12.10 Extrema of functions of several variables

Definition1

We call $f(a, b)$ a local maximum of f if there is an open disk R centered at (a, b), for which $f(a, b) \geq f(x, y)$ for all $(x, y) \in R$. Similarly, $f(a, b)$ is called a local minimum of f if there is an open disk R centered at (a, b), for which $f(a, b) \leq f(x, y)$ for all $(x, y) \in R$. In either case, $f(a, b)$ is called a local extremum of f.

Definition2

The point (a, b) is a critical point of the function $f(x, y)$ if (a, b) is in the domain of f and either $\frac{\partial f}{\partial x}(a, b)=\frac{\partial f}{\partial y}(a, b)=0$ or one or both of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ do not exist at (a, b).

Theorem1

If $f(x, y)$ has a local extremum at (a, b), then (a, b) must be a critical point of f.

Example1

Find all critical points of $f(x, y)=x e^{-\frac{x^{2}}{2}-\frac{y^{3}}{3}+y}$.

Solution

First, we compute the first partial derivatives:

$$
\frac{\partial f}{\partial x}(x, y)=\left(1-x^{2}\right) e^{-\frac{x^{2}}{2}-\frac{y^{3}}{3}+y} \text { and } \frac{\partial f}{\partial y}(x, y)=x\left(1-y^{2}\right) e^{-\frac{x^{2}}{2}-\frac{y^{3}}{3}+y} .
$$

Since exponentials are always positive, we have $\frac{\partial f}{\partial x}(x, y)=0$ if and only if $1-x^{2}=0$, that is, when $x= \pm 1$. We have $\frac{\partial f}{\partial y}(x, y)=0$ if and only if $x\left(1-y^{2}\right)=0$, that is, when $x=0$ or $y= \pm 1$. So the set of critical points is $C_{f}=\{(-1,-1),(-1,1),(1,-1),(1,1)\}$.

Definition3

The point $P(a, b, f(a, b))$ is a saddle point of $z=f(x, y)$ if (a, b) is a critical point of f and if every open disk centered at (a, b) contains points (x, y) in the domain of f for which $f(x, y)<f(a, b)$ and points (x, y) in the domain of f for which $f(x, y)>f(a, b)$.

Theorem2 (Second Derivatives Test)

Suppose that $f(x, y)$ has continuous second-order partial derivatives in some open disk containing the point (a, b) and that $f_{x}(a, b)=f_{y}(a, b)=0$. Define the discriminant D for the point (a, b) by $D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.

- If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then \boldsymbol{f} has a local minimum at (a, b).
- If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then \boldsymbol{f} has a local maximum at (a, b).
- If $D(a, b)<0$, then \boldsymbol{f} has a saddle point at (a, b).
- If $D(a, b)=0$, then no conclusion can be drawn.

Example2 (Using the Discriminant to Find Local Extrema)

Locate and classify all critical points for $f(x, y)=2 x^{2}-y^{3}-2 x y$.

Solution

We first compute the first partial derivatives: $f_{x}=4 x-2 y$ and $f_{y}=-3 y^{2}-2 x$. Since both f_{x} and f_{y} are defined for all (x, y), the critical points are solutions of the two equations: $f_{x}=4 x-2 y=0$ and $f_{y}=-3 y^{2}-2 x=0$. Solving the first equation for y, we get $y=2 x$. Substituting this into the second equation, we have $0=-3\left(4 x^{2}\right)-2 x=-12 x^{2}-2 x=-2 x(6 x+1)$, so that $x=0$ or $x=\frac{-1}{6}$. The corresponding y-values are $y=0$ and $y=\frac{-1}{3}$. The only two critical points are then $(0,0)$ and $\left(\frac{-1}{6}, \frac{-1}{3}\right)$. To classify these points, we first compute the second partial derivatives: $f_{x x}=4, f_{y y}=-6 y$ and $f_{x y}=-2$, and then test the discriminant. We have $D(0,0)=4 \times 0-(-2)^{2}=-4<0$ and $D\left(\frac{-1}{6}, \frac{-1}{3}\right)=4 \times(-6) \times\left(\frac{-1}{3}\right)-(-2)^{2}=4>0$.
From Theorem 2, we conclude that there is a saddle point of f at $(0,0)$, since $D(0,0)<0$. Further, there is a local minimum at $\left(\frac{-1}{6}, \frac{-1}{3}\right)$ since $D\left(\frac{-1}{6}, \frac{-1}{3}\right)>0$ and $f_{x x}\left(\frac{-1}{6}, \frac{-1}{3}\right)=4>0$.

