldsymbol{x}_{1}=-\boldsymbol{x}_{2}-2 \boldsymbol{x}_{3}+8=-1-4+8=3
$$

Solution is $\quad \boldsymbol{x}_{1}=\mathbf{3}, \quad \boldsymbol{x}_{2}=1, \quad \boldsymbol{x}_{3}=2$.

Lecture 2.2: Gauss Jordan method and Row Echelon Form

2.2.1 Gauss - Jordan Elimination Method

Matrix equation form

$$
\begin{gathered}
\mathrm{AX}=\mathrm{b} \\
{\left[\mathbf{A : b]} \sim\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & B_{1} \\
0 & 1 & 0 & B_{2} \\
0 & 0 & 1 & B_{3}
\end{array}\right]\right.}
\end{gathered}
$$

By using elementary row operations we reduced the given system of equation with " 1 " as diagonal entries and all other entries of Matrix A are " 0 "

Example.1. Solve the system of linear equations by Gauss - Jordan elimination method

$$
\begin{aligned}
x_{1}+x_{2}+2 x_{3} & =8 \\
-x_{1}-2 x_{2}+3 x_{3} & =1 \\
3 x_{1}-7 x_{2}+4 x_{3} & =10
\end{aligned}
$$

Solution: Augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
-1 & -2 & 3 & 1 \\
3 & -7 & 4 & 10
\end{array}\right]} \\
& \approx\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
0 & -10 & -2 & -14
\end{array}\right] \\
& \approx\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & -52 & -104
\end{array}\right]
\end{aligned} \quad \begin{aligned}
& \mathbf{R}_{1}+\mathbf{R}_{2},-\mathbf{- 3 \mathbf { R } _ { 1 }}+\mathbf{R}_{3}, \mathbf{1 0 \mathbf { R } _ { 2 }}+\mathbf{R}_{3} \\
& \\
& \approx\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \approx\left[\begin{array}{cccc}
1 & 1 & 0 & 4 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \approx\left[\begin{array}{llll}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

Equivalent system of equations form is:

$$
\begin{aligned}
& \boldsymbol{x}_{1}=3 \\
& \boldsymbol{x}_{2}=1 \\
& \boldsymbol{x}_{3}=2 \text { is the solution of the system. }
\end{aligned}
$$

2.2.2 Row Echelon Form

A form of a matrix, which satisfies following conditions, is row echelon form
i. '1' (leading entry) must be in the beginning of each row,
ii. ' 1 ' must be on the right of the above leading entry,
iii. Below the leading entry all values must be zero,
iv. A row containing all zero values must be in the bottom.

Examples:

(i) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2\end{array}\right]$
(ii) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$
(iii) $\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$

2.2.3 Reduced Row Echelon Form

A form of a matrix, which satisfies following conditions, is row echelon form
i. ' 1 ' (leading entry) must be in the beginning of each row,
ii. ' 1 ' must be on the right of the above leading entry,
iii. All entries in the column containing leading entry must be zero,
iv. A row containing all zero values must be in the bottom.

Examples

$$
\text { (i) }\left[\begin{array}{llll}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right] \text {, (ii) }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text {, (iii) }\left[\begin{array}{ccccc}
0 & 1 & -2 & 0 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Note: 1. Gaussian Elimination method is reducing the given Augmented matrix to Row echelon form and backward substitution.
Note: 2. Gauss- Jordan Elimination method is reducing the given Augmented matrix to Reduced Row echelon form.

Example:2. Use Gauss - Jordan method to solve the system of linear system

$$
\begin{aligned}
& x-y+2 z-w=-1 \\
& 2 x+y-2 z-2 w=-2 \\
& -x+2 y-4 z+w=1 \\
& 3 x \quad-3 w=-3
\end{aligned}
$$

Solution: Gauss-Jordan method is same as to reduce the augmented matrix to reduced row echelon from.
Augmented matrix is

$$
\left[\begin{array}{ccccc}
1 & -1 & 2 & -1 & -1 \\
2 & 1 & -2 & -2 & -2 \\
-1 & 2 & -4 & 1 & 1 \\
3 & 0 & 0 & -3 & -3
\end{array}\right]
$$

