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BEN AMIRA Aymen INTEGRAL CALCULUS (MATH 106) 2 / 85



Table of contents

1 Parametric equations

2 The slope of the tangent line to a parametric curve

3 Arc Length of a Parametric Equations

4 Surface Area Generated By Revolving A Parametric Curve

5 Polar Coordinates

6 Polar Curves

7 Slope Of The Tangents Line With Polar Coordinates

8 Area Inside-Between Polar Curves

9 Arc Length Of A Polar Curve

10 Surface Area Generated By Revolving A Polar Curve

BEN AMIRA Aymen INTEGRAL CALCULUS (MATH 106) 3 / 85



Plane Curves and Polar Coordinates

The student is expected to be able to:

1 Know the definition of parametric equations

2 Calculate the slope of the tangent line to parametric curve.

3 Calculate arc length of a parametric equations.

4 Calculate the surface area generated by revolving a parametric curve.

5 Know what is the polar coordinates.

6 Know the equation and graph of some of polar curves.

7 Know how to calculate the slope of the tangent line with polar
coordinates.

8 Know how to calculate the area inside polar curves and between polar
curves.

9 Know how to calculate the arc length of a polar curve.

10 Know how to calculate Surface Area Generated By Revolving A Polar
Curve.
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Parametric equations

To this point we’ve looked almost exclusively at functions in the form
y = f (x) or x = h (y)
It is easy to write down the equation of a circle centered at the origin with
radius r .

x2 + y2 = r2

However, we will never be able to write the equation of a circle down as a
single equation in either of the forms above. Sure we can solve for x or y
as the following two formulas show

y = ±
√

r2 − x2 x = ±
√
r2 − y2

but there are in fact two functions in each of these. Each formula gives a
portion of the circle.
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Parametric equations

y =
√
r2 − x2 (top) x =

√
r2 − y2 (right side)

y = −
√
r2 − x2 (bottom) x = −

√
r2 − y2 (left side)

There are also a great many curves out there that we can’t even write
down as a single equation in terms of only x and y . So, to deal with some
of these problems we introduce parametric equations.
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Parametric equations

Instead of defining y in terms of x , y = f (x) or x in terms of y x = h (y)
we define both x and y in terms of a third variable called a parameter as
follows,

x = f (t) y = g (t)

This third variable is usually denoted by t.
Each value of t defines a point (x , y) = (f (t) , g (t)) that we can plot.
The collection of points that we get by letting t be all possible values is
the graph of the parametric equations and is called the parametric curve.
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Parametric equations

Example

Sketch the parametric curve for the following set of parametric equations.

x = t2 + t y = 2t − 1 − 2 ≤ t ≤ 2

At this point our only option for sketching a parametric curve is to pick
values of t, plug them into the parametric equations and then plot the
points. So, let’s plug in some t’s.
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Parametric equations (Example)
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Parametric equations

Example

Sketch the parametric curve for the following set of parametric equations.

x = t2 + t y = 2t − 1 − 1 ≤ t ≤ 1
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The slope of the tangent line to a parametric curve

If C : x = x(t), y = y(t); a ≤ t ≤ b is a differentiable parametric curve
then the slope of the tangent line to C at t0 ∈ [a, b] is:

m =
dy

dx
|t=t0 =

(dydt )

(dxdt )
|t=t0

Remark
1 The tangent line to the parametric curve is horizontal if the slope

equals zero, which means that dy
dt = 0 and dx

dt 6= 0

2 The tangent line to the parametric curve is vertical if dx
dt = 0 and

dy
dt 6= 0

The second derivative is d2y
dx2

= dy ′

dx =
( dy
′

dt
)

( dx
dt
)
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The slope of the tangent line to a parametric curve

Example

Find the slope of the tangent line(s) to the parametric curve given by

x = t5 − 4t3 y = t2 at (0, 4)

dy

dx
=

dy

dt
dx

dt

=
2t

5t4 − 12t2
=

2

5t3 − 12t

0 = t5 − 4t3 = t3
(
t2 − 4

)
⇒ t = 0,±2

4 = t2 ⇒ t = ±2
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The slope of the tangent line to a parametric curve

