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12.10 Extrema of functions of several variables 

Definition1 

We call ( , )f a b  a local maximum of f  if there is an open disk R  centered at  ,a b ,  

for which ( , ) ( , )f a b f x y  for all  ,x y R . Similarly, ( , )f a b  is called a local 

minimum of f  if there is an open disk R  centered at ( , )a b  , for which 

( , ) ( , )f a b f x y for all  ,x y R . In either case, ( , )f a b  is called a local extremum 

of f . 
 

 
 

Local maximum at  1,1  for 

2 3

2 3( , )
x y

y

f x y x e
  

  

 

Local minimum at  1.1 for

2 3

2 3( , )
x y

y

f x y x e
  

  

 

Definition2 

The point ( , )a b  is a critical point of the function ( , )f x y if ( , )a b  is in the domain of f  

and either ( , ) ( , ) 0
f f

a b a b
x y

 
 

 
 or one or both of 

f

x




 and 

f

y




do not exist at ( , )a b . 

Theorem1 

If ( , )f x y  has a local extremum at ( , )a b , then ( , )a b must be a critical point of f . 

 
Example1  

Find all critical points of 

2 3

2 3( , )
x y

y

f x y x e
  

 . 

 
Solution  
First, we compute the first partial derivatives: 

 

2 3

2 2 3( , ) (1 )
x y

yf
x y x e

x

  
 


and 

2 3

2 2 3( , ) (1 )
x y

yf
x y x y e

y

  
 


. 
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Since exponentials are always positive, we have ( , ) 0
f

x y
x





 if and only if 

21 0x   , 

that is, when 1x    . We have ( , ) 0
f

x y
y





 if and only if   21 0x y   , that is, when 

0x   or 1y    . So the set of critical points is  ( 1, 1),( 1,1),(1, 1),(1,1)fC       . 

 

 
 

2 3

2 3( , )
x y

y

z f x y x e
  

 

 

 
 
 

Saddle point at  1, 1  . 

 
 
 

Saddle point at  1, 1   . 

 
 
Definition3 

The point  , , ( , )P a b f a b  is a saddle point of ( , )z f x y  if ( , )a b  is a critical 

point of f  and if every open disk centered at ( , )a b  contains points ( , )x y  in the 

domain of f  for which ( , ) ( , )f x y f a b  and points ( , )x y  in the domain of f  for 

which ( , ) ( , )f x y f a b . 

 
Theorem2 (Second Derivatives Test) 

Suppose that ( , )f x y  has continuous second-order partial derivatives in some 

open disk containing the point ( , )a b  and that ( , ) ( , ) 0x yf a b f a b  . Define the 

discriminant D  for the point ( , )a b  by 
2

( , ) ( , ) ( , ) ( , )xx yy xyD a b f a b f a b f a b      . 

 If ( , ) 0D a b   and ( , ) 0xxf a b  , then f has a local minimum at ( , )a b . 

 If ( , ) 0D a b   and ( , ) 0xxf a b  , then f has a local maximum at ( , )a b . 

 If ( , ) 0D a b  , then f has a saddle point at ( , )a b . 

 If ( , ) 0D a b  , then no conclusion can be drawn. 
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Example2 (Using the Discriminant to Find Local Extrema) 
 

Locate and classify all critical points for  
2 3( , ) 2 2f x y x y xy   . 

 
Solution  

We first compute the first partial derivatives: 4 2xf x y  and 
23 2yf y x   . Since 

both xf  and 
yf  are defined for all  ,x y  , the critical points are solutions of the two 

equations: 4 2 0xf x y   and 
23 2 0yf y x    . Solving the first equation for y , 

we get 2y x . Substituting this into the second equation, we have

2 20 3(4 ) 2 12 2 2 (6 1)x x x x x x          , so that 0x   or 
1

6
x


  . The 

corresponding y -values are 0y   and 
1

3
y


  . The only two critical points are then 

(0,0)  and 
1 1

,
6 3

  
 
 

 . To classify these points, we first compute the second partial 

derivatives: 4, 6xx yyf f y    and 2xyf    , and then test the discriminant. We have 

2(0,0) 4 0 ( 2) 4 0D         and 21 1 1
, 4 ( 6) ( 2) 4 0

6 3 3
D

     
          

   
 . 

From Theorem 2, we conclude that there is a saddle point of f  at (0,0)  , since 

(0,0) 0D  . Further, there is a local minimum at
1 1

,
6 3

  
 
 

 since 
1 1

, 0
6 3

D
  

 
 

and 

1 1
, 4 0

6 3
xxf

  
  

 
. 
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Example3 (Classifying Critical Points) 
 

Locate and classify all critical points for 
3 2 4 2( , ) 2 2 3f x y x y y x y    . 

