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CONFORMAL AND KILLING VECTOR FIELDS ON REAL
SUBMANIFOLDS OF THE CANONICAL COMPLEX

SPACE FORM Cm

HANAN ALOHALI, HAILA ALODAN, AND SHARIEF DESHMUKH

Abstract. In this paper, we find a conformal vector field as well as a Killing
vector field on a compact real submanifold of the canonical complex space form
(Cm, J, 〈 , 〉). In particular, using immersion ψ : M → Cm of a compact real
submanifold M and the complex structure J of the canonical complex space
form (Cm, J, 〈 , 〉), we find conditions under which the tangential component of
Jψ is a conformal vector field as well as conditions under which it is a Killing
vector field. Finally, we obtain a characterization of n-spheres in the canonical
complex space form (Cm, J, 〈 , 〉).

1. Introduction

Conformal vector fields and Killing vector fields play a vital role in geometry
of a Riemannian manifold (M, g) as well as in physics (cf. [13]). In geometry,
these vector fields are used in characterizing spheres among compact or complete
Riemannian manifolds (cf. [4]–[12]). A Killing vector field is said to be nontrivial
if it is not parallel. The existence of a nontrivial Killing vector field on a compact
Riemannian manifold constrains its geometry as well as its topology: it does not
allow the Riemannian manifold (M, g) to have nonpositive Ricci curvature and if
(M, g) is positively curved, its fundamental group has a cyclic subgroup (cf. [2]). In
most of the cases, a conformal vector field or a Killing vector field on a Riemannian
manifold (M, g) is derived through treating it as a submanifold of a Euclidean
space. For example, a unit sphere Sn admits a conformal vector field that is
tangential component of a constant vector field on the ambient Euclidean space
Rn+1. Similarly, an odd dimensional unit sphere S2m−1 with unit normal vector
field N as a hypersurface of the canonical complex space form (Cm, J, 〈 , 〉) admits
a Killing vector field ξ = −JN , where J is the canonical complex structure on
Cm. Therefore it is an interesting question to find a conformal vector field as well
as a Killing vector field on a real submanifold of a canonical complex space form
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(Cm, J, 〈 , 〉). A similar study is taken up in [1] for submanifolds in a Euclidean
space. Given an n-dimensional real submanifold (M, g) of the canonical complex
space form (Cm, J, 〈 , 〉) with immersion ψ : M → Cm, we treat ψ as the position
vector field of points on M in Cm, and consequently we have the expression Jψ =
v+N , where v is the tangential component and N is the normal component of Jψ
on M . This gives a globally defined vector field v on the real submanifold M .

In this paper, we study the above mentioned question for real submanifolds of
the canonical complex space form (Cm, J, 〈 , 〉) and obtain conditions under which
the vector field v is a conformal vector field (Theorems 3.1, 3.2) or a Killing vector
field (Theorems 4.1, 4.3). We also use this vector field v to find a characterization
of a sphere Sn (c) of constant curvature c in the canonical complex space form
(Cm, J, 〈 , 〉) (cf. Theorem 5.1). It is worth noting that the existence of the Killing
vector field v not only restricts the geometry and topology of the real submanifold
M but also has an influence on the dimensions of both the real submanifold and the
ambient canonical complex space form (Cm, J, 〈 , 〉) (cf. Corollary 4.2). Finally, at
the end of this paper, we give an example of a real submanifold of (Cm, J, 〈 , 〉) on
which v is a nontrivial conformal vector field (that is, v is not Killing) and another
example of a real submanifold on which v is nontrivial Killing vector field (that is,
non-parallel).

