Complex numbers

A complex number z can be represented as a sum of real and imaginary part z=x+ yi, where x and y are
real numbers and i = x/—_l(i2 =—1).
o The complex number x+yi can be represented by the order pair (x,y), and plotted in a plane

(called the Argand plane) as shown in figure 1. In the Argand plane the horizontal axis is called the real axis
and the vertical axis called the imaginary axis.

The real part of the complex number x+ yi is the real number x and the imaginary part is the real

number y. Thus, the real part of 5—7i is 5 and the imaginary part is -7.

o z=x+Yyiis called a Cartesian complex number
. Two complex numbers z, =X, +iy, and z, =x, +iy, are equal if x, =x, and y, =y,.
J Complex numbers are used to solve polynomials (for example x* =1 is a polynomial of 2 degree

so it should have 2 roots, x = i), used to solve differential equations (ODE and PDE). Also used for

analyzing oscillation and waves (phase component).
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Figure 1. Complex numbers as points in the Argand plane.
. The sum and difference of two complex numbers are defined by adding or subtracting their real
parts and their imaginary parts. (It is same as we do with the real numbers)

If z,=x+iy, and z, =x, +iy,, then z, £z, =(x £, )+i(y, = Y,)
Example 1. If z, =1-i and z,=4+7i, z,+z,=(1-i)+(4+7i)=5+6i

Multiplication of complex numbers: Multiplication of complex numbers is achieved by assuming all
guantities involved are real and then using i =-1 simplify by separating real and imaginary parts.
Multiplication is the most interesting operation in complex numbers. For z, =x, +iy, and z, =X, +iY,

2,2, = (X +iY) G +1Y,) =X + % (1 ¥,)+(1 V) % +i%Y,Y, = XX +1 (XY, + 1% ) = V1Y,
=717, =(X1X2 - y1Y2)+i(X1y2 + X2y1)

. It is much simpler and easier to multiply and divide the complex numbers in polar coordinates
system.
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o In complex plane: A nice geometrical interpretation of complex number multiplication is shown in

the following figure. Simple multiply the magnitudes R,R, and add the angles ¢, +¢,.
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Example 2. If z, =3+2i and z, =4-5i,
2,2, =(3+2i)(4-5i)=12-15i +8i —10i* =12-7i +10=22-7i
Complex conjugate: The complex conjugate of z=x+yi is Z=x—yi. It is very important and is the

mirror image of the number in the real axis.

o Z+Z =X+ Yyi+X—yi=2x,isareal number and
. 77 =(x+iy)(x—iy)=x*—ixy +ixy + y* = 77 = x* + y* is a real number and is equal to the length Of z.
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Division of complex numbers: For the quotient (division) of two complex numbers, to get rid of
complex term from the denominator we multiply the numerator and denominator by the complex conjugate
of the denominator.

For z =x +iy, and z, =X, +1iY,, then 4 :X1+—!y1, Multiplying and dividing by the complex conjugate
Z, XHt1Y,

i: X1y sz_lyz _2172

of z,, _ — =
Z, X+iy, X-iy, |z
-1+3i . .
Example 3. Express the number 1 E in the form x+ yi.
+ 5i

Solution. We multiply numerator and denominator by the complex conjugate of the denominator that is,

2-5i.

“1+3i _ -1+43i 2-5i —1x(2-5i)+3i(2-51) _ —2+5i+6i-15i° _-2+11i-15(-1) 13+11 13 11i
2+5i  2+45i 2-5i 2x(2-5i)+5i(2-5i) 4-10i+10i-25i* 4-25(-1) 29 29 29

Example 4. Find the roots of the equation: x*+1=0

x? =—1, No real solution. Invent i=\/—_l(i2 :—1).

xz=i2:>x2—i2:0:(x+i)(x—i)=0:> Xx+i=0and x—i=0=x=—i and x=i



Example 5. Find the roots of the equation: x* =1, four degree equation have four solutions
x* —1=0:>(x2 —1)(x2 +1)=O:>(x+1)(x—1)(x+i)(x—i)=0:> Xx=-1 x=41 x=—i x=i.
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Example 6. The complex number z==—=-—+—— is shown in the figure find
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Problem If z=-1+i2
Find (i) Z (i) zz (i) z+7 (iv) Plot each result in the complex plane

Example 7. Find the roots of the equation: x*+x+1=0
~1412 -4 ~1+/-3 ~1+i\/3
P X=X