There is a leading entry ' 1 ' in the first row, making all other entries in the first column zero

$$
\approx\left[\begin{array}{ccccc}
1 & -1 & 2 & -1 & -1 \\
0 & 1 & -2 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 \\
0 & 3 & -6 & 0 & 0
\end{array}\right]\left(-2 R_{1}+R_{2}\right) / 3, R_{1}+R_{3},-3 R_{1}+R_{4}
$$

Lecture 2.3 Conditions on Solutions and Homogenous System

2.3.1 No solution

Example: 1. Solve the system of linear equations

$$
\begin{aligned}
& x-2 y+z-4 u=1 \\
& x+3 y+7 z+2 u=2 \\
& x-12 y-11 z-16 u=5
\end{aligned}
$$

Solution:

Augmented matrix is:

$$
\left[\begin{array}{ccccc}
1 & -2 & 1 & -4 & 1 \\
1 & 3 & 7 & 2 & 2 \\
1 & -12 & -11 & -16 & 5
\end{array}\right]
$$

Reducing it to row echelon form (using Gaussian - elimination method)

$$
\approx\left[\begin{array}{ccccc}
1 & -2 & 1 & -4 & 1 \\
0 & 5 & 6 & 6 & 1 \\
0 & -10 & -12 & -12 & 4
\end{array}\right] \quad \mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{3}-\mathrm{R}_{1}
$$

$$
\approx\left[\begin{array}{ccccc}
1 & -2 & 1 & -4 & 1 \\
0 & 5 & 6 & 6 & 1 \\
0 & 0 & 0 & 0 & 6
\end{array}\right] \quad-\mathrm{R}_{3}+2 \mathrm{R}_{2}
$$

Last equation is

$$
\begin{aligned}
0 x+0 y+0 z+0 u & =6, \text { which can never be satisfied, but } \\
0 & \neq 6
\end{aligned}
$$

hence there is no solution for the given system of linear equations.

2.3.2 Conditions on Solutions

Example:2. For which values of 'a' will be following system

$$
\begin{array}{ll}
x+2 y-3 z & =4 \\
3 x-y+5 z & =2 \\
4 x+y+\left(a^{2}-14\right) z & =a+2
\end{array}
$$

(i) infinitely many solutions?
(ii) No solution?
(iii) Exactly one solution?

Hence find the solution(s) if exists.

Solution:

Augmented matrix is

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
3 & -1 & 5 & 2 \\
4 & 1 & a^{2}-14 & a+2
\end{array}\right]
$$

Reducing it to row echelon form

$$
\begin{aligned}
& \approx\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
0 & -7 & -14 & -10 \\
0 & -7 & a^{2}-2 & a-14
\end{array}\right] \quad \mathrm{R}_{2}-3 \mathrm{R}_{1}, \mathrm{R}_{3}-4 \mathrm{R}_{1} \\
& \approx\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
0 & 1 & -2 & \frac{10}{7} \\
0 & 0 & a^{2}-16 & a-4
\end{array}\right]-\frac{1}{7} \mathrm{R}_{2}, \mathrm{R}_{3}-\mathrm{R}_{2}
\end{aligned}
$$

writing in the equation form,

$$
\left.\begin{array}{ccc}
\begin{array}{cc}
x+2 y-3 z & =4 \\
y-2 z & =\frac{10}{7}
\end{array} & \rightarrow 2 \\
\left(a^{2}-16\right) z=a-4 & \rightarrow 3
\end{array}\right] \begin{aligned}
& \text { or equation } 3 \text { can be written as }
\end{aligned}
$$

CASE I .

$$
\begin{array}{r}
a=4 \quad \Rightarrow 0 z=0 \\
x+2 y-3 z=4 \\
y-2 z=\frac{10}{7}
\end{array}
$$

as number of equations are less than number of unknowns, hence the system has infinite many solutions.