2. Preliminaries

Let M be an immersed n-dimensional real submanifold of the canonical com-
plex space form (Cm, J, 〈 , 〉), J and 〈 , 〉 being the canonical complex structure and
the Euclidean metric on Cm respectively. We denote by X (M) the Lie algebra of
smooth vector fields on M , by Γ (υ) the space of sections of the normal bundle
υ of M , and by ∇ and ∇ the Riemannian connections on Cm and on M respec-
tively. Then we have the following Gauss and Weingarten equations for the real
submanifold M (cf. [3]):

∇XY = ∇XY + h (X,Y ) , ∇XN = −ANX +∇⊥XN, (2.1)

X,Y ∈ X (M), N ∈ Γ (υ), where h is the second fundamental form, AN is the
Weingarten map with respect to the normal N ∈ Γ (υ), which is related to the
second fundamental form h by

g (ANX,Y ) = 〈h (X,Y ) , N〉 , X, Y ∈ X (M) ,

and ∇⊥ is the connection in the normal bundle υ. The curvature tensor field R of
the real submanifold M is given by

R (X,Y )Z = Ah(Y,Z)X −Ah(X,Z)Y, X, Y, Z ∈ X(M).

The Ricci tensor field of the real submanifold M is given by

Ric (X,Y ) = ng (h (X,Y ) , H)−
n∑
i=1

g (h (X, ei) , h (Y, ei)) ,
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where {e1, . . . , en} is a local orthonormal frame on M and

H = 1
n

n∑
i=1

h(ei, ei)

is the mean curvature vector field of the real submanifold M .
The Ricci operator Q is a symmetric operator defined by

Ric(X,Y ) = g(Q(X), Y ), X, Y ∈ X(M).
Let ψ : M → Cm be the immersion of the real submanifold M . Then we set

Jψ = v +N,

where v is the tangential component and N is the normal component of Jψ.
Now, define skew symmetric tensors ϕ and G, and the tensors Ψ and F as

follows:
JX = ϕX + FX, X ∈ X(M),
JN = ΨN +GN, N ∈ Γ(υ),

where
ϕ : X(M) −→ X(M), F : X(M) −→ Γ(υ),
Ψ : Γ(υ) −→ X(M), G : Γ(υ) −→ Γ(υ),

that is, ϕX, ΨN are the tangential components of JX and JN respectively and
FX, GN are the normal components of JX and JN respectively.

Define a symmetric tensor C of type (1, 1) by C (X) = ANX, X ∈ X (M), and
a smooth function E : M → R on the real submanifold M by E =

〈
H,N

〉
. Then

we have
trC = nE.

Lemma 2.1. Let M be an n-dimensional real submanifold of the canonical complex
space form (Cm, J, 〈 , 〉). Then

∇Xv = ϕX + C (X) and ∇⊥XN = FX − h(X, v).

Proof. As J is a complex structure, we have
∇XJψ = J∇Xψ,

which in view of equation (2.1) gives
∇Xv + h (X, v) +∇⊥XN − C (X) = ϕX + FX, X ∈ X(M).

Equating the tangential and the normal components we get the result. �

Lemma 2.2. Let M be an n-dimensional real submanifold of the canonical complex
space form (Cm, J, 〈 , 〉). Then for X,Y ∈ X (M) and N ∈ Γ (υ), we have
(∇ϕ) (X,Y ) = AF (Y )X + Ψ(h(X,Y )), where (∇ϕ) (X,Y ) = ∇XϕY − ϕ∇XY

(DXF )Y = G (h (X,Y ))− h(X,ϕY ), where (DXF )Y = ∇⊥XFY − F (∇XY )
(DXΨ)N = AG(N)X − ϕANX, where (DXΨ)N = ∇XΨ (N)−Ψ

(
∇⊥XN

)(
∇⊥XG

)
N = F (ANX)− h(X,Ψ(N)), where

(
∇⊥XG

)
N = ∇⊥XGN −G

(
∇⊥XN

)
.
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Proof. As J is parallel, we have
∇X (ϕY + F (Y )) = J (∇XY + h (X,Y )) ,

which in view of equation (2.1) takes the form
(∇ϕ) (X,Y ) + (DXF )Y = AF (Y )X + Ψ (h (X,Y )) +G (h (X,Y ))− h (X,ϕY ) ,

which on equating the tangential and the normal components gives the first two
relations. Similarly, on using

(
∇XJ

)
N = 0, we get the remaining two. �

Using Lemma 2.1, we find the divergence of the vector field v as div v = nE and
consequently, we have the following:
Lemma 2.3. Let M be an n-dimensional compact real submanifold of the canonical
complex space form (Cm, J, 〈 , 〉). Then∫

M

E dV = 0.

