12.1 Functions of several variables

Definition1

A function of two variables is a rule that assigns a real number $f(x, y)$ to each ordered pair of real numbers (x, y) in the domain of the function.
For a function f defined on the domain $D \subseteq \mathbb{R}^{2}$, we sometimes write $f: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ to indicate that f maps points in two dimensions to real numbers.

Likewise, a function of three variables is a rule that assigns a real number $f(x, y, z)$ to each ordered triple of real numbers (x, y, z) in the domain $D \subseteq \mathbb{R}^{3}$ of the function. We sometimes write $f: D \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}$ to indicate that f maps points in three dimensions to real numbers.

For instance, $f(x, y, z)=\frac{\cos (x+z)}{x y}$ and $g(x, y, z)=x^{2} y-e^{x z}$ are both functions of the three variables x, y and z.

Example 1 (Finding the Domain of a Function of Two Variables)
Find and sketch the domain for
(a) $f(x, y)=x \ln y$.
(b) $g(x, y)=\frac{2 x}{y-x^{2}}$.

Solution:

(a) For $f(x, y)=x \ln y$, recall that $\ln y$ is defined only for $y>0$. The domain of f is then the set $D=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$, that is, the half-plane lying above the x-axis (see Figure 1).

Figure1: the domain of $f(x, y)=x \ln y$
(b) $g(x, y)=\frac{2 x}{y-x^{2}}$, note that g is defined unless there is a division by zero, which occurs when $y-x^{2}=0$. The domain of g is then $D=\left\{(x, y) \in \mathbb{R}^{2} \mid y \neq x^{2}\right\}$, which is the entire $x y$-plane with the parabola $y=x^{2}$ removed (see Figure 2).

Figure2: the domain of $g(x, y)=\frac{2 x}{y-x^{2}}$
Example 2(Finding the Domain of a Function of Three Variables)
Find and describe in graphical terms the domains of
(a) $f(x, y, z)=\frac{\cos (x+z)}{x y}$.
(b) $g(x, y, z)=\sqrt{1-x^{2}-y^{2}-z^{2}}$.

Solution

(a) For $f(x, y, z)=\frac{\cos (x+z)}{x y}$, there is a division by zero if $x y=0$, which occurs if $x=0$ or $y=0$. The domain is then $D=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \neq 0 \& y \neq 0\right\}$, which is all of three-dimensional space, excluding the $y z$-plane $(x=0)$ and the $x z$-plane $(y=0)$. (b) Notice that for $g(x, y, z)=\sqrt{1-x^{2}-y^{2}-z^{2}}$ to be defined, you'll need to have $1-x^{2}-y^{2}-z^{2} \geq 0$, or $x^{2}+y^{2}+z^{2} \leq 1$. The domain of g is then the unit sphere of radius 1 centered at the origin and its interior (see Figure 3).

Figure3: the domain of $g(x, y, z)=\sqrt{1-x^{2}-y^{2}-z^{2}}$

Definition 2

The graph of the function $f(x, y)$ is the graph of the equation $z=f(x, y)$.
Example 3 (Graphing Functions of Two Variables)
Graph (a) $f(x, y)=x^{2}+y^{2}$ and (b) $g(x, y)=\sqrt{4-x^{2}+y^{2}}$.

Solution

(a) For $f(x, y)=x^{2}+y^{2}$, you may recognize the surface $z=x^{2}+y^{2}$ as a circular paraboloid. Notice that the traces in the planes $z=k>00$ are circles, while the traces in the planes $x=k$ and $y=k$ are parabolas. A graph is shown in Figure 4.

Figure 4: Graph of $z=x^{2}+y^{2}$
(b) For $g(x, y)=\sqrt{4-x^{2}+y^{2}}$, note that the surface $z=\sqrt{4-x^{2}+y^{2}}$ is the top half of the surface $z^{2}=4-x^{2}+y^{2}$ or $x^{2}-y^{2}+z^{2}=4$. Here, observe that the traces in the planes $x=k$ and $z=k$ are hyperbolas, while the traces in the planes $y=k$ are circles. This gives us a hyperboloid of one sheet, wrapped around the y-axis. The graph of $z=g(x, y)$ is the top half of the hyperboloid, as shown in Figure 5.

Figure 5: Graph of $z=\sqrt{4-x^{2}+y^{2}}$

Definition 3

A level curve of the function $f(x, y)$ is the (two-dimensional) graph of the equation $f(x, y)=c$, for some constant c. (So, the level curve $f(x, y)=c$ is a two-dimensional graph of the trace of the surface $z=f(x, y)$ in the plane $z=c$.)
A contour plot of $f(x, y)$ is a graph of numerous level curves $f(x, y)=c$, for representative values of c.

