Chapter 7 ENTROPY

Clausius Inequality

• The Clausius inequality states that:

$$\oint \frac{\delta Q}{T} \le 0$$

 It can be shown that, for internally reversible cycles (e.g. Carnot cycle):

$$\oint \left(\frac{\delta Q}{T}\right)_{\text{int rev}} = 0$$

• It can also be shown that, for irreversible cycles:

$$\oint \left(\frac{\delta Q}{T}\right)_{\rm irr} < 0$$

Results of Clausius Inequality

- The cyclic integral of a quantity is zero only if that quantity is a property.
- **EXAMPLE**: Cyclic integral of volume.

• This means that
$$\left(\frac{\delta Q}{T}\right)_{\text{int rev}}$$
 is a property

Definition of Entropy

• The formal definition of the property $\left(\frac{\delta Q}{T}\right)_{\text{int rev}}$ is:

$$dS = \left(\frac{\delta Q}{T}\right)_{\text{int rev}} \longrightarrow \Delta S = S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T}\right)_{\text{int rev}}$$

- S is a property called *entropy*.
- Entropy is an extensive property.
- Since entropy is a property, entropy change between two specified states is the same.

Entropy Generation

- Assume we have a cycle consisting of two processes.
 - Process 1-2 could be reversible or irreversible.
 - Process 2-1 is internally reversible.
- According to Clausius inequality:

$$\oint \frac{\delta Q}{T} \le 0 \implies \int_{1}^{2} \frac{\delta Q}{T} + \int_{2}^{1} \left(\frac{\delta Q}{T}\right)_{\text{int rev}} \le 0$$

$$\implies \int_{1}^{2} \frac{\delta Q}{T} + S_{1} - S_{2} \le 0$$

$$\implies S_{2} - S_{1} \ge \int_{1}^{2} \frac{\delta Q}{T}$$

$$\Delta S_{\text{sys}} = S_{2} - S_{1} = \int_{1}^{2} \frac{\delta Q}{T} + S_{\text{gen}}$$

Entropy Generation

$$\Delta S_{\rm sys} = S_2 - S_1 = \int_1^2 \frac{\delta Q}{T} + S_{\rm gen}$$

- Some entropy is *generated* or *created* during an irreversible process, and this generation is due entirely to the presence of irreversibilities.
- The entropy generation S_{gen} is always a *positive* quantity or zero.
- For an internally reversible process, $S_{aen} = 0$

$$S_{\text{gen}} \begin{cases} > 0 \text{ Irreversible process} \\ = 0 \text{ Reversible process} \\ < 0 \text{ Impossible process} \end{cases}$$

The Increase of Entropy Principle

$$\Delta S_{\text{total}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} = \int_{1}^{2} \frac{\partial Q}{\partial T} + S_{\text{gen}}$$

$$\Delta S_{\rm total} \geq 0$$

The increase of entropy principle

A system and its surroundings form an isolated system.

Some Remarks About Entropy

- A process must proceed in the direction that complies with the increase of entropy principle. A process that violates this principle is impossible.
- Entropy is a *nonconserved property*, and there is *no* such thing as the *conservation* of *entropy principle*.

$$S_{\text{gen}} = \Delta S_{\text{total}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} = 1 \text{ kJ/K}$$

The entropy change of a system can be negative, but the entropy generation cannot.

Some Remarks About Entropy

- The performance of engineering systems is degraded by the presence of irreversibilities.
- Entropy generation is a measure of the magnitudes of the irreversibilities during that process.
- Entropy generation is also used to establish criteria for the performance of engineering devices.

Entropy Change of Pure Substances

- Entropy is a property, and thus the value of entropy of a system is fixed once the state of the system is fixed.
- The entropy of a pure substance is determined from the tables (like other properties).
- The unit of entropy is kJ/K.
- The unit of specific entropy is kJ/kg.K.

Isentropic Processes

 A process during which the entropy remains constant is called an *isentropic process*.

