Chapter 6. Fundamental Cloud Security

- 6.1 Basic Terms and Concepts
- 6.2 Threat Agents
- 6.3 Cloud Security Threats
- 6.4 Additional Considerations
- 6.5 Case Study Example

This chapter introduces terms and concepts that address basic information security within clouds, and then concludes by defining a set of threats and attacks common to public cloud environments. The cloud security mechanisms covered in <u>Chapter 10</u> establish the security controls used to counter these threats.

6.1. Basic Terms and Concepts

Information security is a complex ensemble of techniques, technologies, regulations, and behaviors that collaboratively protect the integrity of and access to computer systems and data. IT security measures aim to

defend against threats and interference that arise from both malicious intent and unintentional user error.

The upcoming sections define fundamental security terms relevant to cloud computing and describe associated concepts.

Confidentiality

Confidentiality is the characteristic of something being made accessible only to authorized parties (<u>Figure 6.1</u>). Within cloud environments, confidentiality primarily pertains to restricting access to data in transit and storage.

Figure 6.1. The message issued by the cloud consumer to the cloud service is considered confidential only if it is not accessed or read by an unauthorized party.

Integrity

Integrity is the characteristic of not having been altered by an unauthorized party (Figure 6.2). An important issue that concerns data integrity in the cloud is whether a cloud consumer can be guaranteed that the data it transmits to a cloud service matches the data received by that cloud service. Integrity can extend to how data is stored, processed, and retrieved by cloud services and cloud-based IT resources.

Figure 6.2. The message issued by the cloud consumer to the cloud service is considered to have integrity if it has not been altered.

Authenticity

Authenticity is the characteristic of something having been provided by an authorized source. This concept encompasses non-repudiation, which is the inability of a party to deny or challenge the authentication of an interaction. Authentication in non-repudiable interactions provides proof that these interactions are uniquely linked to an authorized source. For example, a user may not be able to access a non-repudiable file after its receipt without also generating a record of this access.

Availability

Availability is the characteristic of being accessible and usable during a specified time period. In typical cloud environments, the availability of cloud services can be a responsibility that is shared by the cloud provider and the cloud carrier. The availability of a cloud-based solution that extends to cloud service consumers is further shared by the cloud consumer.

Threat

A *threat* is a potential security violation that can challenge defenses in an attempt to breach privacy and/or cause harm. Both manually and automatically instigated threats are designed to exploit known weaknesses, also referred to as vulnerabilities. A threat that is carried out results in an *attack*.

Vulnerability

A *vulnerability* is a weakness that can be exploited either because it is protected by insufficient security controls, or because existing security controls are overcome by an attack. IT resource vulnerabilities can have a range of causes, including configuration deficiencies, security policy weaknesses, user errors, hardware or firmware flaws, software bugs, and poor security architecture.

Risk

Risk is the possibility of loss or harm arising from performing an activity. Risk is typically measured according to its threat level and the number of possible or known vulnerabilities. Two metrics that can be used to determine risk for an IT resource are:

- the probability of a threat occurring to exploit vulnerabilities in the IT resource
- the expectation of loss upon the IT resource being compromised Details regarding risk management are covered later in this chapter.

Security Controls

Security controls are countermeasures used to prevent or respond to security threats and to reduce or avoid risk. Details on how to use security countermeasures are typically outlined in the security policy, which contains a set of rules and practices specifying how to implement a system, service, or security plan for maximum protection of sensitive and critical IT resources.

Security Mechanisms

Countermeasures are typically described in terms of security mechanisms, which are components comprising a defensive framework that protects IT resources, information, and services.

Security Policies

A security policy establishes a set of security rules and regulations. Often, security policies will further define how these rules and regulations are implemented and enforced. For example, the positioning and usage of security controls and mechanisms can be determined by security policies.

Summary of Key Points

• Confidentiality, integrity, authenticity, and availability are characteristics that can be associated with measuring security.

• Threats, vulnerabilities, and risks are associated with measuring and assessing insecurity, or the lack of security.

• Security controls, mechanisms, and policies are associated with establishing countermeasures and safeguards in support of improving security.

6.2. Threat Agents

A *threat agent* is an entity that poses a threat because it is capable of carrying out an attack. Cloud security threats can originate either internally or externally, from humans or software programs. Corresponding threat agents are described in the upcoming sections. <u>Figure 6.3</u> illustrates the role a threat agent assumes in relation to vulnerabilities, threats, and risks, and the safeguards established by security policies and security mechanisms.

Figure 6.3. How security policies and security mechanisms are used to counter threats, vulnerabilities, and risks caused by threat agents.

