12.7 Increments and Differentials

First, we remind you of the notation that we used for functions of a single variable. We defined the increment Δy of the function $f(x)$ at $x=a$ to be $\Delta y=f(a+\Delta x)-f(a)$. Referring to Figure 1, notice that for Δx small, $\Delta y \approx d y=f^{\prime}(a) \Delta x$, where we referred to $d y$ as the differential of y.

Figure 1: Increments and differentials for a function of one variable.

For $z=f(x, y)$, we define the increment of f at (a, b) to be

$$
\Delta z=f(a+\Delta x, b+\Delta y)-f(a, b) .
$$

Figure 2: Linear approximation.

Notice that as long as f is continuous in some open region containing (a, b) and f has first partial derivatives on that region, we can write:

$$
\begin{aligned}
\Delta z & =f(a+\Delta x, b+\Delta y)-f(a, b) \\
& =[f(a+\Delta x, b+\Delta y)-f(a, b+\Delta y)]+[f(a, b+\Delta y)-f(a, b)]
\end{aligned}
$$

$$
\text { Adding and subtracting } f(a, b+\Delta y) \text {. }
$$

$$
=f_{x}(u, b+\Delta y)[(a+\Delta x)-a]+f_{y}(a, v)[(b+\Delta y)-b]
$$

Applying the Mean Value Theorem to both terms.

$$
=f_{x}(u, b+\Delta y) \Delta x+f_{y}(a, v) \Delta y,
$$

by the Mean Value Theorem. Here, u is some value between a and $a+\Delta x$, and v is some value between b and $b+\Delta y$ (see Figure 3). This gives us
$\Delta z=f_{x}(u, b+\Delta y) \Delta x+f_{y}(a, v) \Delta y$,

$$
=\left\{f_{x}(a, b)+\left[f_{x}(u, b+\Delta y)-f_{x}(a, b)\right]\right\} \Delta x+\left\{f_{y}(a, b)+\left[f_{y}(a, v)-f_{y}(a, b)\right]\right\} \Delta y
$$

which we rewrite as $\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y$, where $\varepsilon_{1}=\left[f_{x}(u, b+\Delta y)-f_{x}(a, b)\right]$ and $\varepsilon_{2}=\left[f_{y}(a, v)-f_{y}(a, b)\right]$.

Figure 3: Intermediate points from the Mean Value Theorem.
We have now established the following result.
Theorem1
Suppose that $z=f(x, y)$ is defined on the rectangular region
$R=\left\{(x, y) \in \mathbb{R}^{2} \mid x_{0}<x<x_{1} \& y_{0}<y<y_{1}\right\}$ and f_{x} and f_{y} are defined on R and
are continuous at $(a, b) \in R$. Then for $(a+\Delta x, b+\Delta y) \in R$, $\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y$ where ε_{1} and ε_{2} are functions of Δx and Δy that both tend to zero, as $(\Delta x, \Delta y) \rightarrow(0,0)$.

Example 1 (Computing the Increment Δz)
For $z=f(x, y)=x^{2}-5 x y$, find Δz.

Solution

We have
$\Delta z=f(x+\Delta x, y+\Delta y)-f(x, y)$.

$$
\begin{aligned}
& =(x+\Delta x)^{2}-5(x+\Delta x)(y+\Delta y)-\left[x^{2}-5 x y\right] \\
& =x^{2}+2 x \Delta x+(\Delta x)^{2}-5(x y+x \Delta y+y \Delta x+\Delta x \Delta y)-x^{2}+5 x y \\
& =(2 x-5) \Delta x+(-5 x) \Delta y+(\Delta x) \Delta x+(-5 \Delta x) \Delta y . \\
& =f_{x}(x, y) \Delta x+f_{y}(x, y) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
\end{aligned}
$$

where $\varepsilon_{1}=\Delta x$ and $\varepsilon_{2}=-5 \Delta x$ both tend to zero, as $(\Delta x, \Delta y) \rightarrow(0,0)$.

Example 2

Let $z=f(x, y)=3 x^{2}-x y$.
(a) If Δx and Δy are increments of x and y, find Δz.
(b) Use Δz to calculate the change in $f(x, y)$ if (x, y) changes from $(1,2)$ to (1.01,1.98) .