 
Solution 
 

Here, we have 23 6xf x xy   and 
3 24 8 3yf y y x    . Since both xf  and 

yf  exist 

for all ( , )x y , the critical points are solutions of the two equations: 23 6 0xf x xy    

and 
3 24 8 3yf y y x    =0. From the first equation, we have

20 3 6 3 ( 2 )x xy x x y    , so that at a critical point, 0x   or 2x y  .  

Substituting 0x   into the second equation, we have 
3 20 4 8 4 (1 2 )y y y y      . 

The only (real) solution of this equation is 0y  . This says that for 0x  , we have only 

one critical point:  0,0 .  

Substituting 2x y  into the second equation, we have 
3 2 20 4 8 3( 2 ) 4 (1 2 3 ) 4 (2 1)( 1)y y y y y y y y y             . The solutions of this 

equation are 
1

0,
2

y y   and 1y   , with corresponding critical points 
1

(0,0), ( 1, )
2



and  2,1 .  

To classify the critical points, we compute the second partial derivatives, 

 23 6 6 6xxf x xy x y
x


   


   3 2 24 8 3 4 24yyf y y x y
y


      


 , and 

 23 6 6xyf x xy x
y


  


 , and evaluate the discriminant at each critical point. We 

have (0,0) 0D  , 
1

1, 6 0
2

D
 
    
 

  and ( 2,1) 24 0D     . From Theorem 2, we 

conclude that f has a saddle point at 
1

1,
2

 
 
 

 , since 
1

1, 6 0
2

D
 
    
 

. Further, f has a 

local maximum at  2,1  since ( 2,1) 24 0D    and  2,1 3 0xxf      . Unfortunately, 

Theorem 2 gives us no information about the critical point (0,0) , since (0,0) 0D  . 

However, notice that in the plane 0y   we have 
3( , )f x y x  .  In two dimensions, the 

curve 
3z x  has an inflection point at 0x   . This shows that there is no local 

extremum at  0,0  . 
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The surface near  0,0  

 
 

The surface near  2,1  

 

The surface near 
1

1,
2

 
 
 

 

 
 
 
Definition4 

We call ( , )f a b  the absolute maximum of f  on the region R  if ( , ) ( , )f a b f x y  for 

all ( , )x y R . Similarly, ( , )f a b  is called the absolute minimum of f  on R  if

( , ) ( , )f a b f x y for all ( , )x y R . In either case, ( , )f a b  is called an absolute 

extremum of f . 
 
Theorem 3 (Extreme Value Theorem) 

Suppose that ( , )f x y  is continuous on the closed and bounded region 
2R   . 

Then f  has both an absolute maximum and an absolute minimum on R .  Further, 

an absolute extremum may only occur at a critical point in R  or at a point on the 

boundary of R . 
 

12.11 Constrained Optimization and Lagrange Multipliers 
 

In this section, we develop a technique for finding the maximum or minimum of a 
function, given one or more constraints on the function’s domain. 
 
Theorem1 

Suppose that ( , , )f x y z  and ( , , )g x y z  are functions with continuous first partial 

derivatives and ( , , ) 0g x y z   on the surface ( , , ) 0g x y z  . Suppose that either 

the minimum (or the maximum ) value of ( , , )f x y z  subject to the constraint 

( , , ) 0g x y z   occurs at  0 0 0, ,x y z . Then    0 0 0 0 0 0, , , ,f x y z g x y z   , for 

some constant   (called a Lagrange multiplier). 
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Remark1 

 Note that Theorem 1 says that if ( , , )f x y z  has an extremum at a point

 0 0 0, ,x y z  on the surface ( , , ) 0g x y z  ,  we will have for 

   0 0 0, , , ,x y z x y z , 

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) 0

x x

y y

z z

f x y z g x y z

f x y z g x y z

f x y z g x y z

g x y z














 

 

 
            Finding such extrema then boils down to solving these four equations for the four  

            unknowns , ,x y z  and   . 

 

 Notice that the Lagrange multiplier method we have just developed can also be 
applied to functions of two variables, by ignoring the third variable in Theorem1. 

That is, if ( , )f x y  and ( , )g x y  have continuous first partial derivatives and 

 0 0,f x y  is an extremum of f , subject to the constraint ( , ) 0g x y  , then we 

must have 0 0 0 0( , ) ( , )f x y g x y   ,for some constant   .In this case, we end 

up with the three equations ( , ) ( , ), ( , ) ( , )x x y yf x y g x y f x y g x y    and 

( , ) 0g x y  , for the three unknowns ,x y and  . 

 
Example 1 (Finding a Minimum Distance) 
 

Use Lagrange multipliers to find the point on the line 3 2y x   that is closest to the 

origin. 
 
Solution 

 For
2 2( , )f x y x y  , we have ( , ) 2 ,2f x y x y    and for ( , ) 2 3g x y x y   , 

we have ( , ) 2 ,1g x y    . The vector equation ( , ) ( , )f x y g x y    becomes 

2 , 2 2 ,1x y       from which it follows that 2 2x   and 2y  . 

The second equation gives us 2y  . The first equation then gives us 2x y  .  