Isentropic Processes

• If a process is internally reversible AND adiabatic, it is automatically isentropic.

$$\Delta S_{\text{total}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} = \int_{1}^{2} \frac{\delta Q}{T} + S_{\text{den}}$$

Steam
Steam
No irreversibilities
(internally reversible)
No heat transfer
(adiabatic)
 $s_2 = s_1$

Property Diagrams Involving Entropy

 On a *T*-S diagram, the area under the process curve represents the heat transfer for internally reversible processes.

- Entropy is a measure of the level of molecular disorder of a substance.
- The higher the level of disorder, the higher the entropy.
- Gases have higher molecular disorder
 → they have higher entropy.
- The higher the level of disorder, the more disorganized energy becomes.

- A pure crystalline substance at absolute zero temperature is in perfect order, and its entropy is zero.
- This is called *the third law of thermodynamics*.

- Work is an organized form of transferring energy.
- All molecules are moving in the same direction.
 - \rightarrow Work does not involve entropy.

EXAMPLE

- Raising a weight by a rotating shaft does not create any disorder (entropy)
 - → Energy is not degraded during this process.

- The paddle-wheel work done on a gas increases the level of disorder (entropy) of the gas.
- Energy is degraded during this process.
- Converting work to heat degrades energy.

- During a heat transfer process between a hot and a cold body, the entropy of the hot body decreases, and the entropy of the cold body increases.
- Net entropy increases (according to the Increase of Entropy Principle).
 - → Heat transfer always involves generation of entropy, and degrades energy.

THE T ds RELATIONS

• By applying the first law of thermodynamics on a system having an internally reversible process:

$$\delta Q_{\text{int rev}} - \delta W_{\text{int rev,out}} = d$$
$$\delta Q_{\text{int rev}} = T dS$$
$$\delta W_{\text{int rev,out}} = P dV$$

A TT 7

00

$$T \ dS = dU + P \ dV$$
 This is called the *Gibbs Equation*
 OR
 $T \ ds = du + P \ dV$ The *First TdS Relation*

The T dS Relations

 By applying the definition of enthalpy (*h* = *u* + *Pv*) on the first *T dS* equation, we get:

$$\frac{dh}{dt} = \frac{du}{dt} + \frac{P}{dt} \frac{dv}{dt} + \frac{v}{dt} \frac{dP}{dt}$$
$$T ds = \frac{dh}{dt} - \frac{v}{dt} \frac{dP}{dt}$$

• This is called the **Second T dS equation**.

The T dS Relations

7

• Dividing the two *T dS* equations by *T*, we get:

$$T ds = du + P dv \implies ds = \frac{du}{T} + \frac{P dv}{T}$$
$$T ds = dh - v dP \implies ds = \frac{dh}{T} - \frac{v dP}{T}$$

Entropy Change of Liquids and Solids

 Liquids and solids can be approximated as *incompressible* substances since their specific volumes remain nearly constant during a process, i.e. dv ≈ 0

$$ds = \frac{du}{T} + \frac{P}{T} \frac{du}{T} \stackrel{\textbf{0}}{\Longrightarrow} \quad ds = \frac{du}{T}$$

• We have seen earlier that, for liquids and solids:

 $c_p = c_v = c$ AND du = c dT

$$\implies ds = \frac{du}{T} = \frac{c \ dT}{T} \implies s_2 - s_1 = \int_1^2 c(T) \ \frac{dT}{T} \cong c_{\text{avg}} \ln \frac{T_2}{T_1}$$

Entropy Change of Ideal Gases

• From the first *T* ds relation:

$$ds = \frac{du}{T} + \frac{P \ dv}{T}$$

• We also know that, for ideal gases:

$$du = c_v dT$$

P = RT/v

$$\implies ds = c_v \frac{dT}{T} + R \frac{dv}{v}$$

$$\implies s_2 - s_1 = \int_1^2 c_v(T) \frac{dT}{T} + R \ln \frac{V_2}{V_1}$$

Entropy Change of Ideal Gases

• From the second *T* ds relation:

$$ds = \frac{dh}{T} - \frac{\lor dP}{T}$$

• We also know that, for ideal gases:

$$dh = c_p dT$$

$$P = RT/V$$

$$\implies s_2 - s_1 = \int_1^2 c_p(T) \frac{dT}{T} - R \ln \frac{P_2}{P_1}$$

Constant Specific Heats (Approximate Analysis)

