

COGULATION PROFILE

Clotting time, Bleeding time, and Prothrombin time

OBJECTIVES

•To understand the different test of coagulation and the purpose of each one

Coagulation

- Coagulation is a complex process by which blood forms clots.
- It is an important part of haemostasis (the cessation of blood loss from a damaged vessel).
- Disorders of coagulation can lead to an increased risk of

bleeding (hemorrhage) or clotting (thrombosis).

HEMOSTASIS IS MAINTAINED IN THE BODY VIA THREE MECHANISMS :

Vascular spasm - Damaged blood vessels constrict

Platelet plug formation - Platelats adhere to damaged endothelium to form platelet plug (*primary hemostasis*)

Blood Coagulation - Clots form upon the conversion of fibrinogen to Fibrin (secondary hemostasis).

Clotting Cascade

- A cascade is a mechanism in which enzymes activate other enzymes sequentially usually leading to an amplification of an initial signal.
- Pathways
 - Extrinsic
 - Intrinsic -
- Initially independent, then they converge on common pathway leading to the formation of a fibrin clot
- Each of these pathways leads to the conversion of factor X (inactive) to factor Xa (active)

WHAT TRIGGERS EXTRINSIC AND INTRINSIC PATHWAYS

Extrinsic—Release of biochemicals from broken blood vessels/damaged tissue.

Intrinsic—No tissue damage, blood contacts damaged endothelial layer of blood vessel walls.

COGULATION PROFILE

- Coagulation tests measure your blood's ability to clot and the amount of time it takes to do so
- You may be recommended to undergo a coagulation test if your doctor suspects you have a clotting disorder.

CLOTTING TIME

Test for <u>intrinsic system</u>

Simple test but takes time and rarely done now

Method:

- •Venous blood is taken and placed on glass test tube at 37°C and it observed at time intervals until clotting occurs
- Normal blood takes 5-10min to clot

•Longer periods \rightarrow Coagulation defects (e.g. Hemophilia)

METHOD

A finger is lanced and a small drop of blood is allowed to accumulate

The time is noted then the blood is drawn up into a nonheparininzed glass tube.

Negative charges associtated with the glass will inintiate the intrinsic coagulation pathway

After 2 min, a small portion of the glass tube is broken off. Other pieces are then broken off every 30 seconds

Normally after 2 to 6 min a fibrin strands will form

ietBodySmart.Com GetBodySmart.Co

Step 3 Step 3 GetBody Smart Com Get

CLOTTING TIME - CAPILLARY METHOD

BLEEDING TIME

•This test analyzes how quickly small blood vessels in your skin close up and stop bleeding thus it assess platelet function and the body's ability to form a clot.

Method:

It is determined by noting time at which blood coming out a small cut, no longer forms a spot on a piece of filter paper placed in contact with cut surface every 30 seconds until bleeding stops

The normal range from 2-4 min

BLEEDING TIME

Longer-than-normal bleeding time may be due to:

Blood vessel defect

Platelet aggregation defect

Thrombocytopenia (low platelet count)

PROTHROMBIN TIME (PT)

Measures effectiveness of the extrinsic pathway

measures the activity of the so-called extrinsic and common pathways of coagulation.

- Method:
 - An excess of tissue factor and Ca2+ ions are added to **diluted plasma** containing citrate (**anticoagulant**) and then the time taken for the mixture to clot is measured
- Normal value \rightarrow 10-15 secs

PROTHROMBIN TIME (PT)

Prothombin Time

- High PT low levels of thrombin
- Results from liver disease due to deficiency of prothrombin, fibrinogen, V, VII and X factors