The following lemma is an immediate consequence of Lemma 2.1.
Lemma 2.4. Let M be an n-dimensional real submanifold of the canonical complex
space form (Cm, J, 〈 , 〉). Then the tensor C satisfies

(i) (∇C) (X,Y )− (∇C) (Y,X) = R (X,Y ) v + (∇ϕ) (Y,X)− (∇ϕ) (X,Y ),
(ii)

∑n
i=1 (∇C) (ei, ei) = n∇E +Q (v) +

∑n
i=1 (∇ϕ) (ei, ei),

where (∇C) (X,Y ) = ∇XC (Y )−C (∇XY ), X,Y ∈ X(M), and {e1, . . . , en} is a
local orthonormal frame of M .
Lemma 2.5. Let M be an n-dimensional real submanifold of the canonical complex
space form (Cm, J, 〈 , 〉). Then the skew symmetric tensor ϕ satisfies

(i) (∇ϕ) (X,Y )− (∇ϕ) (Y,X) = AFYX −AFXY ,
(ii)

∑n
i=1 (∇ϕ) (ei, ei) = nΨ (H) +

∑n
i=1AFei

ei,
where X,Y ∈ X(M) and {e1, . . . , en} is a local orthonormal frame of M .
Proof. (i) Using Lemma 2.2, we get

(∇ϕ) (X,Y )− (∇ϕ) (Y,X) = AFYX + Ψ (h (X,Y ))−AFXY −Ψ (h (Y,X))
= AFYX −AFXY, X, Y ∈ X(M).

(ii) As trϕ = 0, we have
n∑
i=1

g((∇ϕ) (X, ei) , ei) = 0,

which gives
n∑
i=1
{g ((∇ϕ) (ei, X) , ei) + g (AFeiX, ei)− g (AFXei, ei)} = 0,

that is,
n∑
i=1
{g (− (∇ϕ) (ei, ei) +AFeiei, X) + g (nΨ (H) , X)} = 0.

Rev. Un. Mat. Argentina, Vol. 60, No. 2 (2019)



CONFORMAL AND KILLING VECTOR FIELDS ON REAL SUBMANIFOLDS 421

Hence,
n∑
i=1

(∇ϕ) (ei, ei) = nΨ (H) +
n∑
i=1

AFei
ei. �

Lemma 2.6. Let M be an n-dimensional compact real submanifold of the canonical
complex space form (Cm, J, 〈 , 〉). Then∫

M

(
Ric (v, v) + ‖C‖2 − ‖ϕ‖2 − n2E2

)
dV = 0.

Proof. Using Lemmas 2.4 and 2.5, we get

divϕv = −
n∑
i=1

g
(
AF (ei)ei, v

)
− ng (Ψ (H) , v)− ‖ϕ‖2 , (2.2)

divCv = Ric (v, v) + nv (E) + ng (Ψ (H) , v) + ‖C‖2 +
n∑
i=1

g (AFeiei, v) ,

and
divEv = v (E) + nE2. (2.3)

Using these equations, we conclude that
divCv = Ric (v, v) + n divEv − n2E2 − divϕv − ‖ϕ‖2 + ‖C‖2 ,

which on integration gives the result. �

Lemma 2.7. Let M be an n-dimensional compact real submanifold of the canonical
complex space form (Cm, J, 〈 , 〉). If v satisfies 4v = −λv for a constant λ > 0,
where 4 is the Laplace operator acting on smooth vector fields on M , then∫

M

{
Ric (v, v) + λ ‖v‖2 − 2 ‖ϕ‖2 − n2E2

}
dV = 0.

Proof. Using the definition of the operator C and Lemma 2.1, we have
(∇C) (X,Y ) = ∇XCY − C∇XY

= ∇X (∇Y v − ϕY )−∇∇XY v + ϕ∇XY
= ∇X∇Y v −∇∇XY v − (∇ϕ) (X,Y ) , X, Y ∈ X(M).

