REVISTA DE LA UNION MATEMATICA ARGENTINA
Vol. 60, No. 2, 2019, Pages 417-430

Published online: October 1, 2019
https://doi.org/10.33044/revuma.v60n2a09

CONFORMAL AND KILLING VECTOR FIELDS ON REAL
SUBMANIFOLDS OF THE CANONICAL COMPLEX
SPACE FORM C™

HANAN ALOHALI, HAILA ALODAN, AND SHARIEF DESHMUKH

ABSTRACT. In this paper, we find a conformal vector field as well as a Killing
vector field on a compact real submanifold of the canonical complex space form
(C™, J,(,)). In particular, using immersion 9 : M — C™ of a compact real
submanifold M and the complex structure J of the canonical complex space
form (C™, J,(,)), we find conditions under which the tangential component of
J is a conformal vector field as well as conditions under which it is a Killing
vector field. Finally, we obtain a characterization of n-spheres in the canonical
complex space form (C™, J, (,)).

1. INTRODUCTION

Conformal vector fields and Killing vector fields play a vital role in geometry
of a Riemannian manifold (M, g) as well as in physics (cf. [I3]). In geometry,
these vector fields are used in characterizing spheres among compact or complete
Riemannian manifolds (cf. [4]-[12]). A Killing vector field is said to be nontrivial
if it is not parallel. The existence of a nontrivial Killing vector field on a compact
Riemannian manifold constrains its geometry as well as its topology: it does not
allow the Riemannian manifold (M, g) to have nonpositive Ricci curvature and if
(M, g) is positively curved, its fundamental group has a cyclic subgroup (cf. [2]). In
most of the cases, a conformal vector field or a Killing vector field on a Riemannian
manifold (M, g) is derived through treating it as a submanifold of a Euclidean
space. For example, a unit sphere S™ admits a conformal vector field that is
tangential component of a constant vector field on the ambient Euclidean space
R™*+1. Similarly, an odd dimensional unit sphere $?™~! with unit normal vector
field N as a hypersurface of the canonical complex space form (C™, J, (,)) admits
a Killing vector field £ = —JN, where J is the canonical complex structure on
C™. Therefore it is an interesting question to find a conformal vector field as well
as a Killing vector field on a real submanifold of a canonical complex space form
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(C™, J,(,)). A similar study is taken up in [I] for submanifolds in a Euclidean
space. Given an n-dimensional real submanifold (M, g) of the canonical complex
space form (C™,J,(,)) with immersion ¢ : M — C™, we treat ¢ as the position
vector field of points on M in C™, and consequently we have the expression Jiy =
v+ N, where v is the tangential component and N is the normal component of J
on M. This gives a globally defined vector field v on the real submanifold M.

In this paper, we study the above mentioned question for real submanifolds of
the canonical complex space form (C™, J,(,)) and obtain conditions under which
the vector field v is a conformal vector field (Theorems or a Killing vector
field (Theorems [43). We also use this vector field v to find a characterization
of a sphere S™ (¢) of constant curvature ¢ in the canonical complex space form
(C™,J,(,)) (cf. Theorem [5.1). It is worth noting that the existence of the Killing
vector field v not only restricts the geometry and topology of the real submanifold
M but also has an influence on the dimensions of both the real submanifold and the
ambient canonical complex space form (C™, J,(,)) (cf. Corollary . Finally, at
the end of this paper, we give an example of a real submanifold of (C™,J,(,)) on
which v is a nontrivial conformal vector field (that is, v is not Killing) and another
example of a real submanifold on which v is nontrivial Killing vector field (that is,
non-parallel).

