Network Layer Services

Chapter 7

Chapter 7: Network Layer Services

Chapter goals:

- understand principles behind network layer services:
 - routing (path selection)
 - dealing with scale
 - how a router works
- instantiation and implementation in the Internet

Outlines

- 1. Introduction
- 2. Virtual circuit and datagram networks
- 3. IP: Internet Protocol
 - Datagram format
 - IPv4 addressing

5/30/2011 8:34 AM R. Ouni

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- Router examines header fields in all IP datagrams passing through it

Key Network-Layer Functions

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to dest.
 - Routing algorithms

analogy:

- routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

5/30/2011 8:34 AM R. Ouni

Interplay between routing and forwarding

Connection setup

- 3rd important function in *some* network architectures:
 - ATM, frame relay, X.25
- Before datagrams flow, two hosts and intervening routers establish virtual connection
 - · Routers get involved

5/30/2011 8:34 AM R. Ouni

Connection-Oriented and Connectionless Service

- Network layers can offer two types of service to the transport layer:
 - Connection-oriented service
 - Network layer provides the Transport layer with a reliable service:
 all packets will be delivered (flow control), in-sequence delivery.
 - Connection setup required before communication begins.
 - Connectionless service
 - No guarantee (latency, bandwidth ...)
 - No prior connection setup required; packets are stored and forwarded one at a time by IMPs.
 - Provides flexibility in the routing and handling of individual packets and is robust in the face of IMP crashes.

1.2. Services provided by IP

- Connectionless Delivery (each datagram is treated individually).
- Unreliable (delivery is not guaranteed).
- Fragmentation / Reassembly (based on hardware MTU).
- Routing.
- Error detection.

R. Ouni

Outlines

- 1. Introduction
- 2. Virtual circuit and datagram networks
- 3. IP: Internet Protocol
 - Datagram format
 - IPv4 addressing

Network layer connection and connection-less service

- Datagram network provides network-layer connectionless service
- VC network provides network-layer connection service
- Analogous to the transport-layer services, but:
 - Service: host-to-host
 - No choice: network provides one or the other
 - Implementation: in the core

5/30/2011 8:34 AM R. Ouni 1

Virtual circuits

"source-to-dest path behaves much like telephone circuit"

- · performance-wise
- · network actions along source-to-dest path
- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC

VC implementation

A VC consists of:

- 1. Path from source to destination
- 2. VC numbers, one number for each link along path
- 3. Entries in forwarding tables in routers along path
 - Packet belonging to VC carries a VC number.
 - VC number must be changed on each link.
 - New VC number comes from forwarding table

5/30/2011 8:34 AM R. Ouni 1

Forwarding table

Forwarding table in northwest router:

Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC#
1	12	3	22
2	63	1	18
3	7	2	17
1	97	2	87

Routers maintain connection state information!

5/30/2011 8:34 AM R. Ouni 14

Virtual circuits: signaling protocols

- used to setup, maintain & teardown VC
- used in ATM, frame-relay, X.25
- not used in today's Internet

Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths

Forwarding table

4 billion possible entries

5/30/2011 8:34 AM R. Ouni

Longest prefix matching

Prefix Match	<u>Link Interface</u>
11001000 00010111 00010	0
11001000 00010111 <mark>00011000</mark>	1
11001000 00010111 000111	2
otherwise	3
Examples	
DA: 11001000 00010111 00010110 10100001	Which interface?
DA: 11001000 00010111 00011000 10101010	Which interface?

5/30/2011 8:34 AM R. Ouni 18

Datagram or VC network: why?

Internet

- data exchange among computers
 - "elastic" service, no strict timing requirement.
- "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"
- many link types
 - · different characteristics
 - · uniform service difficult

ATM

- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - · need for guaranteed service
- "dumb" end systems
 - · telephones
 - · complexity inside network

5/30/2011 8:34 AM R. Ouni

Outlines

- 1. Introduction
- 2. Virtual circuit and datagram networks
- IP: Internet Protocol
 - · Datagram format
 - IPv4 addressing

5/30/2011 8:34 AM R. Ouni 20

3. The Internet Protocol (IP)

- Provides delivery of packets from one host in the Internet to any other host in the Internet, even if the hosts are on different networks
- Internet packets are often called "datagrams" and may be up to 64 kilobytes in length (although they are typically much smaller)
- Internet IMPs are known as "routers" and they operate in a connectionless mode.
 - Router is a **store** and **forward** device. Treats packets **individually**.

R. Ouni

3.1. IP Packet Format

R. Ouni 22

IP Packet Fields

- Version
 - The IP version number (currently 4)
- IHL
 - · IP Header Length in 32-bit words
- Type of Service
 - · Contains priority information, used for traffic classification
- Total Length
 - · The total length of the datagram in bytes
 - Includes header

R. Ouni

IP Packet Fields (cont'd)

- Identification
 - When an IP packet is segmented into multiple fragments, each fragment is given the same identification
 - · This field is used to reassemble fragments
- DF
 - Don't Fragment
- MF
 - More Fragments
 - When a packet is fragmented, all fragments except the last one have this bit set
- Fragment offset
 - The fragment's position within the original packet

IP Packet Fields (cont d)

Time to Live	Protocol	Header checksum]
			- 1

- Time to Live (TTL)
 - Hop count, decremented each time the packet reaches a new router
 - When hop count = 0, packet is discarded
- Protocol
 - Identifies which transport layer protocol is being used for this packet
- Header Checksum
 - · Verifies the contents of the IP header
 - Not polynomial-based

R. Ouni

IP Packet Fields (cont 'd)

Source address
Destination address
Options (0 or more 32-bit words)

- Source and Destination Addresses
 - · Uniquely identify sender and receiver of the packet
- Options
 - Up to 40 bytes in length
 - Used to extend functionality of IP
 - · Examples: source routing, security, record route

R. Ouni 26

3.2. IP Addresses

- IP addresses are *logical* addresses (not physical)
- 32 bits (4 bytes) => IPv4
- Includes a network ID and a host ID.
- Every host must have a unique IP address.

R. Ouni

Network and Host IDs

- A Network ID is assigned to an organization by a global authority.
- Host IDs are assigned locally by a system administrator.
- Both the Network ID and the Host ID are used for routing.

R. Ouni 28

IP Addresses

• IP Addresses are usually shown in dotted decimal notation:

R. Ouni

IP Address Classes

Host and Network Addresses

- A single network interface is assigned a single IP address called the host address.
- A host may have multiple interfaces, and therefore multiple host addresses.
- Hosts that share a network all have the same IP network address (the network ID).

R. Ouni

Routing steps based on routing table contents

Host or IMP gets the destination IP address:

- If complete destination address found in routing table, then forward a packet to the destination.
- Else if destination network ID found, then forward a packet to the next hop in the dest path.
- Else if there is a default router,then deliver a packet toward the default hop.
- **4. Otherwise**, an ICMP "host unreachable error" message is sent back to the sender.