Anonymous Attacker

An *anonymous attacker* is a non-trusted cloud service consumer without permissions in the cloud (Figure 6.4). It typically exists as an external software program that launches network-level attacks through public networks. When anonymous attackers have limited information on security policies and defenses, it can inhibit their ability to formulate effective attacks. Therefore, anonymous attackers often resort to committing acts like bypassing user accounts or stealing user credentials, while using methods that either ensure anonymity or require substantial resources for prosecution.

Figure 6.4. The notation used for an anonymous attacker.

Malicious Service Agent

A *malicious service agent* is able to intercept and forward the network traffic that flows within a cloud (Figure 6.5). It typically exists as a service agent (or a program pretending to be a service agent) with compromised or malicious logic. It may also exist as an external program able to remotely intercept and potentially corrupt message contents.

Figure 6.5. The notation used for a malicious service agent.

Trusted Attacker

A *trusted attacker* shares IT resources in the same cloud environment as the cloud consumer and attempts to exploit legitimate credentials to target cloud providers and the cloud tenants with whom they share IT resources (Figure 6.6). Unlike anonymous attackers (which are non-trusted), trusted attackers usually launch their attacks from within a cloud's trust boundaries by abusing legitimate credentials or via the appropriation of sensitive and confidential information.

Figure 6.6. The notation that is used for a trusted attacker.

Trusted attackers (also known as *malicious tenants*) can use cloud-based IT resources for a wide range of exploitations, including the hacking of weak authentication processes, the breaking of encryption, the spamming of e-mail accounts, or to launch common attacks, such as denial of service campaigns.

Malicious Insider

Malicious insiders are human threat agents acting on behalf of or in relation to the cloud provider. They are typically current or former employees or third parties with access to the cloud provider's premises. This type of threat agent carries tremendous damage potential, as the malicious insider may have administrative privileges for accessing cloud consumer IT resources.

Note

A notation used to represent a general form of human-driven attack is the workstation combined with a lightning bolt (<u>Figure 6.7</u>). This generic symbol does not imply a specific threat agent, only that an attack was initiated via a workstation.

Figure 6.7. The notation used for an attack originating from a workstation. The human symbol is optional.

Summary of Key Points

• An anonymous attacker is a non-trusted threat agent that usually attempts attacks from outside of a cloud's boundary.

• A malicious service agent intercepts network communication in an attempt to maliciously use or augment the data.

• A trusted attacker exists as an authorized cloud service consumer with legitimate credentials that it uses to exploit access to cloud-based IT resources.

• A malicious insider is a human that attempts to abuse access privileges to cloud premises.

6.3. Cloud Security Threats

This section introduces several common threats and vulnerabilities in cloud-based environments and describes the roles of the aforementioned

threat agents. Security mechanisms that are used to counter these threats are covered in <u>Chapter 10</u>.

Traffic Eavesdropping

Traffic eavesdropping occurs when data being transferred to or within a cloud (usually from the cloud consumer to the cloud provider) is passively intercepted by a malicious service agent for illegitimate information gathering purposes (Figure 6.8). The aim of this attack is to directly compromise the confidentiality of the data and, possibly, the confidentiality of the relationship between the cloud consumer and cloud provider. Because of the passive nature of the attack, it can more easily go undetected for extended periods of time.

Figure 6.8. An externally positioned malicious service agent carries out a traffic eavesdropping attack by intercepting a message sent by the cloud service consumer to the cloud service. The service agent makes an unauthorized copy of the message before it is sent along its original path to the cloud service.

Malicious Intermediary

The *malicious intermediary* threat arises when messages are intercepted and altered by a malicious service agent, thereby potentially compromising the message's confidentiality and/or integrity. It may also insert harmful data into the message before forwarding it to its destination. <u>Figure 6.9</u> illustrates a common example of the malicious intermediary attack.

Figure 6.9. The malicious service agent intercepts and modifies a message sent by a cloud service consumer to a cloud service (not shown) being hosted on a virtual server. Because harmful data is packaged into the message, the virtual server is compromised.

Note

While not as common, the malicious intermediary attack can also be carried out by a malicious cloud service consumer program.

Denial of Service

The objective of the denial of service (DoS) attack is to overload IT resources to the point where they cannot function properly. This form of attack is commonly launched in one of the following ways:

- The workload on cloud services is artificially increased with imitation messages or repeated communication requests.
- The network is overloaded with traffic to reduce its responsiveness and cripple its performance.
- Multiple cloud service requests are sent, each of which is designed to consume excessive memory and processing resources.

Successful DoS attacks produce server degradation and/or failure, as illustrated in Figure 6.10.

Figure 6.10. Cloud Service Consumer A sends multiple messages to a cloud service (not shown) hosted on Virtual Server A. This overloads the capacity of the underlying physical server, which causes outages with Virtual Servers A and B. As a result, legitimate cloud service consumers, such as Cloud Service Consumer B, become unable to communicate with any cloud services hosted on Virtual Servers A and B.

