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Abstract: In this paper we study n-dimensional compact immersed submanifoldM of a Euclidean space
(Rn+p, 〈, 〉) with the immersion ψ : M → Rn+p under the restriction that the tangential component ψT
of the position vector vector field ψ is a conformal vector field and find a characterization of a n-sphere
in the Euclidean space Rn+p. We also find a condition under which the vector field ψT is a conformal
vector field.
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1 Introduction

Given an immersed n-dimensional submanifold
M of a Euclidean space (Rn+p, 〈, 〉), where 〈, 〉
is the Euclidean metric. Of so many questions,
one of the important questions is to find conditions
under which the submanifold M lies on the hy-
persphere Sn+p−1(c) of the Euclidean space Rn+p

and this question has been studied in ([1]-[3]). Re-
call that a smooth vector field ξ on a Riemannian
manifold (M, g) is said to be a conformal vector
field if its flow consists of conformal transforma-
tions of the Riemannian manifold (M, g) and it is
equivalent to the condition£ξg = 2ρg,where £ξ is
the Lie derivative with respect to the vector field ξ
and ρ is a smooth function on M called the po-
tential function of the conformal vector field ξ.
Conformal vector fields have been used to charac-
terize spheres among compact Riemannian mani-
folds (cf. [5]-[7]). If M is an n-dimensional im-
mersed submanifold of the Euclidean space Rn+p

with the immersion ψ : M → Rn+p, then treat-
ing ψ as position vector field of points of M , we
haveψ = ψT+ψ⊥,where ψT is the tangential com-
ponent of ψ toM and ψ⊥ is the normal component
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of ψ. Thus it is a natural question to find con-
ditions under which the vector field ψT is a con-
formal vector field on M as well as to study the
geometry of the submanifold for which the vector
field ψT is a conformal vector field. In this paper
we answer this question as well as show that if ψT

is a conformal vector field then under certain cur-
vature conditions M either lies on a hypersphere
Sn+p−1(c) or is isometric to a sphere Sn(c).

2 Preliminaries
Let M be an n-dimensional submanifold of the
Euclidean space Rn+p with immersion ψ : M →
Rn+p. We denote by 〈, 〉 and∇ the euclidean met-
ric and the Euclidean connection onRn÷p, we also
denote by the letter g and by∇ the induced metric
and the Riemannian connection on the submani-
fold M . Then we have the following equations
for the submanifold M .

∇XY = ∇XY + h (X, Y ) , (1)
∇XN = −ANX +∇⊥XN

X, Y ∈ X (M), N ∈ Γ (υ), where X (M) is the
Lie algebra of smooth vector fields on M , Γ (υ) is
the space of smooth sections of the normal bundle
υ of M , h is the second fundamental form, AN
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is the Weingarten map with respect to the normal
N ∈ Γ (υ) which is related to the second funda-
mental form h by

g (ANX, Y ) = g (h (X, Y ) , N) , X, Y ∈ X (M)

and ∇⊥ is the connection in the normal bundle υ.
We also have the following equation

R (X, Y )Z = Ah(Y,Z)X − Ah(X,Z)Y. (2)

where R (X, Y )Z, X, Y, Z ∈ X(M) is the curva-
ture tensor field of the submanifold M . The Ricci
tensor field of M is given by

Ric (X, Y ) = ng (h (X, Y ) , H) (3)

−
n∑
i=1

g (h (X, ei) , h (Y, ei)) ,

where {e1, ..., en} is a local orthonormal frame on
M and

H =
1

n

n∑
i=1

h (ei, ei)

is the mean curvature vector field. The Ricci op-
erator Q is a symmetric operator defined by

Ric (X, Y ) = g (Q (X) , Y ) , X, Y ∈ X (M) .

If we express ψ = ψT + ψ⊥, where ψT ∈ X (M)
is the tangential component and ψ⊥ ∈ Γ (υ) is
the normal component of ψ, and if we denote by
B = Aψ⊥ the Weingarten map with respect to the
normal vector field ψ⊥ then using the equation
(1), we have

∇xψ
T = X +BX,

∇⊥Xψ⊥ = −h
(
X,ψT

)
, X, Y ∈ X (M) .(4)

We use the mean curvature vector field H to
define a smooth function F : M → R on the
submanifold M by F =

〈
H,ψ⊥

〉
. Now for an

n-dimensional compact submanifold ψ : M →
Rn+p, and a local orthonormal frame {e1, ..., en}
on M , we have

divψT =
n∑
i=1

〈
∇eiψ

T , ei
〉

= n (1 + F ) .