Taking a local orthonormal frame {e1, . . . , en}, the above equation leads to
n∑
i=1

(∇C) (ei, ei) =
n∑
i=1

(
∇ei∇eiv −∇∇ei

eiv
)
−

n∑
i=1

(∇ϕ) (ei, ei)

= 4v −
n∑
i=1

(∇ϕ) (ei, ei)

= −λv −
n∑
i=1

(∇ϕ) (ei, ei) ,

where we used the definition of the Laplace operator acting on smooth vector fields.
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Now, using Lemma 2.4 (ii) and Lemma 2.5, we conclude

−λ ‖v‖2 = Ric (v, v) + nv (E) + 2g
(

n∑
i=1

AF (ei)ei, v

)
+ 2ng (Ψ (H) , v) ,

and this equation together with equations (2.2) and (2.3) by integration gives∫
M

{
Ric (v, v) + λ ‖v‖2 − 2 ‖ϕ‖2 − n2E2

}
dV = 0. �

3. Submanifolds with v as a conformal vector field

Recall that a smooth vector field ξ on a Riemannian manifold (M, g) is said to
be a conformal vector field if the flow of ξ consists of conformal transformations
of the Riemannian manifold (M, g). Equivalently, a smooth vector field ξ on a
Riemannian manifold (M, g) is a conformal vector field if there exists a smooth
function ρ on M that satisfies £ξg = 2ρg, where £ξg is the Lie derivative of g
with respect to ξ. The smooth function ρ is called the potential function of the
conformal vector field ξ. A conformal vector field ξ is said to be a non trivial
conformal vector field if the potential function ρ is not a constant. In this section,
we find conditions under which the vector field v on the real submanifold M of the
canonical complex space form (Cm, J, 〈 , 〉) is a conformal vector field.

Theorem 3.1. Let M be an n-dimensional compact real submanifold of the canon-
ical complex space form (Cm, J, 〈 , 〉). If the Ricci curvature Ric(v, v) of M satisfies

Ric (v, v) ≥ n (n− 1)E2 + ‖ϕ‖2 ,

then v is a conformal vector field on M .

Proof. Using Lemma 2.6, we have∫
M

(
Ric (v, v)− n (n− 1)E2 − ‖ϕ‖2 + ‖C‖2 − nE2

)
dV = 0,

which together with the condition in the hypothesis and Schwarz’s inequality
‖C‖2 ≥ nE2 gives

Ric (v, v) = n (n− 1)E2 + ‖ϕ‖2 and ‖C‖2 = nE2.

The second equality holds if and only if C = EI, and consequently, the first
equation in Lemma 2.1 reads

∇Xv = EX + ϕX, X ∈ X(M).

This equation proves that

(£vg) (X,Y ) = 2Eg(X,Y ), X, Y ∈ X (M) ,

that is, v is a conformal vector field with potential function E. �
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Theorem 3.2. Let M be an n-dimensional compact real submanifold of the canon-
ical complex space form (Cm, J, 〈 , 〉). If the vector field v is an eigenvector of the
Laplace operator, ∆v = −λv, and the Ricci curvature Ric(v, v) satisfies

Ric (v, v) ≥ n (n− 2)E2 + λ ‖v‖2 ,

then v is a conformal vector field.

Proof. Lemma 2.6 implies

−
∫
M

‖ϕ‖2 dv =
∫
M

(
−Ric (v, v)− ‖C‖2 + n2E2

)
dV,

which in view of Lemma 2.7, gives∫
M

(
Ric (v, v)− λ ‖v‖2 + 2 ‖C‖2 − n2E2

)
dV = 0,

that is, ∫
M

(
Ric (v, v)− λ ‖v‖2 − n (n− 2)E2 + 2(‖C‖2 − nE2)

)
dV = 0.