1 at t = −2 :

m =
dy

dx

∣∣∣∣
t=−2

= −1

8

2 at t = 2

m =
dy

dx

∣∣∣∣
t=2

=
1

8
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The slope of the tangent line to a parametric curve

Example

Find the equation of the tangent line to C : x = t3 − 3t, y = t2 − 5t at
t = 2

dy

dx
=

(dydt )

(dxdt )
=

2t − 5

3t2 − 3

The slope of the tangent line is dy
dx |t=2 = −1

9
At t = 2 : x = 2 and y = −6
The tangent line to C at t = 2 passes through the point (2,−6) and its
slope is −1

9

therefore its equation is
y + 6

x − 2
= −1

9
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The slope of the tangent line to a parametric curve

Example

Find the points on C : x = et , y = e−t at which the slope of the tangent
line to C equals −e−2

m = dy
dx =

( dy
dt
)

( dx
dt
)

= −e−t

et = −e−2t

⇒ m = e−2t ⇒ e−2t = −e−2 ⇒ t = 1.
At t = 1 : x = e1 = e and y = e−1 = 1

e .
Hence, the point at which the slope of the tangent line to C equals −e−2
is (e, 1e )
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Arc Length of a Parametric Equations

Definition

If C : x = x(t), y = y(t); a ≤ t ≤ b is a differentiable parametric curve
,then its arc length equals

L =

b∫
a

√
(
dx

dt
)2 + (

dy

dt
)2 dt
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Arc Length of a Parametric Equations

Example

Determine the length of the parametric curve given by the following
parametric equations.

x = 3 sin (3t) y = 3 cos (3t) 0 ≤ t ≤ 2π

dx

dt
= 9 cos (3t)

dy

dt
= −9 sin (3t)

and the length formula gives,

L =

∫ 2π

0

√
81sin2 (3t) + 81cos2 (3t) dt

=

∫ 2π

0
9 dt

= 18π
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Arc Length of a Parametric Equations

Example

Determine the length of the parametric curve given by the following set of
parametric equations.

x = 8t
3
2 y = 3 + (8− t)

3
2 0 ≤ t ≤ 4

dx

dt
= 12t

1
2

dy

dt
= −3

2
(8− t)

1
2

L =

∫ 4

0

√[
12t

1
2

]2
+

[
−3

2
(8− t)

1
2

]2
dt =

∫ 4

0

√
144t +

9

4
(8− t) dt

=

∫ 4

0

√
567

4
t + 18 dt =

4

567

(
2

3

)(
567

4
t + 18

) 3
2

∣∣∣∣∣
4

0

=
8

1701

(
585

3
2 − 18

3
2

)
= 66.1865
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Surface Area Generated By Revolving A Parametric Curve

If C : x = x(t), y = y(t); a ≤ t ≤ b is a differentiable parametric curve
,then the surface area generated by revolving C around the x−axis is

SA = 2π

b∫
a

|y(t)|
√

(
dx

dt
)2 + (

dy

dt
)2 dt

The surface area generated by revolving C around the y−axis is

SA = 2π

b∫
a

|x(t)|
√

(
dx

dt
)2 + (

dy

dt
)2 dt
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Surface Area Generated By Revolving A Parametric Curve

Example

Determine the surface area of the solid obtained by rotating the following
parametric curve about the x−axis.

x = cos3θ y = sin3θ 0 ≤ θ ≤ π

2

We’ll first need the derivatives of the parametric equations.

dx

dθ
= −3cos2θ sin θ

dy

dθ
= 3sin2θ cos θ

√
(
dx

dt
)2 + (

dy

dt
)2 =

√
9cos4θsin2θ + 9sin4θcos2θ dθ

= 3 |cos θ sin θ|
√

cos2θ + sin2θ

= 3 cos θ sin θ
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Surface Area Generated By Revolving A Parametric Curve

