Theory of statistics 2

Department of Statistics and Operations Research

March 31, 2019

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Sequential likelihood ratio test

All previous tests γ for the hypothesis $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ use Likelihood Ratio (LR) λ under a fixed sample size n and rejects as $\lambda \leq k$ where k is properly found. Whereas Sequential Likelihood Ratio Test (SLRT) γ_{SLRT} uses also LR λ_N but under a random sample size N and decides to reject or accept using two bands $k_0 < k_1$. Precisely, γ_{SLRT} computes from the one observation x_1 the well-known LR:

$$\lambda_1 = \frac{\ell(x_1; \theta_0)}{\ell(x_1; \theta_1)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then γ_{SLRT} rejects if $\lambda_1 \leq k_0$ or accepts if $\lambda_1 \geq k_1$ and stop.

If $k_0 < \lambda_1 < k_1$, then another observation is drawn

$$\lambda_2 = \frac{\ell(x_1, x_2; \theta_0)}{\ell(x_1, x_2; \theta_1)}$$

is computed to rejects if $\lambda_2 \leq k_0$ or accepts if $\lambda_2 \geq k_1$ or to draw another more observation.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

This sequential strategy makes the sample size N for which the decision of rejection or acceptance is random. This strategy may be summarize as following:

• To reject H_0 at N means that:

$$\lambda_N \leq k_0; \quad k_0 < \lambda_j < k_1, j \in \{1, \dots, N-1\}.$$

2 To accept H_0 at N means that:

$$\lambda_N \geq k_1; \quad k_0 < \lambda_j < k_1, j \in \{1, \ldots, N-1\}.$$

Where

$$\lambda_{N} = \frac{\ell(x_1, x_2, \dots, x_N; \theta_0)}{\ell(x_1, x_2, \dots, x_N; \theta_1)}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ ९ () ぐ

The rejection area here is:

$$C=\underset{N\geq 1}{\cup}C_N,$$

where

 $C_N = \{x_1, x_2, \dots, x_n; \ k_0 < \lambda_i < k_1 \text{ for } i = 1, \dots, N-1; \ \lambda_N \le k_0\}.$

The acceptance area here is:

 $A=\bigcup_{N\geq 1}A_N,$

where

 $A_{N} = \{x_{1}, x_{2}, \dots, x_{n}; k_{0} < \lambda_{i} < k_{1} \text{ for } i = 1, \dots, N-1; \lambda_{N} \ge k_{1}\}.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

If the sizes of errors of $\gamma_{\textit{SLRT}}$ are α^* and $\beta^*\text{, then}$

$$\alpha^* = \mathbb{P}(\text{Reject } H_0|\theta_0) = \sum_{N \ge 1} \int_{C_N} \ell(x_1, x_2, \dots, x_N; \theta_0)$$

 ${\sf and}$

$$\beta^* = \mathbb{P}(\text{Accept } H_0|\theta_1) = \sum_{N \ge 1} \int_{A_N} \ell(x_1, x_2, \dots, x_N; \theta_1).$$

・ロト・日本・ヨト・ヨー うへの

Theorem

Satisfy

- The test γ_{SLRT} of sizes of errors α^{*} and β^{*} minimizes 𝔅(𝔥) among all other tests γ of sizes of errors α ≤ α^{*} and β ≤ β^{*}.
- The approximations

$$k_0 pprox k_0' = rac{lpha^*}{1-eta^*} ext{ and } k_1 pprox k_1' = rac{1-lpha^*}{eta^*}.$$
 $k_0' \le k_0 < k_1 \le k_1'.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ

Computation of $\mathbb{E}(N)$

$$\mathbb{E}(N|H_0) = \frac{\alpha^* \log(k'_0) + (1 - \alpha^*) \log(k'_1)}{\mathbb{E}(Z_i|H_0)}$$
$$\mathbb{E}(N|H_1) = \frac{(1 - \beta^*) \log(k'_0) + \beta^* \log(k'_1)}{\mathbb{E}(Z_i|H_1)},$$
where $Z_i = \log\left(\frac{f(x_i;\theta_0)}{f(x_i;\theta_1)}\right)$

(ロ)、(型)、(E)、(E)、(E)、(D)へ()