Thus, using the hypothesis and Schwarz’s inequality ‖C‖2 ≥ nE2, we get

Ric (v, v) = n (n− 2)E2 + λ ‖v‖2 and ‖C‖2 = nE2,

that is, C = EI. Hence, by Lemma 2.1, we get that v is a conformal vector
field. �

4. Submanifolds with v as a Killing vector field

Recall that a smooth vector field ξ on a Riemannian manifold (M, g) is said to
be a Killing vector field if the flow of ξ consists of isometries of the Riemannian
manifold (M, g). Equivalently, a smooth vector field ξ on a Riemannian manifold
(M, g) is a Killing vector field if £ξg = 0. In this section, we find conditions under
which the vector field v on the real submanifold M of the canonical complex space
form (Cm, J, 〈 , 〉) is a Killing vector field.

Theorem 4.1. Let M be an n-dimensional compact real submanifold of the canon-
ical complex space form (Cm, J, 〈 , 〉). Suppose that v satisfies

(i) v is an eigenvector of the Laplace operator with eigenvalue −λ,
(ii) Ric (v, v) ≥ n(n− 1)E2 + ‖ϕ‖2,

(iii) ‖ϕ‖2 ≥ λ ‖v‖2.
Then v is a Killing vector field.

Proof. The condition (ii), in view of Theorem 3.1, implies that v is a conformal
vector field with C = EI and

Ric(v, v) = n(n− 1)E2 + ‖ϕ‖2 . (4.1)
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Now, the condition (i), ∆v = −λv, combined with Lemma 2.7 and the above
conclusion, gives∫

M

(
n(n− 1)E2 + ‖ϕ‖2 + λ ‖v‖2 − 2 ‖ϕ‖2 − n2E2

)
dV = 0,

that is, ∫
M

(
(‖ϕ‖2 − λ ‖v‖2) + nE2

)
dV = 0. (4.2)

Using condition (iii), we conclude that E = 0 and consequently C = 0. Thus,
Lemma 2.1 gives

∇Xv = ϕX, X ∈ X (M) ,
that is,

(£vg) (X,Y ) = 0, X, Y ∈ X(M).
Hence, v is a Killing vector field. �

Corollary 4.2. Let M be an n-dimensional compact real submanifold of the canon-
ical complex space form (Cm, J, 〈 , 〉), with positive sectional curvature. Suppose that
v satisfies

(i) v is an eigenvector of the Laplace operator with eigenvalue −λ, that is, ∆v =
−λv,

(ii) Ric (v, v) ≥ n(n− 1)E2 + ‖ϕ‖2,
(iii) ‖ϕ‖2 ≥ λ ‖v‖2.

Then either n is odd or m ≥ n.

Proof. Notice that n < 2m. Suppose the conditions (i)–(iii) hold. Then equation
(4.2) implies E = 0, λ ‖v‖2 = ‖ϕ‖2, and combining these with equation (4.1), we
get

Ric (v, v) = λ ‖v‖2 = ‖ϕ‖2 . (4.3)
Now, consider the smooth function f = 1

2 ‖v‖
2, which by Lemma 2.1 and E = 0,

gives the gradient ∇f = −ϕv, and we compute

∆f = −
n∑
i=1

g (∇eiϕv, ei) = −
n∑
i=1

g (∇ei∇vv, ei) . (4.4)

Note that E = 0, as in the proof of Theorem 4.1, we get C = 0 and thus, an easy
computation on using Lemma 2.1 with E = 0 gives

R (X, v) v = ∇X∇vv − ϕ2X,

that is,
R (X, v, v,X) = g (∇X∇vv,X) + ‖ϕX‖2 .

This equation in view of equation (4.4) implies

Ric (v, v) = −∆f + ‖ϕ‖2 ,
which together with equation (4.3) gives ∆f = 0. Hence, f is a constant, that is,
v has constant length and consequently, ϕv = 0.
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If v = 0, then Lemma 2.1 implies ϕ = 0, that is, Jψ = N , which on taking
covariant derivative and using Lemma 2.1 gives JX = FX, X ∈ X(M), and we
get that M is a totally real real submanifold of Cm. Hence, in this case we have
2n ≤ 2m.

