Theory of statistics 2

Department of Statistics and Operations Research

March 23, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Composite Hypothesis

The general shape of composite hypothesis is: $H_0: \theta \in \Omega_0$ vs $H_1: \theta \in \Omega_1$. For any test γ , we defined its power function $\pi_{\gamma}(\theta) = \mathbb{P}(rejH_0|\theta)$ and its size $\alpha = \sup_{\theta \in \Omega_0} (\pi_{\gamma}(\theta))$. The probability of the error type 2 is the function $\beta(\theta) = 1 - \pi_{\gamma}(\theta)_{\theta \in \Omega_1}$. In specific, three cases are distributed as follow:

- $H_0: \theta \leq \theta_0 \text{ vs } H_1: \theta > \theta_0.$
- $H_0: \theta \ge \theta_0$ vs $H_1: \theta < \theta_0$.
- $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.

Three tests will be generated

- **1** The Uniformly Most Powerful Test γ_{UMP} of size α_{UMP} .
- **2** The Generalized Likelihood Ratio Test γ_{GLR} of size α_{GLR} .
- Solution The test γ_{CI} of size α based on $100(1-\alpha)$ % C.I for θ_0 .

More precisely, test γ_{UMP} will be used for the cases $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$ and $H_0: \theta \geq \theta_0$ vs $H_1: \theta < \theta_0$, whereas γ_{GLR} and γ_{CI} will be used for the case $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The Uniformly Most Powerful Test γ_{UMP} of size α_{UMP} for $H_0: \theta \in \Omega_0$ vs $H_1: \theta \in \Omega_1$ satisfies: for all other test γ with size α , we have

 $\alpha \leq \alpha_{UMP}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consequently, $\pi_{\gamma_{UMP}}(\theta)_{\theta \in \Omega_1} \ge \pi_{\gamma}(\theta)_{\theta \in \Omega_1}$ ($\beta_{UMP} \le \beta$, for all $\theta \in \Omega_1$).

Theorem

If $f(x; \theta)$ belongs to the class of exponential families, then the test γ_{UMP} for the cases $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$ and $H_0: \theta \geq \theta_0$ vs $H_1: \theta < \theta_0$ is similar to the test γ_{MP} for $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ rejects H_0 is reduced as follows:

	$H_0: heta\leq heta_0$ vs $H_1: heta> heta_0$	$H_0: heta\geq heta_0$ vs $H_1: heta< heta_0$
$c(\theta) \nearrow$	$\sum d(x_i) > k$	$\sum d(x_i) < k$
$c(\theta) \searrow$	$\sum d(x_i) < k$	$\sum d(x_i) > k$
	Alike	Inverse

k solves the equation

$$lpha_{UMP} = \mathbf{P} (Reject \quad H_0 | heta_0).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Example 1: The normal distribution with known variance

Let X_1, \ldots, X_n be a sample of size n = 25 that drawn from a normal distribution $N(\theta, 16)$. Our aim is to test the γ_{UMP} test with size $\alpha = 0.05$ for $H_0: \theta \le 3$ vs $H_1: \theta > 3$. Since $f(x; \theta) \in \text{Exp.}$ Fam with $C(\theta) = \frac{\theta}{\sigma^2} \nearrow$, then γ_{UMP} rejects H_0 if $\sum d(x_i) = \sum x_i > k$ or $\overline{X} > C$. It follows that

$$0.05 = \mathbb{P}\left(\overline{X} > C | \theta = 3\right) = \mathbb{P}\left(Z > \frac{C-3}{4/5}\right) \Rightarrow \frac{C-3}{4/5} = 1.645.$$

This implies that

$$C=4.316\Rightarrow k=25C.$$

Homework

Find γ_{UMP} test with size $\alpha = 0.05$ for $H_0: \theta \ge 3$ vs $H_1: \theta < 3$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example 2: The exponential distribution

Let X_1, \ldots, X_n be a sample of size n = 10 that drawn from an exponential distribution $\exp(\theta)$. Our aim is to test the γ_{UMP} test with size $\alpha = 0.05$ for $H_0: \theta \le 2$ vs $H_1: \theta > 2$. Since $f(x; \theta) \in \text{Exp.}$ Fam with $C(\theta) = -\theta \searrow$, then γ_{UMP} rejects H_0 if $S = \sum x_i < k$, where k is found by solving the equation

$$0.05 = \mathbb{P}\left(S < k | \theta = 2\right) = \mathbb{P}\left(U < 4k\right),$$

where $U = 2\theta S \sim \mathcal{X}_{2n}^2$. Then

$$4k = 10.851 \Rightarrow k = 2.713.$$

• Homework

Find γ_{UMP} test with size $\alpha = 0.05$ for $H_0: \theta \ge 2$ vs $H_1: \theta < 2$.

