Net Present Value \& Other Investment Criteria CHAPTER 9

Key Concepts and Skills

- Compute payback \& discounted payback and understand their shortcomings
- Understand accounting rates of return and their shortcomings
- Be able to compute internal rates of return (standard and modified) and understand their strengths and weaknesses
- Be able to compute the net present value and understand why it is the best decision criterion
- Be able to compute the profitability index and understand its relation to net present value

Chapter Outline

- Net Present Value
- The Payback Rule
- The Discounted Payback
- The Average Accounting Return
- The Internal Rate of Return
- The Profitability Index
- The Practice of Capital Budgeting

Good Decision Criteria

- We need to ask ourselves the following questions when evaluating capital budgeting decision rules:
- Does the decision rule adjust for the time value of money?
- Does the decision rule adjust for risk?
- Does the decision rule provide information on whether we are creating value for the firm?

Net Present Value

- The difference between the market value of a project and its cost
- How much value is created from undertaking an investment?
- Step 1: estimate the expected future cash flows.
- Step 2: estimate the required return for projects of this risk level.
- Step 3: find the present value of the cash flows and subtract the initial investment.

NPV - Decision Rule

- If the NPV is positive, accept the project
- A positive NPV means that the project is expected to add value to the firm and will therefore increase the wealth of the owners.
- Since our goal is to increase owner wealth, NPV is a direct measure of how well this project will meet our goal.

Project Example Information

- You are reviewing a new project and have estimated the following cash flows:
- Year 0: $\quad C F=-165,000$
- Year 1: $\quad \mathrm{CF}=63,120 ; \mathrm{NI}=13,620$
- Year 2: $\quad \mathrm{CF}=70,800 ; \mathrm{NI}=3,300$
- Year 3: $\quad \mathrm{CF}=91,080 ; \mathrm{NI}=29,100$
- Average Book Value $=72,000$
- Your required return for assets of this risk level is 12%.

Computing NPV for the Project

- Using the formulas:
- NPV $=-165,000+63,120 /(1.12)+70,800 /(1.12)^{2}+$ $91,080 /(1.12)^{3}=12,627.41$
- Using the calculator:
- $\mathrm{CF}_{\mathrm{o}}=-165,000 ; \mathrm{Co1}=63,120 ; \mathrm{FO}=1 ; \mathrm{Co2}=70,800$; $\mathrm{FO} 2=1 ; \mathrm{Co} 3=91,080 ; \mathrm{FO} 3=1 ; \mathrm{NPV} ; \mathrm{I}=12 ; \mathrm{CPT} \mathrm{NPV}=$ 12,627.41
- Do we accept or reject the project?

Decision Criteria Test - NPV

- Does the NPV rule account for the time value of money?
- Does the NPV rule account for the risk of the cash flows?
- Does the NPV rule provide an indication about the increase in value?
- Should we consider the NPV rule for our primary decision rule?

Example 9.1

Suppose we are asked to decide whether a new consumer product should be launched. Based on projected sales and costs, we expect that the cash flows over the fiveyear life of the project will be $\$ 2000$ in the first two years, $\$ 4000$ in the next two and $\$ 5000$ in the last year. It will cost about $\$ 10000$ to begin production. We use a 10 percent discount rate to evaluate new products. What should we do here?

Example 9.1

- Present Value of the expected cash flows $=$ $(2000 / 1.1)+\left(2000 / 1.1^{2}\right)+\left(4000 / 1.1^{3}\right)+\left(4000 / 1.1^{4}\right)$ $+\left(5000 / 1.1^{5}\right)=\$ 12313$
- $\mathrm{NPV}=-10000+12313=\$ 2313$
- Decision : accept the project because NPV is positive.

Payback Period

- How long does it take to get the initial cost back in a nominal sense?
- Computation
- Estimate the cash flows
- Subtract the future cash flows from the initial cost until the initial investment has been recovered
- Decision Rule - Accept if the payback period is less than some preset limit

Computing Payback for the Project

- Assume we will accept the project if it pays back within two years.
- Year 1: 165,000 $-63,120=101,880$ still to recover
- Year 2: 101,880-70,800 $=31,080$ still to recover
- Year 3: 31,080 $-91,080=-60,000$ project pays back in year 3
- Do we accept or reject the project?

Decision Criteria Test - Payback

- Does the payback rule account for the time value of money?
- Does the payback rule account for the risk of the cash flows?
- Does the payback rule provide an indication about the increase in value?
- Should we consider the payback rule for our primary decision rule?

Example 9.2

The proposed cash flows for a proposed project that costs $\$ 500$, are as follows:
$\$ 100$ in one year, $\$ 200$ in two years and $\$ 500$ in three years.

Should we accept or reject this project if the payback period in the market is 3 years?

Example 9.2

$$
\begin{aligned}
& \text { Year 1: } 500-100=\$ 400 \\
& \text { Year 2: } 400-200=\$ 200 \\
& \text { Year 3: } 200-500=(300)
\end{aligned}
$$

- We only need $\$ 200$ from the third year 500 , so we have to wait $200 / 500=0.4$ years
- The payback period is 2.4 years and since it is less than 3 years the market payback period the project should be accepted.

