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12.4 First-order partial derivatives 
In this section, we generalize the notion of derivative to functions of more than one 
variable. 

First, recall that for a function f  of a single variable, we define the derivative function as 

0

( ) ( )
'( ) lim

h

f x h f x
f x

h

 
 , for any values of x for which the limit exists.  

At any particular value x a ,  we interpret '( )f a  as the instantaneous rate of change of 

the function with respect to x  at that point. 
 
Definition 1 

The partial derivative of ( , )f x y  with respect to  x  , written 
f

x




 , is defined by 

 
0

( , ) ( , )
, lim

h

f f x h y f x y
x y

x h

  



, for any values of x   and y  for which the limit 

exists. 

The partial derivative of ( , )f x y  with respect to  y , written 
f

y




, is defined by, 

 
0

( , ) ( , )
, lim

h

f f x y h f x y
x y

y h

  



, for any values of x and y for which the limit 

exists. 
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Intersection of the surface ( , )z f x y  with 

the plane y b  . 

 
The curve ( , )z f x b  . 

 

 ( , )
f

a b
x




 gives the slope of the tangent line to the curve at .x a   

 

 
Intersection of the surface ( , )z f x y  with 

the plane x a  . 

 
 
 

The curve ( , )z f a y . 

 

 ( , )
f

a b
y




 gives the slope of the tangent line to the curve at .y b   
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Remark 1 
 

 To compute the partial derivative 
f

x




 , you simply take an ordinary derivative 

with respect to x  , while treating y  as a constant. Similarly, you compute 
f

y




by 

taking an ordinary derivative with respect to y  , while treating x  as a constant. 

 For ( , )z f x y  , we write  ( , ) ( , ) ( , ) ( , )x

f z
x y f x y x y f x y

x x x

  
  

  
. 

 The expression
x




 is a partial differential operator. It tells you to take the 

partial derivative (with respect to x ) of whatever expression follows it. Similarly, 
we have 

 ( , ) ( , ) ( , ) ( , )y

f z
x y f x y x y f x y

y y y

  
  

  
. 

Example 1 (Computing Partial Derivatives) 
 

For
2 3 2( , ) 3 4f x y x x y y    , compute ( , ), ( , ), (1,0)x

f f
x y x y f

x y

 

 
 and (2, 1).yf    

Solution 

Compute
f

x




by treating y  as a constant. We have 

2 3 2 2( , ) 3 4 6 3 .
f

x y x x y y x x y
x x

 
       

 

The partial derivative of 
24y  with respect to x  is 0  , since 

24y  is treated as if it were a 

constant when differentiating with respect to x  . Next, we compute
f

y




by treating x   as 

a constant. We have  

2 3 2 3( , ) 3 4 8 .
f

x y x x y y x y
y y

 
       

 

Substituting values for x  and y  , we get (1,0) (1,0) 6x

f
f

x


 


 and 

(2, 1) (2, 1) 0.y

f
f

y


   


 

Remark 2 
 
Since we are holding one of the variables fixed when we compute a partial derivative, 

we have the product rules: ( )
u v

uv v u
x x x

  
 

  
and ( )

u v
uv v u

y y y

  
 

  
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and the quotient rule: 
2

u v
v u

u x x

x v v

 


     
  

 , 

with a corresponding quotient rule holding for
2

u v
v u

u y y

y v v

 


   
 

  
. 

 
Example 2 (Computing Partial Derivatives) 

For ( , ) xy x
f x y e

y
   , compute 

f

x




 and .

f

y




 

Solution 

For 0y   , we have 
1

( , ) .xy xyf x
x y e y e

x x y y

  
    

   
 Also, 

2
( , ) .xy xyf x x
x y e x e

y y y y

  
    

   
 

Example 3 (Computing Partial Derivatives) 

For 
2 3( , , ) sin( ) lnf x y z x y z xy z  , compute 

f

x




 , 

f

y




 and .

f

z




 

Solution 

For 0z  , we have 

 2 3 3 2 3( , , ) sin ln 2 cos( ) ln .
f

x y z x y z xy z xy z x y z y z
x x

 
    
  