If v 6= 0, as v is a Killing vector field of constant length v (p) 6= 0 for each
p ∈ M , and as M is compact connected with positive sectional curvature, then
M is odd-dimensional (for on an even-dimensional compact connected manifold of
positive sectional curvature a Killing vector field has a zero). �

Theorem 4.3. Let M be an n-dimensional compact real submanifold of the canon-
ical complex space form (Cm, J, 〈 , 〉). Suppose that v 6= 0 is not closed and satisfies
ϕv = 0, with Ricci curvature

Ric (v, v) ≥ n (n− 1)E2 + ‖ϕ‖2 .
Then v is a Killing vector field of constant length.

Proof. As in Theorem 3.1, the condition Ric (v, v) ≥ n (n− 1)E2 + ‖ϕ‖2 implies
that v is a conformal vector field and the following hold:
∇Xv = ϕX + EX,X ∈ X (M) and Ric (v, v) = n (n− 1)E2 + ‖ϕ‖2 . (4.5)

Using the first equation in (4.5), we get
R(X,Y )v = X(E)Y − Y (E)X + (∇ϕ) (X,Y )− (∇ϕ) (Y,X),

which gives

Ric(Y, v) = −(n− 1)Y (E)− g
(
Y,

n∑
i=1

(∇ϕ) (ei, ei)
)
,

that is,

Ric(v, v) = −(n− 1)v(E)− g
(
v,

n∑
i=1

(∇ϕ) (ei, ei)
)
. (4.6)

Now, taking divergence on both sides of the equation ϕv = 0, in view of equation
(4.5), we have

− ‖ϕ‖2 − g

(
v,

n∑
i=1

(∇ϕ) (ei, ei)
)

= 0, (4.7)

and inserting this equation in (4.6) leads to

Ric(v, v) = −(n− 1)v(E) + ‖ϕ‖2 ,
which on comparing with the second equation in (4.5) implies

v(E) = −nE2. (4.8)
Also, using ϕv = 0 in the first equation in (4.5) gives

∇vv = Ev, (4.9)
which in view of equations (4.5) and (4.8) leads to

R (X, v) v = X (E) v + nE2X − (∇ϕ) (v,X)− EϕX − ϕ2X,
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which on taking the inner product with v and using ϕ(∇vv) = 0 (outcome of
equation (4.9)), gives X (E) ‖v‖2 + nE2g(X, v) = 0, that is,

‖v‖2∇E = −nE2v. (4.10)

Hence, as v 6= 0, we get ϕ(∇E) = 0, and taking divergence on both sides of this
equation leads to div (ϕ(∇E)) = 0, that is,

g

(
∇E,

n∑
i=1

(∇ϕ) (ei, ei)
)

= 0,

which in view of equation (4.10) implies

−nE2g

(
v,

n∑
i=1

(∇ϕ) (ei, ei)
)

= 0.

Using (4.7) in the above equation, we get

nE2 ‖ϕ‖2 = 0,

and as v is not closed, from above equation, we conclude that E = 0, and thus
equation (4.5) reads, ∇Xv = ϕX, X ∈ X (M), which proves that v is a Killing
vector field.

Moreover, if f = 1
2 ‖v‖

2, then we have

X(f) = g(ϕX, v) = 0, X ∈ X (M) ,

that is, v has constant length. �

5. A characterization of spheres

In this section we consider an n-dimensional compact real submanifold M of the
canonical complex space form (Cm, J, 〈 , 〉), and prove the following characterization
for the spheres.

Theorem 5.1. Let M be an n-dimensional compact Einstein submanifold of the
canonical complex space form (Cm, J, 〈 , 〉), n > 2. Suppose that v satisfies

(i) v is an eigenvector of the Laplace operator with eigenvalue −λ < S
n ,

(ii) Ric (v, v) ≥ n(n− 1)E2 + ‖ϕ‖2, where S is the constant scalar curvature.
Then M is isometric to the sphere Sn (c), for a constant c > 0.