Example 4 (Sketching Contour Plots)
Sketch contour plots for (a) $f(x, y)=-x^{2}+y$ and (b) $g(x, y)=x^{2}+y^{2}$.
Solution
(a) First, note that the level curves of $f(x, y)$ are defined by $-x^{2}+y=c$, where c is a constant. Solving for y, you can identify the level curves as the parabolas $y=x^{2}+c$. A contour plot with $c=-4,-2,0,2$ and 4 is shown in Figure 6.

Figure 6: Contour plot $f(x, y)=-x^{2}+y$
(b) The level curves for $g(x, y)$ are the circles $x^{2}+y^{2}=c$. In this case, note that there are level curves only for $c \geq 0$. A contour plot with $c=1,4,7$ and 10 is shown in Figure7.

Figure 7: Contour plot $g(x, y)=x^{2}+y^{2}$

12.2 Limits of Functions in Several Variables

Definition 1 (Formal Definition of Limit)
Let f be defined on the interior of a circle centered at the point (a, b), except possibly at (a, b) itself. We say that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ if for every $\varepsilon>0$ there exists a $\delta>0$ such that $|f(x, y)-L|<\varepsilon$ whenever $0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta$. We illustrate the definition in Figure 1.

Figure 1: Limit of a Function of Two Variables

Remark 1

The definition of the limit of a function of three variables is completely analogous to the definition for a function of two variables. We say that $\lim _{(x, y, z) \rightarrow(a, b, c)} f(x, y, z)=L$, if we can make $f(x, y, z)$ as close as desired to L by making the point (x, y, z) sufficiently close to (a, b, c).

Example 1 (Finding a Simple Limit)
Evaluate $\lim _{(x, y) \rightarrow(2,1)} \frac{2 x^{2} y+3 x y}{5 x y^{2}+3 y}$.

Solution

First, note that this is the limit of a rational function (i.e., the quotient of two polynomials). Since the limit in the denominator is
$\lim _{(x, y) \rightarrow(2,1)} 5 x y^{2}+3 y=13 \neq 0$, we have $\lim _{(x, y) \rightarrow(2,1)} \frac{2 x^{2} y+3 x y}{5 x y^{2}+3 y}=\frac{14}{13}$.

Remark 2

- We can show that the limit of any polynomial always exists and is found simply by substitution.
- We can show that the limit of any rational function at a point in its domain always exists and is found simply by substitution.

Theorem 1

Iff (x, y) approaches L_{1} as (x, y) approaches (a, b) along a path P_{1} and $f(x, y)$
approaches $L_{2} \neq L_{1}$ as (x, y) approaches (a, b) along a path P_{2}, then
$\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ does not exist.

Remark 3

Unlike the case for functions of a single variable where we must consider left- and right-hand limits in two dimensions, instead of just two paths approaching a given point,
there are infinitely many (and you obviously can't check each one individually).
In practice, when you suspect that a limit does not exist, you should check the limit along the simplest paths first (Figure 2).

Figure 2: Various paths to (a, b)

Example 2 (A Limit That Does Not Exist)

Evaluate $\lim _{(x, y) \rightarrow(1,0)} \frac{y}{x+y-1}$.

Solution

First, we consider the vertical line path along the line $x=1$ and compute the limit as y approaches 00 . If $(x, y) \rightarrow(1,0)$ along the line $x=1$, we have
$\lim _{y \rightarrow 0} \frac{y}{1+y-1}=1$.
We next consider the path along the horizontal line $y=0$ and compute the limit as x approaches 1 . Here, we have $\lim _{x \rightarrow 1} \frac{0}{x+0-1}=0$
Since the function approaches two different values along two different paths to the point $(1,0)$, the limit does not exist.

Example 3 (A Limit that is the same along two paths but Does Not Exist)
Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$.

Solution

First, we consider the limit along the path $x=0$. We have $\lim _{y \rightarrow 0} \frac{0}{0^{2}+y^{2}}=0$.