2. PRELIMINARIES

Let M be an immersed n-dimensional real submanifold of the canonical com-
plex space form (C™, J,(,)), J and (,) being the canonical complex structure and
the Euclidean metric on C™ respectively. We denote by X (M) the Lie algebra of
smooth vector fields on M, by T' (v) the space of sections of the normal bundle
v of M, and by V and V the Riemannian connections on C™ and on M respec-
tively. Then we have the following Gauss and Weingarten equations for the real
submanifold M (cf. [3]):

VxY =VxY +h(X,Y), VxN=—-AyX + V%N, (2.1)

X, Y € X(M), N € T'(v), where h is the second fundamental form, Ay is the
Weingarten map with respect to the normal N € T'(v), which is related to the
second fundamental form h by

g(ANXvY):<h(XvY)’N>v X,YEX(M),

and V= is the connection in the normal bundle v. The curvature tensor field R of
the real submanifold M is given by

R(X,Y)Z = Ah(Y,Z)X —Ah(X’Z)YV, XY, Z e X(M)

The Ricci tensor field of the real submanifold M is given by

Ric (X,Y) =n9(h(X,Y),H)—Zg(h(X,ei)yh(Y,ei)),
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where {e1,...,e,} is a local orthonormal frame on M and
1 n
H=—> hlee;
nz_zl (es,€;)

is the mean curvature vector field of the real submanifold M.
The Ricci operator @ is a symmetric operator defined by
Ric(X,Y) = ¢(Q(X),Y), X,Y € X(M).
Let ¥ : M — C™ be the immersion of the real submanifold M. Then we set
Jy=v+N,

where v is the tangential component and N is the normal component of J1.
Now, define skew symmetric tensors ¢ and G, and the tensors ¥ and F as
follows:

JX = pX + FX, X eX(M),
JN =UN+GN, N eT(v),

where ¢ X(M) — X(M), F:X(M)— T(v),

U:T'(v) — X(M), G:T(v)—T(v),
that is, o X, WN are the tangential components of JX and JN respectively and
FX, GN are the normal components of JX and JN respectively.
Define a symmetric tensor C' of type (1,1) by C'(X) = AxX, X € X (M), and
a smooth function £ : M — R on the real submanifold M by E = <H, N) Then

we have
trC =nk.

Lemma 2.1. Let M be an n-dimensional real submanifold of the canonical complex
space form (C™,J,(,)). Then

Vxv=9X+C(X) and V%N =FX —h(X,v).
Proof. As J is a complex structure, we have
VxJi = JVxy,
which in view of equation gives
Vxv+h(X,0) + VN - C(X) =X +FX, X ¢cX(M).
Equating the tangential and the normal components we get the result. O

Lemma 2.2. Let M be an n-dimensional real submanifold of the canonical complex
space form (C™,J,(,)). Then for X,Y € X (M) and N €T (v), we have

(V) (X,Y) = Apy X + U(h(X,Y)), where (V) (X,Y) = VxpY — oVxY
(DxF)Y =G (h(X,Y)) — h(X,9Y), where (DxF)Y = VxFY — F(VxY)
(DxT) N = Agny X — pAnX, where (DxU)N =Vx¥ (N) -V (VxN)
(VXG) N = F (AnX) — h(X,¥(N)), where (VxG) N =VxGN -G (VxN).
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Proof. As J is parallel, we have
Vx (9Y + F (V) = J (VxY +h(X,Y)),
which in view of equation takes the form
(V) (X,Y) + (DxF)Y = Apy X + ¥ (h(X,Y)) + G (h(X,Y)) = h (X, ),
which on equating the tangential and the normal components gives the first two

relations. Similarly, on using (vXJ ) N =0, we get the remaining two. (]

Using Lemma [2.1} we find the divergence of the vector field v as divo = nE and
consequently, we have the following:

Lemma 2.3. Let M be an n-dimensional compact real submanifold of the canonical
complex space form (C™,J,(,)). Then

/EdV:O.

