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Abstract: In this paper we study n-dimensional compact immersed submanifold M of a Euclidean space
(R™P (,)) with the immersion ) : M — R"P under the restriction that the tangential component )7
of the position vector vector field ¢ is a conformal vector field and find a characterization of a n-sphere
in the Euclidean space k™. We also find a condition under which the vector field /T is a conformal

vector field.
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1 Introduction

Given an immersed n-dimensional submanifold
M of a Euclidean space (R"*?,(,)), where (,)
is the Euclidean metric. Of so many questions,
one of the important questions is to find conditions
under which the submanifold M lies on the hy-
persphere S""P~1(¢) of the Euclidean space R"*?
and this question has been studied in ([1]-[3]). Re-
call that a smooth vector field £ on a Riemannian
manifold (M, g) is said to be a conformal vector
field if its flow consists of conformal transforma-
tions of the Riemannian manifold (M, g) and it is
equivalent to the condition£.g = 2pg,where £, is
the Lie derivative with respect to the vector field £
and p is a smooth function on M called the po-
tential function of the conformal vector field &.
Conformal vector fields have been used to charac-
terize spheres among compact Riemannian mani-
folds (cf. [5]-[7]). If M is an n-dimensional im-
mersed submanifold of the Euclidean space R™P
with the immersion ¢) : M — R""P, then treat-
ing v as position vector field of points of M, we
havet) = 1T +1)+ where /T is the tangential com-
ponent of ¢ to M and v is the normal component
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of ¢y. Thus it is a natural question to find con-
ditions under which the vector field ¥/7 is a con-
formal vector field on M as well as to study the
geometry of the submanifold for which the vector
field 9T is a conformal vector field. In this paper
we answer this question as well as show that if {7
is a conformal vector field then under certain cur-
vature conditions M either lies on a hypersphere
S™tP=1(c) or is isometric to a sphere S™(c).

2 Preliminaries

Let M be an n-dimensional submanifold of the
Euclidean space R"*? with immersion ¢ : M —
R™P. We denote by (,) and V the euclidean met-
ric and the Euclidean connection on R™*?, we also
denote by the letter g and by V the induced metric
and the Riemannian connection on the submani-
fold M . Then we have the following equations
for the submanifold M.

VyY =
VN =

VxY +h(X)Y), (1)
—AnX + VN

X,)Y € X(M), N € T'(v), where X (M) is the
Lie algebra of smooth vector fields on M, I" (v) is
the space of smooth sections of the normal bundle
v of M, h is the second fundamental form, Ax
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is the Weingarten map with respect to the normal
N € T' (v) which is related to the second funda-
mental form A by

g(ANX,)Y)=¢g(h(X,Y),N), XY eX(M)

and V- is the connection in the normal bundle v.
We also have the following equation

R(X,Y)Z = Apy, X — Apxz)Y. ()

where R(X,Y) Z, X,Y, Z € X(M) is the curva-
ture tensor field of the submanifold /. The Ricci
tensor field of M is given by

Ric(X,Y) = ng(h(X,Y),H) 3)

_ Zg(h(X,€¢)7h(Kei))7

where {ey, ..., €, } is a local orthonormal frame on
M and

1 n
H:_ h 1y C1
n; (€5, €)

is the mean curvature vector field. The Ricci op-
erator () is a symmetric operator defined by

Ric(X,Y)=g¢(Q(X),Y), X, Y eXx(M).

If we express 1) = ¢T + L, where ¥ € X (M)
is the tangential component and 1+ € T (v) is
the normal component of ¢, and if we denote by
B = A,. the Weingarten map with respect to the
normal vector field ¢y then using the equation
(1), we have

Vol =
vyt =

X + BX,
—h <X7 le) )

We use the mean curvature vector field H to

define a smooth function ' : M — R on the
submanifold M by F' = <H , ¢L>. Now for an
n-dimensional compact submanifold ¢ : M —
R™?_and a local orthonormal frame {ey, ..., e,}
on M, we have

X,Y € X (M) &)

divyp? =

Z <V€z‘¢T’ ei>
i=1

= n(l+F).
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divpt =n(1+F) (5)

We have the following Lemmas:

Lemma 2.1 [1] Let M be an n-dimensional
compact submanifold of the Euclidean space
R then |, (1+ F)dv =0

Lemma 2.2 [1] Let M be an n-dimensional
submanifold of R"*? then the tensor field B sat-
isfies

(1) trB =nkF
(i) (VB)(X,Y)—(VB) (Y, X) = R(X,Y)y"
(iii) >0, (VB) (e, e;) =nVF +Q (¥7),

where (VB)(X,Y) =
X,Y € x (M).

Lemma 2.3 [1] Let ¢y : M — R"'? be an n-
dimensional compact submanifold. Then a neces-
sary and sufficient condition for ¢ (M) C S™*P~1
is that 7 =0 and F = —1.