- Under the constant-specific-heat assumption, the specific heat is assumed to be constant at some average value.
- In this case:

-

$$s_{2} - s_{1} = \int_{1}^{2} c_{\nu}(T) \frac{dT}{T} + R \ln \frac{v_{2}}{v_{1}} \longrightarrow s_{2} - s_{1} = c_{\nu,\text{avg}} \ln \frac{T_{2}}{T_{1}} + R \ln \frac{v_{2}}{v_{1}}$$
$$s_{2} - s_{1} = \int_{1}^{2} c_{p}(T) \frac{dT}{T} - R \ln \frac{P_{2}}{P_{1}} \longrightarrow s_{2} - s_{1} = c_{p,\text{avg}} \ln \frac{T_{2}}{T_{1}} - R \ln \frac{P_{2}}{P_{1}}$$

Variable Specific Heats (Exact Analysis)

$$s_2 - s_1 = \int_1^2 c_p(T) \frac{dT}{T} - R \ln \frac{P_2}{P_1}$$

We choose absolute zero as the reference temperature and define a function *s*° as

$$s^{\circ} = \int_0^T c_p(T) \, \frac{dT}{T}$$

$$\int_{1}^{2} c_{p}(T) \frac{dT}{T} = s_{2}^{\circ} - s_{1}^{\circ}$$

<i>Т</i> , К	s°, kJ/kg ∙ K				
	· ·				
_ · ·	•				
•	•				
300	1.70203				
-310	1.73498				
320	1.76690				
•	•				
•	•				
•	•				
(1able A-1/)					

The entropy of an ideal gas depends on both T and P. The function s^0 represents only the temperature-dependent part of entropy.

$$s_2 - s_1 = s_2^\circ - s_1^\circ - R \ln \frac{P_2}{P_1}$$
 (kJ/kg·K)

Isentropic Processes of Ideal Gases

Approximate Analysis

$$s_2 - s_1 = c_{v,avg} \ln \frac{T_2}{T_1} + R \ln \frac{V_2}{V_1}$$

• Setting this eq. equal to zero, we get

$$\ln \frac{T_2}{T_1} = -\frac{R}{c_v} \ln \frac{v_2}{v_1} \implies \ln \frac{T_2}{T_1} = \ln \left(\frac{v_1}{v_2}\right)^{R/c_v}$$

• We know that: $R = c_p - c_v$ and $k = c_p/c_v$

$$\implies R/c_{v} = k - 1$$

$$\implies \left(\frac{T_{2}}{T_{1}}\right)_{s=\text{const.}} = \left(\frac{V_{1}}{V_{2}}\right)^{k-1}$$

• Using a similar approach, it can be shown that:

$$\left(\frac{T_2}{T_1}\right)_{s=\text{const.}} = \left(\frac{P_2}{P_1}\right)^{(k-1)/k} \text{ and } \left(\frac{P_2}{P_1}\right)_{s=\text{const.}} = \left(\frac{V_1}{V_2}\right)^k$$

Isentropic Processes of Ideal Gases Exact Analysis

$$0 = s_2^{\circ} - s_1^{\circ} - R \ln \frac{P_2}{P_1}$$

n
$$\frac{P_2}{P_1}$$

$$\frac{P_2}{P_1} = \exp \frac{s_2^\circ - s_1^\circ}{R}$$

$$\frac{P_2}{P_1} = \frac{\exp(s_2^\circ / R)}{\exp(s_1^\circ / R)}$$

- $\exp(s^{\circ}/R)$ is called the relative pressure P_r
- It is listed in Table A-17 for air