Example 3: The normal distribution with known mean

Let X_1, \ldots, X_n be a sample of size n = 10 that drawn from a normal distribution $N(\theta, \sigma^2)$. Our aim is to test the γ_{UMP} test with size $\alpha = 0.05$ for $H_0: \sigma \le 2$ vs $H_1: \sigma > 2$. Since $f(x; \theta) \in \text{Exp.}$ Fam with $C(\sigma) = -\frac{1}{2}\frac{1}{\sigma^2} \nearrow$, then γ_{UMP} rejects H_0 if $\sum d(x_i) = \sum (x_i - \theta)^2 > k$. It follows that

$$0.05 = \mathbb{P}\left(\sum (x_i - \theta)^2 > k | \sigma = 2\right) = \mathbb{P}\left(\sum \left(\frac{x_i - \theta}{2}\right)^2 > \frac{k}{4}\right).$$

This implies that

$$\frac{k}{4} = 18.31 \Rightarrow k = 73.24.$$

Homework

Find γ_{UMP} test with size $\alpha = 0.05$ for $H_0: \sigma \ge 2$ vs $H_1: \sigma < 2$.

The test GLR γ_{GLR} is used for case: $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.

Definition

The test GLR γ_{GLR} of size α for the composite hypothesis:

$$H_0: \theta \in \Omega_0 \text{ vs } H_1: \theta \in \Omega_1.$$

is found by the steps:

Take the Generalized Likelihood Ratio (GLR):

$$\lambda = \frac{\sup_{\theta \in \Omega_0} \ell(\underline{X}, \theta)}{\sup_{\theta \in \Omega} \ell(\underline{X}, \theta)}, \quad \Omega = \Omega_0 \cup \Omega_1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

2 Reject H_0 if $\lambda < k$.

3 Find k by solving the implicit equation: $\alpha = \sup_{\theta \in \Omega_0} \mathbb{P}(\lambda < k | \theta)$.

Indeed, maximizing the nominator and the denominator of λ depends on the MLE of θ in Ω_0 and in Ω , respectively. In the case $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$, γ_{GLR} rejects H_0 if

$$\lambda = \frac{\ell(\underline{X}, \theta_0)}{\ell(\underline{X}, \widehat{\theta}_{MLE})} < k, \text{ where } k \text{ solves } \alpha = \sup_{\theta \in \Omega_0} \mathbb{P}(\lambda < k | \theta).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example 1

Find γ_{GLR} and α for $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$ in the case $f(x; \theta) = N(\theta, \sigma^2)$, where σ^2 is unknown. The estimators $\widehat{\theta}_{MLE} = \overline{X}$ and $\widehat{\sigma^2}_{MLE} = \frac{1}{n} \sum (X_i - \overline{X})^2$. γ_{GLR} rejects H_0 if $\lambda = \frac{\ell(\underline{X}, \theta_0)}{\ell(\underline{X}, \overline{X})} < k$. In fact,

$$\begin{aligned} \lambda &= \frac{\left(\frac{1}{\sqrt{2\pi\sigma}\sigma}\right)^{n} \exp\left(-\frac{1}{2}\frac{\sum(X_{i}-\theta_{0})^{2}}{\sigma^{2}}\right)}{\left(\frac{1}{\sqrt{2\pi}\widehat{\sigma}_{MLE}}\right)^{n} \exp\left(-\frac{1}{2}\frac{\sum(X_{i}-\widehat{\theta}_{MLE})^{2}}{\widehat{\sigma}_{MLE}^{2}}\right)} \\ &= \frac{\left(\frac{1}{\sqrt{2\pi}}\right)^{n} \left(\frac{1}{n}\sum(X_{i}-\theta_{0})^{2}\right)^{-\frac{n}{2}} \exp\left(-\frac{1}{2}\frac{\sum(X_{i}-\theta_{0})^{2}}{\frac{1}{n}\sum(X_{i}-\theta_{0})^{2}}\right)}{\left(\frac{1}{\sqrt{2\pi}}\right)^{n} \left(\frac{1}{n}\sum(X_{i}-\overline{X})^{2}\right)^{-\frac{n}{2}} \exp\left(-\frac{1}{2}\frac{\sum(X_{i}-\overline{X})^{2}}{\frac{1}{n}\sum(X_{i}-\overline{X})^{2}}\right)} \end{aligned}$$