Definition 2.1 A smooth vector field £ on a
Riemannian manifold (1, g) is said to be a con-
formal vector field if there exists a smooth func-
tion p on M that satisfies £¢g = 2pg, p called a
potential function, where £¢g is the Lie derivative
of g with respect to £&. We say that £ is non trivial
conformal vector field if the potential function p is
not a constant. A conformal vector field ¢ is said
to be gradient conformal vector field if £ = V f
for a smooth function f on M. Using Koszul’s
formula we immediately obtain the following for
a vector field £ on M

29(VxEY) = (£eg)(X)Y)
+ dn(X,)Y)

VXBY — BVXY and

X,Y € X(M)

where 7 is the 1-form dual to &, that is (X)) =
g(X,€), X € X(M). Define a skew-symmetric
tensor field ¢ of type (1,1) on M by

dn(X,Y) =29 (pX,Y), XY eX(M).

Then using the definition of a conformal vector
field, we have

Lemma 2.4 [S5] Let £ be a conformal vec-
tor field on an n-dimensional Riemannian mani-
fold (M.g), with potential function p. Then

VxéE=pX+pX, XeX(M)
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and
divé = np

Lemma 2.5 [6] Let £ be a conformal gradi-
ent vector field on a compact Riemannian mani-
fold (M, g), then for p = n~ div€,

/de—O
M

3. .Submanifolds with ¢’” as conformal vector
field

Let M be an n-dimensional submanifold of the
Euclidean space R"*? , with immersion ¢ : M —
R™P?_ In this section we study the geometry of the
submanifold M for which the vector field 7 is a
conformal vector field. First we prove the follow-
ing lemmas.

Lemma 3.1 Let M be an n-dimensional sub-
manifold of the Euclidean space R"*?, with im-
mersion ¢ : M — R™"Pand f = HQ/JJ'H2. If the
gradient V [ of the smooth function f is a confor-
mal vector field, then

Ric (Y7, ¢7) +n" (F)+np+nF +|B|* =0,

where p is the potential function of V f.

Proof. As V f is conformal vector field with
potential function say p, we haveLvsg = 2pg.
Put B = Ay. and let n be the I-form dual to
Vf thenn(X)=g(X,Vf)=X(f) and define
skew symmetric tensor field

rphi  oftype(1,1)onM bydn (X,Y) =
29 (¢X,Y), X,Y € X(M). Then by lemma2.4
Vx (Vf) = pX + ¢X and div(Vf) = np,
and n is closed 1-form, which gives Vf is also
closed and as dn(X,Y) = 2g(¢X,Y) = 0,
X,Y € X (M), we get that ¢ = 0. Thus

Vi (V)= pX,and Af=np, (6

where A is the Laplacian operator. Now for X €
X (M), we have

9(Vf.X) = X(f)IX(%H”WHQ)
— —(ApyT X)
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which gives
Vf=-Auy" =-By".
Put € =" and thus V f = — B¢ gives,
Vx (Vf)=-B¢{=—-[(VB)(X,{) + BVx{],
which on using equation (4) gives
Vx (Vf)=—(VB)(X,§) - BX - B’X (7)

Now using the lemma 2.2 and the fact that B is a
symmetric operator, we have

> o(VB) (e e = g
= 6 (F) + Ric(§.9)

Also, using the equations (6) and (7), we have

Zg ((VB)(e:,€),e)) = —np —trB — || B||”

)
Thus using tr B = nF and the equations (8) and
(9), we have

Ric(€,6) +n& (F)+np+nF +|B|* =0,

which proves the Lemma.
Lemma 3.2 Let ¢) : M — R"™P be an n-
dimensional compact submanifold. Then

/M {Ric (", ") —n? (1 + F)* +

|B||* — ndv = 0.

Proof. Consider a local orthonormal frame
{e1,...,en}, and put & = T, then using lemma
2.2 and equation (5) to compute div ( BE), we have

div(F§) = &(F)+ Fdivg
= g(VF,§)+nF (1+F)

We find after simple calculations that,

div(BE) = g(VeBE )
=1

= ng(VF,€) + Ric(&,€)
+ nF+|B|,

9 (Z (VB) (er, ) ,§>

8)
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and
g (VF, &) =div(F¢) —nF? — nF,

which gives

ng (VF,€) = ndiv (F¢) — n*F? — n*F.
Thus
div (BE) = ndiv(F¢) —n*F? —n*F

+ Ric(£,6) 4+ nF +||B|?
and we have

div (B¢ —nF¢) = Ric(&,€) —n’F?

n*F +nF +|B|,

which on integration gives

/M {Ric(¢,&) —n?* (F* = 1) +||B|’ —n}dv=0

(10)

Also using Lemma 2.1, we have

/M(1+F)2dv:/M(F2—1)dU,

thus using the above equation in the equation (10),
we get

/M {Ric(&,€) —n*(1+ F)?+|B|> —n}dv=0.