M
The following lemma is an immediate consequence of Lemma [2.1]
Lemma 2.4. Let M be an n-dimensional real submanifold of the canonical complex
space form (C™, J,{(,)). Then the tensor C satisfies
(1) (VO) (X,Y) = (VO) (Y, X) = R(X,Y) v + (Vo) (Y, X) — (V) (X, Y),
(it) 32— (VCO) (ei,ei) =nVE+Q (v) + 32,1, (Vo) (es, i),
where (VC) (X,Y)=VxC((Y)-C(VxY), X, Y e€X(M), and{e1,...,en} isa
local orthonormal frame of M.
Lemma 2.5. Let M be an n-dimensional real submanifold of the canonical complex
space form (C™, J,{(,)). Then the skew symmetric tensor ¢ satisfies
(i) (Vo) (X,Y) = (Vo) (Y, X) = Apy X — ApxY,
(it) 32—y (V) (eise)) =nV (H) + 32, Ape,éi,
where X, Y € X(M) and {e1,...,en} is a local orthonormal frame of M.
Proof. (i) Using Lemma we get
(Vo) (X, Y) = (V) (Y, X) =Apry X + ¥ (h(X,Y)) — ApxY — T (R (Y, X))
=Apy X — ApxY, X,YG%(M)
(ii) As trp = 0, we have

n

> 9(Ve) (X ei) e) =0,
i=1
which gives

> {9 ((Vo) (er. X)) +9 (Are, Xoe) — g (Apxessei)} =0,

that is,

n

> {9 (= (Vo) (eires) + Apeiei, X) + g (n¥ (H), X)} = 0.

i=1
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Hence,
n

Z(V(p) (ei, ;) =n¥ (H)JFZAFeiei- O

i=1
Lemma 2.6. Let M be an n-dimensional compact real submanifold of the canonical
complex space form (C™,J,(,)). Then

[ (Ricw,) + 1 = ol ~ n2E7) av =
M
Proof. Using Lemmas [2.4) and we get

diviov = = g (Ap(e,eiv) —ng (¥ (H),v) — [lo]?, (2.2)
=1

div Cv = Ric (v,v) + nv (E) +ng (¥ (H) ,v) + ||C|* + Zg (Ape,€i,0),
i=1

and

div Ev = v (E) +nE?. (2.3)
Using these equations, we conclude that

div Cv = Ric (v, v) + ndiv Ev — n?E? — div v — |Jo||* + ||C|1?,

which on integration gives the result. O
Lemma 2.7. Let M be an n-dimensional compact real submanifold of the canonical

complex space form (C™,J,(,)). If v satisfies Av = —Xv for a constant X > 0,
where /\ is the Laplace operator acting on smooth vector fields on M, then

/{Ric (v,0) + A Jo)® = 2lol% - n2E2} dv = 0.
M
Proof. Using the definition of the operator C' and Lemma [2.1] we have
(VC)(X,Y)=VxCY —CVxY
=Vx (Vyv—¢Y) = Vy,vv+ oVxY
=VxVyv—Vy,vv— (V) (X,Y), XY eX(M).

Taking a local orthonormal frame {eq,...,e,}, the above equation leads to

n n n

> (VO)(eier) = Y (Ve Ver = Vv, ev) = Y (Vo) (ei, 1)
=1 i=1 =1

=ALv—» (Vo) (e ei)

1=

= —\v— Z (Vo) (i, eq),

=1

S =

where we used the definition of the Laplace operator acting on smooth vector fields.
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Now, using Lemma (ii) and Lemma we conclude

—X|v||* = Ric (v,v) + nv (E) + 2g (Z AF(Ei)ei,v> +2ng (¥ (H),v),
i=1

and this equation together with equations (2.2)) and (2.3)) by integration gives

/{Ric(v,v)+>\||v|\272||ga||2fn2E2}dV:0. O
M

3. SUBMANIFOLDS WITH v AS A CONFORMAL VECTOR FIELD

Recall that a smooth vector field £ on a Riemannian manifold (M, g) is said to
be a conformal vector field if the flow of £ consists of conformal transformations
of the Riemannian manifold (M,g). Equivalently, a smooth vector field £ on a
Riemannian manifold (M, g) is a conformal vector field if there exists a smooth
function p on M that satisfies L¢g = 2pg, where £L¢g is the Lie derivative of g
with respect to £&. The smooth function p is called the potential function of the
conformal vector field £&. A conformal vector field £ is said to be a non trivial
conformal vector field if the potential function p is not a constant. In this section,
we find conditions under which the vector field v on the real submanifold M of the
canonical complex space form (C™, J, (,)) is a conformal vector field.

