Ethers and Epoxides

- **Ether** have two organic groups (alkyl, aryl, or vinyl) bonded to the same oxygen atom [R-O-R'] may be they have the same structure (symmetric) or different (unsymmetric).
- Diethyl ether is used industrially as a solvent
- Tetrahydrofuran (THF) is a solvent that is a cyclic ether
- Dioxan is consider as an ether

dioxan

Naming of Ethers

- Simple ethers are named by identifying the two organic substituents and adding the word ether
- If other functional groups are present, the ether part is considered an alkoxy substituent

$$H_3C \longrightarrow CH_3$$

$$tert\text{-Butyl methyl ether}$$

$$Ethyl phenyl ether$$

$$CH_3O \longrightarrow OCH_3$$

$$1 \longrightarrow CH_3$$

$$CH_3 \longrightarrow CH_3$$

Structure, Properties, and Sources of Ethers

- R–O–R ~ tetrahedral bond angle (112° in dimethyl ether), they have Lower boiling point than those of alcohols of comparable molecular weights
- Oxygen is sp³-hybridized
- Oxygen atom gives ethers a slight dipole moment
- Diethyl ether prepared industrially by sulfuric acid catalyzed dehydration of ethanol – also with other primary alcohols

$$CH_{3}CH_{2}-\overset{\overset{\longleftarrow}{O}:}{\overset{\longleftarrow}{O}:}+CH_{3}CH_{2}-\overset{\overset{\longleftarrow}{O}:}{\overset{\leftarrow}{O}:}+CH_{3}CH_{2}-\overset{\overset{\longleftarrow}{O}:}{\overset{\longleftarrow}{O}:}-CH_{2}CH_{3}\longrightarrow CH_{3}CH_{2}-\overset{\overset{\longleftarrow}{O}:}{\overset{\longleftarrow}{O}:}-CH_{2}CH_{3}$$

1. The Williamson Ether Synthesis

- Reaction of metal alkoxides and primary alkyl halides and tosylates
- Best method for the preparation of ethers
- Alkoxides prepared by reaction of an alcohol with a strong base such as sodium hydride, NaH

4

Summary of the Williamson synthesis

1. The Williamson synthesis is the preferred laboratory method for making ethers.

The reaction goes by an S_N^2 mechanism.

- 2. To prepare a mixed ether, it is necessary to choose the proper combination of reagents.
- 3. To obtain the best yields of mixed dialkyl ethers, we select a 1° rather than a 2° or 3° alkyl halide and react it with a sodium alkoxide
- 4. To prepare an alkyl aryl ether, we must be careful not to pick a combination in which one of the reagents has a halogen directly attached to an aromatic ring.

2. Alkoxymercuration of Alkenes

- React alkene with an alcohol and mercuric acetate or trifluoroacetate
- Demercuration with NaBH₄ yields an ether
- Overall Markovnikov addition of alcohol to alkene

Reactions of Ethers: Acidic Cleavage

- Ethers are generally unreactive
- Strong acid will cleave an ether at elevated temperature
- HI, HBr produce an alkyl halide from less hindered component by S_N2 (tertiary ethers undergo S_N1)

$$\begin{array}{c} \text{More hindered} \\ \text{CH}_3\text{CH}-\ddot{\text{O}}-\text{CH}_2\text{CH}_3 \\ \text{CH}_3 \end{array} \longrightarrow \begin{array}{c} \text{More hindered} \\ \text{H} \\ \text{CH}_3\text{CH}-\ddot{\text{O}}-\text{CH}_2\text{CH}_3 \\ \text{CH}_3 \end{array} \longrightarrow \begin{array}{c} \text{CH}_3\text{CH}-\text{OH} \\ \text{CH}-\text{OH} \end{array} \longrightarrow \begin{array}{c} \text{CH}_3\text{CH}-\text{OH}$$

Cyclic Ethers: Epoxides

- Cyclic ethers behave like acyclic ethers, except if ring is 3-membered
- Dioxane and tetrahydrofuran are used as solvents

Epoxides (Oxiranes)

- Three membered ring ether is called an oxirane (root "ir" from "tri" for 3-membered; prefix "ox" for oxygen; "ane" for saturated)
- Also called epoxides
- Ethylene oxide (oxirane; 1,2-epoxyethane) is industrially important as an intermediate
- Prepared by reaction of ethylene with oxygen at 300
 C and silver oxide catalyst

Preparation of Epoxides Using a Peroxyacid

Treat an alkene with a peroxyacid

Epoxides from Halohydrins

- Addition of HO-X to an alkene gives a halohydrin
- Treatment of a halohydrin with base gives an epoxide
- Intramolecular Williamson ether synthesis

$$\begin{array}{c} H \\ \hline \\ H \\ \hline \\ H \\ \hline \\ H_2O \\ \\ H_2O \\ \hline \\ H_2O \\ \\ H_2O \\ \hline \\ H_2O \\ \\$$

© 2004 Thomson - Brooks/Cole

Ring-Opening Reactions of Epoxides

- Water adds to epoxides with dilute acid at room temperature
- Product is a 1,2-diol (on adjacent C's: vicinal)
- Mechanism: acid protonates oxygen and water adds to opposite side (trans addition)

Ethylene Glycol

- 1,2-ethanediol from acid catalyzed hydration of ethylene
- Widely used as automobile antifreeze (lowers freezing point of water solutions)

Halohydrins from Epoxides

- Anhydrous HF, HBr, HCl, or HI combines with an epoxide
- Gives trans product

A trans 2-halocyclohexanol

where
$$X = F$$
, Br , Cl , or I

© 2004 Thomson - Brooks/Cole

Regiochemistry of Acid-Catalyzed Opening of Epoxides

- Nucleophile preferably adds to less hindered site if primary and secondary C's
- Also at tertiary because of carbocation character

Base-Catalyzed Epoxide Opening

- Strain of the three-membered ring is relieved on ringopening
- Hydroxide cleaves epoxides at elevated temperatures to give trans 1,2-diols

$$\begin{array}{c} \text{O-} \\ \text{CH}_2 \\ \text{H}_2 \\ \text{O}, 100^{\circ} \\ \text{C} \\ \text{H}_2 \\ \text{O}, 100^{\circ} \\ \text{C} \\ \text{H}_2 \\ \text{OH} \\ \text{CH}_2 \\ \text{OH} \\ \text{CH}_2 \\ \text{OH} \\ \text{CH}_2 \\ \text{OH} \\ \text{CH}_2 \\ \text{OH} \\ \text{OH} \\ \text{CH}_2 \\ \text{OH} \\ \text{$$

Addition of Grignards to Ethylene Oxide

- Adds –CH₂CH₂OH to the Grignard reagent's hydrocarbon chain
- Acyclic and other larger ring ethers do not react