 

Also, 

 2 3 2 2 2 3( , , ) sin ln 3 cos( ) ln .
f

x y z x y z xy z x y z x y z x z
y y

 
    
  

 

And,  2 3 2 3 2 3( , , ) sin ln cos( ) .
f xy

x y z x y z xy z x y x y z
z z z

 
    
  

 

 

12.5 Higher-order partial derivatives 
 
Notice that the partial derivatives found in the preceding examples are themselves 
functions of two variables. We have seen that second- and higher-order derivatives of 
functions of a single variable provide much significant information. Not surprisingly, 
higher-order partial derivatives are also very important in applications. 
 
For functions of two variables, there are four different second-order partial derivatives. 

The partial derivative with respect to x  of 
f

x




 is 

f

x x

  
 

  
 , usually abbreviated as

2

2

f

x




 

or xxf  . Similarly, taking two successive partial derivatives with respect to y  gives us

2

2 yy

f f
f

y y y

   
  

   
. 
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 For mixed second-order partial derivatives, one derivative is taken with respect to 

each variable. If the first partial derivative is taken with respect to x  , we have
f

y x

  
 

  
, 

abbreviated as 

2f

y x



 
, or  x xyy

f f .  If the first partial derivative is taken with respect 

to y , we have 
f

x y

  
 

  
, abbreviated as 

2f

x y



 
, or  y yxx

f f  . 

Example 1 (Computing Second-Order Partial Derivatives) 
 

Find all second-order partial derivatives of 
2 3( , ) lnf x y x y y x   . 

 
Solution 

We start by computing the first-order partial derivatives: For 0x   , 

1
( , ) 2

f
x y xy

x x


 


 and 

2 2( , ) 3 .
f

x y x y
y


 


 We then have

2

2 2

1 1
( , ) 2 2

f f
x y xy y

x x x x x x

      
       

      
, 

2 1
( , ) 2 2

f f
x y xy x

y x y x y x

      
      

       
,

 
2

2 2( , ) 3 2
f f

x y x y x
x y x y x

    
    

     
, 

and finally,  
2

2 2

2
( , ) 3 6 .

f f
x y x y y

y y y y

    
     

    
 

Remark 1 

Notice in example 1 that 

2 2

( , ) ( , )
f f

x y x y
y x x y

 


   
. It turns out that this is true for 

most, but not all, of the functions that you will encounter. 
 
Theorem 1 

If ( , )xyf x y  and ( , )yxf x y  are continuous on an open set containing ( , )a b , then 

( , ) ( , )xy yxf a b f a b . 

 
Example 2 (Computing Higher-Order Partial Derivatives) 
 

For 
3 4( , ) cos( )f x y xy x y    , compute xyyf   and xyyyf  .  

 
Solution 

We have  3 4 2cos( ) sin( ) 3xf xy x y y xy x
x


     


 . 
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Differentiating xf   with respect to y  gives us 

 2sin( ) 3 sin( ) cos( )xyf y xy x xy xy xy
y


     


 and 

 

2

2

sin( ) cos( )

cos( ) cos( ) sin( )

2 cos( ) sin( ).

xyyf xy xy xy
y

x xy x xy x y xy

x xy x y xy


  


   

  

  

Finally, we have 

 

 2

2 2 3

2 3

2 cos( ) sin( )

2 sin( ) sin( ) cos( )

3 sin( ) cos( ).

xyyyf x xy x y xy
y

x xy x xy x y xy

x xy x y xy


  


  

 

  

 
Example 3 (Partial Derivatives of Functions of Three Variables) 
 

For 
3 2( , , ) 4f x y z xy z x y   , defined for , , 0x y z  , compute xf  ,

xyf   and 
xyzf  . 

 
Solution 

To keep x  , y  and z  as separate as possible, we first rewrite f   as 
31 1

22 2 2( , , ) 4f x y z x y z x y  . 

To compute the partial derivative with respect to x  , we treat y  and z  as constants 

and obtain   
3 31 1 1 1

22 2 2 2 2 2
1

4 8 .
2

xf x y z x y x y z xy
x

           
  

Next, treating x  and z  as constants, we get

31 1 1 1 1
2 2 2 2 2 2

1 1 3
8 8 .