Proof. Using Theorem 3.1, we get that v is a conformal vector field on M and
equation (4.5) holds. Thus, using the first equation in (4.5), we conclude

(∇ϕ) (X,Y ) = ∇X∇Y v −∇∇XY v −X (E)Y, X, Y ∈ X (M) , (5.1)

where (∇ϕ) (X,Y ) = ∇Xϕy − ϕ∇XY . Taking sum in the above equation over a
local orthonormal frame {e1, . . . , en} on M and using ∆v = −λv, we get

n∑
i=1

(∇ϕ) (ei, ei) = ∆v −∇E = −λv −∇E. (5.2)
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Also, using equation (5.1), we find

(∇ϕ) (X,Y )− (∇ϕ) (Y,X) = R (X,Y ) v + Y (E)X −X (E)Y,

which on choosing X = ei and taking the inner product with ei and adding these
n equations corresponding to a local orthonormal frame {e1, . . . , en} on M , we get

− g

(
n∑
i=1

(∇ϕ) (ei, ei) , Y
)

= Ric (Y, v) + (n− 1)Y (E) , (5.3)

where we used the fact that ϕ is skew-symmetric and consequently
∑
g(ϕei, ei) = 0,

and that g ((∇ϕ) (X,Y ) , Z) = −g ((∇ϕ) (X,Z) , Y ). Combining equations (5.2)
and (5.3), we arrive at

Q (v) = λv − (n− 2)∇E. (5.4)
Moreover, M being an Einstein manifold, Q (υ) = S

nv, and thus using equation
(5.4) we get

∇E = − S − nλ
n(n− 2)v,

and as S is a constant, we have ∇E = −cv for a constant c. This leads to

∇X (∇E) = −c∇Xv = −c (EX + ϕX) , (5.5)

that is, the Hessian of the smooth function E is given by

HE (X,Y ) = −cEg (X,Y )− cg (ϕX, Y ) a, X, Y ∈ X (M) ,
HE (X,Y )−HE (Y,X) = 2cg (ϕY,X) .

Since the Hessian is symmetric, we get cg (ϕY,X) = 0, X,Y ∈ X (M). However,
condition (i) in the hypothesis does not allow c = 0 (as c = 0 implies S = nλ);
consequently we get ϕ = 0, which changes equation (5.5) to

∇X (∇E) = −cEX, X ∈ X (M) ,

where c is a positive constant by condition (i). Hence, by Obata’s Theorem
(cf. [11]), we get that M is isometric to Sn (c). �

6. Examples

In this section, we give two examples of real submanifolds of a canonical complex
space form (Cm, J, 〈 , 〉), one admitting a conformal vector field that is not Killing
and other admitting a Killing vector field that is not parallel.

(i) Consider

S2n(c) =
{
x = (x1, . . . , x2n+1) ∈ R2n+1 : ‖x‖ = 1√

c
, c > 1

}
and an immersion ψ : S2n(c)→ Cn+1 defined by

ψ(x) =
(
x1, . . . , x2n+1,

√
1− 1

c

)
,
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which is clearly a smooth immersion. Observe that
Tp(S2n(c)) =

{
X ∈ R2n+1 : 〈X, p〉 = 0

}
.

The two orthogonal unit normals N1, N2 for the real submanifold S2n(c) in Cn+1

are given by

N1 =
(
−
√
c− 1x1, . . . ,−

√
c− 1x2n+1,

1√
c

)
and

N2 =
(
x1, . . . , x2n+1,

√
1− 1

c

)
.

Also, the standard complex structure J on Cn+1 gives

Jψ =
(
−xn+2, . . . ,−x2n+1,−

√
1− 1

c
, x1, . . . , xn+1

)
(6.1)

and it is easy to check that
〈Jψ,N1〉 =

√
cxn+1 and 〈Jψ,N2〉 = 0.