Using quadratic formula, x =

The roots are: [—1+2|\/§ , _1_2“/5}. The solution of the example are complex conjugate of each other.
Example 8. Evaluate  (a)i®, (b)i, (c)i®, (d)—2
i
i° =i*xi=(-1)xi=-i,since i*=—1

i*=i%xi? z(—l)x(—l)zl
i =ixi® =ix(i?) =ix(-1)" =ix(-1) =i
i =ixi® =ix(i?) =ix(-1)' =ixl=i
Hence

4 _A
i° i
Problem 1. Evaluate (a)i®, (b)—%,

_—4><l :__—?i = _—A;LI =4i
(c)%13 Answer: (a)L, (b)—i, (c)-2i



Problem 2. Evaluate in a+ib form, given: z, =1+2i, z,=4-3i, z,=-2+3i and z,=-5-1i.

Q-5 @)z, + 24 answer((l)i+ﬂi (2)£—iij
Z+1, Z, 26 26 26 26

LA 2__5|j=57+24i
3+41 i

Problem 3. Show that: _55(

Complex equations
If two complex numbers are equal, then their real parts are equal and their imaginary parts are equal. Hence

if a+ib=c+id, then a=c and b=d
Example 9. Solve the complex equation (x—2yi)+(y—3xi)=2+3i
(x—2yi)+(y—3xi)=2+3i = (x+y)+(-2y-3x)i=2+3i, Equating real and imaginary parts gives
=>X+y=2 @
-2y-3x=3 (2)
Solving equation (1) and (2), Multiplying equation (1) with 2 and then add both equations
2X+2y=4 @
—-2y-3x=3 (2)

= x=—7, Substituting x in equation (2) gives y =9.
Problem 4. Solve the complex equation
(x—=2yi)—(y—xi)=2+i answer (x=3, y=1)

Hyperbolic functions

Pretty useful function especially in complex numbers.

sinh(z) = & _Ze_ . cosh(z) =2 +2e‘ , tanh(z) =

z -z z

— = tanh(z) = €

eZ

-z

—€

sinh(z) e"—e 3
: +et e e”+41

cosh(z) e*+e

z is complex number.

4 -7 2 4 _ -7 2
. cosh?z—sinh?z=| &+ | _|E =€ =£(e22 +2e%’ +e22)—£(e2Z —2¢e%e’ +ezz)
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-.cosh’z—sinh®z=1
Trignometric functions

Pretty useful function especially in complex numbers.

sin(z) = ; . cos(z) =2 +2e , cos? z+sin?z =1
i

o Sin and cos is between +1 and -1, but it is not true for complex z.
-10 _ 10

|sin(10i)| = ¢ —% 1510000 a huge number

. Hyperbolic, trignometir and exponancial functions are interrelated.



Identities:

o isin(z) =sinh(iz) cos(z) = cosh(iz)

J sin(iz) = isinh(z) cos(iz) = cosh(z)

o e’ =cosh(z) +sinh(z) e’ =cos(iz) —isin(iz)

. e” =cosz+isinz, e =cosz—isinz, replace z with iz e =cos(iz)—isin(iz)

= e’ =cos(iz)—isin(iz) = e =cos(iz)+isin(iz)

= e’ +e’ =2cos(iz) = cos(iz) =¥ = cos(iz)=coshz

. e” =cosz+isinz, e =cosz—isinz, replace z with iz e =cos(iz)—isin(iz)

= e’ =cos(iz)—isin(iz) = e’ =cos(iz)—isin(iz) = e’ =cosh z—isinhz

The Polar form of a complex number

Let a complex number Z be x+yi as shown in the Argand diagram of figure 2. Let distance OZ be r and

the angle OZ makes with the positive real axis be 4.
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From trigonometry, % < y=r sind

@
x=rcos@ and y=rsing, r=,/x’+y? H:tan‘lllJ £ :

y y x E 0 Real axis

Where r is called the modulus (or magnitude) of Z and is written as mod Z 0/« X=" cos(fA

or |Z|. r is determined using Pythagoras’ theorem on triangle OAZ and &

is called the argument (or amplitude) of Z and is written as arg Z. Whenever changing from Cartesian form
to polar form, or vice-versa, a sketch is invaluable for determining the quadrant in which the complex
number occurs.