$$\longrightarrow \left(\frac{P_2}{P_1}\right)_{s=\text{const.}} = \frac{P_{r2}}{P_{r1}}$$

$$s_2^\circ = s_1^\circ + R \ln \frac{P_2}{P_1}$$

TABLE A-17									
Ideal-gas properties of air									
Т К	h kJ/kg	Р,	u kJ/kg	V _r	s° kJ/kg·K				
200	199.97	0.3363	142.56	1707.0	1.29559				
210	209.97	0.3987	149.69	1512.0	1.34444				
220	219.97	0.4690	156.82	1346.0	1.39105				
230	230.02	0.5477	164.00	1205.0	1.43557				
240	240.02	0.6355	171.13	1084.0	1.47824				
250	250.05	0.7329	178.28	979.0	1.51917				
260	260.09	0.8405	185.45	887.8	1.55848				
270	270.11	0.9590	192.60	808.0	1.59634				
280	280.13	1.0889	199.75	738.0	1.63279				
285	285.14	1.1584	203.33	706.1	1.65055				
290	290.16	1.2311	206.91	676.1	1.66802				
295	295.17	1.3068	210.49	647.9	1.68515				
298	298.18	1.3543	212.64	631.9	1.69528				
300	300.19	1.3860	214.07	621.2	1.70203				
305	305.22	1.4686	217.67	596.0	1.71865				
310	310.24	1.5546	221.25	572.3	1.73498				
315	315.27	1.6442	224.85	549.8	1.75106				
320	320.29	1.7375	228.42	528.6	1.76690				
325	325.31	1.8345	232.02	508.4	1.78249				
330	330.34	1.9352	235.61	489.4	1.79783				
340	340.42	2.149	242.82	454.1	1.82790				
350	350.49	2.379	250.02	422.2	1.85708				

Isentropic Processes of Ideal Gases Exact Analysis

$$\frac{P_1 v_1}{T_1} = \frac{P_2 v_2}{T_2} \rightarrow \frac{v_2}{v_1} = \frac{T_2}{T_1} \frac{P_1}{P_2} = \frac{T_2}{T_1} \frac{P_{r1}}{P_{r2}} = \frac{T_2/P_{r2}}{T_1/P_{r1}}$$

$$\checkmark \left(\frac{V_2}{V_1}\right)_{s=\text{const.}} = \frac{V_{r2}}{V_{r1}}$$

- T/P_r is called the relative specific volume v_r
- It is listed in Table A-17 for air

Ideal-gas properties of air						
т К	h kJ/kg	P,	u kJ/kg	v,	s° kJ/kg-K	
200	199.97	0.3363	142.56	1707.0	1.29559	
210	209.97	0.3987	149.69	1512.0	1.34444	
220	219.97	0.4690	156.82	1346.0	1.39105	
230	230.02	0.5477	164.00	1205.0	1.43557	
240	240.02	0.6355	171.13	1084.0	1.47824	
250	250.05	0.7329	178.28	979.0	1.51917	
260	260.09	0.8405	185.45	887.8	1.55848	
270	270.11	0.9590	192.60	808.0	1.59634	
280	280.13	1.0889	199.75	738.0	1.63279	
285	285.14	1.1584	203.33	706.1	1.65055	
290	290.16	1.2311	206.91	676.1	1.66802	
295	295.17	1.3068	210.49	647.9	1.68515	
298	298.18	1.3543	212.64	631.9	1.69528	
300	300.19	1.3860	214.07	621.2	1.70203	
305	305.22	1.4686	217.67	596.0	1.71865	
310	310.24	1.5546	221.25	572.3	1.73498	
315	315.27	1.6442	224.85	549.8	1.75106	
320	320.29	1.7375	228.42	528.6	1.76690	
325	325.31	1.8345	232.02	508.4	1.78249	
330	330.34	1.9352	235.61	489.4	1.79783	
340	340.42	2.149	242.82	454.1	1.82790	
350	350.49	2.379	250.02	422.2	1.8570	

