12.10 Extrema of functions of several variables

Definition1

We call f (a,b) alocal maximum of f if there is an open disk R centered at (a,b),
for which f (a,b) >f (x,y) forall (x,y)eR . Similarly, f (a,b) is called a local
minimum of f if there is an open disk R centered at (a,b) , for which

f (a,b) <f (x,y)for all (x,y)e R . In either case, f (a,b) is called a local extremum
of f .
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Local maximum at (L1) for f (¢,y)=xe 2 * Local minimum at (-1.1)forf (x,y)=xe

Definition2

The point (a,b) is a critical point of the function f (x,y)if (a,b) is in the domain of f

and either af—(a,b) =af—(a,b) =0 or one or both of a and a do not exist at (a,b) .
OX oy OX oy

Theoreml

If f (X,y) has alocal extremum at (a,b), then(a,b) must be a critical point of f .

Examplel
X2 y?
Find all critical points of f (x,y)=xe 2 3 ’

Solution
First, we compute the first partial derivatives:

3 3
vy

x2 oy X2
T xy)=a-x?e 2 5" and T (x,y)=x@-y?e ? 3
OX oy
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Since exponentials are always positive, we have Zf—(x ,y)=0ifandonlyif 1-x*=0,
X

that is, when x =+1 . We have %(X,y) =0 if and only if x (1—y 2) =0, that is, when

x =0 or y =+1. So the set of critical points is C; ={(-1,-1),(-11), (1L, -1),(L1)} .
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Definition3

The point P (a,b,f (a,b)) is a saddle point of z =f (x,y) if (a,b) is a critical
point of f and if every open disk centered at (a,b) contains points (x,y) in the
domain of f forwhich f (x,y)<f (a,b) and points (x,y) in the domain of f for
which f (x,y)>f (a,b).

Theorem?2 (Second Derivatives Test)
Suppose that f (x,y) has continuous second-order partial derivatives in some

open disk containing the point (a,b) and that f, (a,b) =f, (a,b) =0. Define the

discriminant D for the point (a,b) by D(a,b)=f,, (a,b)f (a,b)—[fXy (a,b)]2 .
e If D(@b)>0and f,(ab)>0,thenfhas alocal minimum at (a,b).
e IfD(a,b)>0and f,, (a,b) <0, then f has alocal maximum at (a,b).

e If D(a,b)<0,then f has a saddle point at (a,b).
e |If D(a,b)=0, then no conclusion can be drawn.
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Example2 (Using the Discriminant to Find Local Extrema)
Locate and classify all critical points for f (x,y)=2x?—-y*—2xy .

Solution
We first compute the first partial derivatives: f, =4x —2y and f, =-3y ?_2x . Since

both f, and fy are defined for all (X , y) , the critical points are solutions of the two
equations: f, =4x -2y =0and f, =-3y?—-2x =0. Solving the first equation for y ,

we get y = 2X . Substituting this into the second equation, we have

0=-3(4x?)—2x =—12x>—2x =—2x (6x +1) , sothat x =0 or x :%1 . The

corresponding y -valuesare y =0 and y =? . The only two critical points are then

(0,0) and [%1%1) . To classify these points, we first compute the second partial

derivatives: f,, =4,f =-6y and f, =-2, and then test the discriminant. We have
D(0,0)=4x0-(-2)’=—4<0 and D (%1’%1):4X(_6)x(%1j_(_2)2 =4>0.

From Theorem 2, we conclude that there is a saddle point of f at (0,0) , since

D (0,0) <0. Further, there is a local minimum at(%l,%lj since D (%%} >0and

f o (_—1,;1):4>0.
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Example3 (Classifying Critical Points)
Locate and classify all critical points for f (x,y)=x°-2y*-2y*+3x?%y .
Solution

Here, we have f, =3x*+6xy and f, =—4y —8y°+3x?*. Since both f, and f, exist
forall (x,y), the critical points are solutions of the two equations: f =3x2+6xy =0
and f, =—4y —8y°+3x*=0. From the first equation, we have

0=3x%+6xy =3x (X +2y), so that at a critical point, X =0 or x =-2y .

Substituting X =0 into the second equation, we have 0=—-4y —8y° =—4y (1+2y?).
The only (real) solution of this equation is y =0. This says that for X =0, we have only

one critical point: (0,0).