It follows that

$$\lambda = \frac{\left(\frac{1}{n}\sum(X_{i}-\theta_{0})^{2}\right)^{-\frac{n}{2}}}{\left(\frac{1}{n}\sum(X_{i}-\overline{X})^{2}\right)^{-\frac{n}{2}}} = \left(\frac{\sum(X_{i}-\overline{X})^{2}}{\sum(X_{i}-\theta_{0})^{2}}\right)^{\frac{n}{2}} < k.$$

Thus

$$\frac{\sum (X_i - \overline{X})^2}{\sum (X_i - \theta_0)^2} = \frac{\sum (X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2 + n(\overline{X} - \theta_0)^2} < k^{\frac{2}{n}} = k_1.$$

This implies that

$$\frac{n(\overline{X}-\theta_0)^2}{\sum (X_i-\overline{X})^2} > \frac{1}{k_1} - 1 = k_2 \Leftrightarrow \left(\frac{\overline{X}-\theta_0}{S/\sqrt{n}}\right)^2 > c^2.$$

<□ > < @ > < E > < E > E のQ @

Then, γ_{GLR} rejects H_0 if

$$\begin{aligned} \alpha &= & \mathbb{P}(\lambda < k | \theta_0) = \mathbb{P}\left(\left(\frac{\overline{X} - \theta_0}{S/\sqrt{n}}\right)^2 > c^2\right) \\ &= & \mathbb{P}\left(\frac{\overline{X} - \theta_0}{S/\sqrt{n}} > c\right) + \mathbb{P}\left(\frac{\overline{X} - \theta_0}{S/\sqrt{n}} < -c\right). \end{aligned}$$

For n < 30, $c = t_{\frac{\alpha}{2}, n-1}$ and for $n \ge 30$, we have $c = z_{\frac{\alpha}{2}}$. We accept H_0 if

$$\begin{cases} n < 30 \Rightarrow \frac{\overline{X} - \theta_0}{S/\sqrt{n}} \in \left(-t_{\frac{\alpha}{2}, n-1}, t_{\frac{\alpha}{2}, n-1} \right) \\\\ n \ge 30 \Rightarrow \frac{\overline{X} - \theta_0}{S/\sqrt{n}} \in \left(-z_{\frac{\alpha}{2}}, z_{\frac{\alpha}{2}} \right) \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example 2

Find γ_{GLR} and α for $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$ in the case $f(x; \theta) = \exp(\theta)$. The estimators $\widehat{\theta}_{MLE} = \frac{1}{\overline{X}}$. γ_{GLR} rejects H_0 if $\lambda = \frac{\ell(\underline{X}, \theta_0)}{\ell(\underline{X}, \overline{X})} < k$. In fact,

$$\lambda = \frac{\theta_0^n \exp(-\theta_0 \sum x_i)}{\left(\frac{1}{\overline{X}}\right)^n \exp\left(-\frac{\sum x_i}{\overline{X}}\right)} = (\theta_0 S)^n \left(\frac{e}{n}\right)^n \exp\left(-\theta_0 S\right) < k,$$

where $S = \sum x_i$. Since $U = 2\theta_0 S \sim \mathcal{X}_{2n}^2$, then

$$(2\theta_0 S)^n \exp\left(-\frac{2\theta_0 S}{2}\right) < k \left(\frac{2n}{e}\right)^n = c.$$

Thus

$$f(u) = u^n e^{-u/2} < c$$
, where c sloves $\mathbb{P}(f(u) < c) = \alpha$.

The Confidence Interval Test (C.I.) γ_{CI} based on $100(1 - \alpha)$ C.I. is suitable to test the case:

$$H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0.$$

Simply, if $100(1 - \alpha)$ C.I. for θ_0 is $(T_1(\underline{X}), T_2(\underline{X}))$, then γ_{CI} accepts H_0 if:

 $\theta_0 \in (T_1(\underline{X}), T_2(\underline{X})).$

Note that the tests γ_{GLR} and γ_{CI} can coincide.