Example

It was found γ_{MP} in testing $H_0: \theta = 3$ vs $H_1: \theta = 5$ for the normal distribution $N(\theta, 16)$ using n = 25, $\alpha_{MP} = 0.05$ and $\beta_{MP} = 0.1949$

1) Approximate the bands k_0 and k_1 of γ_{SLRT} with the errors of γ_{MP} :

$$k_0 \approx k_0' = \frac{\alpha_{MP}}{1 - \beta_{MP}} = 0.0621 \text{ and } k_1 \approx k_1' = \frac{1 - \alpha_{MP}}{\beta_{MP}} = 4.874.$$

2) Determine $\mathbb{E}(Z_i|H_0)$ and $\mathbb{E}(Z_i|H_1)$

$$Z_{i} = \log\left(\frac{f(x_{i};\theta_{0})}{f(x_{i};\theta_{1})}\right) = -\frac{1}{2 \times 16} [(x_{i}-3)^{2} - (x_{i}-5)^{2}] = \frac{1}{8} (4-x_{i}).$$
$$\mathbb{E}(Z_{i}|H_{0}) = \frac{1}{8} (4 - \mathbb{E}(x_{i}|H_{0})) = \frac{1}{8} (4 - 3) = \frac{1}{8}.$$
$$\mathbb{E}(Z_{i}|H_{1}) = \frac{1}{8} (4 - \mathbb{E}(x_{i}|H_{1})) = \frac{1}{8} (4 - 5) = -\frac{1}{8}.$$

3) Compute $\mathbb{E}(N|H_0)$ and $\mathbb{E}(N|H_1)$

$$\mathbb{E}(N|H_0) = \frac{\alpha^* \log(k'_0) + (1 - \alpha^*) \log(k'_1)}{\mathbb{E}(Z_i|H_0)} \\ = \frac{-2.779 \times 0.05 + 1.584 \times 0.95]}{1/8} = 10.93$$

$$\mathbb{E}(N|H_1) = \frac{(1-\beta^*)\log(k'_0) + \beta^*\log(k'_1)}{\mathbb{E}(Z_i|H_1)} \\ = \frac{2.779 \times 0.8051 + 1.584 \times 0.1949}{(-1/8)} = 15.43$$

Homework

- It was found γ_{MP} in testing $H_0: \theta = 2$ vs $H_1: \theta = 3$ for the exponential distribution $f(x; \theta) = \theta e^{-\theta x}$, x > 0 using n = 10, $\alpha_{MP} = 0.05$ and $\beta_{MP} = 0.7$
- 1) Approximate the bands k_0 and k_1 of γ_{SLRT} with the errors of γ_{MP} :

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

- 2) Determine $\mathbb{E}(Z_i|H_0)$ and $\mathbb{E}(Z_i|H_1)$
- 3) Compute $\mathbb{E}(N|H_0)$ and $\mathbb{E}(N|H_1)$

Homework

- It was found γ_{MP} in testing $H_0: \sigma = 2$ vs $H_1: \sigma = 4$ for the normal distribution $N(\theta, \sigma^2)$, with θ known, using n = 10, $\alpha_{MP} = 0.05$ and $\beta_{MP} = 0.0824$
- 1) Approximate the bands k_0 and k_1 of γ_{SLRT} with the errors of γ_{MP} :

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

- 2) Determine $\mathbb{E}(Z_i|H_0)$ and $\mathbb{E}(Z_i|H_1)$
- 3) Compute $\mathbb{E}(N|H_0)$ and $\mathbb{E}(N|H_1)$

Homework

- It was found γ_{MP} in testing $H_0: \theta = 2$ vs $H_1: \theta = 3$ for the distribution $f(x; \theta) = \theta x^{\theta 1}$, 0 < x < 1 using n = 10, $\alpha_{MP} = 0.05$ and $\beta_{MP} = 0.23$
- 1) Approximate the bands k_0 and k_1 of γ_{SLRT} with the errors of γ_{MP} :

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

- 2) Determine $\mathbb{E}(Z_i|H_0)$ and $\mathbb{E}(Z_i|H_1)$
- 3) Compute $\mathbb{E}(N|H_0)$ and $\mathbb{E}(N|H_1)$

Thank you

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●