Substituting x =-2y into the second equation, we have

0=-4y —-8y>+3(-2y)* =—4y (1+2y *-3y) =—4y (2y —-1)(y —1). The solutions of this
equationare y =0,y =% and y =1, with corresponding critical points (0,0), (-1, %)

and (-2,1).
To classify the critical points, we compute the second partial derivatives,

f 0 (3x2+6xy)=6x +6y f, :5(—4y —8y3+?>x2):—4—24y2 ,and

XX aX

0 L " .
fXy = —(3x 24 6Xy ) =6X , and evaluate the discriminant at each critical point. We

have D(0,0)=0, D (—1,%) =—6<0 and D(-2,1)=24>0 . From Theorem 2, we

conclude that f has a saddle point at [—1,%) , since D (—1,%) =—6<0. Further, f has a

local maximum at (-2,1) since D(-2,1) =24 >0and f, (-2,1)=-3<0 . Unfortunately,
Theorem 2 gives us no information about the critical point (0,0), since D (0,0) =0.
However, notice that in the plane y =0 we have f (x,y)=x°. In two dimensions, the

curve z =X has an inflection point at X =0 . This shows that there is no local
extremum at (0,0) .
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The surface near (010) The surface near (—2,1) The surface near [_]ﬂzj

Definition4
We call f (a,b) the absolute maximum of f ontheregion R if f (a,b)>f (x,y) for

all (x,y)eR . Similarly, f (a,b) is called the absolute minimum of f on R if
f (@,b)<f (x,y)forall (x,y)eR.Ineithercase, f (a,b) is called an absolute
extremum of f .

Theorem 3 (Extreme Value Theorem)
Suppose that f (x,y) is continuous on the closed and bounded region R c R” .

Then f has both an absolute maximum and an absolute minimum on R . Further,
an absolute extremum may only occur at a critical pointin R or at a point on the
boundary of R .

12.11 Constrained Optimization and Lagrange Multipliers

In this section, we develop a technique for finding the maximum or minimum of a
function, given one or more constraints on the function’s domain.

Theoreml
Supposethat f (x,y,z) and g(X,y,z) are functions with continuous first partial

derivatives and Vg(x,y,z) =0 on the surface g(x,y,z)=0. Suppose that either
the minimum (or the maximum ) value of f (x,y,z) subject to the constraint

g(x,y,z)=0 occurs at (X,,Y,,Z,). Then Vf (X,,Y0,20) =49 (X, Y.2Z,), for
some constant A (called a Lagrange multiplier).
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Remark1l
e Note that Theorem 1 says that if f (x,y,z) has an extremum at a point

(Xo,yo,zo) on the surface g(x,y,z)=0, we will have for

(X1Yaz):(xo’yo1zo),
f.(x,y,z2)=49,(x,y,z)
f,(x,y.z)=49,(x,y,z)
f,(x,y,z)=29,(x,y,z)
g(x,y,z)=0

Finding such extrema then boils down to solving these four equations for the four
unknowns X,y,z and A .

¢ Notice that the Lagrange multiplier method we have just developed can also be
applied to functions of two variables, by ignoring the third variable in Theorem1.
That is, if f (x,y) and g(x,y) have continuous first partial derivatives and

f (XO, yo) is an extremum of f , subject to the constraint g (x,y) =0, then we
must have Vf (X,,Y,)=4AVQ(X,,Y,).for some constant A .In this case, we end
up with the three equations f, (x,y)=4g, (x,y), f,(x,y)=4g,(x,y) and
g(x,y)=0, for the three unknowns x,y and 4.

Example 1 (Finding a Minimum Distance)

Use Lagrange multipliers to find the point on the line y =3—-2x that is closest to the
origin.

Solution

Forf (x,y)=x°+Yy?, we haveVf (x,y)= <2x,2y >andforg(x,y)=2x +y —3,
we have Vg(x,y)= <2,1>. The vector equation Vf (x,y)=AVg(Xx,y) becomes
<2X ,2y >=A4 <2,1> from which it follows that 2x =24 and 2y = 1.

The second equation gives us A =2y . The first equation then givesus X =41 =2y .
Substituting X =2y into the constraint equation y =3—-2x , we have 5y =3.

The solution is y =§ , giving us x =2y :g. The closest point is then (ggj

Example 2 (Optimization with an Inequality Constraint)

Suppose that the temperature of a metal plate is given by T (X,y)=x*+2x +y?, for
points (X, ) on the elliptical plate defined by x *+4y ? < 24. Find the maximum and
minimum temperatures on the plate.
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Solution

The plate corresponds to the shaded region R shown in Figure 1.
y
&

Figure 1: A metal plate.