Hence z = x+yi=rcos@+irsind = Z =r(cos@+isind), where r is the distance and & is direction.
(x+yi)’ =r?(cos@+isin @)’ =r (cos? @—sin’ @ +i(2sinOcosd)) =r* (cos 260 +isin 20)

. X+Yyi=r(cos@+isino)

. (x+yi)2:r2(00320+isin20)

o Example 10. Express the number z =-2-2i in the polar (trigonometric) form

4 Im.
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r=y(-2)" +(-2)" =8=2V2

tan¢=__§=1:>¢=tan‘l(1):>¢=45°, 0 =180° + § = 0 = 225°

z=22 (cos 225° +isin 225°)



Multiplication of complex numbers (polar coordinates)

If 2, =r(cosd, +ising,)and z, =r,(cosd, +isind, ), then their product

2,2, =11, (cos g, +ising;)(cosd, +isinG, ) =rr, (cos¢9l cos @, +icosd,siné, +ising, cos@, +i’sin @, sin 491)
= 2,7, = 11, (05 6, c0s J, —sin 4, 5in 6, +i(sin 6, cos d, +cos G,sin 6, ) ) = tr, (cos (6, +6,) +isin (6, +6,))

We have very easy calculation to find the products of two complex numbers in polar coordinates. We simply
multiply the moduli and add the arguments.

Division of complex numbers (polar coordinates)

If 2, =r,(cos@, +ising,)and z, =r,(cosd, +isind, ), then their quotient

z, n(cos +ising) r(cosd +ising) (cosd,—isind,)

4
z, r,(cosd,+isind,) r,(cosd,+ising,) (cosé,—ising,)

7 rl(cosﬁlcosez—icos:9lsin<92 +isin g, cosé, —izsinelsiné’z)

4
Z, r, (cos’ 6, —isin 6, cos 6, +isin 6, cos 6, =i’ sin” 4, )

z, 1(cos6,cos6, +sing;sind, +i(sin 6 cos 6, —cosb;sin g, ))

Z, r, (cos® 6, +sin’ 6, )

(cos(6,—6,)+isin(6,—6,))

Kyl |,:q

We have very easy calculation to find the quotient of two complex numbers in polar coordinates. We simply
find quotient of the moduli and the difference of the arguments.

o Using Euler (Leonhard Euler Swiss Mathematician 1707 - 1783) formula (Euler identity) (One of the
most beautiful formula in mathematics and is the most important formula in complex analysis (is the heart of

.. f .. 2 i
complex numbers)) cos@+isind=e", r?(cos@+ising) =r’e'*’

T
. e? =cosZ+isinZ =i
2
. e” =cosz+isinr=-1
: iz i _r
. i =(ezj =e 2 jsa real number

Z=r (cosH+ isin @) is usually abbreviated to Z =26 which is known as the polar form of a complex number.

Problem 5. For the complex number z=i+L find (i) r (ii) 6(45°) (iii) €“ (iv) z°

V2 2

Powers of complex numbers De Moivre’s theorem

Abraham De Moivre (French, 1667 - 1754) in his later years he began to sleep more and more. It is reported
that he predicted the day of his own death. After observing his sleep time increase each day by an additional
15 minutes he calculated the arithmetic progression until he will sleep forever. His calculations were correct.
He died November 7, 1754.

Arithmetic progression (sequence): is a sequence of numbers such that the the difference between the

consecutive terms is constant. For example 7, 11, 15, 19,......... is a arithmetic progression with common

difference of 4.
De Moivre’s theorem:

If z=r(cos@+isin 0) is a complex number and n is a positive integer then,

7" = [r(cos&+isin H)]n =r"(cosnd +isinno)



Proof of De Moivre’s theorem:

To prove De Moivre’s theorem, we use simple proof of induction. For a complex number
7= r(cosH+ isin 0) , We can easily show that by repeated multiplication for n=0,1,2,3,4,------

2" =[r(cos@+isind)]" =r"(cosO+isin@)" =r" (cosng+isinng)

n

2" =r"(cosO+isin @)’
Z°=r°(cos€+isin9)°=1, for n=0 (1)
Zl=rl(cose+isin6)1=r(cose+isin49) For n=1 2)

Let us assume that it is true for n=k

[ r(cos@+isin H)Jk =r"(coskd+isinkd)

We must show that it is true for n=k +1, that is

[r(cos¢9+isin6’)}k1 r**(cos(k+1)6+isin(k+1)6)

As [ r(cos@+isin 6’)1 =r*(cosk@ +isinkd)