Theorem 3.1. Let M be an n-dimensional compact real submanifold of the canon-
ical complex space form (C™, J,(,)). If the Ricci curvature Ric(v,v) of M satisfies

Ric (v,v) > n(n—1) E* + ||<p||2 ,
then v is a conformal vector field on M.
Proof. Using Lemma we have
/ (Ric (v.0) ~n (n— 1) B2 ~ [lgl* + €| ~nE*) v =0,
M

which together with the condition in the hypothesis and Schwarz’s inequality
|C|I> > nE? gives

Ric (v,0) =n(n—1)E*> + [l¢||> and [|C|]> = nE>.

The second equality holds if and only if C = EI, and consequently, the first
equation in Lemma 2.1 reads

Vxv=EX+¢X, XeX(M).
This equation proves that
(£09) (X,Y) =2Eg(X,Y), XY €X(M),

that is, v is a conformal vector field with potential function E. O
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Theorem 3.2. Let M be an n-dimensional compact real submanifold of the canon-
ical complex space form (C™, J,(,)). If the vector field v is an eigenvector of the
Laplace operator, Av = —\v, and the Ricci curvature Ric(v,v) satisfies

Ric (v,v) > n(n—2) B+ \|v|?,
then v is a conformal vector field.

Proof. Lemma [2.6]implies
= el do= [ (~Ric(o,0) ~ €17 + n2E2) av.
M M

which in view of Lemma [2.7] gives

/ (Ric (v.0) = Aol +2[|CI* ~ n?E?) v =0,
M
that is,

/ (Ric (v,0) = Av]? =n(n—2)E*+2(|C|* - nEQ)) av =0.
M
Thus, using the hypothesis and Schwarz’s inequality ||C ||2 > nE? we get
Ric (v,0) =n(n—2)E>+ X|v|> and |C|? = nE?,

that is, C = EI. Hence, by Lemma [2.I] we get that v is a conformal vector
field. O

4. SUBMANIFOLDS WITH v AS A KILLING VECTOR FIELD

Recall that a smooth vector field £ on a Riemannian manifold (M, g) is said to
be a Killing vector field if the flow of ¢ consists of isometries of the Riemannian
manifold (M, g). Equivalently, a smooth vector field £ on a Riemannian manifold
(M, g) is a Killing vector field if £,g = 0. In this section, we find conditions under
which the vector field v on the real submanifold M of the canonical complex space
form (C™, J,(,)) is a Killing vector field.

Theorem 4.1. Let M be an n-dimensional compact real submanifold of the canon-
ical complex space form (C™, J, (,)). Suppose that v satisfies

(i) v is an eigenvector of the Laplace operator with eigenvalue —\,
(ii) Ric (v,v) > n(n—1)E2 + |¢|?,
2 2
(iit) [lell” = A"
Then v ts a Killing vector field.

Proof. The condition (ii), in view of Theorem implies that v is a conformal
vector field with C' = ET and

Ric(v,v) = n(n — 1)E> + ||¢||*. (4.1)
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Now, the condition (i), Av = —Av, combined with Lemma and the above
conclusion, gives

[ (o0 = 0B P 4 Aol - 20l n2E2) a =,
M
that is,
[ (1 = Aol + n?) av —o. (42)
M
Using condition (iii), we conclude that £ = 0 and consequently C = 0. Thus,

Lemma [2.1] gives
Vxv=pX, XeX(M),
that is,
(£,9)(X,Y)=0, XY eX(M).
Hence, v is a Killing vector field. O

Corollary 4.2. Let M be an n-dimensional compact real submanifold of the canon-
ical complex space form (C™, J, (,)), with positive sectional curvature. Suppose that
v satisfies

