Connective Tissue Part 1

Descriptive Histology 272

29/09/2019

Gastrulation (gas"troola'shun) is the process by which the epiblast and hypoblast layers of the bilaminar embryonic disc are transformed into the trilaminar embryonic disc, consisting of the three germ layers (ectoderm, mesoderm and endoderm).

Three Primary Germ Layers

https://www.youtube.com/watch?v=3AOoikTEfeo

https://www.youtube.com/watch?v=w9tJ7UiLrQs

https://www.khanacademy.org/testprep/mcat/cells/embryology/a/human-embryogenesis

https://embryology.med.unsw.edu.au/embryology/images/3/3e /Human_development_001.mp4

Connective tissue

Connective tissues provide a matrix that supports and physically connects other tissues and cells together in organs.

The interstitial fluid of connective tissue gives metabolic support to cells as the medium for diffusion of nutrients and waste products.

Source: Mescher AL: Junqueira's Basic Histology: Text and Atlas, 12th Edition: http://www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

matrix

Extra Cellular Matrix (ECM)

Extra Cellular Matrix composed of different combinations of protein fibers (collagen, and elastic fibers) and ground substance which is a complex of anionic, hydrophilic, macromolecules include the following

- Glycosaminoglycans (or GAGs),
- Proteoglycans, and
- Multiadhesive glycoproteins.

Common embryonic origin:	Mesenchyme			
Cellular descendants:	Fibroblast	Chondroblast	Osteoblast	Hematopoietic stem cell
	Fibrocyte	Chondrocyte	Osteocyte	Blood cells* (and macrophages)
Class of connective tissue resulting;	Connective tissue proper	Cartilage	Osseous (bone)	Blood
Subclasses:	1. Loose connective tissue	1. Hyaline cartilage	1. Compact bone	Blood cell formation and differentiation are quite complex.
-	Types: Areolar	2. Fibrocartilage	2. Spongy (cancellous)	Details are provided
0	Reticular	3. Elastic cartilage	bone	in chapter ro.
	 Dense connective tissue 			
	Types: Regular Irregular Elastic			

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Copyright © The Beniamin/Cummings Publishing Co., Inc., from Campbell, Mitchell, Reece Biology: Concepts and Connections.

Copyright © 2009 Pearson Education, Inc.

Loose Connective tissue consists of

- 1. Fibers
 - Collagen
 - Elastin
 - Reticular

2. Cells

- Fibroblasts
- Plasma Cells
- Adipocytes
- Mast Cells, and
- Macrophages

© BENJAMIN/CUMMINGS

Loose Connective Tissue

D

Reticular connective tissue

Dense Connective Tissue

Dense Connective Tissue:

Dense regular connective tissue Tendons and ligaments

Dense irregular connective tissue Dermis of skin, submucosa of digestive tract

Dense regular Connective Tissue

D

Dense Irregular Connective Tissue

Adipose Tissue is a loose fibrous connective tissue that is packed with many fat cells (called "adipocytes").

Locations of adipose tissue include:

- Subcutaneous layer deep to skin;
- Around the heart;
- Around the kidneys;
- Yellow marrow of the long bones
- Padding around the joints
- Inside the eye-socket, posterior to the eyeball.

The Functions of adipose tissue

- Adipose tissue acts as an insulating layer, helping to reduce heat loss through the skin.
- It also has a protective function, providing mechanical protection ("padding") and support around some of the major organs, e.g. kidneys.
- Adipose tissue is also a means of energy storage.
 Food that is excess to requirements is converted into fat and stored within adipose tissue in the body.

Functions of Connective Tissue

Most connective tissue is serving several vital functions simultaneously, including –

- transport of nutrients and metabolites,
- immunological defense,
- mechanical support.

After injury, connective tissue is instrumental in tissue repair, specifically in scar formation.

Additional functions found in specialized sites include

- reserve energy storage (as fat),
- heat generation (brown fat),
- hemopoiesis (blood cell formation).

https://www.youtube.com/watch?v=KkqEwua_pmc

Explain the structure, function and differences between the fibers of connective tissue?

Key words:

- Collagen fiber
- Elastin fiber
- Reticular fiber