Theory of statistics 2

Department of Statistics and Operations Research

March 31, 2019

Sequential likelihood ratio test

All previous tests γ for the hypothesis $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta=\theta_{1}$ use Likelihood Ratio (LR) λ under a fixed sample size n and rejects as $\lambda \leq k$ where k is properly found. Whereas Sequential Likelihood Ratio Test (SLRT) $\gamma_{S L R T}$ uses also LR λ_{N} but under a random sample size N and decides to reject or accept using two bands $k_{0}<k_{1}$. Precisely, $\gamma_{S L R T}$ computes from the one observation x_{1} the well-known LR:

$$
\lambda_{1}=\frac{\ell\left(x_{1} ; \theta_{0}\right)}{\ell\left(x_{1} ; \theta_{1}\right)} .
$$

Then $\gamma_{S L R T}$ rejects if $\lambda_{1} \leq k_{0}$ or accepts if $\lambda_{1} \geq k_{1}$ and stop.

If $k_{0}<\lambda_{1}<k_{1}$, then another observation is drawn

$$
\lambda_{2}=\frac{\ell\left(x_{1}, x_{2} ; \theta_{0}\right)}{\ell\left(x_{1}, x_{2} ; \theta_{1}\right)} .
$$

is computed to rejects if $\lambda_{2} \leq k_{0}$ or accepts if $\lambda_{2} \geq k_{1}$ or to draw another more observation.

This sequential strategy makes the sample size N for which the decision of rejection or acceptance is random. This strategy may be summarize as following:
(1) To reject H_{0} at N means that:

$$
\lambda_{N} \leq k_{0} ; \quad k_{0}<\lambda_{j}<k_{1}, j \in\{1, \ldots, N-1\} .
$$

(2) To accept H_{0} at N means that:

$$
\lambda_{N} \geq k_{1} ; \quad k_{0}<\lambda_{j}<k_{1}, j \in\{1, \ldots, N-1\} .
$$

Where

$$
\lambda_{N}=\frac{\ell\left(x_{1}, x_{2}, \ldots, x_{N} ; \theta_{0}\right)}{\ell\left(x_{1}, x_{2}, \ldots, x_{N} ; \theta_{1}\right)}
$$

The rejection area here is:

$$
C=\underset{N \geq 1}{\cup} C_{N},
$$

where
$C_{N}=\left\{x_{1}, x_{2}, \ldots, x_{n} ; k_{0}<\lambda_{i}<k_{1}\right.$ for $\left.i=1, \ldots, N-1 ; \lambda_{N} \leq k_{0}\right\}$.
The acceptance area here is:

$$
A=\underset{N \geq 1}{\cup} A_{N}
$$

where
$A_{N}=\left\{x_{1}, x_{2}, \ldots, x_{n} ; k_{0}<\lambda_{i}<k_{1}\right.$ for $\left.i=1, \ldots, N-1 ; \lambda_{N} \geq k_{1}\right\}$.

If the sizes of errors of $\gamma_{S L R T}$ are α^{*} and β^{*}, then

$$
\alpha^{*}=\mathbb{P}\left(\text { Reject } H_{0} \mid \theta_{0}\right)=\sum_{N \geq 1} \int_{C_{N}} \ell\left(x_{1}, x_{2}, \ldots, x_{N} ; \theta_{0}\right)
$$

and

$$
\beta^{*}=\mathbb{P}\left(\text { Accept } H_{0} \mid \theta_{1}\right)=\sum_{N \geq 1} \int_{A_{N}} \ell\left(x_{1}, x_{2}, \ldots, x_{N} ; \theta_{1}\right)
$$

Theorem

- The test $\gamma_{S L R T}$ of sizes of errors α^{*} and β^{*} minimizes $\mathbb{E}(N)$ among all other tests γ of sizes of errors $\alpha \leq \alpha^{*}$ and $\beta \leq \beta^{*}$.
- The approximations

$$
k_{0} \approx k_{0}^{\prime}=\frac{\alpha^{*}}{1-\beta^{*}} \text { and } k_{1} \approx k_{1}^{\prime}=\frac{1-\alpha^{*}}{\beta^{*}} .
$$

Satisfy

$$
k_{0}^{\prime} \leq k_{0}<k_{1} \leq k_{1}^{\prime} .
$$

Computation of $\mathbb{E}(N)$

$$
\begin{gathered}
\mathbb{E}\left(N \mid H_{0}\right)=\frac{\alpha^{*} \log \left(k_{0}^{\prime}\right)+\left(1-\alpha^{*}\right) \log \left(k_{1}^{\prime}\right)}{\mathbb{E}\left(Z_{i} \mid H_{0}\right)} \\
\mathbb{E}\left(N \mid H_{1}\right)=\frac{\left(1-\beta^{*}\right) \log \left(k_{0}^{\prime}\right)+\beta^{*} \log \left(k_{1}^{\prime}\right)}{\mathbb{E}\left(Z_{i} \mid H_{1}\right)}, \\
\text { where } Z_{i}=\log \left(\frac{f\left(x_{i} ; \theta_{0}\right)}{f\left(x_{i} ; \theta_{1}\right)}\right)
\end{gathered}
$$