Insufficient Authorization

The insufficient authorization attack occurs when access is granted to an attacker erroneously or too broadly, resulting in the attacker getting access to IT resources that are normally protected. This is often a result of the attacker gaining direct access to IT resources that were implemented under the assumption that they would only be accessed by trusted consumer programs (Figure 6.11).

Figure 6.11. Cloud Service Consumer A gains access to a database that was implemented under the assumption that it would only be accessed through a Web service with a published service contract (as per Cloud Service Consumer B).

A variation of this attack, known as *weak authentication*, can result when weak passwords or shared accounts are used to protect IT resources. Within cloud environments, these types of attacks can lead to significant impacts depending on the range of IT resources and the range of access to those IT resources the attacker gains (<u>Figure 6.12</u>).

Figure 6.12. An attacker has cracked a weak password used by Cloud Service Consumer A. As a result, a malicious cloud service consumer (owned by the attacker) is designed to pose as Cloud Service Consumer A in order to gain access to the cloud-based virtual server.

Virtualization Attack

Virtualization provides multiple cloud consumers with access to IT resources that share underlying hardware but are logically isolated from each other. Because cloud providers grant cloud consumers administrative access to virtualized IT resources (such as virtual servers), there is an inherent risk that cloud consumers could abuse this access to attack the underlying physical IT resources.

A *virtualization attack* exploits vulnerabilities in the virtualization platform to jeopardize its confidentiality, integrity, and/or availability. This threat is illustrated in <u>Figure 6.13</u>, where a trusted attacker successfully accesses a virtual server to compromise its underlying physical server. With public clouds, where a single physical IT resource may be providing virtualized IT resources to multiple cloud consumers, such an attack can have significant repercussions.

Figure 6.13. An authorized cloud service consumer carries out a virtualization attack by abusing its administrative access to a virtual server to exploit the underlying hardware.

Overlapping Trust Boundaries

If physical IT resources within a cloud are shared by different cloud service consumers, these cloud service consumers have overlapping trust boundaries. Malicious cloud service consumers can target shared IT resources with the intention of compromising cloud consumers or other IT resources that share the same trust boundary. The consequence is that some or all of the other cloud service consumers could be impacted by the attack and/or the attacker could use virtual IT resources against others that happen to also share the same trust boundary. <u>Figure 6.14</u> illustrates an example in which two cloud service consumers share virtual servers hosted by the same physical server and, resultantly, their respective trust boundaries overlap.

Figure 6.14. Cloud Service Consumer A is trusted by the cloud and therefore gains access to a virtual server, which it then attacks with the intention of attacking the underlying physical server and the virtual server used by Cloud Service Consumer B.

Summary of Key Points

• Traffic eavesdropping and malicious intermediary attacks are usually carried out by malicious service agents that intercept network traffic.

• A denial of service attack occurs when a targeted IT resource is overloaded with requests in an attempt to cripple or render it unavailable. The insufficient authorization attack occurs when access is granted to an attacker erroneously or too broadly, or when weak passwords are used.

• A virtualization attack exploits vulnerabilities within virtualized environments to gain unauthorized access to underlying physical hardware. Overlapping trust boundaries represent a threat whereby attackers can exploit cloud-based IT resources shared by multiple cloud consumers.

6.4. Additional Considerations

This section provides a diverse checklist of issues and guidelines that relate to cloud security. The listed considerations are in no particular order.

Flawed Implementations

The substandard design, implementation, or configuration of cloud service deployments can have undesirable consequences, beyond runtime exceptions and failures. If the cloud provider's software and/or hardware have inherent security flaws or operational weaknesses, attackers can exploit these vulnerabilities to impair the integrity, confidentiality, and/or availability of cloud provider IT resources and cloud consumer IT resources hosted by the cloud provider.

<u>Figure 6.15</u> depicts a poorly implemented cloud service that results in a server shutdown. Although in this scenario the flaw is exposed accidentally by a legitimate cloud service consumer, it could have easily been discovered and exploited by an attacker.

Figure 6.15. Cloud Service Consumer A's message triggers a configuration flaw in Cloud Service A, which in turn causes the virtual server that is also hosting Cloud Services B and C to crash.

Security Policy Disparity

When a cloud consumer places IT resources with a public cloud provider, it may need to accept that its traditional information security approach may not be identical or even similar to that of the cloud provider. This incompatibility needs to be assessed to ensure that any data or other IT assets being relocated to a public cloud are adequately protected. Even when leasing raw infrastructure-based IT resources, the cloud consumer may not be granted sufficient administrative control or influence over security policies that apply to the IT resources leased from the cloud provider. This is primarily because those IT resources are still legally owned by the cloud provider and continue to fall under its responsibility. Furthermore, with some public clouds, additional third parties, such as security brokers and certificate authorities, may introduce their own distinct set of security policies and practices, further complicating any attempts to standardize the protection of cloud consumer assets.