SA = 2π

∫ π
2

0
sin3θ (3 cos θ sin θ) dθ

= 6π

∫ π
2

0
sin4θ cos θ dθ u = sin θ

= 6π

∫ 1

0
u4 du

=
6π

5
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Surface Area Generated By Revolving A Parametric Curve

Example

Determine the surface area of the object obtained by rotating the
parametric curve about the y−axis.

x = 3 cos (πt) y = 5t + 2 0 ≤ t ≤ 1

2

The first thing we’ll need here are the following two derivatives.

dx

dt
= −3π sin (πt)

dy

dt
= 5√

(
dx

dt
)2 + (

dy

dt
)2 =

√
[−3π sin (πt)]2 + [5]2 =

√
9π2sin2 (πt) + 25
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Surface Area Generated By Revolving A Parametric Curve

SA =

∫ 1
2

0
2π (3 cos (πt))

√
9π2sin2 (πt) + 25 dt

= 6π

∫ 1
2

0
cos (πt)

√
9π2sin2 (πt) + 25 dt

u = sin (πt) → sin2 (πt) = u2 du = π cos (πt)

t = 0 : u = sin (0) = 0 t =
1

2
: u = sin

(
1

2
π

)
= 1

SA = 6

∫ 1

0

√
9π2u2 + 25 du
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Surface Area Generated By Revolving A Parametric Curve

u =
5

3π
tan θ du =

5

3π
sec2θ dθ√

9π2u2 + 25 =
√

25tan2θ + 25 = 5
√

tan2θ + 1 = 5
√

sec2θ = 5 |sec θ|

u = 0 : 0 =
5

3π
tan θ → tan θ = 0 → θ = 0

u = 1 : 1 =
5

3π
tan θ → tan θ =

3π

5
→ θ = tan−1

(
3π

5

)
= 1.0830
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Surface Area Generated By Revolving A Parametric Curve

SA =

∫ 1
2

0
2π (3 cos (πt))

√
9π2sin2 (πt) + 25 dt

= 6

∫ 1

0

√
9π2u2 + 25 du

= 6

∫ 1.0830

0
(5 sec θ)

(
5

3π
sec2θ

)
dθ

= 6

∫ 1.0830

0

25

3π
sec3θ dθ

=
25

π
(sec θtanθ + ln |sec θ + tan θ|)

∣∣∣∣1.0830
0

= 43.0705
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Cartesian coordinate system (or Rectangular, or x-y)

the Cartesian coordinate system at point is given the coordinates (x , y)
and we use this to define the point by starting at the origin and then
moving x units horizontally followed by y units vertically.
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Cartesian coordinate system (or Rectangular, or x-y)

Cartesian coordinate is not the only way to define a point in two
dimensional space. Instead of moving vertically and horizontally from the
origin to get to the point we could instead go straight out of the origin
until we hit the point and then determine the angle this line makes with
the positive x−axis. We could then use the distance of the point from the
origin and the amount we needed to rotate from the positive x-axis as the
coordinates of the point.

Coordinates in this form are called polar coordinates.
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Polar Coordinates

Example

The two points
(
2, π6

)
and

(
−2, π6

)
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Polar Coordinates

Remark

The polar coordinates of a point is not unique, if P = (r , θ) then other
representations are:

1 P = (r , θ + 2nπ), where n ∈ Z
2 P = (−r , θ + π)

3 P = (−r , θ + π + 2nπ), where n ∈ Z
4 P = (−r , θ − π)

5 P = (−r , θ − π + 2nπ), where n ∈ Z
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Polar Coordinates

Example(
5, π3

)
=
(
5,−5π

3

)
=
(
−5, 4π3

)
=
(
−5,−2π

3

)
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Polar Coordinates

Relationship between the polar and the Cartesian coordinates
the following equations that will convert polar coordinates into Cartesian
coordinates.

x = r cos θ y = r sin θ

Converting from Cartesian is almost as easy. Let’s first notice the
following.

x2 + y2 = (r cos θ)2 + (r sin θ)2

= r2cos2θ + r2sin2θ

= r2
(
cos2θ + sin2θ

)
= r2

r =
√

x2 + y2, and
y

x
=

r sin θ

r cos θ
= tan θ
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Polar Coordinates

Example

1 Convert
(
−4, 2π3

)
into Cartesian coordinates.