Example

It was found $\gamma_{M P}$ in testing $H_{0}: \theta=3$ vs $H_{1}: \theta=5$ for the normal distribution $N(\theta, 16)$ using $n=25, \alpha_{M P}=0.05$ and $\beta_{M P}=0.1949$

1) Approximate the bands k_{0} and k_{1} of $\gamma_{S L R T}$ with the errors of $\gamma_{M P}$:

$$
k_{0} \approx k_{0}^{\prime}=\frac{\alpha_{M P}}{1-\beta_{M P}}=0.0621 \text { and } k_{1} \approx k_{1}^{\prime}=\frac{1-\alpha_{M P}}{\beta_{M P}}=4.874 .
$$

2) Determine $\mathbb{E}\left(Z_{i} \mid H_{0}\right)$ and $\mathbb{E}\left(Z_{i} \mid H_{1}\right)$

$$
\begin{gathered}
Z_{i}=\log \left(\frac{f\left(x_{i} ; \theta_{0}\right)}{f\left(x_{i} ; \theta_{1}\right)}\right)=-\frac{1}{2 \times 16}\left[\left(x_{i}-3\right)^{2}-\left(x_{i}-5\right)^{2}\right]=\frac{1}{8}\left(4-x_{i}\right) . \\
\mathbb{E}\left(Z_{i} \mid H_{0}\right)=\frac{1}{8}\left(4-\mathbb{E}\left(x_{i} \mid H_{0}\right)\right)=\frac{1}{8}(4-3)=\frac{1}{8} \\
\mathbb{E}\left(Z_{i} \mid H_{1}\right)=\frac{1}{8}\left(4-\mathbb{E}\left(x_{i} \mid H_{1}\right)\right)=\frac{1}{8}(4-5)=-\frac{1}{8} .
\end{gathered}
$$

3) Compute $\mathbb{E}\left(N \mid H_{0}\right)$ and $\mathbb{E}\left(N \mid H_{1}\right)$

$$
\begin{aligned}
\mathbb{E}\left(N \mid H_{0}\right) & =\frac{\alpha^{*} \log \left(k_{0}^{\prime}\right)+\left(1-\alpha^{*}\right) \log \left(k_{1}^{\prime}\right)}{\mathbb{E}\left(Z_{i} \mid H_{0}\right)} \\
& =\frac{-2.779 \times 0.05+1.584 \times 0.95]}{1 / 8}=10.93
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left(N \mid H_{1}\right) & =\frac{\left(1-\beta^{*}\right) \log \left(k_{0}^{\prime}\right)+\beta^{*} \log \left(k_{1}^{\prime}\right)}{\mathbb{E}\left(Z_{i} \mid H_{1}\right)} \\
& =\frac{2.779 \times 0.8051+1.584 \times 0.1949}{(-1 / 8)}=15.43
\end{aligned}
$$

Homework

It was found $\gamma_{M P}$ in testing $H_{0}: \theta=2$ vs $H_{1}: \theta=3$ for the exponential distribution $f(x ; \theta)=\theta e^{-\theta x}, \quad x>0$ using $n=10$, $\alpha_{M P}=0.05$ and $\beta_{M P}=0.7$

1) Approximate the bands k_{0} and k_{1} of $\gamma_{S L R T}$ with the errors of $\gamma_{M P}$:
2) Determine $\mathbb{E}\left(Z_{i} \mid H_{0}\right)$ and $\mathbb{E}\left(Z_{i} \mid H_{1}\right)$
3) Compute $\mathbb{E}\left(N \mid H_{0}\right)$ and $\mathbb{E}\left(N \mid H_{1}\right)$

Homework

It was found $\gamma_{M P}$ in testing $H_{0}: \sigma=2$ vs $H_{1}: \sigma=4$ for the normal distribution $N\left(\theta, \sigma^{2}\right)$, with θ known, using $n=10$, $\alpha_{M P}=0.05$ and $\beta_{M P}=0.0824$

1) Approximate the bands k_{0} and k_{1} of $\gamma_{S L R T}$ with the errors of $\gamma_{M P}$:
2) Determine $\mathbb{E}\left(Z_{i} \mid H_{0}\right)$ and $\mathbb{E}\left(Z_{i} \mid H_{1}\right)$
3) Compute $\mathbb{E}\left(N \mid H_{0}\right)$ and $\mathbb{E}\left(N \mid H_{1}\right)$

Homework

It was found $\gamma_{M P}$ in testing $H_{0}: \theta=2$ vs $H_{1}: \theta=3$ for the distribution $f(x ; \theta)=\theta x^{\theta-1}, \quad 0<x<1$ using $n=10$, $\alpha_{M P}=0.05$ and $\beta_{M P}=0.23$

1) Approximate the bands k_{0} and k_{1} of $\gamma_{S L R T}$ with the errors of $\gamma_{M P}$:
2) Determine $\mathbb{E}\left(Z_{i} \mid H_{0}\right)$ and $\mathbb{E}\left(Z_{i} \mid H_{1}\right)$
3) Compute $\mathbb{E}\left(N \mid H_{0}\right)$ and $\mathbb{E}\left(N \mid H_{1}\right)$

Thank you

$$
4 \square>4 \text { 岛 } \downarrow 4 \equiv \stackrel{\equiv}{ }
$$