Expressing Jψ = v +N , where v ∈ X(S2n(c)), we get

v = Jψ −
√
cxn+1

(
−
√
c− 1x1, . . . ,−

√
c− 1x2n+1,

1√
c

)
, (6.2)

that is,

v =
(
−xn+2, . . . ,−x2n+1,−

√
1− 1

c
, x1, . . . , xn+1

)
+
(√

c2 − cx1xn+1, . . . ,
√
c2 − cxn+1x2n+1,−xn+1

)
=
(√

c2 − cx1xn+1 − xn+2, . . . ,
√
c2 − cx2

n+1 −
√

1− 1
c
,

√
c2 − cxn+1xn+2 + x1, . . . ,

√
c2 − cxn+1x2n+1 + xn, 0

)
.

(6.3)

Now, using expressions of N1 and N2 it is straightforward to show that
AN1 =

√
c− 1I and AN2 = −I,

and consequently that
AN =

√
c2 − cxn+1I.

This proves that the vector field v given by equation (6.3) satisfies

£vg = 2
√
c2 − cxn+1g,

that is, v is a conformal vector field. Note that this vector field is not a Killing
vector field on S2n(c). To verify the last assertion, we see from the last equation
that if v is Killing, xn+1 = 0, and consequently equation (6.2) gives that v = Jψ.
Moreover, S2n(c) being an even-dimensional compact and connected manifold of
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positive sectional curvature, there would exist a point p where (Jψ)(p) = 0; using
this in equation (6.1) we get c = 1, a contradiction.
(ii) Consider the unit sphere S2n−1 in R2n and an immersion ψ : S2n−1 → Cm,
m > n, defined by

ψ(x1, . . . , xn, . . . , x2n) = (x1, . . . , x2n, c1, . . . , c2m−2n),
where ci, 1 ≤ i ≤ 2m − 2n, are constants and Cm is identified with R2m. A
local frame of orthonormal normal vector fields for this immersion is given by
{N1, N2, . . . , N2m−2n+1}, where

N1 = (x1, . . . , x2n, 0, . . . , 0)
and

Nα = (0, . . . , 0, 1, 0, . . . , 0), 1 at the (2n+ α)th place, 2 ≤ α ≤ 2m− 2n+ 1.
Consider a complex structure J on Cm defined by
JE = (−E(x2), E(x1),−E(x4), E(x3), . . . ,−E(x2m), E(x2m−1)), E ∈ X(Cm),

which makes (Cm, J, 〈, 〉) a Kaehler manifold. Now set Jψ = v + N , where v ∈
X(S2n−1) is the tangential component and N is the normal component of Jψ. We
get

Jψ = (−x2, x1, . . . ,−x2n, x2n−1,−c2, c1, . . . ,−c2m−2n, c2m−2n−1) , (6.4)

〈Jψ,N1〉 = 0, 〈Jψ,Nα〉 = −(−1)αcα, 2 ≤ α ≤ 2m− 2n+ 1,
and consequently,

N =
2m−2n+1∑
α=1

〈
N,Nα

〉
Nα = (0, . . . , 0,−c2, c1, . . . ,−c2m−2n, c2m−2n−1) . (6.5)

Thus, equations (6.4) and (6.5) imply

v = Jψ −N = (−x2, x1, , . . . ,−x2n, x2n−1, 0, . . . , 0). (6.6)

Let ∇ and ∇ be the Euclidean connection on Cm and the Riemannian connection
on the real submanifold (S2n−1, g) with respect to the induced metric g. Then
using equation (6.6) we get

∇Xv = ∇Xv − h(X, v)
= (−X(x2), X(x1), . . . ,−X(x2n), X(x2n−1), 0, . . . , 0)− h(X, v),

X ∈ X(S2n−1), where h is the second fundamental form. Taking the inner product
with Y ∈ X(S2n−1) in the above equation we arrive at
g(∇Xv, Y ) = −X(x2)Y (x1) + · · · −X(x2n)Y (x2n−1) +X(x2n−1)Y (x2n), (6.7)

which leads to
g(∇Xv, Y ) + g(∇Y v,X) = 0, X, Y ∈ X(S2n−1).

Thus, the vector field v satisfies
£vg = 0,
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that is, v is a Killing vector field on S2n−1. That the Killing vector field v is not
parallel follows from equation (6.7), that is, v is a nontrivial Killing vector field.
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