| Point | $(0,0)$ | $\left(-\frac{1}{6},-\frac{1}{3}\right)$ |
| :--- | :---: | :---: | :---: |
| $f_{x x}=4$ | 4 | 4 |
| $f_{y y}=-6 y$ | 0 | 2 |
| $f_{x y}=-2$ | -2 | -2 |
| $D(a, b)$ | -4 | 4 |

Example3 (Classifying Critical Points)

Locate and classify all critical points for $f(x, y)=x^{3}-2 y^{2}-2 y^{4}+3 x^{2} y$.

Solution

Here, we have $f_{x}=3 x^{2}+6 x y$ and $f_{y}=-4 y-8 y^{3}+3 x^{2}$. Since both f_{x} and f_{y} exist for all (x, y), the critical points are solutions of the two equations: $f_{x}=3 x^{2}+6 x y=0$ and $f_{y}=-4 y-8 y^{3}+3 x^{2}=0$. From the first equation, we have $0=3 x^{2}+6 x y=3 x(x+2 y)$, so that at a critical point, $x=0$ or $x=-2 y$.
Substituting $x=0$ into the second equation, we have $0=-4 y-8 y^{3}=-4 y\left(1+2 y^{2}\right)$. The only (real) solution of this equation is $y=0$. This says that for $x=0$, we have only one critical point: $(0,0)$.
Substituting $x=-2 y$ into the second equation, we have
$0=-4 y-8 y^{3}+3(-2 y)^{2}=-4 y\left(1+2 y^{2}-3 y\right)=-4 y(2 y-1)(y-1)$. The solutions of this equation are $y=0, y=\frac{1}{2}$ and $y=1$, with corresponding critical points $(0,0),\left(-1, \frac{1}{2}\right)$ and $(-2,1)$.
To classify the critical points, we compute the second partial derivatives, $f_{x x}=\frac{\partial}{\partial x}\left(3 x^{2}+6 x y\right)=6 x+6 y \quad f_{y y}=\frac{\partial}{\partial y}\left(-4 y-8 y^{3}+3 x^{2}\right)=-4-24 y^{2}$, and $f_{x y}=\frac{\partial}{\partial y}\left(3 x^{2}+6 x y\right)=6 x$, and evaluate the discriminant at each critical point. We have $D(0,0)=0, D\left(-1, \frac{1}{2}\right)=-6<0$ and $D(-2,1)=24>0$. From Theorem 2, we conclude that $\underline{f \text { has a saddle point }}$ at $\left(-1, \frac{1}{2}\right)$, since $D\left(-1, \frac{1}{2}\right)=-6<0$. Further, $\underline{f \text { has a }}$ local maximum at $(-2,1)$ since $D(-2,1)=24>0$ and $f_{x x}(-2,1)=-3<0$. Unfortunately, Theorem 2 gives us no information about the critical point $(0,0)$, since $D(0,0)=0$. However, notice that in the plane $y=0$ we have $f(x, y)=x^{3}$. In two dimensions, the curve $z=x^{3}$ has an inflection point at $x=0$. This shows that there is no local extremum at $(0,0)$.

Definition4

We call $f(a, b)$ the absolute maximum of f on the region R if $f(a, b) \geq f(x, y)$ for all $(x, y) \in R$. Similarly, $f(a, b)$ is called the absolute minimum of f on R if $f(a, b) \leq f(x, y)$ for all $(x, y) \in R$. In either case, $f(a, b)$ is called an absolute extremum of f.

Theorem 3 (Extreme Value Theorem)

Suppose that $f(x, y)$ is continuous on the closed and bounded region $R \subset \mathbb{R}^{2}$.
Then f has both an absolute maximum and an absolute minimum on R. Further, an absolute extremum may only occur at a critical point in R or at a point on the boundary of R.

12.11 Constrained Optimization and Lagrange Multipliers

In this section, we develop a technique for finding the maximum or minimum of a function, given one or more constraints on the function's domain.

