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12.7 Increments and Differentials 

First, we remind you of the notation that we used for functions of a single variable. We 

defined the increment y  of the function ( )f x  at x a  to be ( ) ( )y f a x f a    . 

Referring to Figure 1, notice that for x  small, '( )y dy f a x     , where we referred 

to dy  as the differential of y . 

 
Figure 1: Increments and differentials for a function of one variable. 

 
 

For ( , )z f x y , we define the increment of f  at  ,a b  to be  

( , ) ( , )z f a x b y f a b     . 

 
 

Figure 2: Linear approximation. 
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Notice that as long as f  is continuous in some open region containing  ,a b   and f   

has first partial derivatives on that region, we can write: 

   

( , ) ( , )

( , ) ( , ) ( , ) ( , )

z f a x b y f a b

f a x b y f a b y f a b y f a b

    

       
  

Adding and subtracting  ,f a b y  . 

   ( , ) ( , )x yf u b y a x a f a v b y b               

Applying the Mean Value Theorem to both terms. 

( , ) ( , ) ,x yf u b y x f a v y       

by the Mean Value Theorem. Here, u   is some value between a   and a x  , and v  is 

some value between b  and b y  (see Figure 3). This gives us 

( , ) ( , ) ,x yz f u b y x f a v y       

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , )x x x y y yf a b f u b y f a b x f a b f a v f a b y             

which we rewrite as 
1 2( , ) ( , )x yz f a b x f a b y x y          , where 

 1 ( , ) ( , )x xf u b y f a b     and 
2 ( , ) ( , )y yf a v f a b     . 

 

 
 

Figure 3: Intermediate points from the Mean Value Theorem. 

We have now established the following result. 
Theorem1 

Suppose that ( , )z f x y   is defined on the rectangular region 

  2

0 1 0 1, | &R x y x x x y y y       and xf  and yf  are defined on R  and 

are continuous at  ,a b R .  Then for  ,a x b y R    ,  

1 2( , ) ( , )x yz f a b x f a b y x y           where 1  and 2  are functions of x  

and y  that both tend to zero, as    , 0,0x y   . 
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Example 1 (Computing the Increment z ) 

 For 
2( , ) 5z f x y x xy   , find z . 

Solution 
We have  

   

    

   

       

2 2

22 2

1 2

, , .

5 5 .

2 5 5

2 5 5 5 .

( , ) ( , ) ,x y

z f x x y y f x y

x x x x y y x xy

x x x x xy x y y x x y x xy

x x x y x x x y

f x y x f x y y x y 

      

           

              

            

       

  

where 1 x    and 2 5 x     both tend to zero, as    , 0,0x y   . 

Example 2 

Let 
2( , ) 3 .z f x y x xy     

(a) If x  and y  are increments of x  and y , find z  . 

(b) Use z  to calculate the change in ( , )f x y  if  ,x y  changes from  1,2  to 

 1.01,1.98  . 

Solution 
(a) We have 

 

   

    

   

       

2 2

22 2

1 2

, , .

3 3 .

3 6 3 3

6 3 .

( , ) ( , ) ,x y

z f x x y y f x y

x x x x y y x xy

x x x x xy x y y x x y x xy

x y x x y x x x y

f x y x f x y y x y 

      

           

              

           

       

 

where 1 3 x    and 2 x     both tend to zero, as    , 0,0x y   . 

(b) If  ,x y  changes from  1,2  to  1.01,1.98 , substituting 1, 2, 0.01,x y x     

and 0.02y    into the formula for z gives us

  26(1) 2 (0.01) (1)( 0.02) 3(0.01) (0.01)( 0.02) 0.0605.z           

Remark1 

If we increment x  by the amount dx x   and increment y  by dy y  , then we 

define the total differential of z  to be ( , ) ( , )x ydz f x y dx f x y dy  .  