Solution

(a) We have

$$
\begin{aligned}
\Delta z & =f(x+\Delta x, y+\Delta y)-f(x, y) \\
& =3(x+\Delta x)^{2}-(x+\Delta x)(y+\Delta y)-\left[3 x^{2}-x y\right] \\
& =3 x^{2}+6 x \Delta x+3(\Delta x)^{2}-(x y+x \Delta y+y \Delta x+\Delta x \Delta y)-3 x^{2}+x y \\
& =(6 x-y) \Delta x+(-x) \Delta y+(3 \Delta x) \Delta x+(-\Delta x) \Delta y . \\
& =f_{x}(x, y) \Delta x+f_{y}(x, y) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
\end{aligned}
$$

where $\varepsilon_{1}=3 \Delta x$ and $\varepsilon_{2}=-\Delta x$ both tend to zero, as $(\Delta x, \Delta y) \rightarrow(0,0)$.
(b) If (x, y) changes from $(1,2)$ to $(1.01,1.98)$, substituting $x=1, y=2, \Delta x=0.01$, and $\Delta y=-0.02$ into the formula for Δz gives us $\Delta z=[6(1)-2](0.01)-(1)(-0.02)+3(0.01)^{2}-(0.01)(-0.02)=0.0605$.

Remark1

If we increment x by the amount $d x=\Delta x$ and increment y by $d y=\Delta y$, then we define the total differential of z to be $d z=f_{x}(x, y) d x+f_{y}(x, y) d y$.

Definition1

Let $z=f(x, y)$. We say that f is differentiable at (a, b) if we can write $\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y$, where ε_{1} and ε_{2} are both functions of Δx and Δy and $\varepsilon_{1}, \varepsilon_{2} \rightarrow 0$, as $(\Delta x, \Delta y) \rightarrow(0,0)$. We say that f is differentiable on a region $R \subseteq \mathbb{R}^{2}$ whenever f is differentiable at every point in R.

Definition2

The linear approximation tof (x, y, z) at the point (a, b, c) is given by $L(x, y, z)=f(a, b, c)+f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+f_{z}(a, b, c)(z-c)$.

Example 3

The dimensions of a closed rectangular box are measured as 3 feet, 4 feet, and 5 feet, with a possible error of $\pm \frac{1}{16}$ inch in each measurement. Use differentials to approximate the maximum error in the calculated value of
(a) The surface area.
(b) The volume.

Solution

(a) The surface area is $S=2(x y+y z+x z)$. So

$$
d S=2(y+z) d x+2(x+z) d y+2(x+y) d z
$$

As $d x=d y=d z= \pm \frac{1}{16}$ inch $= \pm \frac{1}{192}$ feet, we get $d S=(18+16+14)\left(\frac{ \pm 1}{192}\right)= \pm \frac{1}{4}$ feet 2.
(b) The volume is $V=x y z$. So

$$
\begin{aligned}
d V & =y z d x+x z d y+x y d z \\
& =(20+15+12)\left(\frac{ \pm 1}{192}\right)= \pm \frac{47}{192} \text { feet }^{3} .
\end{aligned}
$$

12.8 Chain Rule and Implicit Differentiation

The general form of the chain rule says that for differentiable functions f and g,

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

We now extend the chain rule to functions of several variables.

Theorem1 (Chain Rule)

If $z=f(x(t), y(t))$, where $x(t)$ and $y(t)$ are differentiable and $f(x, y)$ is a differentiable function of x and y, then

$$
\frac{d z}{d t}=\frac{d}{d t}[f(x(t), y(t))]=\frac{\partial f}{\partial x}(x(t), y(t)) \frac{d x}{d t}+\frac{\partial f}{\partial y}(x(t), y(t)) \frac{d y}{d t} .
$$

Example1 (Using the Chain Rule)

For $z=f(x, y)=x^{2} e^{y}, x(t)=t^{2}-1$ and $y(t)=\sin t$, find the derivative of $g(t)=f(x(t), y(t))$.

Solution

We first compute the derivatives $\frac{\partial z}{\partial x}=2 x e^{y}, \frac{\partial z}{\partial y}=x^{2} e^{y}, x^{\prime}(t)=2 t$ and $y^{\prime}(t)=\cos t$.
The chain rule (Theorem1) then gives us

$$
\begin{aligned}
g^{\prime}(t) & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=2 x e^{y}(2 t)+x^{2} e^{y}(\cos t) \\
& =4 t\left(t^{2}-1\right) e^{\sin t}+(\cos t)\left(t^{2}-1\right)^{2} e^{\sin t}
\end{aligned}
$$

Theorem2 (Chain Rule)

Suppose that $z=f(x, y)$, where f is a differentiable function of x and y and where $x=x(s, t)$ and $y=(s, t)$ both have first-order partial derivatives. Then we have the chain rules: $\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$ and $\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$.