2 2 2
xyf x y z xy x y z x

y

      
           

 

Finally, treating x  and y  as constants, we get

1 1 1 1 1 1
2 2 2 2 2 2

1 1 1
2 2 2

3 1 3 1
8

4 2 2 2

3
.

8

xyzf x y z x x y z
z

x y z

  

 

      
             



 

Notice that this derivative is defined for , 0x z    and 0y   . Further, you can show that 

all first-, second- and third-order partial derivatives are continuous for , , 0x y z  , so 

that the order in which we take the partial derivatives is irrelevant in this case. 

12.6 Tangent planes and Linear approximations 
 

Recall that the tangent line to the curve ( )y f x  at x a  stays close to the curve near 

the point of tangency. This enables us to use the tangent line to approximate values of 
the function close to the point of tangency (see Figure 1). 
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Figure1: Linear approximation. 

 

The equation of the tangent line is given by: ( ) '( )( )y f a f a x a    . We called this the 

linear approximation to ( )f x  at x a . 

In much the same way, we can approximate the value of a function of two variables 
near a given point using the tangent plane to the surface at that point. For instance, the 

graph of 
2 26z x y    and its tangent plane at the point (1,2,1)  are shown in Figure 2.  

 
 

Figure2: 
2 26z x y    and the tangent plane at (1,2,1) . 

 

Notice that near the point (1,2,1) , the surface and the tangent plane are very close 

together. 
Theorem1 

Suppose that ( , )f x y  has continuous first partial derivatives at ( , )a b . A normal 

vector to the tangent plane to ( , )z f x y at ( , )a b  is then   ( , ), ( , ), 1x yf a b f a b   . 

Further, an equation of the tangent plane is given by 

( , ) ( , )( ) ( , )( )x yz f a b f a b x a f a b y b       or 

( , ) ( , )( ) ( , )( )x yz f a b f a b x a f a b y b     . 

 
Remark1 
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 A vector normal to the plane is then given by the cross product: 

   (0, 1, ( , )) 0, ( , ),1 ( , ), ( , ), 1y x x yf a b f a b f a b f a b    . 

 The line orthogonal to the tangent plane and passing through the point

 , , ( , )a b f a b  is given by

( , )

( , )

( , )

x

y

x a t f a b

y b t f a b

z f a b t

 


 
  

 . 

This line is called the normal line to the surface at the point  , , ( , )a b f a b . 

 
Example1 (Finding Equations of the Tangent Plane and the Normal Line) 
 

Find equations of the tangent plane and the normal line to 
2 26z x y    at the point 

 1,2,1  . 

 
Solution 

For 
2 2( , ) 6f x y x y    , we have 2xf x  and 2yf y  .  This gives us 

(1,2) 2xf    and (1,2) 4yf   . So a normal vector is then  2, 4, 1    . 

An equation of the tangent plane is: 1 2( 1) 4( 2)z x y     . 

Equations of the normal line are 

1 2

2 4 , .

1

x t

y t t

z t

 


  
  

 

A sketch of the surface, the tangent plane and the normal line is shown in Figure 3. 

 
 

Figure3: Surface, tangent plane and normal line at the point  1,2,1 . 

 
 
 
Example2 (Finding Equations of the Tangent Plane and the Normal Line) 
 

Find equations of the tangent plane and the normal line to 

2
3 3 x

z x y
y

    at the point 

 2,1,13  . 
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Solution 

Here, 
2 2

3x

x
f x

y
   and 

2
2

2
3y

x
f y

y
  , so that (2,1) 12 4 16xf     and

(2,1) 3 4 1yf     . So a normal vector is then  16, 1, 1   . 

An equation of the tangent plane is: 13 16( 2) ( 1).z x y       

Equations of the normal line are 

2 16

1 , .

13

x t

y t t

z t

 


  
  

 

A sketch of the surface, the tangent plane and the normal line is shown in Figure 4. 
 

 
 

 

Figure4: Surface, tangent plane and normal line at the point  2,1,13 . 

 