Reversible Steady Flow Work

 If a steady flow process is reversible, the 1st law can be written as:

 $\delta q_{\rm rev} - \delta w_{\rm rev} = dh + dke + dpe$

• In the mean time, we know that:

$$\begin{cases} \delta q_{\rm rev} = T \, ds \\ T \, ds = dh - v \, dP \end{cases} \qquad \delta q_{\rm rev} = dh - v \, dP$$

• When kinetic and potential energies are negligible

$$w_{\rm rev} = -\int_1^2 v \, dP$$

Remarks on Reversible Steady Flow Work

- The larger the specific volume, the greater the work produced (or consumed) by a steady-flow device.
- It can be shown that work-producing devices (e.g. turbines) deliver *more* work when they operate reversibly.
- It can also be shown that work-consuming devices (e.g. compressors) require *less* work when they operate reversibly.

$$w = -\int_{1}^{2} v \, dP$$
$$W = -\int_{1}^{2} V \, dP$$
$$W = -\int_{1}^{2} V \, dP$$

Proof that Steady-Flow Devices Deliver the Most and Consume the Least Work when the Process Is Reversible

Taking heat input and work output positive:

$\delta q_{\rm act} - \delta w_{\rm act} = dh + dke + dpe$	Actual
$\delta q_{\rm rev} - \delta w_{\rm rev} = dh + dke + dpe$	Reversible
$\delta q_{\rm act} - \delta w_{\rm act} = \delta q_{\rm rev} - \delta w_{\rm rev}$	
$\delta w_{\rm rev} - \delta w_{\rm act} = \delta q_{\rm rev} - \delta q_{\rm act}$	
$\delta q_{\rm rev} = T ds$ $ds \ge \frac{\delta q_{\rm act}}{T}$	
$\frac{\delta w_{\rm rev} - \delta w_{\rm act}}{T} = ds - \frac{\delta q_{\rm act}}{T} \ge 0$	
$\partial W_{\rm rev} \geq \partial W_{\rm act}$	

 $W_{\rm rev} \ge W_{\rm act}$

Work-producing devices such as turbines deliver more work, and workconsuming devices such as pumps and compressors require less work when they operate reversibly.

A reversible turbine delivers more work than an irreversible one if both operate between the same end states.

Remarks on Reversible Steady Flow Work

- If an adiabatic device (e.g. turbine, compressor, etc.) involves no irreversibilities:
 - The device will produce (or consume) reversible work.
 - The process becomes isentropic.

- In this case, reversible work can be used as a reference for the performance of the equivalent real devices.
- The comparison is made through a quantity called isentropic efficiency.

Isentropic Efficiency of Turbines

Isentropic Efficiency of Compressors and Pumps

$$\eta_{C} = \frac{\text{Isentropic compressor work}}{\text{Actual compressor work}} =$$
$$\eta_{C} \approx \frac{h_{2s} - h_{1}}{h_{2a} - h_{1}}$$

 For a pump, quantifying reversible (isentropic) work is simple:

$$w_{\rm rev} = -\int_1^2 v \, dP$$

 The specific volume for liquids is nearly constant:

$$w_{\rm rev} = -v(x)$$

$$\eta_{P} = \frac{w_{s}}{w_{a}} = \frac{\nu(P_{2} - P_{1})}{h_{2a} - h_{1}}$$
35

Isentropic Efficiency of Nozzles

<u>950 K</u> AIR

 η_N =

 $\frac{\text{Actual KE at nozzle exit}}{\text{Isentropic KE at nozzle exit}} = \frac{V_{2a}^2}{V_{2s}^2}$

 If the inlet velocity of the fluid is small relative to the exit velocity, the energy balance is:

$$h_1 = h_{2a} + \frac{V_{2a}^2}{2}$$

Then,

$$\eta_T \cong \frac{h_1 - h_{2a}}{h_1 - h_{2s}}$$

Actual nozzle → 764 K, 639 m/s

Isentropic nozzle → 748 K, 666 m/s