Theorem1

Suppose that $f(x, y, z)$ and $g(x, y, z)$ are functions with continuous first partial derivatives and $\nabla g(x, y, z) \neq 0$ on the surface $g(x, y, z)=0$. Suppose that either the minimum (or the maximum) value of $f(x, y, z)$ subject to the constraint $g(x, y, z)=0$ occurs at $\left(x_{0}, y_{0}, z_{0}\right)$. Then $\nabla f\left(x_{0}, y_{0}, z_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}, z_{0}\right)$, for some constant λ (called a Lagrange multiplier).

Remark1

- Note that Theorem 1 says that if $f(x, y, z)$ has an extremum at a point $\left(x_{0}, y_{0}, z_{0}\right)$ on the surface $g(x, y, z)=0$, we will have for $(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)$,

$$
\left\{\begin{array}{c}
f_{x}(x, y, z)=\lambda g_{x}(x, y, z) \\
f_{y}(x, y, z)=\lambda g_{y}(x, y, z) \\
f_{z}(x, y, z)=\lambda g_{z}(x, y, z) \\
g(x, y, z)=0
\end{array}\right.
$$

Finding such extrema then boils down to solving these four equations for the four unknowns x, y, z and λ.

- Notice that the Lagrange multiplier method we have just developed can also be applied to functions of two variables, by ignoring the third variable in Theorem1. That is, if $f(x, y)$ and $g(x, y)$ have continuous first partial derivatives and $f\left(x_{0}, y_{0}\right)$ is an extremum of f, subject to the constraint $g(x, y)=0$, then we must have $\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)$,for some constant λ. In this case, we end up with the three equations $f_{x}(x, y)=\lambda g_{x}(x, y), f_{y}(x, y)=\lambda g_{y}(x, y)$ and $g(x, y)=0$, for the three unknowns x, y and λ.

Example 1 (Finding a Minimum Distance)
Use Lagrange multipliers to find the point on the line $y=3-2 x$ that is closest to the origin.

Solution

For $f(x, y)=x^{2}+y^{2}$, we have $\nabla f(x, y)=\langle 2 x, 2 y>$ and for $g(x, y)=2 x+y-3$, we have $\nabla g(x, y)=<2,1\rangle$. The vector equation $\nabla f(x, y)=\lambda \nabla g(x, y)$ becomes $<2 x, 2 y>=\lambda<2,1>$ from which it follows that $2 x=2 \lambda$ and $2 y=\lambda$.
The second equation gives us $\lambda=2 y$. The first equation then gives us $x=\lambda=2 y$. Substituting $x=2 y$ into the constraint equation $y=3-2 x$, we have $5 y=3$.
The solution is $y=\frac{3}{5}$, giving us $x=2 y=\frac{6}{5}$. The closest point is then $\left(\frac{6}{5}, \frac{3}{5}\right)$.

Example 2 (Optimization with an Inequality Constraint)

Suppose that the temperature of a metal plate is given by $T(x, y)=x^{2}+2 x+y^{2}$, for points (x, y) on the elliptical plate defined by $x^{2}+4 y^{2} \leq 24$. Find the maximum and minimum temperatures on the plate.

Solution

The plate corresponds to the shaded region R shown in Figure 1.

Figure 1: A metal plate.
We first look for critical points of $T(x, y)$ inside the region R. We have $\nabla T(x, y)=<2 x+2,2 y>=<0,0>$ if $(x, y)=(-1,0)$, which is in R. At this point, $T(-1,0)=-1$. We next look for the extrema of $T(x, y)$ on the ellipse $x^{2}+4 y^{2}=24$.
We first rewrite the constraint equation as $g(x, y)=x^{2}+4 y^{2}-24=0$. From
Theorem 1, any extrema on the ellipse will satisfy the Lagrange multiplier equation:
$\nabla T(x, y)=\lambda \nabla g(x, y)$ or $\langle 2 x+2,2 y\rangle=\lambda<2 x, 8 y\rangle=\langle 2 \lambda x, 8 \lambda y\rangle$.
This occurs when $2 x+2=2 \lambda x$ and $2 y=8 \lambda y$.
Notice that the second equation holds when $y=0$ or $\lambda=\frac{1}{4}$.
If $y=0$, the constraint $x^{2}+4 y^{2}=24$ gives $x= \pm \sqrt{24}$.
If $\lambda=\frac{1}{4}$, the first equation becomes $2 x+2=\frac{1}{2} x$ so that $x=-\frac{4}{3}$. The constraint $x^{2}+4 y^{2}=24$ now gives $y= \pm \frac{\sqrt{50}}{3}$.
Finally, we compare the function values at all of these points (the one interior critical point and the candidates for boundary extrema):
and $T(-1,0)=-1, \quad T(\sqrt{24}, 0)=24+\sqrt{24} \approx 33.8, \quad T(-\sqrt{24}, 0)=24-2 \sqrt{24 \approx 14.2}$ $T\left(-\frac{4}{3}, \frac{\sqrt{50}}{3}\right)=\frac{14}{3} \approx 4.7, \quad T\left(-\frac{4}{3},-\frac{\sqrt{50}}{3}\right)=\frac{14}{3} \approx 4.7$.
From this list, it's easy to identify the minimum value of -1 at the point $(-1,0)$ and the maximum value of $24+2 \sqrt{24}$ at the point $(\sqrt{24}, 0)$.