2 Convert (−1,−1) into polar coordinates.

1 This conversion is easy enough. All we need to do is plug the points
into the formulas.

x = −4 cos

(
2π

3

)
= −4

(
−1

2

)
= 2

y = −4 sin

(
2π

3

)
= −4

(√
3

2

)
= −2

√
3

So, in Cartesian coordinates this point is
(
2,−2

√
3
)

2 Let’s first get r

r =
√

(−1)2 + (−1)2 =
√

2
Now, let’s get θ

θ = tan−1
(
−1
−1

)
= tan−1 (1) = π

4
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Polar Coordinates

Example

Convert each of the following into an equation in the given coordinate
system.

1 Convert 2x − 5x3 = 1 + xy into polar coordinates.

2 Convert r = −8 cos θ into Cartesian coordinates.

1

2 (r cos θ)− 5(r cos θ)3 = 1 + (r cos θ) (r sin θ)

2r cos θ − 5r3cos3θ = 1 + r2 cos θ sin θ

2 r2 = −8r cos θ ⇒ x2 + y2 = −8x
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Polar Curves

First - Straight Lines:
1-Lines passing through the pole :
Any straight line passing through the pole has the form θ = θ0 where θ0 is
the angle between the straight line and the polar axis .
θ = θ0 ⇒ tan θ = tan θ0 ⇒ y

x = tan θ0 ⇒ y = x tan θ0
The straight line θ = θ0 is passing through the pole with a slope equals to
tan θ0.
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Polar Curves

2-Lines perpendicular to the polar axis : Any straight line perpendicular
to the polar axis has the form r = a sec θ, where a ∈ R∗ and θ ∈

(
−π

2 ,
π
2

)
r = a sec θ ⇒ r = a

cos θ ⇒ r cos θ = a⇒ x = a
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Polar Curves

3-Lines parallel to the polar axis : Any straight line parallel to the polar
axis has the form r = a csc θ, where a ∈ R∗ and θ ∈ (0, π)
r = a csc θ ⇒ r = a

sin θ ⇒ r sin θ = a⇒ y = a
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Polar Curves

Second- Circles
1-Circles of the form r = a, where a ∈ R∗
r = a⇒ r2 = a2 ⇒ x2 + y2 = a2

Therefore, r = a represents a circle with center = (0, 0) and radius equals
|a|
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Polar Curves

Example

r = −2 represents a circle with center = (0, 0) and radius to 2.
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Polar Curves

Example

r = 2 represents a circle with center = (0, 0) and radius to 2.
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Polar Curves

2-Circles of the form r = a sin θ, where a ∈ R∗ and 0 ≤ θ ≤ π
r = a sin θ ⇒ r2 = a r sin θ ⇒ x2 + y2 = ay ⇒ x2 + y2 − ay = 0⇒
x2 + (y2 − ay + a2

4 ) = a2

4 ⇒ x2 + (y − a
2)2 = a2

4
Therefore, r = a sin θ represents a circle with center = (0, a2) and radius

equals to |a|2
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Polar Curves

Example

r = 2 sin θ represents a circle with center = (0, 1) and radius equals to 1
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Polar Curves

Example

r = −2 sin θ represents a circle with center = (0,−1) and radius equals to
1.
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Polar Curves