Multiply both sides by r(cos&+isin )

[r(cos@+isin H)}k[r(coseﬂsin 0)]=[r*(cosko+isinke)|[r(cosO+isino)]
= [r(cos@+isin 0)]“1 =r*r(cosk@ +isinkd)(cos & +isin 6)

:[r(cose+isin 0)} k+l(cosk¢9cos€+icoskHsinH+isin k& cosd+i°sink@sin 9)
= [r(cos@+isin 9)] r**(cosk@cos 6 +icosk@sin 6 +isin k@ cos 6 +i’ sink@sin 6)
)

= [r(cose+isin 0 ] k+l(cos k@ cosd—sink@sin 6 +i(sin k& cos & +coskdsin 9))
By applying the use of trigonometric formulas for the sum of angles for sine and cosine, we get

sin(x+y)=sinxcos y+cosxsin y
cos(x+y)=cosxcosy—sinxsiny, x=ké, y=60

:[r(cosé’+isin¢9)]kl r**(cos(k@ +6)+isin(kd+0))=r*"*(cos(k +1)0+isin(k +1)6)

So it is true for all positive integers.

Example 11. Using De Moivre’s theorem we can easily compute the power of a complex number such as
Z2=2+2i.

We can write in polar form: z =r(cos@+isin@), with r =v2%+2° = V8 =242 and
tan ¢ = % =1=¢=tan"'(1)= ¢ =45", where z lies in the first quadrant.

7= 2\/§(cos45° +isin 45°)
Then
2° =(2+2i) =[ 22 (cos 45° +isina5°) | = (242 (cos6x45° +isin6x45°)
= 512(cos 270° +isin 270°) =-512i

Problem 6. Using De Moivre’s theorem find the power of a complex number.

Q) 2(J§+i)s (ii) [3(coslso°+isin15o°)]4 Answer: ()—324/3+32i (i) —40.5+—40.5y3i



Example 12. Find the solution of the equation x°> —243 =0, and represent the solution graphically.
1
X°—243=0= X" =243 = x =(243)s,
As 243=243(cos0+isin0) = 243(cos(0+2zk)+isin(0+27k)), where k=0,1,2,3----n-1
1 1
X = [243(003(27rk)+isin(2nk))]5 = (243)s cos 22K 1isin 22K | 2 3[ cos ZZK 1isin 22K
5 5 5 5

i27k

= x=3e ° ,where k=0,1,2,3,4.

Then,

i2x
for k=0, x=3, for k=1 x=3e 5 =3(cos%+isin%):3(cos72°+isin72°),

14

fork=2, x=3e5 :3(cos4?”+isin4?ﬂj:3(cosl44°+isin144°),

167

for k=3, x=3¢ 5 3(cos%+isin6?ﬁj:3(c03216°+isin216°),

187

fork=4, x=3e?°

3(0058—” +isin 8—”} - 3(cos 288° +isin 2880).
5 5
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1=¢"°, 1=¢'?", 1=¢'2%7), 1=¢"?) where k=0,1,2,3------n—1
z”:l:z=(1)i:Qﬁ:ﬂ:(e‘kz”)i:z:eikj”, where k =0,1,2,3++++--n—1

Example 13. Find 4™ solution of the equation z* =1, plot these solutions on the complex plane. n=4
z=(e"*" )% . 7—c 7 where k- 0123

for k=0, z=€’=1 for k=1, z=ei7” =i, fork=2, z=¢e"=-1 fork=3, z=ei37,r =i

a i, -1 -i)

/Real axis
/

Complex plane -i



Example 14. Find 8" solution of the equation z° =1, plot these solutions on the complex plane. n=8

ikz

z=e", wherek=0,1,23-- n-1

ikz

withn=8, z=¢e*wherek=0,123,4,5,6,7

for k=0, z=¢€"=1, fork=1 z=¢e* :cos(szrisin(sziJrL
4 4 2 2

w
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for k=2, z=e2 =cos| — |+isin| = |=i, fork=3, z=e* =cos| — |+iSin| — |=———=+—
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i5r
for k=4, z=¢" =cos(z)+isin(zr)=-1 for k=5, z:e“:cos£5—”j+isin(5—”j:—i
4 4) P2

i37 i7Tr -
for k =6, z:ezzcos£3—”]+isin[3—”):—i, for k =7, z:e“:cos[7—”j+isin[7—”j:i—L
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