Example 1

Find γ_{CI} and α for $H_0: \theta = \theta_0$ vs $H_0: \theta \neq \theta_0$ in the case $f(x; \theta) = N(\theta, \sigma^2)$, where σ^2 is unknown. 100(1 - α)C.I. is

$$(T_1(\underline{X}), T_2(\underline{X})) = \begin{cases} n < 30 \Longrightarrow \left(\overline{X} \pm t_{1-\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}\right) \\\\ n \ge 30 \Longrightarrow \left(\overline{X} \pm z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right) \end{cases}$$

Then, we accept H_0 if

$$n < 30 \Rightarrow \theta_0 \in \left(\overline{X} \pm t_{1-\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}\right) \Leftrightarrow \frac{\overline{X} - \theta_0}{S/\sqrt{n}} \in \left(-t_{1-\frac{\alpha}{2}, n-1}, t_{1-\frac{\alpha}{2}, n-1}\right)$$
$$n \ge 30 \Rightarrow \theta_0 \in \left(\overline{X} \pm z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right) \Leftrightarrow \frac{\overline{X} - \theta_0}{S/\sqrt{n}} \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right).$$

Note that γ_{CI} and γ_{GLR} are similar.

Example 2

Find γ_{CI} and α for $H_0: \sigma^2 = \sigma_0^2$ vs $H_0: \sigma^2 \neq \sigma_0^2$ in the case $f(x; \sigma^2) = N(\mu, \sigma^2)$, where μ is known. 100(1 - α)C.I. is

$$(T_1(\underline{X}), T_2(\underline{X})) = \left(\frac{\sum_{i=1}^n (X_i - \mu)^2}{\mathcal{X}_{n,\frac{\alpha}{2}}^2}, \frac{\sum_{i=1}^n (X_i - \mu)^2}{\mathcal{X}_{n,1-\frac{\alpha}{2}}^2}\right).$$

Then, we accept H_0 if

$$\sigma_0^2 \in \left(\frac{\sum_{i=1}^n (X_i - \mu)^2}{\mathcal{X}_{n,\frac{\alpha}{2}}^2}, \frac{\sum_{i=1}^n (X_i - \mu)^2}{\mathcal{X}_{n,1-\frac{\alpha}{2}}^2}\right)$$

or

$$\sum_{i=1}^{n} (X_i - \mu)^2 \in \left(\sigma_0^2 \mathcal{X}_{n,1-\frac{\alpha}{2}}^2, \sigma_0^2 \mathcal{X}_{n,\frac{\alpha}{2}}^2\right).$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

If n is large enough, the approximated C.I. is equal to

$$(T_1(\underline{X}), T_2(\underline{X})) = \left(\widehat{\sigma}_{MLE}^2 \pm \widehat{\sigma}_{MLE}^2 z_{1-\frac{\alpha}{2}} \sqrt{\frac{2}{n}}\right),$$

where $\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum (x_i - \mu)^2$. Then, we accept H_0 if

$$\sigma_0^2 \in \left(\widehat{\sigma}_{MLE}^2 \pm \widehat{\sigma}_{MLE}^2 z_{1-\frac{\alpha}{2}} \sqrt{\frac{2}{n}}\right)$$

or

$$\sum_{i=1}^{n} (X_i - \mu)^2 \in \left(\frac{n\sigma_0^2}{1 + z_{1-\frac{\alpha}{2}}\sqrt{\frac{2}{n}}}, \frac{n\sigma_0^2}{1 - z_{1-\frac{\alpha}{2}}\sqrt{\frac{2}{n}}}\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example 3 Find γ_{GLR} and α for $H_0: \theta = \theta_0$ vs $H_0: \theta \neq \theta_0$ in the case $f(x; \theta) = \exp(-(x - \theta)), \quad x > \theta.$ 100(1 – α)C.I. is

$$(T_1(\underline{X}), T_2(\underline{X})) = \left(S + \frac{\log(\alpha)}{n}, S\right), \text{ where } S = \sum x_i.$$

Then, we accept H_0 if

$$heta_0 \in \left(S + rac{\log(lpha)}{n}, S
ight) ext{ or } S \in \left(heta_0, heta_0 - rac{\log(lpha)}{n}
ight).$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Homework

• Find γ_{CI} and α for $H_0: \theta = \theta_0$ vs $H_0: \theta \neq \theta_0$ in the case where $f(x; \theta) = \frac{1}{\theta}, \quad 0 < x < \theta.$

• Find γ_{CI} and α for $H_0: \theta = \theta_0$ vs $H_0: \theta \neq \theta_0$ in the case where $f(x; \theta) = \theta \exp(-\theta x), \quad 0 < x.$

Thank you

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