Example 2 (Using the Chain Rule)

Suppose that $f(x, y)=e^{x y}, x(u, v)=3 u \sin v$ and $y(u, v)=4 v^{2} u$. For $g(u, v)=f(x(u, v), y(u, v))$, find the partial derivatives $\frac{\partial g}{\partial u}$ and $\frac{\partial g}{\partial v}$.

Solution

We first compute the partial derivatives $\frac{\partial f}{\partial x}=y e^{x y}, \frac{\partial f}{\partial y}=x e^{x y}, \frac{\partial x}{\partial u}=3 \sin v$ and $\frac{\partial y}{\partial u}=4 v^{2}$. The chain rule (Theorem 2) gives us

$$
\frac{\partial g}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}=y e^{x y}(3 \sin v)+x e^{x y}\left(4 v^{2}\right) .
$$

Substituting for x and y, we get

$$
\begin{aligned}
& \frac{\partial g}{\partial u}=12 u v^{2} \sin v e^{12 u^{2} v^{2} \sin v}+12 u v^{2} \sin v e^{12 u^{2} v^{2} \sin v} \\
& \quad=24 u v^{2} \sin v e^{12 u^{2} v^{2} \sin v} .
\end{aligned}
$$

For the partial derivative of g with respect to v, we compute $\frac{\partial x}{\partial v}=3 u \cos v$ and $\frac{\partial y}{\partial v}=8 u v$. Here, the chain rule gives us :

$$
\frac{\partial g}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}=y e^{x y}(3 u \cos v)+x e^{x y}(8 u v) .
$$

Substituting for x and y, we have : $\frac{\partial g}{\partial v}=\left(12 u^{2} v^{2} \cos v+24 u^{2} v \sin v\right) e^{12 u^{2} v^{2} \sin v}$.

Example 3 (Converting from Rectangular to Polar Coordinates)

For a differentiable function $f(x, y)$ with $x=r \cos \theta$ and $y=r \sin \theta$, show that $f_{r}=f_{x} \cos \theta+f_{y} \sin \theta$ and $f_{r r}=f_{x x} \cos ^{2} \theta+2 f_{x y} \cos \theta \sin \theta+f_{y y} \sin ^{2} \theta$.

Solution

First, notice that $\frac{\partial x}{\partial r}=\cos \theta$ and $\frac{\partial y}{\partial r}=\sin \theta$. From Theorem 2, we now have $f_{r}=f_{x} \frac{\partial x}{\partial r}+f_{y} \frac{\partial y}{\partial r}=f_{x} \cos \theta+f_{y} \sin \theta$.
Be very careful when computing the second partial derivative. Using the expression we have already found for f_{r} and Theorem2, we have

$$
\begin{aligned}
f_{r r} & =\frac{\partial}{\partial r}\left(f_{r}\right)=\frac{\partial}{\partial r}\left(f_{x} \cos \theta+f_{y} \sin \theta\right) \\
& =\frac{\partial}{\partial r}\left(f_{x} \cos \theta\right)+\frac{\partial}{\partial r}\left(f_{y} \sin \theta\right) \\
& =\left[\frac{\partial}{\partial x}\left(f_{x}\right) \frac{\partial x}{\partial r}+\frac{\partial}{\partial y}\left(f_{x}\right) \frac{\partial y}{\partial r}\right] \cos \theta+\left[\frac{\partial}{\partial x}\left(f_{y}\right) \frac{\partial x}{\partial r}+\frac{\partial}{\partial y}\left(f_{y}\right) \frac{\partial y}{\partial r}\right] \sin \theta \\
& =\left[f_{x x} \cos \theta+f_{x y} \sin \theta\right] \cos \theta+\left[f_{y x} \cos \theta+f_{y y} \sin \theta\right] \sin \theta \\
& =f_{x x} \cos ^{2} \theta+2 f_{x y} \sin \theta \cos \theta+f_{y y} \sin ^{2} \theta
\end{aligned}
$$