Definition1  

Let ( , )z f x y . We say that f  is differentiable at  ,a b  if we can write 

1 2( , ) ( , ) ,x yz f a b x f a b y x y           where 1  and 2  are both functions of 

x  and y  and 1 2, 0    , as    , 0,0x y   . We say that f  is differentiable on 

a region 
2R   whenever f   is differentiable at every point in R . 
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Definition2 

The linear approximation to ( , , )f x y z  at the point  , ,a b c   is given by 

( , , ) ( , , ) ( , , )( ) ( , , )( ) ( , , )( ).x y zL x y z f a b c f a b c x a f a b c y b f a b c z c         

Example 3 

The dimensions of a closed rectangular box are measured as 3 feet, 4 feet, and 5 feet, 

with a possible error of 
1

16
  inch in each measurement. Use differentials to approximate 

the maximum error in the calculated value of  

(a) The surface area.          

(b) The volume. 

Solution 

(a) The surface area is  2S xy yz xz   . So  

2( ) 2( ) 2( ) .dS y z dx x z dy x y dz       

As 
1

16
dx dy dz     inch

1

192
   feet, we get 

1 1
(18 16 14)

192 4
dS

 
     

 
 feet

2.   

(b) The volume is V x y z  . So  

  31 47
20 15 12 feet .

192 192

dV yz dx xz dy xy dz  

 
     

 

  

12.8 Chain Rule and Implicit Differentiation 
 

The general form of the chain rule says that for differentiable functions f  and g  , 

   ( ) ' ( ) ( )
d

f g x f g x g x
dx

   . 

We now extend the chain rule to functions of several variables. 

Theorem1 (Chain Rule) 

If  ( ), ( )z f x t y t , where ( )x t  and ( )y t  are differentiable and ( , )f x y  is a 

differentiable function of x  and y , then 
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     ( ), ( ) ( ), ( ) ( ), ( )
dz d f dx f dy

f x t y t x t y t x t y t
dt dt x dt y dt

 
      

 . 

 

 
dz z dx z dy

dt x dt y dt

 
 
 

 

 
Example1 (Using the Chain Rule) 
 

For 
2( , ) yz f x y x e  ,

2( ) 1x t t   and ( ) siny t t , find the derivative of 

 ( ) ( ), ( )g t f x t y t  . 

Solution 

We first compute the derivatives 2 yz
xe

x





 , 

2 yz
x e

y





 , '( ) 2x t t  and '( ) cosy t t  . 

The chain rule (Theorem1) then gives us 

   

    

2

2
2 sin 2 sin

'( ) 2 2 cos

4 1 cos 1

y y

t t

z dx z dy
g t xe t x e t

x dt y dt

t t e t t e

 
   
 

   

 . 

 
Theorem2 (Chain Rule) 

Suppose that ( , )z f x y  , where f  is a differentiable function of x  and y  and 

where  ,x x s t   and  ,y s t  both have first-order partial derivatives. Then we 

have the chain rules: 
z z x z y

s x s y s

    
 

    
 and 

z z x z y

t x t y t

    
 

    
. 
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Example 2 (Using the Chain Rule) 

Suppose that ( , ) xyf x y e ,  , 3 sinx u v u v and   2, 4y u v v u . For 

 ( , ) ( , ), ( , )g u v f x u v y u v  , find the partial derivatives
g

u




 and 

g

v




 . 

Solution 

We first compute the partial derivatives
xyf

ye
x





 , 

xyf
xe

y





, 3sin

x
v

u





and

24
y

v
u





. The chain rule (Theorem 2) gives us 

   23sin 4xy xyg f x f y
ye v xe v

u x u y u

    
   

    
. 

Substituting for x  and y , we get 

2 2 2 2

2 2

2 12 sin 2 12 sin

2 12 sin

12 sin 12 sin

24 sin .

u v v u v v

u v v

g
uv v e uv v e

u

uv v e


 





  

For the partial derivative of g   with respect to v , we compute 3 cos
x

u v
v





 and 

8
y

u v
v





 . Here, the chain rule gives us : 

   3 cos 8xy xyg f x f y
ye u v xe uv

v x v y v

    
   

    
. 

Substituting for x  and y ,  we have :  
2 22 2 2 12 sin12 cos 24 sin u v vg

u v v u v v e
v


 


 . 

