College of Pharmacy Department of Pharmacology

CNS Depressants

Objectives

- Describe the general signs of CNS depression.
- Discuss the definition of sedative, hypnotic, tranquilizer and anesthetic.
- Elucidate sedative hypnotic classification.
- Understand the mechanism of barbiturate and benzodiazepine. and illustrate some examples of each drug class.

Classification of CNS depressants according to their actions:

1- Sedative – hypnotics.

2- Tranquillizers.

3-Anesthetics.

General signs for CNS depressants

- $1 \downarrow$ vitality.
- $2 \downarrow$ excitability.
- $3 \downarrow HR \& RR$.

I. Sedative – hypnotics

Sedatives:

Drugs which decrease the activity, calm the recipient, cause sedation and in large dose they induce sleep.

Hypnotics:

Drugs which induce sleep that resembles the natural sleep.

e.g. Barbiturates

Natural Sleep

NREM		REM	
	Non rapid eye movement.		Rapid eye movement.
•	Consists of 4 stages.		Consists of one stage (dreaming stage).
	Lasts for 90 min.	•	Lasts for 20 min.
•	Associates with thinking.		Associates with dreaming.

Sedative – hypnotics: Classification

II- Tranquillizers

Definition:

Tranquillizers are drugs which relief mental anxiety and stress without affecting the consciousness.

e.g. Chlorpromazine (CPZ)

III-Anesthetics

Definition:

Drugs which cause unconsciousness and generalized loss of pain sensation to permit the performance of surgery. e.g. thiopental (IV), halothane (inhalation).

MOA:

Decrease with propagation of nerve impulses by interfering with electrolytes conductance through the cell membrane.

1- Barbiturates

MOA:

They have GABA like action $\rightarrow \uparrow$ opening time of chloride channels $\rightarrow \uparrow$ conductance of chloride ions \rightarrow hyperpolarization.

Classification according to their duration of action:

- 1-Long-acting.
- 2-Intermediate-acting.
- 3-Short acting.
- 4-Ultrashort acting.

2- Benzodiazepines

MOA:

- Bind non-selectively to benzodiazepine receptors (GABAA-dependent).
 - \circ GABAA receptors \rightarrow increase Cl influx \rightarrow hyperpolarization
 - \circ GABAB receptors → Gi protein → \downarrow cAMP → relaxation

Examples:

- Diazepam (sedative).
- Triazolam (hypnotic) .

3- Non-barbiturate Non-BZD

- 1. 5-HTA1 agonist e.g. buspirone.
- 2. Chloral hydrate (prodrug) converted to trichloroethanol.
- 3. Antihistamine e.g. diphenhydramine.
- 4. Paraldehyde.
- 5. Promethazine.

Specific signs of sedative-hypnotic Drugs:

Thiopental, Phenobarbital and Chloral hydrate.

Signs:

- 1- Staggering gait.
- 2- Sleeping posture.
- 3- Loss of righting reflex (onset time).
- 4- \downarrow Touch & pain reflexes (<u>lost</u> with thiopental).

Specific signs for CPZ

Signs:

- 1- No loss of righting reflex.
- 2- Creeping gait.
- 3- Abdomen touches the ground.
- 4- State of catalepsy (loss of muscles control) \rightarrow onset time.
- 5- \downarrow Touch & pain reflexes.

CPZ mechanism of action:

• It is D2, 5 HT, H1 and alpha 1 antagonist.

Lab work

Drug	Conc.	Dose	Route
Thiopental	2.5 %	100 mg/kg	
Phenobarbital	2 %	200 mg/kg	IP
Chloralhydrate	3 %	300 mg/kg	
C.P.Z	0.1%	15 mg/kg	

References

 H.P. Rang, M.M. Dale, M.J Ritter, R.J. Flower (2007). Anxiolytic and hypnotic drugs. Rang and Dale's Pharmacology, 6th edition, Elsevier health sciences, London.