∴ divψT = n (1 + F ) (5)

We have the following Lemmas:
Lemma 2.1 [1] Let M be an n-dimensional

compact submanifold of the Euclidean space
Rn+p, then

∫
M

(1 + F )dυ = 0
Lemma 2.2 [1] Let M be an n-dimensional

submanifold of Rn+p then the tensor field B sat-
isfies

(i) trB = nF

(ii) (∇B) (X, Y )−(∇B) (Y,X) = R (X, Y )ψT

(iii)
∑n

i=1 (∇B) (ei, ei) = n∇F +Q
(
ψT
)
,

where (∇B) (X, Y ) = ∇XBY − B∇XY and
X, Y ∈ χ (M).

Lemma 2.3 [1] Let ψ : M → Rn+p be an n-
dimensional compact submanifold. Then a neces-
sary and sufficient condition for ψ (M) ⊆ Sn+p−1

is that ψT = 0 and F = −1.
Definition 2.1 A smooth vector field ξ on a

Riemannian manifold (M, g) is said to be a con-
formal vector field if there exists a smooth func-
tion ρ on M that satisfies £ξg = 2ρg, ρ called a
potential function, where £ξg is the Lie derivative
of g with respect to ξ. We say that ξ is non trivial
conformal vector field if the potential function ρ is
not a constant. A conformal vector field ξ is said
to be gradient conformal vector field if ξ = ∇f
for a smooth function f on M . Using Koszul’s
formula we immediately obtain the following for
a vector field ξ on M

2g (∇Xξ, Y ) = (£ξg) (X, Y )

+ dη (X, Y ) X, Y ∈ X (M)

where η is the 1-form dual to ξ, that is η (X) =
g (X, ξ), X ∈ X (M). Define a skew-symmetric
tensor field ϕ of type (1,1) on M by

dη (X, Y ) = 2g (ϕX, Y ) , X, Y ∈ X (M) .

Then using the definition of a conformal vector
field, we have

Lemma 2.4 [5] Let ξ be a conformal vec-
tor field on an n-dimensional Riemannian mani-
fold (M.g), with potential function ρ. Then

∇Xξ = ρX + ϕX , X ∈ X (M)
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and
divξ = nρ

Lemma 2.5 [6] Let ξ be a conformal gradi-
ent vector field on a compact Riemannian mani-
fold (M, g), then for ρ = n−1divξ,∫

M

ρdυ = 0

3. .Submanifolds with ψT as conformal vector
field

Let M be an n-dimensional submanifold of the
Euclidean space Rn+p , with immersion ψ : M →
Rn+p. In this section we study the geometry of the
submanifold M for which the vector field ψT is a
conformal vector field. First we prove the follow-
ing lemmas.

Lemma 3.1 LetM be an n-dimensional sub-
manifold of the Euclidean space Rn+p, with im-
mersion ψ : M → Rn+p and f = 1

2

∥∥ψ⊥∥∥2. If the
gradient∇f of the smooth function f is a confor-
mal vector field, then

Ric
(
ψT , ψT

)
+nψT (F ) +nρ+nF + ‖B‖2 = 0,

where ρ is the potential function of ∇f .
Proof. As ∇f is conformal vector field with

potential function say ρ, we have£∇fg = 2ρg.
Put B = Aψ⊥ and let η be the 1-form dual to
∇f , then η (X) = g (X,∇f) = X (f), and define
skew symmetric tensor field

rphi oftype(1, 1)onM bydη (X, Y ) =
2g (ϕX, Y ), X, Y ∈ X (M). Then by lemma2.4
∇X (∇f) = ρX + ϕX and div (∇f) = nρ,
and η is closed 1-form, which gives ∇f is also
closed and as dη (X, Y ) = 2g (ϕX, Y ) = 0,
X, Y ∈ X (M), we get that ϕ = 0. Thus

∇X (∇f) = ρX, and ∆f = nρ, (6)

where ∆ is the Laplacian operator. Now for X ∈
X (M), we have

g (∇f,X) = X (f) = X

(
1

2

∥∥ψ⊥∥∥2)
= −

(
Aψ⊥ψT , X

)

which gives

∇f = −Aψ⊥ψT = −BψT .