 
Example 3 (Converting from Rectangular to Polar Coordinates) 
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For a differentiable function ( , )f x y  with cosx r    and siny r   , show that 

cos sinr x yf f f    and 
2 2cos 2 cos sin sinrr xx xy yyf f f f       . 

Solution 

First, notice that cos
x

r






 and sin

y

r






. From Theorem 2, we now have 

cos sinr x y x y

x y
f f f f f

r r
 

 
   

 
 . 

Be very careful when computing the second partial derivative. Using the expression we 

have already found for rf   and Theorem2, we have 

   

   

       

2 2

cos sin

cos sin

cos sin

cos sin cos cos sin sin

cos 2 sin cos sin .

rr r x y

x y

x x y y

xx xy yx yy

xx xy yy

f f f f
r r

f f
r r

x y x y
f f f f

x r y r x r y r

f f f f

f f f

 

 

 

     

   

 
  
 

 
 
 

          
      

          

         

  

  

  
Implicit Differentiation 

 Suppose that the equation ( , ) 0F x y   defines y  implicitly as a function of x , 

say ( )y f x . We let ( , )z F x y ,  where x t  and ( )y f t . From 

Theorem1, we have
x y

dz dx dy
F F

dt dt dt
  . But, since ( , ) 0z F x y  , we have

0
dz

dt
 . Further, since x t  , we have 1

dx

dt
 and 

dy dy

dt dx
 . This gives us

0 x y

dy
F F

dx
  . Notice that we can solve this for

dy

dx
 , provided 0yF   . In this 

case, we have : x

y

Fdy

dx F
   . 

 Suppose that the equation ( , , ) 0F x y z   implicitly defines a function

( , )z f x y , where f  is differentiable. Then, we can find the partial derivatives 

xf  and yf  using the chain rule, as follows. We first let ( , , )w F x y z . From the 

chain rule, we have 
x y z

w x y z
F F F

x x x x

   
  

   
. Notice that since 

( , , ) 0w F x y z  , 0
w

x





 . Also, 1

x

x





 and 0

y

x





, since x  and y  are 
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independent variables. This gives us 0 x z

z
F F

x


 


. We can solve this for 

z

x




 , 

as long as 0zF  ,  to obtain: x

z

Fz

x F


 


. 

            Likewise, differentiating w  with respect to y  leads us to: 
y

z

Fz

y F


 


, 0zF   . 

Example 4 (Finding Partial Derivatives Implicitly) 

Find 
z

x




 and 

z

y




 , given that  2 3( , , ) sin 0F x y z xy z xyz     . 

Solution 

First, note that using the usual chain rule, we have: 
2 cos( )xF y yz xyz  , 

2 cos( )yF xy xz xyz   and 
23 cos( )zF z xy xyz   .  

 If
23 cos( ) 0z xy xyz   then  

2

2

cos( )

3 cos( )

x

z

Fz y yz xyz

x F z xy xyz

 
   

 
 and 

2

2 cos( )

3 cos( )

y

z

Fz xy xz xyz

y F z xy xyz

 
   

 
. 

 
12.9 The gradient and Directional derivatives 
 
In this section, we develop the notion of directional derivatives. Suppose that we want to 

find the instantaneous rate of change of ( , )f x y  at the point ( , )P a b  and in the direction 

given by the unit vector 1 2,u u u   . Let ( , )Q x y  be any point on the line through 

( , )P a b  in the direction of u . Notice that the vector PQ  is then parallel to u . Since two 

vectors are parallel if and only if one is a scalar multiple of the other, we have that 

.PQ h u , for some scalar h , so that 1 2 1 2, . , ,PQ x a y b h u h u u hu hu            . 

It then follows that 1x a hu   and 2y b hu  , so that 1x a hu   and 2y b hu  . 

The point Q  is then described by  1 2,a hu b hu   , as indicated in Figure 1. Notice 

that the average rate of change of ( , )z f x y  along the line from P  to Q  is then 

 1 2, ( , )f a hu b hu f a b

h

  
 . 
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Figure1: The vector PQ  . 