CASE II

$$
a=-4 \quad \Rightarrow \quad 0 \mathrm{z}=-8 \text {, but } 0 \neq-8 \text {, hence, there is no solution. }
$$

CASE III

$$
a \neq 4, a \neq-4,
$$

the system will have unique solution when $a \neq 4$ and $a \neq-4$

Example:3. What conditions must a, b, and c satisfy in order for the system of equations

$$
\begin{gathered}
x+y+2 z=a \\
x+z=b \\
2 x+y+3 z=c
\end{gathered}
$$

to be consistent.
Solution: The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 1 & 2 & a \\
1 & 0 & 1 & b \\
2 & 1 & 3 & c
\end{array}\right] \quad \text { reducing it to reduced row echelon form }} \\
& \approx\left[\begin{array}{cccc}
1 & 1 & 2 & a \\
0 & -1 & -1 & b-a \\
0 & -1 & -1 & c-2 a
\end{array}\right] \quad \mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{3}-2 \mathrm{R}_{1} \\
& \approx\left[\begin{array}{cccc}
1 & 1 & 2 & a \\
0 & -1 & -1 & b-a \\
0 & 0 & 0 & c-a-b
\end{array}\right] \mathrm{R}_{3}-\mathrm{R}_{1}
\end{aligned}
$$

The system will be consistent if only if $c-a-b=0$

$$
\text { Or } \quad c=a+b
$$

Thus the required condition for system to be consistent is

$$
c=a+b .
$$

2.3.3 Homogeneous system

A system of equations of the form
$\mathrm{AX}=0 .$,
That is with all constants b's taken as zero, is called homogeneous system.

Note:

1. The homogeneous system has solutions, $x_{1}=x_{2}=x_{3}=\ldots .=x_{n}=0$ called trivial solution.
2. The homogeneous system has infinitely many non- trivial solutions in addition to the trivial solutions.
3. The homogeneous system will have a non- trivial solution if and only if A is a singular matrix $\Rightarrow|A|=0$.

Example:4. Solve the homogeneous system of linear equations

$$
\begin{array}{r}
2 x+2 y+4 z=0 \\
w-y-3 z=0 \\
2 w+3 x+y+z=0 \\
-2 w+x+3 y-2 z=0
\end{array}
$$

Solution: The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
0 & 2 & 2 & 4 & 0 \\
1 & 0 & -1 & -3 & 0 \\
2 & 3 & 1 & 1 & 0 \\
-2 & 1 & 3 & -2 & 0
\end{array}\right] \Leftrightarrow\left[\begin{array}{ccccc}
1 & 0 & -1 & -3 & 0 \\
0 & 2 & 2 & 4 & 0 \\
2 & 3 & 1 & 1 & 0 \\
-2 & 1 & 3 & -2 & 0
\end{array}\right] \Leftrightarrow} \\
& \mathrm{R}_{2} / 2, \mathrm{R}_{3}-2 \mathrm{R}_{1}, \mathrm{R}_{4}+\mathrm{R}_{1} \quad \mathrm{R}_{3}-3 \mathrm{R}_{2},-\mathrm{R}_{2}+\mathrm{R}_{4} \\
& {\left[\begin{array}{ccccc}
1 & 0 & -1 & -3 & 0 \\
0 & 1 & 1 & 2 & 0 \\
0 & 3 & 3 & 7 & 0 \\
0 & 1 & 1 & -8 & 0
\end{array}\right] \Leftrightarrow\left[\begin{array}{ccccc}
1 & 0 & -1 & -3 & 0 \\
0 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -10 & 0
\end{array}\right] \Leftrightarrow} \\
& \mathrm{R}_{1}+3 \mathrm{R}_{3}, \mathrm{R}_{2}-2 \mathrm{R}_{3}, \mathrm{R}_{4}-10 \mathrm{R}_{3} \\
& {\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

System form is;

$$
\begin{aligned}
w+x & =0 \\
x+y & =0 \\
z & =0
\end{aligned}
$$

leading entries are w, x, and z, free entry is y
let $y=t$
$x=-y=-t$
$w=-x=t$
$z=0$
solution is $w=t, x=-t, y=t, z=0$, where $t \in R, t \neq 0$.
so there are inifitly many solutions.