Implicit Differentiation

- Suppose that the equation $F(x, y)=0$ defines y implicitly as a function of x, say $y=f(x)$. We let $z=F(x, y)$, where $x=t$ and $y=f(t)$. From Theorem1, we have $\frac{d z}{d t}=F_{x} \frac{d x}{d t}+F_{y} \frac{d y}{d t}$. But, since $z=F(x, y)=0$, we have $\frac{d z}{d t}=0$. Further, since $x=t$, we have $\frac{d x}{d t}=1$ and $\frac{d y}{d t}=\frac{d y}{d x}$. This gives us $0=F_{x}+F_{y} \frac{d y}{d x}$. Notice that we can solve this for $\frac{d y}{d x}$, provided $F_{y} \neq 0$. In this case, we have : $\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}$.
- Suppose that the equation $F(x, y, z)=0$ implicitly defines a function $z=f(x, y)$, where f is differentiable. Then, we can find the partial derivatives f_{x} and f_{y} using the chain rule, as follows. We first let $w=F(x, y, z)$. From the chain rule, we have $\frac{\partial w}{\partial x}=F_{x} \frac{\partial x}{\partial x}+F_{y} \frac{\partial y}{\partial x}+F_{z} \frac{\partial z}{\partial x}$. Notice that since $w=F(x, y, z)=0, \frac{\partial w}{\partial x}=0$. Also, $\frac{\partial x}{\partial x}=1$ and $\frac{\partial y}{\partial x}=0$, since x and y are
independent variables. This gives us $0=F_{x}+F_{z} \frac{\partial z}{\partial x}$. We can solve this for $\frac{\partial z}{\partial x}$, as long as $F_{z} \neq 0$, to obtain: $\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}$.
Likewise, differentiating w with respect to y leads us to: $\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}, F_{z} \neq 0$.
Example 4 (Finding Partial Derivatives Implicitly)
Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, given that $F(x, y, z)=x y^{2}+z^{3}+\sin (x y z)=0$.
Solution
First, note that using the usual chain rule, we have: $F_{x}=y^{2}+y z \cos (x y z)$,
$F_{y}=2 x y+x z \cos (x y z)$ and $F_{z}=3 z^{2}+x y \cos (x y z)$.
If $3 z^{2}+x y \cos (x y z) \neq 0$ then
$\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{y^{2}+y z \cos (x y z)}{3 z^{2}+x y \cos (x y z)}$ and $\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{2 x y+x z \cos (x y z)}{3 z^{2}+x y \cos (x y z)}$.

12.9 The gradient and Directional derivatives

In this section, we develop the notion of directional derivatives. Suppose that we want to find the instantaneous rate of change of $f(x, y)$ at the point $P(a, b)$ and in the direction given by the unit vector $u=<u_{1}, u_{2}>$. Let $Q(x, y)$ be any point on the line through $P(a, b)$ in the direction of u. Notice that the vector $\overrightarrow{P Q}$ is then parallel to u. Since two vectors are parallel if and only if one is a scalar multiple of the other, we have that $\overrightarrow{P Q}=h . u$, for some scalar h, so that $\overrightarrow{P Q}=\langle x-a, y-b\rangle=h u=h\left\langle u_{1}, u_{2}\right\rangle=\left\langle h u_{1}, h u_{2}\right\rangle$. It then follows that $x-a=h u_{1}$ and $y-b=h u_{2}$, so that $x=a+h u_{1}$ and $y=b+h u_{2}$. The point Q is then described by $\left(a+h u_{1}, b+h u_{2}\right)$, as indicated in Figure 1. Notice that the average rate of change of $z=f(x, y)$ along the line from P to Q is then $\frac{f\left(a+h u_{1}, b+h u_{2}\right)-f(a, b)}{h}$.

Figure1: The vector $\overrightarrow{P Q}$.
The instantaneous rate of change of $f(x, y)$ at the point $P(a, b)$ and in the direction of the unit vector u is then found by taking the limit as $h \rightarrow 0$.

Definition1

The directional derivative of $f(x, y)$ at the point (a, b) and in the direction of the unit vector $u=<u_{1}, u_{2}>$ is given by $D_{u} f(a, b)=\lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}\right)-f(a, b)}{h}$, provided the limit exists.

Remark1:

We can extend the definition of the directional derivative of a function in 3 variables as: The directional derivative of $f(x, y, z)$ at the point (a, b, c) and in the direction of the unit vector $u=<u_{1}, u_{2}, u_{3}>$ is given by
$D_{u} f(a, b, c)=\lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}, c+h u_{3}\right)-f(a, b, c)}{h}$, provided the limit exists.

Theorem1

- Suppose that f is differentiable at (a, b) and $u=<u_{1}, u_{2}>$ is any unit vector.

Then, we can write $D_{u} f=f_{x}(a, b) u_{1}+f_{y}(a, b) u_{2}$.