3-Circles of the form r = a cos θ, where a ∈ R∗ and −π
2 ≤ θ ≤

π
2

r = a cos θ ⇒ r2 = a r cos θ ⇒ x2 + y2 = ax ⇒ x2 − ax + y2 = 0⇒
(x2 − ax + a2

4 ) + y2 = a2

4 ⇒ (x − a
2)2 + y2 = a2

4
Therefore, r = a cos θ represents a circle with center = ( a2 , 0) and radius

equals to |a|2
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Polar Curves

Example

r = 2 cos θ represents a circle with center = (1, 0) and radius equals to 1.
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Polar Curves

Example

r = −2 cos θ represents a circle with center = (−1, 0) and radius equals to
1.
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Polar Curves

Third - Limacon curves:
The general form of a Limacon curve is
r(θ) = a + b sin θ or r(θ) = a + b cos θ, where a, b ∈ R∗ and 0 ≤ θ ≤ 2π
1-Cardioid (Heart-shaped): It has the form r(θ) = a + a sin θ or
r(θ) = a + a cos θ, where a ∈ R∗ and 0 ≤ θ ≤ 2π
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Polar Curves

Example

r(θ) = 2 + 2 cos θ
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Polar Curves

Example

r(θ) = 2 + 2 sin θ and r(θ) = −2− 2 sin θ
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Polar Curves

2-Limacon with inner loop: It has the form r(θ) = a + b sin θ or
r(θ) = a + b cos θ, where a, b ∈ R∗, |a| < |b| and 0 ≤ θ ≤ 2π

Example

r(θ) = 1 + 2 cos θ and r(θ) = −1− 2 cos θ
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Polar Curves

Example

r(θ) = 1 + 2 sin θ and r(θ) = −1− 2 sin θ

BEN AMIRA Aymen INTEGRAL CALCULUS (MATH 106) 56 / 85



Polar Curves

3-Dimpled Limacon : It has the form r(θ) = a + b sin θ or
r(θ)a + b cos θ, where a, b ∈ R∗, |a| > |b| and 0 ≤ θ ≤ 2π

Example

r(θ) = 2 + cos θ and r(θ) = −2− cos θ
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Polar Curves

Example

r(θ) = 2 + sin θ and r(θ) = −2− sin θ
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Polar Curves

Fourth - Rose curves:
It has the form r(θ) = a cos(nθ) or r(θ) = a sin(nθ), where a ∈ R∗, n ∈ N
and n ≥ 2
1-n is even: In this case the number of loops (or leaves) is 2n.
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Polar Curves

Example

r(θ) = 2 cos(2θ) or r(θ) = 2 sin(2θ), 0 ≤ θ ≤ 2π
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Polar Curves

n is odd: In this case the number of loops (or leaves) is n .

Example

r(θ) = 2 cos(3θ) or r(θ) = 2 sin(3θ), 0 ≤ θ ≤ π
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Slope Of The Tangents Line With Polar Coordinates

If r = r(θ) is a smooth polar curve, then the slope of the tangent line to
r = r(θ) is m = dy

dx where (x = r cos θ, y = r sin θ)

dy

dx
=

dy
dθ
dx
dθ

=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ
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Example

Example

Determine the equation of the tangent line to

r = 3 + 8 sin θ at θ =
π

6

We’ll first need the following derivative. dr
dθ = 8 cos θ

The formula for the derivative dy
dx becomes,

dy

dx
=

8 cos θ sin θ + (3 + 8 sin θ) cos θ

8cos2θ − (3 + 8 sin θ) sin θ
=

16 cos θ sin θ + 3 cos θ

8cos2θ − 3 sin θ − 8sin2θ

The slope of the tangent line is,

m =
dy

dx

∣∣∣∣
θ=π

6

=
4
√

3 + 3
√
3

2

4− 3
2

=
11
√

3

5
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Example

Now, at θ = π
6 we have r = 7 We’ll need to get the corresponding x − y

coordinates so we can get the tangent line.

x = 7 cos
(π

6

)
=

7
√

3

2
y = 7 sin

(π
6

)
=

7

2

The tangent line is then,

y =
7

2
+

11
√

3

5

(
x − 7

√
3

2

)
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Example

For the sake of completeness here is a graph of the curve and the tangent
line.
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Example

Example

Find the points on the polar curve r(θ) = 1 + cos θ, 0 ≤ θ ≤ 2π at which
the tangent line to r is horizontal.