Advantages and Disadvantages of Payback

- Advantages
- Easy to understand
- Adjusts for uncertainty of later cash flows
- Biased toward liquidity
- Disadvantages
- Ignores the time value of money
- Requires an arbitrary cutoff point
- Ignores cash flows beyond the cutoff date
- Biased against longterm projects, such as research and development, and new projects

Discounted Payback Period

- Compute the present value of each cash flow and then determine how long it takes to pay back on a discounted basis
- Compare to a specified required period
- Decision Rule - Accept the project if it pays back on a discounted basis within the specified time

Computing Discounted Payback for the Project

- Assume we will accept the project if it pays back on a discounted basis in 2 years.
- Compute the PV for each cash flow and determine the payback period using discounted cash flows
- Year 1: 165,000-63,120/1.12 ${ }^{1}=108,643$
- Year 2: $108,643-70,800 / 1.12^{2}=52,202$
- Year 3: 52,202-91,080/1.12 ${ }^{3}=-12,627$ project pays back in year 3
- Do we accept or reject the project?

Decision Criteria Test - Discounted Payback

- Does the discounted payback rule account for the time value of money?
- Does the discounted payback rule account for the risk of the cash flows?
- Does the discounted payback rule provide an indication about the increase in value?
- Should we consider the discounted payback rule for our primary decision rule?

Advantages \& Disadvantages of Discounted

Payback

- Advantages

- Includes time value of money
- Easy to understand
- Does not accept negative estimated NPV investments when all future cash flows are positive
- Biased towards liquidity
- Disadvantages
- May reject positive NPV investments
- Requires an arbitrary cutoff point
- Ignores cash flows beyond the cutoff point
- Biased against longterm projects, such as
R\&D and new products

Average Accounting Return

- There are many different definitions for average accounting return
- The one used in the book is:
- Average net income / average book value
- Note that the average book value depends on how the asset is depreciated.
- Need to have a target cutoff rate
- Decision Rule: Accept the project if the AAR is greater than a preset rate

Computing AAR for the Project

- Assume we require an average accounting return of 25\%
- Average Net Income:
- $(13,620+3,300+29,100) / 3=15,340$
- $\mathrm{AAR}=15,340 / 72,000=.213=21.3 \%$
- Do we accept or reject the project?

Decision Criteria Test - AAR

- Does the AAR rule account for the time value of money?
- Does the AAR rule account for the risk of the cash flows?
- Does the AAR rule provide an indication about the increase in value?
- Should we consider the AAR rule for our primary decision rule?

Advantages \& Disadvantages of AAR

- Advantages
- Easy to calculate
- Needed information will usually be available
- Disadvantages
- Not a true rate of return; time value of money is ignored
- Uses an arbitrary benchmark cutoff rate
- Based on accounting net income and book values, not cash flows and market values

Internal Rate of Return

- This is the most important alternative to NPV
- It is often used in practice and is intuitively appealing
- It is based entirely on the estimated cash flows and is independent of interest rates found elsewhere

IRR - Definition \& Decision Rule

- Definition: IRR is the return that makes the $\mathrm{NPV}=\mathrm{o}$
- Decision Rule: Accept the project if the IRR is greater than the required return

Computing IRR for the Project

- If you do not have a financial calculator, then this becomes a trial and error process
- Calculator
- Enter the cash flows as you did with NPV
- Press IRR and then CPT
$\circ \operatorname{IRR}=16.13 \%>12 \%$ required return
- Do we accept or reject the project?

IRR Example

Consider a project that costs $\$ 100$ today and pays $\$ 110$ in one year. Suppose you were asked, "What is the return on this investment?" What would you say?

- NPV = -\$100 + [\$110/(1+R)]
- $0=-\$ 100+[\$ 110 /(1+\mathrm{R})]$
- $\$ 100=\$ 110 /(1+\mathrm{R})$
- $1+\mathrm{R}=110 / 100=1.1$
- $\mathrm{R}=10 \%$

Example 9.4

A project has a total up-front cost of $\$ 435.44$. The cash flows are $\$ 100$ in the first year, $\$ 200$ in the second year and $\$ 300$ in the third year. What's the IRR? If we require an 18 percent return, should we take this investment?
\circ The NPV is zero at $15 \% \rightarrow \operatorname{IRR}=15 \%$.

- Decision: reject this investment because its 15% return is below the required return of 18%.

Decision Criteria Test - IRR

- Does the IRR rule account for the time value of money?
- Does the IRR rule account for the risk of the cash flows?
- Does the IRR rule provide an indication about the increase in value?
- Should we consider the IRR rule for our primary decision criteria?