- Suppose that f is differentiable at (a, b, c) and $u=<u_{1}, u_{2}, u_{3}>$ is any unit vector. Then, we can write $D_{u} f=f_{x}(a, b, c) u_{1}+f_{y}(a, b, c) u_{2}+f_{z}(a, b, c) u_{3}$.

Example 1 (Computing Directional Derivatives)

For $f(x, y)=x^{2} y-4 y^{3}$, compute $D_{u} f(2,1)$ for the directions
(a) $u=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle$
(b) u in the direction from $(2,1)$ to $(4,0)$.

Solution

Regardless of the direction, we first need to compute the first partial derivatives $\frac{\partial f}{\partial x}=2 x y$ and $\frac{\partial f}{\partial y}=x^{2}-12 y^{2}$. Then, $f_{x}(2,1)=4$ and $f_{y}(2,1)=-8$.

- For (a), the unit vector is given as $u=<\frac{\sqrt{3}}{2}, \frac{1}{2}>$ and so, from Theorem 1 we have $D_{u} f(2,1)=f_{x}(2,1) u_{1}+f_{y}(2,1) u_{2}=4 \frac{\sqrt{3}}{2}-8 \frac{1}{2}=2 \sqrt{3}-4<0$. Notice that this says that the function is decreasing in this direction.
- For (b), we must first find the unit vector u in the indicated direction. Observe that the vector from $(2,1)$ to $(4,0)$ corresponds to the position vector $\langle 2,-1\rangle$ and so, the unit vector in that direction is $u=\frac{\langle 2,-1\rangle}{\|\langle 2,-1\rangle\|}=\left\langle\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right\rangle$. We then have from Theorem 1 that
$D_{u} f(2,1)=f_{x}(2,1) u_{1}+f_{y}(2,1) u_{2}=4 \frac{2}{\sqrt{5}}+(-8) \frac{(-1)}{\sqrt{5}}=\frac{16}{\sqrt{5}}>0$. So, the function is increasing rapidly in this direction.

For convenience, we define the gradient of a function to be the vector-valued function whose components are the first-order partial derivatives of f. We denote the gradient of a function f by $\operatorname{grad} f$ or ∇f.

Definition 2

The gradient of $f(x, y)$ is the vector-valued function
$\nabla f(x, y)=<\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)>=\frac{\partial f}{\partial x}(x, y) \vec{i}+\frac{\partial f}{\partial y}(x, y) \vec{j}$, provided both partial derivatives exist. Similarly, we define the gradient of $f(x, y, z)$ as the vector-valued function
$\nabla f(x, y, z)=<\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)>=\frac{\partial f}{\partial x}(x, y, z) \vec{i}+\frac{\partial f}{\partial y}(x, y, z) \vec{j}+\frac{\partial f}{\partial z}(x, y, z) \vec{k}$, provided all the partial derivatives are defined.

Theorem 2

If f is a differentiable function of x and y and u is any unit vector, then $D_{u} f(x, y)=\nabla f(x, y) . u$

Similarly, if f is a differentiable function of x, y and z and u is any unit vector, then $D_{u} f(x, y, z)=\nabla f(x, y, z)$.u

Example 2 (Finding Directional Derivatives)
For $f(x, y)=x^{2}+y^{2}$, find $D_{u} f(1,-1)$ for
(a) u in the direction of $v=\langle-3,4\rangle$.
(b) u in the direction of $v=\langle 3,-4>$.

Solution

First, note that $\nabla f(x, y)=<\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)>=\langle 2 x, 2 y>$.
At the point $(1,-1)$, we have $\nabla f(1,-1)=<2,-2>$.

- For (a), a unit vector in the same direction as v is $u=\left\langle\frac{-3}{5}, \frac{4}{5}\right\rangle$. The directional derivative of f in this direction at the point $(1,-1)$ is then
$D_{u} f(1,-1)=\langle 2,-2\rangle .\left\langle\frac{-3}{5}, \frac{4}{5}\right\rangle=2 \times \frac{-3}{5}+(-2) \times \frac{4}{5}=\frac{-14}{5}$.
- For (b), the unit vector is $u=\left\langle\frac{3}{5}, \frac{-4}{5}\right\rangle$ and so, the directional derivative of f in this direction at $(1,-1)$ is $D_{u} f(1,-1)=\langle 2,-2\rangle .\left\langle\frac{3}{5}, \frac{-4}{5}\right\rangle=2 \times \frac{3}{5}+(-2) \times \frac{-4}{5}=\frac{14}{5}$.
Theorem 3
Suppose that f is a differentiable function of x and y at the point (a, b). Then
- the maximum rate of change of f at (a, b) is $\|\nabla f(a, b)\|$, occurring in the direction of the gradient;
- the minimum rate of change of f at $(a, b)(\boldsymbol{a}, \boldsymbol{b})$ is $-\|\nabla f(a, b)\|$, occurring in the direction opposite the gradient;
- the rate of change of f at (a, b) is 0 in the directions orthogonal to $\nabla f(a, b)$.
- the gradient $\nabla f(a, b)$ is orthogonal to the level curve $f(x, y)=c$ at the point (a, b), where $c=f(a, b)$.