Similarly, for the path $y=0$, we have $\lim _{x \rightarrow 0} \frac{0}{x^{2}+0^{2}}=0$.
Be careful; just because the limits along the first two paths you try are the same does not mean that the limit exists. For a limit to exist, the limit must be the same along all paths through $(0,0)$ (not just along two). Here, we may simply need to look at more paths.
Notice that for the path $y=m x$ with $m \in \mathbb{R}^{*}$, we have $\lim _{x \rightarrow 0} \frac{m x^{2}}{x^{2}+(m x)^{2}}=\frac{m}{1+m^{2}}$.
Since the limit along this path depends of m, the limit does not exist.
Example 4 (A Limit Problem Requiring a More Complicated Choice of Path)
Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$.

Solution

Notice that for the path $x=m y^{2}$ with $m \in \mathbb{R}$ (pass through the origin point $(0,0)$), we have

$$
\lim _{y \rightarrow 0} \frac{m y^{4}}{\left(m y^{2}\right)^{2}+y^{4}}=\frac{m}{m^{2}+1}
$$

Since the limit along this path depends of m, the limit does not exist (see Figure 3).

Figure 3: the surface of $z=\frac{x y^{2}}{x^{2}+y^{4}}$ for $-5 \leq x \leq 5$ and $-5 \leq y \leq 5$

Theorem 2

Suppose that $|f(x, y)-L| \leq g(x, y)$ for all (x, y) in the interior of some circle centered at (a, b), except possibly at (a, b).

$$
\text { If } \lim _{(x, y) \rightarrow(a, b)} g(x, y)=0 \text {, then } \lim _{(x, y) \rightarrow(a, b)} f(x, y)=L .
$$

Example 5 (Proving That a Limit Exists)

Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$.

Solution

As we did in earlier examples, we start by looking at the limit along several paths through $(0,0)$.
Along the path $x=0$, we have $\lim _{(0, y) \rightarrow(0,0)} \frac{0^{2} y}{0^{2}+y^{2}}=0$.
Similarly, along the path $y=0$, we have $\lim _{(x, 0) \rightarrow(0,0)} \frac{x^{2} .0}{x^{2}+0^{2}}=0$.
Further, along the path $y=m x$ (with m a real number), we have

$$
\lim _{(x, m x) \rightarrow(0,0)} \frac{x^{2} m x}{x^{2}+(m x)^{2}}=\lim _{x \rightarrow 0} \frac{m x}{1+m^{2}}=0 .
$$

We know that if the limit exists, it must equal 0 . After simplifying the expression, there remained an extra power of x in the numerator forcing the limit to 0 . To show that the limit equals 0 , consider $|f(x, y)-0|=\left|\frac{x^{2} y}{x^{2}+y^{2}}\right|$.
Notice that without the y^{2} term in the denominator, we could cancel the x^{2} terms.
Since $x^{2}+y^{2} \geq x^{2}$, we have that for $x \neq 0,|f(x, y)-0|=\left|\frac{x^{2} y}{x^{2}+y^{2}}\right| \leq\left|\frac{x^{2} y}{x^{2}}\right| \leq|y|$.
Since $\lim _{(x, y) \rightarrow(0,0)}|y|=0$, Theorem 2 gives us $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}=0$, also.

12.3 Continuity of functions in two or three variables

Definition 1

Suppose that $f(x, y)$ is defined in the interior of a circle centered at the point (a, b).
We say that f is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.
If $f(x, y)$ is not continuous at (a, b), then we call (a, b) a discontinuity of f.
We say that a function $f(x, y)$ is continuous on a region R if it is continuous at each point in R.

Remark 1

- The definition of the continuity of a function of three variables is completely analogous to the definition for a function of two variables:
Suppose that $f(x, y, z)$ is defined in the interior of a sphere centered at (a, b, c). We say that f is continuous at (a, b, c) if $\lim _{(x, y, z) \rightarrow(a, b, c)} f(x, y, z)=f(a, b, c)$

If $f(x, y, z)$ is not continuous at (a, b, c), then we call (a, b, c) a discontinuity of f.

- Notice that because we define continuity in terms of limits, we immediately have the following results, which follow directly from the corresponding results for limits. If $f(x, y)$ and $g(x, y)$ are continuous at (a, b), then $f+g, f-g$ and $f \cdot g$ are all continuous at (a, b). Further, $\frac{f}{g}$ is continuous at (a, b), if, in addition, $g(a, b) \neq 0$.
Example 1(Determining Where a Function of Two Variables Is Continuous)
Find all points where the given function is continuous:
(a) $f(x, y)=\frac{x}{x^{2}-y}$.
(b) $g(x, y)=\left\{\begin{array}{c}\frac{x^{4}}{x\left(x^{2}+y^{2}\right)},(x, y) \neq(0,0) \\ 0, \quad(x, y)=(0,0)\end{array}\right.$.