 

The instantaneous rate of change of  ,f x y  at the point ( , )P a b  and in the direction of 

the unit vector u  is then found by taking the limit as 0h  . 

 
Definition1 
 

The directional derivative of ( , )f x y  at the point ( , )a b  and in the direction of the 

unit vector 1 2,u u u    is given by 
 1 2

0

, ( , )
( , ) limu

h

f a hu b hu f a b
D f a b

h

  
 , 

provided the limit exists. 
 
 
 
Remark1: 
We can extend the definition of the directional derivative of a function in 3 variables as: 

The directional derivative of ( , , )f x y z  at the point ( , , )a b c  and in the direction of the 

unit vector 1 2 3, ,u u u u    is given by 

 1 2 3

0

, , ( , , )
( , , ) limu

h

f a hu b hu c hu f a b c
D f a b c

h

   
 , provided the limit exists. 

 
Theorem1 

- Suppose that f  is differentiable at ( , )a b  and 1 2,u u u    is any unit vector. 

Then, we can write 1 2( , ) ( , )u x yD f f a b u f a b u   . 

- Suppose that f  is differentiable at ( , , )a b c  and 1 2 3, ,u u u u    is any unit 

vector. Then, we can write 1 2 3( , , ) ( , , ) ( , , )u x y zD f f a b c u f a b c u f a b c u    . 

 
Example 1 (Computing Directional Derivatives) 
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For 
2 3( , ) 4f x y x y y  , compute (2,1)uD f  for the directions 

    (a) 
3 1

,
2 2

u     

    (b) u in the direction from  2,1  to  4,0 . 

 
Solution  
Regardless of the direction, we first need to compute the first partial derivatives 

2
f

xy
x





 and 

2 212
f

x y
y


 


. Then,  2,1 4xf   and  2,1 8yf   . 

 For (a), the unit vector is given as 
3 1

,
2 2

u     and so, from Theorem 1 we 

have   1 2

3 1
2,1 (2,1) (2,1) 4 8 2 3 4 0

2 2
u x yD f f u f u       . Notice that 

this says that the function is decreasing in this direction. 

 For (b), we must first find the unit vector u  in the indicated direction. Observe 

that the vector from  2,1  to  4,0  corresponds to the position vector 2, 1  

and so, the unit vector in that direction is 
2, 1 2 1

,
|| 2, 1 || 5 5

u
   

  
  

 . We then 

have from Theorem 1 that 

  1 2

2 ( 1) 16
2,1 (2,1) (2,1) 4 ( 8) 0

5 5 5
u x yD f f u f u


       . So, the function 

is increasing rapidly in this direction. 
 
For convenience, we define the gradient of a function to be the vector-valued function 

whose components are the first-order partial derivatives of f  . We denote the gradient 

of a function f  by grad f  or f . 

 
Definition 2 

The gradient of ( , )f x y  is the vector-valued function

( , ) ( , ), ( , ) ( , ) ( , )
f f f f

f x y x y x y x y i x y j
x y x y

   
     

   
, provided both partial 

derivatives exist. Similarly, we define the gradient of ( , , )f x y z  as the vector-valued 

function

( , , ) ( , , ), ( , , ), ( , , ) ( , , ) ( , , ) ( , , )
f f f f f f

f x y z x y z x y z x y z x y z i x y z j x y z k
x y z x y z

     
      

     
, 

provided all the partial derivatives are defined. 
 
Theorem 2 

If f  is a differentiable function of x  and y  and u  is any unit vector, then

( , ) ( , ) .uD f x y f x y u   
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Similarly, if f  is a differentiable function of x , y  and z  and u  is any unit vector, 

then ( , , ) ( , , ) .uD f x y z f x y z u  

 
Example 2 (Finding Directional Derivatives) 

For 
2 2( , )f x y x y  , find  1, 1uD f    for  

(a) u  in the direction of 3,4v      . 

(b) u  in the direction of 3, 4v     . 

 
Solution 

First, note that ( , ) ( , ), ( , ) 2 ,2
f f

f x y x y x y x y
x y

 
      

 
. 

At the point  1, 1  , we have (1, 1) 2, 2f      .  