Put ξ = ψT and thus ∇f = −Bξ gives,

∇X (∇f) = −Bξ = − [(∇B) (X, ξ) +B∇Xξ] ,

which on using equation (4) gives

∇X (∇f) = − (∇B) (X, ξ)−BX −B2X (7)

Now using the lemma 2.2 and the fact that B is a
symmetric operator, we have

n∑
i=1

g ((∇B) (ei, ξ) , ei = g

(
n∑
i=1

(∇B) (ei, ei) , ξ

)
= nξ (F ) +Ric (ξ, ξ) (8)

Also, using the equations (6) and (7), we have

n∑
i=1

g ((∇B) (ei, ξ) , ei) = −nρ− trB − ‖B‖2

(9)
Thus using trB = nF and the equations (8) and
(9), we have

Ric (ξ, ξ) + nξ (F ) + nρ+ nF + ‖B‖2 = 0,

which proves the Lemma.
Lemma 3.2 Let ψ : M → Rn+p be an n-

dimensional compact submanifold. Then∫
M

{
Ric

(
ψT , ψT

)
− n2 (1 + F )2 +

‖B‖2 − ndυ = 0.

Proof. Consider a local orthonormal frame
{e1, ..., en}, and put ξ = ψT , then using lemma
2.2 and equation (5) to compute div (Bξ), we have

div (Fξ) = ξ (F ) + Fdivξ

= g (∇F, ξ) + nF (1 + F )

We find after simple calculations that,

div (Bξ) =
n∑
i=1

g (∇eiBξ, ei)

= ng (∇F, ξ) +Ric (ξ, ξ)

+ nF + ‖B‖2 ,
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and

g (∇F, ξ) = div (Fξ)− nF 2 − nF,

which gives

ng (∇F, ξ) = ndiv (Fξ)− n2F 2 − n2F.

Thus

div (Bξ) = ndiv (Fξ)− n2F 2 − n2F

+ Ric (ξ, ξ) + nF + ‖B‖2

and we have

div (Bξ − nFξ) = Ric (ξ, ξ)− n2F 2

− n2F + nF + ‖B‖2 ,

which on integration gives∫
M

{
Ric (ξ, ξ)− n2

(
F 2 − 1

)
+ ‖B‖2 − n

}
dυ = 0

(10)
Also using Lemma 2.1, we have∫

M

(1 + F )2 dυ =

∫
M

(
F 2 − 1

)
dυ,

thus using the above equation in the equation (10),
we get∫
M

{
Ric (ξ, ξ)− n2 (1 + F )2 + ‖B‖2 − n

}
dυ = 0.

Theorem 3.1 Let ψ : M → Rn+p be an
n-dimensional compact submanifold with the tan-
gential component ψT a nonzero conformal vector
field with potential function ρ. If the Ricci tensor
on M satisfies

(i) Ric
(
∇ρ+ cψT ,∇ρ+ cψT

)
> 0.

(ii) Ric (∇ρ,∇ρ) ≤ (n− 1) c ‖∇ρ‖2 for a con-
stant c.

Then M is isometric to a sphere Sn (c).
Proof. For ψ = ψT + ψ⊥ let ξ = ψT be a

conformal vector field with potential function ρ. If
we define f = 1

2
‖ψ‖2, then it is straight forward

to show that ξ = ∇f . Thus ξ is a gradient con-
formal vector field and the 1-form η dual to ξ is
η = df , and consequently dη = d2f = 0 and that

ϕ = 0 Thus the Lemma 2.4 gives ∇Xξ = ρX. We
have

∇Xξ = ∇Xψ
T = BX +X = ρX,

which gives B = (ρ− 1) I and divξ = nρ.
However as ξ = ∇f , we have ∆f = nρ. We
have∇Xξ = ∇Xψ

T = BX + X = ρX,which
gives B = (ρ− 1) I and divξ = nρ. However as
ξ = ∇f , we have ∆f = nρ. Thus we have

∴ (∇B) (X, Y ) = X (ρ)Y

which together with Lemma 2.2 gives

X (ρ)Y − Y (ρ)X = R (X, Y )∇f (11)

We get

Ric (ξ,X) = g (Q (ξ) , X)

=
n∑
i=1

R (ei, X; ξ, ei)

= g(X,∇ρ)− nX(ρ)

consequently, we have

Q (ξ) = − (n− 1)∇ρ (12)