(i) v is an eigenvector of the Laplace operator with eigenvalue —\, that is, Av =
—Av,
(ii) Ric (v,v) > n(n—1)E2+ |¢|?,
2 2
(iit) [lell” = A"
Then either n is odd or m > n.
Proof. Notice that n < 2m. Suppose the conditions (i)—(iii) hold. Then equation
(@.2) implies E = 0, A ||v||> = ||¢||?>, and combining these with equation (&.1]), we
get
. 2 2
Ric (v,v) = AJv]|” = [lel|” . (4.3)
Now, consider the smooth function f = 1 |[v]|?, which by Lemma and £ =0,
gives the gradient Vf = —pv, and we compute

Af = —Zg(veig@v,ei) = —Zg(veivvv,ei). (4.4)
i=1 i=1

Note that E = 0, as in the proof of Theorem (4.1} we get C' = 0 and thus, an easy
computation on using Lemma 2.1 with £ = 0 gives

R(X,v)v = VxV,v—¢?X,
that is,
R(X,v,0,X) = g(Vx Vv, X) + [0 X]".
This equation in view of equation (4.4)) implies
Ric (v,0) = =Af + ¢,

which together with equation (4.3) gives Af = 0. Hence, f is a constant, that is,
v has constant length and consequently, pv = 0.
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If v = 0, then Lemma implies ¢ = 0, that is, Ji» = N, which on taking
covariant derivative and using Lemma gives JX = FX, X € X(M), and we
get that M is a totally real real submanifold of C™. Hence, in this case we have
2n < 2m.

If v # 0, as v is a Killing vector field of constant length v (p) # 0 for each
p € M, and as M is compact connected with positive sectional curvature, then
M is odd-dimensional (for on an even-dimensional compact connected manifold of
positive sectional curvature a Killing vector field has a zero). O

Theorem 4.3. Let M be an n-dimensional compact real submanifold of the canon-
ical complex space form (C™, J,(,)). Suppose that v # 0 is not closed and satisfies
v =0, with Ricci curvature

Ric (v,v) > n(n—1)E> + ¢|*.
Then v is a Killing vector field of constant length.

Proof. As in Theorem the condition Ric (v,v) > n(n — 1) E% + ||¢||® implies
that v is a conformal vector field and the following hold:

Vxv=pX+EX,X€X(M) and Ric(v,0)=n(n—1)E>+|¢|*>. (4.5)
Using the first equation in (4.5)), we get
R(X,Y)v = X(E)Y —Y(E)X + (Vo) (X,Y) = (V) (Y, X),
which gives
Ric(Y,v) = —=(n = 1)Y(E) — g (K > (V) (e, ei)> ;
i=1
that is,

i=1
Now, taking divergence on both sides of the equation pv = 0, in view of equation

(4.5), we have

Ric(v,v) = —=(n — 1)v(E) — g (v, Z (V) (e, ei)> . (4.6)

—lel* -9 (vz (V) (ez‘,ei)) =0, (4.7)

i=1
and inserting this equation in (4.6)) leads to

. 2
Ric(v,v) = =(n — )v(E) + (o],
which on comparing with the second equation in (4.5)) implies

v(E) = —nE?. (4.8)
Also, using @v = 0 in the first equation in (4.5) gives
VU’U = EU, (49)

which in view of equations (4.5) and (4.8)) leads to
R(X,v)v =X (E)v+nE*X — (Vy) (v, X) — BpX — ¢*X,
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which on taking the inner product with v and using ¢(V,v) = 0 (outcome of
equation ([L.9)), gives X (E) |[v|* + nE2g(X,v) = 0, that is,
[v]? VE = —nE?v. (4.10)

Hence, as v # 0, we get ¢(VE) = 0, and taking divergence on both sides of this
equation leads to div (p(VE)) = 0, that is,

g (VEaZ (VSO) (61'761')) = 07

i=1
which in view of equation (4.10)) implies

—nE?%g (v, Z (Vo) (e, ei)> =0.

i=1
Using (4.7)) in the above equation, we get
2
nE?||p|” =0,

and as v is not closed, from above equation, we conclude that £ = 0, and thus
equation (4.5)) reads, Vxv = ¢X, X € X (M), which proves that v is a Killing
vector field.
Moreover, if f = 1 |v]|?, then we have
X(f)=9(pX,v)=0, XeX(M),

that is, v has constant length. O

5. A CHARACTERIZATION OF SPHERES

In this section we consider an n-dimensional compact real submanifold M of the
canonical complex space form (C™, J, (,)), and prove the following characterization
for the spheres.