Example 3 (Finding Maximum and Minimum Rates of Change)
Find the maximum and minimum rates of change of the function $f(x, y)=x^{2}+y^{2}$ at the point $(1,3)$.

Solution

We first compute the gradient $\nabla f=<2 x, 2 y>$ and evaluate it at the point (1,3); $\nabla f(1,3)=\langle 2,6\rangle$. From Theorem 3, the maximum rate of change of f at $(1,3)$ is $\|\nabla f(1,3)\|=\sqrt{40}=2 \sqrt{10}$ and occurs in the direction of $u=\frac{\nabla f(1,3)}{\|\nabla f(1,3)\|}=<\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}>$. Similarly, the minimum rate of change of f at $(1,3)$ is $-\|\nabla f(1,3)\|=-\sqrt{40}=-2 \sqrt{10}$, which occurs in the direction of $u=-\frac{\nabla f(1,3)}{\|\nabla f(1,3)\|}=<\frac{-1}{\sqrt{10}}, \frac{-3}{\sqrt{10}}>$.

Figure2: Contour Plot of $z=x^{2}+y^{2}$.

Example 4 (Finding the Direction of Maximum Increase)
If the temperature at point (x, y, z) is given by $T(x, y, z)=85+\left(1-\frac{z}{100}\right) e^{-\left(x^{2}+y^{2}\right)}$, find the direction from the point $(2,0,99)$ in which the temperature increases most rapidly.
Solution
We first compute the gradient

$$
\begin{aligned}
\nabla f & =<\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}> \\
& =<-2 x\left(1-\frac{z}{100}\right) e^{-\left(x^{2}+y^{2}\right)},-2 y\left(1-\frac{z}{100}\right) e^{-\left(x^{2}+y^{2}\right)}, \frac{-1}{100} e^{-\left(x^{2}+y^{2}\right)}>
\end{aligned}
$$

and $\nabla f(2,0,99)=<\frac{-1}{25} e^{-4}, 0, \frac{-1}{100} e^{-4}>$. To find a unit vector in this direction, you can simplify the algebra by canceling the common factor of e^{-4} and multiplying by 100. A
unit vector in the direction of $\langle-4,0,-1>$ and also in the direction of $\nabla f(2,0,99)$ is then $<\frac{-4}{\sqrt{17}}, 0, \frac{-1}{\sqrt{17}}>$.

Theorem 4

Suppose that $f(x, y, z)$ has continuous partial derivatives at the point (a, b, c) and $\nabla f(a, b, c) \neq 0$. Then, $\nabla f(a, b, c)$ is a normal vector to the tangent plane to the surface $f(x, y, c)=k$, at the point (a, b, c). Further, the equation of the tangent plane is $f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+f_{z}(a, b, c)(z-c)=0$.

Example 5 (Using a Gradient to Find a Tangent Plane and Normal Line to a Surface)
Find equations of the tangent plane and the normal line to $x^{3} y-y^{2}+z^{2}=7$ at the point (1,2,3).

Solution

If we interpret the surface as a level surface of the function $f(x, y, z)=x^{3} y-y^{2}+z^{2}$, a normal vector to the tangent plane at the point $(1,2,3)$ is given by $\nabla f(1,2,3)$. We have $\nabla f=<3 x^{2} y, x^{3}-2 y, 2 z>$ and $\nabla f(1,2,3)=<6,-3,6>$. Given the normal vector $\langle 6,-3,6\rangle$ and point $(1,2,3)$, an equation of the tangent plane is

$$
6(x-1)-3(y-2)+6(z-3)=0 .
$$

The normal line has parametric equations $\left\{\begin{array}{l}x=1+6 t \\ y=2-3 t \\ z=3+6 t\end{array} \quad, t \in \mathbb{R}\right.$.