The tangent line to r = r(θ) is horizontal if dy
dθ = 0 and dx

dθ 6= 0
x = r(θ) cos θ ⇒ x = cos θ(1 + cos θ) = cos θ + cos2 θ
y = r(θ) sin θ ⇒ y = sin θ(1 + cos θ) = sin θ + sin θ cos θ = sin θ + 1

2 sin 2θ
dx
dθ = − sin θ − 2 cos θ sin θ = − sin θ − sin 2θ
dy
dθ = cos θ + cos 2θ
dy
dθ = 0⇒ cos θ + cos 2θ = 0⇒ 2 cos2 θ − 1 + cos θ = 0⇒
(2 cos θ − 1)(cos θ + 1) = 0⇒ cos θ = −1 or cos θ = 1

2
⇒ θ = π or θ = π

3 , θ = 5π
3
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Example

For θ = π, dxdθ = 0.

For θ = π
3 , θ = 5π

3 ∈ [0, 2π] and dx
dθ 6= 0.

At θ = π
3 : r(π3 ) = 1 + 1

2 = 3
2

At θ = 5π
3 : r(5π3 ) = 1 + 1

2 = 3
2

The points on r(θ) = 1 + cos θ, 0 ≤ θ ≤ 2π at which the tangent line to r
is horizontal are (32 ,

π
3 ), (32 ,

5π
3 )
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Area Inside-Between Polar Curves

The area of the region bounded by the graphs of the polar curves
r = r(θ), θ = θ1 and θ = θ2 is

A =
1

2

θ2∫
θ1

[r(θ)]2 dθ
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Area Inside-Between Polar Curves

Example

Determine the area of the inner loop of r = 2 + 4 cos θ

0 = 2 + 4 cos θ

cos θ = −1

2
⇒ θ =

2π

3
,

4π

3
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Area Inside-Between Polar Curves

A =

∫ 4π
3

2π
3

1

2
(2 + 4 cos θ)2 dθ

=

∫ 4π
3

2π
3

1

2

(
4 + 16 cos θ + 16cos2θ

)
dθ

=

∫ 4π
3

2π
3

2 + 8 cos θ + 4 (1 + cos (2θ)) dθ

=

∫ 4π
3

2π
3

6 + 8 cos θ + 4 cos (2θ) dθ

= (6θ + 8 sin θ + 2 sin (2θ))|
4π
3
2π
3

= 4π − 6
√

3 = 2.174
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Area Inside-Between Polar Curves

Example

Determine the area that lies inside r = 3 + 2 sin θ and outside r = 2

3 + 2 sin θ = 2

sin θ = −1

2
⇒ θ =

7π

6
,

11π

6
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Area Inside-Between Polar Curves

A =

∫ 7π
6

−π
6

1

2

(
(3 + 2 sin θ)2 − (2)2

)
dθ

=

∫ 7π
6

−π
6

1

2

(
5 + 12 sin θ + 4sin2θ

)
dθ

=

∫ 7π
6

−π
6

1

2
(7 + 12 sin θ − 2 cos (2θ)) dθ

=
1

2
(7θ − 12 cos θ − sin (2θ))

∣∣∣∣ 7π6
−π

6

=
11
√

3

2
+

14π

3
= 24.187
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Area Inside-Between Polar Curves

Example

Find the area inside one leaf of the rose curve r = 2 cos 3θ
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Area Inside-Between Polar Curves

The rose curve r = 2 cos 3θ, 0 ≤ θ ≤ π starts at (r , θ) = (2, 0) and reaches
the pole when r = 0
r = 0⇒ 2 cos 3θ = 0⇒ 3θ = π