Contracts

Cloud consumers need to carefully examine contracts and SLAs put forth by cloud providers to ensure that security policies, and other relevant guarantees, are satisfactory when it comes to asset security. There needs to be clear language that indicates the amount of liability assumed by the cloud provider and/or the level of indemnity the cloud provider may ask for. The greater the assumed liability by the cloud provider, the lower the risk to the cloud consumer.

Another aspect to contractual obligations is where the lines are drawn between cloud consumer and cloud provider assets. A cloud consumer that deploys its own solution upon infrastructure supplied by the cloud provider will produce a technology architecture comprised of artifacts owned by both the cloud consumer and cloud provider. If a security breach (or other type of runtime failure) occurs, how is blame determined? Furthermore, if the cloud consumer can apply its own security policies to its solution, but the cloud provider insists that its supporting infrastructure be governed by different (and perhaps incompatible) security policies, how can the resulting disparity be overcome?

Sometimes the best solution is to look for a different cloud provider with more compatible contractual terms.

Risk Management

When assessing the potential impacts and challenges pertaining to cloud adoption, cloud consumers are encouraged to perform a formal risk assessment as part of a risk management strategy. A cyclically executed process used to enhance strategic and tactical security, risk management is comprised of a set of coordinated activities for overseeing and controlling risks. The main activities are generally defined as risk assessment, risk treatment, and risk control (Figure 6.16).

• *Risk Assessment* – In the risk assessment stage, the cloud environment is analyzed to identify potential vulnerabilities and shortcomings that threats can exploit. The cloud provider can be asked to produce statistics and other information about past attacks (successful and unsuccessful) carried out in its cloud. The identified risks are quantified and qualified according to the probability of occurrence and the degree of impact in relation to how the cloud consumer plans to utilize cloud-based IT resources.

Figure 6.16. The on-going risk management process, which can be initiated from any of the three stages.

• *Risk Treatment* – Mitigation policies and plans are designed during the risk treatment stage with the intent of successfully treating the risks that were discovered during risk assessment. Some risks can be eliminated, others can be mitigated, while others can be dealt with via outsourcing or even incorporated into the insurance and/or operating loss budgets. The cloud provider itself may agree to assume responsibility as part of its contractual obligations.

• *Risk Control* – The risk control stage is related to risk monitoring, a three-step process that is comprised of surveying related events, reviewing these events to determine the effectiveness of previous assessments and treatments, and identifying any policy adjustment needs. Depending on the nature of the monitoring required, this stage may be carried out or shared by the cloud provider.

The threat agents and cloud security threats covered in this chapter (as well as others that may surface) can be identified and documented as part of the risk assessment stage. The cloud security mechanisms covered in <u>Chapter 10</u> can be documented and referenced as part of the corresponding risk treatment.

Summary of Key Points

• Cloud consumers need to be aware that they may be introducing security risks by deploying flawed cloud-based solutions.

• An understanding of how a cloud provider defines and imposes proprietary, and possibly incompatible, cloud security policies is a critical part of forming assessment criteria when choosing a cloud provider vendor.

• Liability, indemnity, and blame for potential security breaches need to be clearly defined and mutually understood in the legal agreements signed by cloud consumers and cloud providers.

• It is important for cloud consumers, subsequent to gaining an understanding of the potential security-related issues specific to a given cloud environment, to perform a corresponding assessment of the identified risks.

6.5. Case Study Example

Based on an assessment of its internal applications, ATN analysts identify a set of risks. One such risk is associated with the myTrendek application that was adopted from OTC, a company ATN recently acquired. This application includes a feature that analyzes telephone and Internet usage, and enables a multi-user mode that grants varying access rights. Administrators, supervisors, auditors, and regular users can therefore be assigned different privileges. The application's user-base encompasses internal users and external users, such as business partners and contractors.

The myTrendek application poses a number of security challenges pertaining to usage by internal staff:

- authentication does not require or enforce complex passwords
- communication with the application is not encrypted

• European regulations (ETelReg) require that certain types of data collected by the application be deleted after six months

ATN is planning to migrate this application to a cloud via a PaaS environment, but the weak authentication threat and the lack of confidentiality supported by the application make them reconsider. A subsequent risk assessment further reveals that if the application is migrated to a PaaS environment hosted by a cloud that resides outside of Europe, local regulations may be in conflict with ETelReg. Given that the cloud provider is not concerned with ETelReg compliance, this could easily result in monetary penalties being assessed to ATN. Based on the results of the risk assessment, ATN decides not to proceed with its cloud migration plan.