Theorem 5.1. Let M be an n-dimensional compact Einstein submanifold of the
canonical complex space form (C™,J,(,)), n > 2. Suppose that v satisfies

(i) v is an eigenvector of the Laplace operator with eigenvalue —\ < %,

(ii) Ric (v,v) > n(n—1)E2 + ||p||*, where S is the constant scalar curvature.
Then M is isometric to the sphere S™ (c), for a constant ¢ > 0.

Proof. Using Theorem [3.1], we get that v is a conformal vector field on M and
equation (4.5) holds. Thus, using the first equation in (4.5]), we conclude

(V) (X,Y) = VxVyv — Vy,yv— X (B)Y, X,Y €X(M), (5.1)
where (Vo) (X,Y) = Vxpy — ¢VxY. Taking sum in the above equation over a
local orthonormal frame {ey,...,e,} on M and using Av = —Av, we get
n
(Vo) (es,e;) = Av—VE =—-X\v— VE. (5.2)

=1
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Also, using equation (5.1)), we find
(Vo) (X,Y) = (Vo) (Y, X) = R(X,Y)v+ Y (E) X - X (E)Y,

which on choosing X = e; and taking the inner product with e; and adding these
n equations corresponding to a local orthonormal frame {ey,...,e,} on M, we get

- (Z (Vo) (e5,e5) Y) = Ric(Y,v) + (n—1)Y (E), (5.3)

i=1
where we used the fact that ¢ is skew-symmetric and consequently Y g(¢e;, e;) = 0,
and that g (V) (X,Y),Z) = —g((Vy) (X, Z),Y). Combining equations (5.2))
and (|5.3)), we arrive at

Q)= —(n—-2)VE. (5.4)
Moreover, M being an Einstein manifold, Q (v) = %v, and thus using equation
(5.4) we get
VE = —Mv,
n(n — 2)
and as S is a constant, we have VE = —cv for a constant c¢. This leads to
Vx (VE)=—-cVxv=—c(EX + ¢X), (5.5)

that is, the Hessian of the smooth function F is given by
HE(XaY):_CEg(X7Y)_Cg(<)OX7Y)a7 X7Y€%(M)7
Hg (X7Y) — Hpg (KX) = QCg(QDYaX) :

Since the Hessian is symmetric, we get cg (pY, X) = 0, X,Y € X (M). However,
condition (i) in the hypothesis does not allow ¢ = 0 (as ¢ = 0 implies S = nA);
consequently we get ¢ = 0, which changes equation ([5.5) to

Vx (VE)=—-cEX, XeX(M),
where ¢ is a positive constant by condition (i). Hence, by Obata’s Theorem
(cf. [I1]), we get that M is isometric to S™ (c). O
6. EXAMPLES

In this section, we give two examples of real submanifolds of a canonical complex
space form (C™, J, (,)), one admitting a conformal vector field that is not Killing
and other admitting a Killing vector field that is not parallel.

(i) Consider
1
5% (e) = {90 = (x1,...,%an41) € R fla]| = 7 © > 1}

and an immersion ¢ : $?*(¢) — C™*1 defined by
/ 1
’(/J(S(,‘): <$1,---,$2n+1, 1_C> )
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which is clearly a smooth immersion. Observe that
T,(S*"(c)) = {X € B> : (X,p) =0} .