We first look for critical points of T (x,y) inside the region R . We have
VT (X,y)=<2x+2,2y >=<0,0> if (x,y)=(-10), whichisin R . At this point,
T (-1,0) = —1. We next look for the extrema of T (x,y ) on the ellipse x*+4y? =24.

We first rewrite the constraint equation as g (X,y)=x*+4y?—24=0. From

Theorem 1, any extrema on the ellipse will satisfy the Lagrange multiplier equation:
VT (X,y)=AVg(x,y) or <2Xx +2,2y >=A<2X,8y >=<21X,81y >.
This occurs when 2x +2=24x and 2y =81y .

Notice that the second equation holds when y =0 or 4 :% .

If y =0, the constraint X > +4y * = 24 gives X =++/24 .

If 1= % the first equation becomes 2x +2 = %x sothat x = —% . The constraint

J50

X +4y? =24 now gives y :J_rT .

Finally, we compare the function values at all of these points (the one interior critical
point and the candidates for boundary extrema):

and T (-1,0)=—-1, T (\24,0)=24+24 ~33.8, T (—/24,0)=24-224~14.2
T [_f @J—Ez4.7, T (—ﬂ —@}Ezm |

33 ) 3 37 3 ) 3
From this list, it's easy to identify the minimum value of —1 at the point (—1,0) and the

maximum value of 24+2@ at the point (@,0) .

We close this section by considering the case of finding the minimum or maximum
value of a differentiable functionf (x,y,z) subject to two constraints g(x,y,z)=0 and

h(x,y,z)=0,where g and h are also differentiable (see Figure 2 below).
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Figure 2: Constraint surfaces and the plane determined
by the normal vectors Vg and Vh.

The method of Lagrange multipliers for the case of two constraints then consists of
finding the point (x,y,z) and the Lagrange multipliers A and u (for a total of five
unknowns) satisfying the five equations defined by:

f.(x,y,z2)=40,(x,y,z2)+uh (x,y,2)

f,(x,y,z2)=49,(x,y,z)+uh, (x,y,z2)

f,(x,y,2)=29,(x,y,2)+uh,(x,y,z)
g(x,y,z)=0 & h(x,y,z)=0

Example 3 (Optimization with Two Constraints)

The plane X +Y +z =12 intersects the paraboloid z =x*+Yy ? in an ellipse. Find the
point on the ellipse that is closest to the origin.

Solution
We illustrate the intersection of the plane with the paraboloid in Figure 3.

Figure 3: Intersection of a paraboloid and a plane.
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Observe that minimizing the distance to the origin is equivalent to minimizing
f(x,y,z)=x?+y?+z? [the square of the distance from the point (x,y,z) to the
origin]. Further, the constraints may be written as g(x,y,z)=x +y +z —12=0 and

h(x,y,z)=x*+y?—z =0 . At any extremum, we must have that
Vi (X,y,z)=AVg(x,y,z)+uVh(x,y,z) or
<2X,2yY,22 >=A<111>+ u<2x,2y,-1>.
Together with the constraint equations, we now have the system of equations:
2X =A+2ux (1
2y =A+2uy (2)
22 =1—pu 3)
X+y+z-12=0 (4) & x°+y*-z=0 (5)
From (1), we have A =2x (1— u), while from (2), we have A =2y (1—/1) .
Setting these two expressions for 4 equal gives us 2X (1—y) =2y (1—/1) :

from which it follows that either ¢ =1 (in which case A=0) or x =y . However, if
u=1and 4 =0, we have from (3) that z = =12, which contradicts (5).
Consequently, the only possibility is to have x =Yy , from which it follows from (5) that

Z = 2x 2. Substituting this into (4) gives us:

O0=X+y +2Z —12=X +X +2x*—12=2x *+2x —12=2(x +3)(x —2) , so that X =—3
or x =2 .Since y =x and z =2x* , we have that (2,2,8) and (-3,-3,18) are the
only candidates for extrema. Finally, since f (2,2,8)=72 and f (-3,-3,18)=342,

the closest point on the intersection of the two surfaces to the origin is (2,2,8) . By the

same reasoning, observe that the farthest point on the intersection of the two surfaces
from the origin is (—3,-3,18) .
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