We close this section by considering the case of finding the minimum or maximum value of a differentiable function $f(x, y, z)$ subject to two constraints $g(x, y, z)=0$ and $h(x, y, z)=0$, where g and h are also differentiable (see Figure 2 below).

Figure 2: Constraint surfaces and the plane determined by the normal vectors ∇g and ∇h.

The method of Lagrange multipliers for the case of two constraints then consists of finding the point (x, y, z) and the Lagrange multipliers λ and μ (for a total of five unknowns) satisfying the five equations defined by:

$$
\left\{\begin{array}{c}
f_{x}(x, y, z)=\lambda g_{x}(x, y, z)+\mu h_{x}(x, y, z) \\
f_{y}(x, y, z)=\lambda g_{y}(x, y, z)+\mu h_{y}(x, y, z) \\
f_{z}(x, y, z)=\lambda g_{z}(x, y, z)+\mu h_{z}(x, y, z) \\
g(x, y, z)=0 \& h(x, y, z)=0
\end{array} .\right.
$$

Example 3 (Optimization with Two Constraints)

The plane $x+y+z=12$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the point on the ellipse that is closest to the origin.

Solution

We illustrate the intersection of the plane with the paraboloid in Figure 3.

Figure 3: Intersection of a paraboloid and a plane.

Observe that minimizing the distance to the origin is equivalent to minimizing $f(x, y, z)=x^{2}+y^{2}+z^{2}$ [the square of the distance from the point (x, y, z) to the origin]. Further, the constraints may be written as $g(x, y, z)=x+y+z-12=0$ and $h(x, y, z)=x^{2}+y^{2}-z=0$. At any extremum, we must have that

$$
\begin{aligned}
& \nabla f(x, y, z)=\lambda \nabla g(x, y, z)+\mu \nabla h(x, y, z) \text { or } \\
& <2 x, 2 y, 2 z>=\lambda<1,1,1>+\mu<2 x, 2 y,-1>.
\end{aligned}
$$

Together with the constraint equations, we now have the system of equations:

$$
\left\{\begin{align*}
2 x & =\lambda+2 \mu x \\
2 y & =\lambda+2 \mu y \\
2 z & =\lambda-\mu
\end{align*}\right.
$$

From (1), we have $\lambda=2 x(1-\mu)$, while from (2), we have $\lambda=2 y(1-\mu)$.
Setting these two expressions for λ equal gives us $2 x(1-\mu)=2 y(1-\mu)$, from which it follows that either $\mu=1$ (in which case $\lambda=0$) or $x=y$. However, if $\mu=1$ and $\lambda=0$, we have from (3) that $z=-12$, which contradicts (5).
Consequently, the only possibility is to have $x=y$, from which it follows from (5) that $z=2 x^{2}$. Substituting this into (4) gives us:
$0=x+y+z-12=x+x+2 x^{2}-12=2 x^{2}+2 x-12=2(x+3)(x-2)$, so that $x=-3$ or $x=2$. Since $y=x$ and $z=2 x^{2}$, we have that $(2,2,8)$ and $(-3,-3,18)$ are the only candidates for extrema. Finally, since $f(2,2,8)=72$ and $f(-3,-3,18)=342$, the closest point on the intersection of the two surfaces to the origin is $(2,2,8)$. By the same reasoning, observe that the farthest point on the intersection of the two surfaces from the origin is $(-3,-3,18)$.