Advantages of IRR

- Knowing a return is intuitively appealing
- It is a simple way to communicate the value of a project to someone who doesn't know all the estimation details
- If the IRR is high enough, you may not need to estimate a required return, which is often a difficult task

Summary of Decisions for the Project

Summary

Net Present Value \quad Accept
Payback Period
Discounted Payback Period Reject
Average Accounting Return Reject
Internal Rate of Return Accept

NPV vs. IRR

- NPV and IRR will generally give us the same decision
- Exceptions
- Nonconventional cash flows - cash flow signs change more than once
- Mutually exclusive projects
* Initial investments are substantially different (issue of scale)
. Timing of cash flows is substantially different

IRR \& Nonconventional Cash Flows

- When the cash flows change sign more than once, there is more than one IRR
- When you solve for IRR you are solving for the root of an equation, and when you cross the x-axis more than once, there will be more than one return that solves the equation
- If you have more than one IRR, which one do you use to make your decision?

Example - Nonconventional Cash Flows

- Suppose an investment will cost \$90,000 initially and will generate the following cash flows:
- Year 1: 132,000
- Year 2: 100,000
- Year 3: -150,000
- The required return is 15%.
- Should we accept or reject the project?

Cont'd

$0 \mathrm{NPV}=-90,000+132,000 / 1.15+100,000 /(1.15)^{2}$

$$
-150,000 /(1.15)^{3}=1,769.54
$$

- Calculator:
${ }^{2} \mathrm{CF}_{\mathrm{o}}=-90,000 ; \mathrm{Co1}=132,000 ; \mathrm{FO}=1 ; \mathrm{Co2}=100,000 ; \mathrm{FO}=1$; Co3 $=-150,000 ;$ Fo3 $=1 ;$ I $=15 ;$ CPT NPV $=1769.54$
- $\operatorname{IRR}=10.11 \%$

NPV Profile

$\operatorname{IRR}=10.11 \%$ and 42.66%

Summary of Decision Rules

- The NPV is positive at a required return of 15%, so you should Accept
- If you use the financial calculator, you would get an IRR of 10.11% which would tell you to Reject
- You need to recognize that there are nonconventional cash flows and look at the NPV profile

IRR and Mutually Exclusive Projects

- Mutually exclusive projects:
- If you choose one, you can't choose the other
- Ex: You can choose to attend graduate school at either Harvard or Stanford, but not both
- Intuitively, you would use the following decision rules:
- NPV - choose the project with the higher NPV
- IRR - choose the project with the higher IRR

Example with Mutually Exclusive Projects

- The required return for both projects is 10%.
- Which project should we accept \& why?

Period	Project A	Project B
0	-500	-400
1	325	325
2	325	200
IRR	19.43%	22.17%
NPV	64.05	60.74

NPV Profiles

Discount Rate

Example 9.7

- Suppose we have the following two mutually exclusive investments:

Year	Investment A	Investment B
0	-400	-500
1	250	320
2	280	340

- What is the crossover rate?
- $\operatorname{NPV}(B-A)=-100+[70 /(1+R)]+\left[60 /(1+R)^{2}\right]$
- $\mathrm{R}=20 \%$

Conflicts Between NPV and IRR

- NPV directly measures the increase in value to the firm
- Whenever there is a conflict between NPV and another decision rule, you should always use NPV
- IRR is unreliable in the following situations
- Nonconventional cash flows
- Mutually exclusive projects

Modified IRR

- Calculate the net present value of all cash outflows using the borrowing rate.
- Calculate the net future value of all cash inflows using the investing rate.
- Find the rate of return that equates these values.
- Benefits: single answer and specific rates for borrowing and reinvestment

Profitability Index

- Measures the benefit per unit cost, based on the time value of money
- A profitability index of 1.1 implies that for every $\$ 1$ of investment, we create an additional $\$ 0.10$ in value
- This measure can be very useful in situations in which we have limited capital
- PV of the future cash flows / initial investment

Advantages \& Disadvantages of Profitability Index

- Advantages
- Closely related to NPV, generally leading to identical decisions
- Easy to understand and communicate
- May be useful when available investment funds are limited
- Disadvantages
- May lead to incorrect decisions in comparisons of mutually exclusive investments

Capital Budgeting In Practice

- We should consider several investment criteria when making decisions
- NPV and IRR are the most commonly used primary investment criteria
- Payback is a commonly used secondary investment criteria

Summary - DCF Criteria

- Net present value
- Difference between market value and cost
- Take the project if the NPV is positive
- Has no serious problems
- Preferred decision criterion
- Internal rate of return
- Discount rate that makes NPV = o
- Take the project if the IRR is greater than the required return
- Same decision as NPV with conventional cash flows
- IRR is unreliable with nonconventional cash flows or mutually exclusive projects

Summary - DCF Criteria

- Profitability Index
- Benefit-cost ratio
- Take investment if PI > 1
- Cannot be used to rank mutually exclusive projects
- May be used to rank projects in the presence of capital rationing

Summary - Payback Criteria

- Payback period
- Length of time until initial investment is recovered
- Take the project if it pays back within some specified period
- Doesn't account for time value of money, and there is an arbitrary cutoff period
- Discounted payback period
- Length of time until initial investment is recovered on a discounted basis
- Take the project if it pays back in some specified period
- There is an arbitrary cutoff period

Summary - Accounting Criterion

- Average Accounting Return
- Measure of accounting profit relative to book value
- Similar to return on assets measure
- Take the investment if the AAR exceeds some specified return level
- Serious problems and should not be used