The two orthogonal unit normals Ny, Na for the real submanifold S*"(c) in C™*!
are given by

Ny — (_\/6_71331, Ve = 1mapgy,

1
Ny = (xlv"wan-‘rh 1_C>

Also, the standard complex structure J on C"*! gives

7)

1
JY = <_-Tn+27 sy —Topy1, —4 /1 — 27951, - ';xn+1> (6.1)

and it is easy to check that
(JP,N1) = Verppn and  (J, Na) = 0.
Expressing Ji = v + N, where v € X(5%"(c)), we get

v=JY—\CcTni1 <—\/c —1z1,...,—Vec— lzo,41, \}E> , (6.2)

that is,

/ 1
U= <_xn+27'-')_x2n+1a_ 1_2,1'1,-.-,./17“4_1

+ (\/ c? — Cx1Tn415-+45 V c? — Cln4+1T2n+1, _anrl)
1
2 /
— (\/02 — CTNTpgl — Tpg2, -,V —cxp g — /1 — =

V= Tpi1Tny2 + 21, ...,V 2 — CBpp1Tant1 + Tn, O> .

Now, using expressions of N1 and Ns it is straightforward to show that

An, =+vVe—1I and Ay, =-I,

Az =V —crppl.

This proves that the vector field v given by equation (6.3|) satisfies

£,9 =2V % — cxpiag,

that is, v is a conformal vector field. Note that this vector field is not a Killing
vector field on S?"(c). To verify the last assertion, we see from the last equation
that if v is Killing, z,4+1 = 0, and consequently equation gives that v = J.
Moreover, S?"(c) being an even-dimensional compact and connected manifold of

and consequently that
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positive sectional curvature, there would exist a point p where (J¥)(p) = 0; using
this in equation (6.1]) we get ¢ = 1, a contradiction.

(ii) Consider the unit sphere S?"~! in R?" and an immersion 1 : S?"~1 — C™,
m > n, defined by
1/1(5017 ey Ty e ey xQn) = (xlv o3 Ton,Cly e 702m—2n)a

where ¢;, 1 < i < 2m — 2n, are constants and C™ is identified with R?>™. A
local frame of orthonormal normal vector fields for this immersion is given by
{Nh No, ..., N2m72n+1}a where

Ny = (21,...,290,0,...,0)
and
N, =(0,...,0,1,0,...,0), 1 at the (2n 4+ )" place, 2 < a < 2m — 2n + 1.
Consider a complex structure J on C™ defined by
JE = (—E(x2), E(x1), —E(x4), E(x3), ..., —E(x2m), F(tam-1)), E € X(C™),

which makes (C™,J,(,)) a Kaehler manifold. Now set J¢ = v + N, where v €
X(S?"~1) is the tangential component and N is the normal component of Ji. We
get

J = (—$27 Lly-evy —T2n,TL20n—15, —C2,C1y-.., —C2m—2n, C2m—2n—1) , (6-4)
<J¢’N1>207 <Jw7NOl>:_(_1)ach 2§a§2m—2n—|—1,

and consequently,
2m—2n-+1

N: Z <N’ NO’>N = (05"'a05 7627017~"7762m—2n362m—2n—1) . (65)
a=1

Thus, equations (6.4)) and (6.5)) imply
v = J’w - N = (—xg, TLlyyeooy —Z'Qn,l'gn,ho, NN 70) (66)

Let V and V be the Euclidean connection on C™ and the Riemannian connection
on the real submanifold (S?"~!, g) with respect to the induced metric g. Then

using equation we get
Vxv=Vxv—h(X,v)
= (—X(l‘g),X(]}l), ey —X(Z‘Qn),X(xgn_l),O, e ,O) — h(X, U),

X € X(8?"~1), where h is the second fundamental form. Taking the inner product
with Y € X(5?"~!) in the above equation we arrive at

9(Vx0,Y) ==X (22)Y(21) + - — X(22)Y (@2n—1) + X (220-1)Y (22n), (6.7)
which leads to
9(Vxv,Y)+g(Vyv,X) =0, X,Y €X($*").
Thus, the vector field v satisfies
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that is, v is a Killing vector field on S?"~!. That the Killing vector field v is not
parallel follows from equation (6.7)), that is, v is a nontrivial Killing vector field.
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