2 ⇒ θ = π
6 Since the desired area is

symmetric with respect to the polar axis , then

A = 2

(
1

2

∫ π
6

0
(2 cos 3θ)2dθ

)

= 4

∫ π
6

0
cos2 3θ dθ

= 4

∫ π
6

0

1

2
(1 + cos 6θ) dθ

= 2

∫ π
6

0
(1 + cos 6θ) dθ

= 2

[
θ +

sin 6θ

6

]π
6

0

=
π

3
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Arc Length Of A Polar Curve

The arc length of the polar curve r = r(θ) from θ1 to θ2 is

L =

θ2∫
θ1

√
(r (θ))2 +

(
dr

dθ

)2

dθ
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Arc Length Of A Polar Curve

Example

Determine the length of the following polar curve. r = −4 sin θ, 0 ≤ θ ≤ π
dr
dθ = −4 cos θ

L = =

π∫
0

√
[−4 sin θ]2 + [−4 cos θ]2 dθ

=

π∫
0

√
16sin2θ + 16cos2θ dθ = 4

√
sin2θ + cos2θ dθ =

π∫
0

4dθ

L =

∫ π

0
4 dθ = [4θ]π0 = 4π
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Arc Length Of A Polar Curve

Example

Find the arc length of the following polar curve: r = e−θ

dr
dθ = −e−θ

L = =

π∫
0

√
(e−θ)

2
+ (−e−θ)

2
dθ

=

π∫
0

√
e−2θ + e−2θ dθ =

π∫
0

√
2e−2θ dθ =

√
2

π∫
0

e−θ dθ

L =
√

2
[
−e−θ

]π
0

=
√

2[−e−π + e0] =
√

2(1− e−π)
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Surface Area Generated By Revolving A Polar Curve

The surface area generated by revolving the polar curve
r = r(θ), θ1 ≤ θ ≤ θ2 around the polar axis is

SA = 2π

θ2∫
θ1

|r(θ) sin θ|

√
(r(θ))2 +

(
dr

dθ

)2

dθ

The surface area generated by revolving the polar curve
r = r(θ), θ1 ≤ θ ≤ θ2 around the line θ = π

2 is

SA = 2π

θ2∫
θ1

|r(θ) cos θ|

√
(r(θ))2 +

(
dr

dθ

)2

dθ
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Surface Area Generated By Revolving A Polar Curve

Example

Find the surface area generated by revolving the following polar curve:
r = 2 + 2 cos θ, 0 ≤ θ ≤ π

2 around the polar axis.

dr
dθ = −2 sin θ

SA = 2π

π
2∫

0

|(2 + 2 cos θ) sin θ|
√

(2 + 2 cos θ)2 + (−2 sin θ)2 dθ

= 2π

π
2∫

0

(2 + 2 cos θ) sin θ
√

4 (2 + 2 cos θ) dθ

= 4π

π
2∫

0

(2 + 2 cos θ)
3
2 sin θ dθ

= −2π

π
2∫

0

(2 + 2 cos θ)
3
2 (−2 sin θ) dθ
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Surface Area Generated By Revolving A Polar Curve

SA = −2π

π
2∫

0

(2 + 2 cos θ)
3
2 (−2 sin θ) dθ

= −2π

[
2

5
(2 + 2 cos θ)

5
2

]π
2

0

= −2π
2

5

[
4
√

2− 32
]

=
16π

5

(
8−
√

2
)
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Surface Area Generated By Revolving A Polar Curve

Example

Find the surface area generated by revolving the following polar curve:
r = 2 sin θ, 0 ≤ θ ≤ π

2 around the line θ = π
2

dr
dθ = 2 cos θ

SA = 2π

π
2∫

0

|2 sin θ cos θ|
√

(2 sin θ)2 + (2 cos θ)2 dθ

= 2π

π
2∫

0

sin 2θ
√

4 dθ

SA = 4π

[
−cos 2θ

2

]π
2

0

= 4π
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