Solution

- For (a), notice that $f(x, y)$ is a quotient of two polynomials (i.e., a rational function) and so, it is continuous at any point where we don't divide by 0 . Since division by zero occurs only when $y=x^{2}$, we have that f is continuous at all points (x, y) with $y \neq x^{2}$.
- For (b), the function g is also a quotient of polynomials, except at the origin. Notice that there is a division by 0 whenever $x=0$. We must consider the point $(0,0)$ separately, however, since the function is not defined by the rational expression there. We can verify that $\lim _{(x, y) \rightarrow(0,0)} g(x, y)=0=g(0,0)$ using the following string of inequalities. Notice that for $(x, y) \neq(0,0)$,

$$
|g(x, y)|=\left|\frac{x^{4}}{x\left(x^{2}+y^{2}\right)}\right| \leq\left|\frac{x^{4}}{x\left(x^{2}\right)}\right|=|x|
$$

and $|x| \rightarrow 0$ as $(x, y) \rightarrow(0,0)$. We deduce that $\lim _{(x, y) \rightarrow(0,0)} g(x, y)=0=g(0,0)$, so that g is continuous at $(0,0)$. Putting this all together, we get that g is continuous at the origin and also at all points (x, y) with $x \neq 0$.

Theorem 1

Suppose that $f(x, y)$ is continuous at (a, b) and $g(x)$ is continuous at the point $f(a, b)$. Then $h(x, y)=g \circ f(x, y)=g(f(x, y))$ is continuous at (a, b).

Example 2 (Determining Where a Composition of Functions Is Continuous)
Determine where $f(x, y)=e^{x^{2} y}$ is continuous?

Solution

Notice that $f(x, y)=g(h(x, y))$, where $g(t)=e^{t}$ and $h(x, y)=x^{2} y$. Since g is continuous for all values of t and h is a polynomial in x and y (and hence continuous on \mathbb{R}^{2}), it follows from Theorem 1 that f is continuous on \mathbb{R}^{2}.

Example 3

Determine where $h(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$ is continuous ?

Solution

- The function $f(x, y)=\frac{y}{x}$ is a rational function and therefore continuous except on the line $x=0$.
- The function $g(t)=\tan ^{-1} t$ is continuous everywhere.

It follows from Theorem 1 that h is continuous on $\mathbb{R}^{2} \backslash\{x=0\}$ (see Figure1).

Figure 1: the figure shows the break in the graph of $h(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$ above the y axis

Example 4

Determine where $f(x, y)=\left\{\begin{array}{c}\frac{3 x^{2} y}{x^{2}+y^{2}},(x, y) \neq(0,0) \\ 0, \quad(x, y)=(0,0)\end{array}\right.$ is continuous?

Solution

We know f is continuous $\operatorname{for}(x, y) \neq(0,0)$. Since it is equal to a rational function there.
Also we have $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}=0=f(0,0)$. Thus f is continuous at $(0,0)$.
So f is continuous on \mathbb{R}^{2} (see Figure 2).

Figure2: Graph of $z=f(x, y)=\left\{\begin{array}{c}\frac{3 x^{2} y}{x^{2}+y^{2}},(x, y) \neq(0,0) \\ 0, \quad(x, y)=(0,0)\end{array}\right.$.

Example 5

Determine where $f(x, y)=\left\{\begin{array}{c}\frac{x y}{x^{2}+y^{2}},(x, y) \neq(0,0) \\ 0, \quad(x, y)=(0,0)\end{array}\right.$ is continuous?

Solution

We know f is continuous $\operatorname{for}(x, y) \neq(0,0)$. Since it is equal to a rational function there. Also we have $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exist. Thus f is not continuous at $(0,0)$. So f is continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$ (see Figure3).

Figure3: Graph of $z=f(x, y)=\left\{\begin{array}{c}\frac{x y}{x^{2}+y^{2}},(x, y) \neq(0,0) \\ 0, \quad(x, y)=(0,0)\end{array}\right.$.

Example 6 (Continuity for a Function of Three Variables)

Find all points where $f(x, y, z)=\ln \left(9-x^{2}-y^{2}-z^{2}\right)$ is continuous.

Solution

Notice that $f(x, y, z)$ is defined only for $9-x^{2}-y^{2}-z^{2}>0$. On this domain, f is a composition of continuous functions, which is also continuous. So, f is continuous for $x^{2}+y^{2}+z^{2}<9$, which you should recognize as the interior of the sphere of radius 3 centered at ($0,0,0$).