 For (a), a unit vector in the same direction as v  is 
3 4

,
5 5

u


    . The directional 

derivative of f in this direction at the point  1, 1  is then

 
3 4 3 4 14

1, 1 2, 2 . , 2 ( 2)
5 5 5 5 5

uD f
  

             . 

 For (b), the unit vector is 
3 4

,
5 5

u


    and so, the directional derivative of f  in this 

direction at  1, 1   is  
3 4 3 4 14

1, 1 2, 2 . , 2 ( 2)
5 5 5 5 5

uD f
 

             . 

Theorem 3 

Suppose that f  is a differentiable function of x  and y at the point ( , )a b . Then 

 the maximum rate of change of f  at ( , )a b  is  ,f a b  , occurring in the 

direction of the gradient; 

 the minimum rate of change of f  at ( , )a b  (a, b) is  ,f a b  , occurring 

in the direction opposite the gradient; 

 the rate of change of f  at ( , )a b  is 0 in the directions orthogonal to 

 ,f a b . 

 the gradient  ,f a b  is orthogonal to the level curve  ,f x y c  at the 

point ( , )a b , where  ,c f a b . 

 
Example 3 (Finding Maximum and Minimum Rates of Change) 
 

Find the maximum and minimum rates of change of the function 
2 2( , )f x y x y   at 

the point (1,3) . 

 
Solution 
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We first compute the gradient 2 ,2f x y     and evaluate it at the point (1,3) ; 

 1,3 2,6f    . From Theorem 3, the maximum rate of change of f  at (1,3)  is 

 1,3 40 2 10f   and occurs in the direction of 
 

 

1,3 1 3
,

1,3 10 10

f
u

f


   


. 

Similarly, the minimum rate of change of f  at (1,3)  is  1,3 40 2 10f      , 

which occurs in the direction of 
 

 

1,3 1 3
,

1,3 10 10

f
u

f

  
    


. 

 

Figure2: Contour Plot of 
2 2.z x y   

 
 
Example 4 (Finding the Direction of Maximum Increase) 

If the temperature at point  , ,x y z  is given by  
 2 2

, , 85 1
100

x yz
T x y z e

  
   

 
,  

find the direction from the point  2,0,99  in which the temperature increases most 

rapidly. 
Solution  
We first compute the gradient 

     2 2 2 2 2 2

, ,

1
2 1 , 2 1 ,

100 100 100

x y x y x y

f f f
f

x y z

z z
x e y e e

     

  
   

  

   
         

   

  

and   4 41 1
2,0,99 , 0 ,

25 100
f e e  

    . To find a unit vector in this direction, you can 

simplify the algebra by canceling the common factor of 
4e 
 and multiplying by 100. A 
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unit vector in the direction of 4, 0 , 1     and also in the direction of  2,0 ,99f is 

then
4 1

, 0 ,
17 17

 
   . 

 
Theorem 4 

Suppose that ( , , )f x y z  has continuous partial derivatives at the point  , ,a b c  

and ( , , ) 0f a b c  . Then, ( , , )f a b c is a normal vector to the tangent plane to the 

surface ( , , )f x y c k , at the point  , ,a b c . Further, the equation of the tangent 

plane is            , , , , , , 0x y zf a b c x a f a b c y b f a b c z c       . 

 
Example 5 (Using a Gradient to Find a Tangent Plane and Normal Line to a Surface) 
 

Find equations of the tangent plane and the normal line to 
3 2 2 7x y y z    at the 

point  1,2,3 . 

 
Solution  

If we interpret the surface as a level surface of the function 
3 2 2( , , )f x y z x y y z   , 

a normal vector to the tangent plane at the point  1,2,3  is given by  1,2,3f . We 

have 
2 33 , 2 , 2f x y x y z      and  1,2,3 6 , 3 , 6f     . Given the normal 

vector 6 , 3 , 6    and point  1,2,3 , an equation of the tangent plane is  

     6 1 3 2 6 3 0x y z       . 

The normal line has parametric equations

1 6

2 3 , .

3 6

x t

y t t

z t

 


  
  

  

 
 
 