Also we compute,

Ric (ξ, ξ) = − (n− 1) div (ρξ) + n (n− 1) ρ2

(13)
Also, the equation (12) gives

Ric (ξ,∇ρ) = g (− (n− 1)∇ρ,∇ρ)

= − (n− 1) ‖∇ρ‖2 (14)

Let λ1 be the first non zero eigenvalue of the
Laplacian operator on M . Then the Lemma2.5
together with the minimum principle implies∫

M

‖∇ρ‖2 dυ ≥ λ1Mρ
2dυ (15)

Using c = λ1
n

and the equations (13), (14) and
(15), we get

∫
M
Ric (∇ρ+ cξ, ρ+ cξ) dυ =∫

M
{Ric (∇ρ,∇ρ) + n (n− 1) c2ρ2

−2 (n− 1) c ‖∇ρ‖2 dυ
≤

∫
M

{
Ric (∇ρ,∇ρ)− (n− 1) c ‖∇ρ‖2

}
dυ,

Using the conditions in the statement, and the
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above inequality, we conclude that ∇ρ + cξ = 0,
which gives

∇X (∇ρ) = −cρX, X ∈ X (M) .

Thus if ρ is non-constant, then the above equi-
tation gives that M is isometric to an n-sphere
by Obata’s theorem (cf. [8]). If ρ is constant
then∇ρ = 0 =⇒ ξ = 0,which gives a contra-
diction as ξ is a nonzero conformal vector field.

In the following result, we consider a confor-
mal vector field given by the normal component
ψ⊥ and it is interesting to know that in this case
we get the criterion for the submanifold to lie on
the hypersphere in the Euclidean space.

Theorem 3.2 Let ψ : M → Rn+p be an
n-dimensional compact submanifold with mean
curvature H . Suppose ∇⊥ψTH = 0 and ∇f is

a conformal vector field, where f = 1
2

∥∥ψ⊥∥∥2.
Then h

(
ψT , ψT

)
= 0 if and only if ψ (M) ⊆

Sn+p−1 (c) for some constant c > 0.
Proof. Suppose h

(
ψT , ψT

)
= 0. Then on tak-

ing ξ = ψT ,

ξ (F ) = = ξg
(
H,ψ⊥

)
= −g (H, h (ξ, ξ)) = 0

that is, ξ (F ) = 0, which together with
Lemma 3.1 gives,Ric (ξ, ξ) + nξ (F ) + nρ +
nF + ‖B‖2 = 0. Integrating the above equa-
tion, we get

∫
M

{
Ric (ξ, ξ) + nF + ‖B‖2

}
dυ =∫

M

{
Ric (ξ, ξ) + ‖B‖2 − n

}
dυ = 0,where we

used the Lemma 2.1. Now by lemma 3.2 in
the above equation, we get

∫
M
−n2 (1 + F )2 dυ =

0,that is, F = −1.Thus by Lemma 2.3, ψ (M) ⊆
Sn+p−1 (c) for some constant c > 0. Conversely,
if ψ (M) ⊆ Sn+p−1 (c), c > 0 then by lemma 2.3
F = −1 and ψT = 0, thus h (ξ, ξ) = 0.

In the next result, we find the condition un-
der which the vector field ψT becomes a confor-
mal vector field on M .

Theorem 3.3 Let ψ : M → Rn+p be an
n-dimensional compact submanifold, with λ =

inf 1
n−1Ric.If

∥∥ψT∥∥2 ≥ n
λ

(1 + F )2, then ψT is
a conformal vector field on M.

Proof. Taking ξ = ψT , in the Lemma 3.2 ,we
get∫
M

{
Ric (ξ, ξ)− n2 (1 + F )2 + ‖B‖2 − n

}
dυ = 0,

which gives
∫
M

{
(Ric (ξ, ξ)− λ (n− 1) ‖ξ‖2

)
+

(‖B‖2 − nF 2) +(
(n− 1)

(
λ ‖ξ‖2 − n (1 + F )2

))
}dυ = 0.

Using Ric (ξ, ξ) ≥ (n− 1)λ ‖ξ‖2, and the
Schwarz inequality ‖B‖2 ≥ nF 2 and the condi-
tion in the statement λ ‖ξ‖2 ≥ n (1 + F )2 in the
above equation, we get the equality ‖B‖2 = nF 2,
which holds if and only if B = FI . Thus∇Xξ =
BX + X = FX + X = (1 + F )X = ρX,that
is £ξg = 2ρg,which proves that ξ = ψT is a
conformal vector field.
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