Theorem 3.1 Ler ¢ : M — R"™P be an
n-dimensional compact submanifold with the tan-
gential component 1" a nonzero conformal vector
field with potential function p. If the Ricci tensor
on M satisfies

(i) Ric(Vp+ ", Vp+ ) > 0.

(ii)) Ric(Vp,Vp) <

stant c.

(n—1)¢||Vpl|? for a con-

Then M is isometric to a sphere S™ (c).

Proof. For ) = YT + ¢+ let £ = 7T be a
conformal vector field with potential function p. If
we define f = 1 ? then it is straight forward
to show that & = V f . Thus & is a gradient con-
formal vector field and the 1-form n dual to § is
n = df, and consequently dn = d*f = 0 and that
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@ = 0 Thus the Lemma 2.4 gives V x& = pX. We
have

Vxé=Vxy? =BX + X = pX,

which gives B = (p— 1)1 and divé =

However as & = Vf, we have Af = np. We
haveV x¢ = Vxy! = BX + X = pX,which
gives B = (p — 1) I and div§ = np. However as

&=V f, wehave Af = np. Thus we have
(VB)(X)Y) =X (p)Y

which together with Lemma 2.2 gives

X(pY-Y(p)X=R(X,Y)Vf (1D
We get
Ric(§,X) = ¢(Q(&),X)
= zn:R (e1, X: €, ¢;)
— 40X, V)~ X ()
consequently, we have
QE)=-(-1)Vp (12)
Also we compute,
Ric(§,€) = — (n— 1) div (p€) +n(n —1) p°
(13)
Also, the equation (12) gives
Ric(§,Vp) = g(—=(n—1)Vp,Vp)
= —(n-1|Vall> a4

Let \y be the first non zero eigenvalue of the
Laplacian operator on M. Then the Lemma2.5
together with the minimum principle implies

[ Vol o= ntaras)
M

Using ¢ = % and the equations (13), (14) and
(15),  we get[, Ric(Vp+c&,p+cf)dv =
Jy {Ric(Vp,Vp)+n(n—1)cp?
—2(n—1)c||Vp|* dv

< [u{Ric(Vp,Vp) = (n—1)c||Vp|*} dv,

Using the conditions in the statement, and the
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above inequality, we conclude that Vp + c£ = 0,
which gives

Vx (Vp)=—cpX, XeX(M).

Thus if p is non-constant, then the above equi-
tation gives that M is isometric to an n-sphere
by Obata’s theorem (cf. [8]). If p is constant
thenVp = 0 = £ = 0,which gives a contra-
diction as & is a nonzero conformal vector field.
In the following result, we consider a confor-
mal vector field given by the normal component
Wt and it is interesting to know that in this case
we get the criterion for the submanifold to lie on
the hypersphere in the Euclidean space.
Theorem 3.2 Let ¢p : M — R"™7P be an
n-dimensional compact submanifold with mean
curvature H. Suppose ViTH = 0and Vf is

a conformal vector field, where [ = %”wLHQ.
Then h (YT, 07) = 0 if and only if ¢ (M) C
SmtP=1 (¢) for some constant ¢ > 0.

Proof. Suppose h (@Z)T, wT) = 0. Then on tak-

ing & =17,
E(F)= = &g (H YY)
= —g(H,h(£,§))=0

that is, ¢&(F) = 0, which together with
Lemma 3.1 gives,Ric(&,€) + n&(F) + np +
nF + |B|> = 0. Integrating the above equa-
tion, we get [, {Ric (&, &) +nF + ||B||2} dv =
[y {Ric(&,€) +||B|> —n}dv = 0,where we
used the Lemma 2.1. Now by lemma 3.2 in
the above equation, we get [,, —n? (1 + F)* dv =
0,that is, F' = —1.Thus by Lemma 2.3, 1) (M) C
S"tP=1(¢) for some constant ¢ > 0. Conversely,
if (M) C 8"~ 1(¢), ¢ > 0 then by lemma 2.3
F=—land " =0, thus h (£,€) = 0.

In the next result, we find the condition un-
der which the vector field 1" becomes a confor-
mal vector field on M.

Theorem 3.3 Let ¢ : M — R"™P be an
n-dimensional compact submanifold, with A =
inf L Ricdf [[07|" > 2 (1+ F)?, then 47 is
a conformal vector field on M.

Proof. Taking & = v, in the Lemma 3.2 ,we
get

/M {Ric(&,&) —n*(1+ F)*+||B|* —n} dv =0,
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which gives [,, {(Ric(&,€) —X(n—1) &) +
(1B - nk?) +
(n—=1) M) =n@+F)*)}tdo = 0.
Using Ric(£,€) > (n—1DX|€|° and the
Schwarz inequality | B||”> > nF? and the condi-
tion in the statement \||€||* > n (1 + F)* in the
above equation, we get the equality | B||* = nF?,
which holds if and only if B = FI. ThusV x¢ =
BX+X =FX+X=(1+F)X = pX that
is £¢g = 2pg,which proves that ¢ = T is a
conformal vector field.
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