Substituting 2x y  into the constraint equation 3 2y x  , we have 5 3y  . 

The solution is 
3

5
y   , giving us 

6
2

5
x y  . The closest point is then

6 3
,

5 5

 
 
 

. 

 
Example 2 (Optimization with an Inequality Constraint) 
 

Suppose that the temperature of a metal plate is given by 
2 2( , ) 2T x y x x y   , for 

points  ,x y  on the elliptical plate defined by 
2 24 24x y  . Find the maximum and 

minimum temperatures on the plate. 
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Solution  

The plate corresponds to the shaded region R  shown in Figure 1.  

 
Figure 1: A metal plate. 

 

We first look for critical points of ( , )T x y  inside the region R .  We have 

( , ) 2 2 , 2 0,0T x y x y        if ( , ) ( 1,0)x y   , which is in R . At this point, 

( 1,0) 1T    . We next look for the extrema of ( , )T x y on the ellipse 
2 24 24x y  . 

We first rewrite the constraint equation as 
2 2( , ) 4 24 0g x y x y    . From 

Theorem 1, any extrema on the ellipse will satisfy the Lagrange multiplier equation: 

( , ) ( , )T x y g x y    or 2 2,2 2 ,8 2 ,8 .x y x y x y             

This occurs when 2 2 2x x   and 2 8y y .  

Notice that the second equation holds when 0y   or 
1

4
   .  

If 0y  , the constraint 
2 24 24x y  gives 24x    . 

If 
1

4
  , the first equation becomes 

1
2 2

2
x x  so that 

4

3
x    . The constraint 

2 24 24x y   now gives 
50

3
y    .  

Finally, we compare the function values at all of these points (the one interior critical 
point and the candidates for boundary extrema): 

and ( 1,0) 1, ( 24,0) 24 24 33.8, ( 24,0) 24 2 24 14.2T T T            

4 50 14 4 50 14
, 4.7, , 4.7

3 3 3 3 3 3
T T
   
            
   

 . 

From this list, it’s easy to identify the minimum value of 1  at the point  1,0   and the 

maximum value of 24 2 24  at the point  24,0  . 

 
We close this section by considering the case of finding the minimum or maximum 

value of a differentiable function ( , , )f x y z  subject to two constraints ( , , ) 0g x y z   and

( , , ) 0h x y z  , where g  and h  are also differentiable (see Figure 2 below). 
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Figure 2: Constraint surfaces and the plane determined  

by the normal vectors g  and h . 

 
The method of Lagrange multipliers for the case of two constraints then consists of 

finding the point ( , , )x y z  and the Lagrange multipliers   and   (for a total of five 

unknowns) satisfying the five equations defined by: 
 

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

( , , ) 0 & ( , , ) 0

x x x

y y y

z z z

f x y z g x y z h x y z

f x y z g x y z h x y z

f x y z g x y z h x y z

g x y z h x y z

 

 

 

 


 


 
  

. 

 
 
Example 3 (Optimization with Two Constraints) 

The plane 12x y z    intersects the paraboloid 
2 2z x y   in an ellipse. Find the 

point on the ellipse that is closest to the origin. 
 
Solution  
We illustrate the intersection of the plane with the paraboloid in Figure 3.  
 

 
Figure 3: Intersection of a paraboloid and a plane. 
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Observe that minimizing the distance to the origin is equivalent to minimizing 

2 2 2( , , )f x y z x y z     [the square of the distance from the point ( , , )x y z  to the 

origin]. Further, the constraints may be written as ( , , ) 12 0g x y z x y z      and 
2 2( , , ) 0h x y z x y z     . At any extremum, we must have that 

( , , ) ( , , ) ( , , )f x y z g x y z h x y z       or 

2 ,2 ,2 1,1,1 2 ,2 , 1x y z x y           . 

Together with the constraint equations, we now have the system of equations: 

2 2

2 2 (1)

2 2 (2)

2 (3)

12 0 (4) & 0 (5)

x x

y y

z

x y z x y z

 

 

 

 


 


 
       

 

From (1), we have 2 (1 )x   , while from (2), we have  2 1y    . 

Setting these two expressions for   equal gives us    2 1 2 1x y     , 

from which it follows that either 1   (in which case 0  ) or x y .  However, if 

1   and 0  , we have from (3) that z = −12, which contradicts (5). 

Consequently, the only possibility is to have x y , from which it follows from (5) that  
22z x . Substituting this into (4) gives us:

  2 20 12 2 12 2 2 12 2 3 2x y z x x x x x x x               , so that 3x    

or 2x   . Since y x  and 
22z x  , we have that  2,2,8  and  3, 3,18   are the 

only candidates for extrema. Finally, since  2,2,8 72f   and  3, 3,18 342f    ,  

the closest point on the intersection of the two surfaces to the origin is  2,2,8  . By the 

same reasoning, observe that the farthest point on the intersection of the two surfaces 

from the origin is ( 3, 3,18)   . 

 

 


