Theory of statistics 2

Department of Statistics and Operations Research

March 17, 2020

Testing Hypothesis

Let $f(x ; \theta)$ be the pdf of X. The parameter θ belongs to a parameter space Ω. We may doubt that θ belongs to a subset $\Omega_{0} \subseteq \Omega$ or to its complement $\Omega_{1}=\Omega \backslash \Omega_{0}$. In this case, there are two hypotheses H_{0} and H_{1} :

$$
\gamma=\left\{\begin{array}{l}
H_{0}: \theta \in \Omega_{0} \\
H_{1}: \theta \in \Omega_{1}
\end{array}\right.
$$

Definitions

(1) The error type 1 of the test γ is to reject H_{0} when it is true, and the error type 2 of the test γ is to accept H_{0} when it is false.
(2) The power function of the test γ is the probability of rejecting H_{0} conditional θ :

$$
\pi_{\gamma}(\theta)=\mathbf{P}\left(\text { reject } H_{0} \mid \theta\right)
$$

(3) The size of the test γ is given by:

$$
\alpha=\sup _{\theta \in \Omega_{0}} \pi_{\gamma}(\theta)
$$

Simple hypothesis

In the simple case, the null hypothesis is given by $H_{0}: \theta=\theta_{0}$. The size α becomes $\alpha=\pi_{\gamma}\left(\theta_{0}\right)$ and it represents the probability of the error type 1 . Moreover, the probability of the error type 2 of the alternative simple case $H_{1}: \theta=\theta_{1}$ is usually given by the symbol $\beta=1-\pi_{\gamma}\left(\theta_{1}\right)$.

Definition: The most powerful test

A test $\gamma_{M P}$ with size $\alpha_{M P}$ is called Most Powerful Test (MPT) for the hypothesis $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta=\theta_{1}$ if, for all other test γ with size α, we have

$$
\alpha \leq \alpha_{M P} .
$$

Consequently, $\pi_{\gamma_{M P}}\left(\theta_{1}\right) \geq \pi_{\gamma}\left(\theta_{1}\right)\left(\beta_{M P} \leq \beta\right)$.

Neyman-Pearson lemma

The test $\gamma_{M P}$ of size $\alpha_{M P}$ is found by the following steps:
(1) Take the Likelihood Ratio (LR) $\lambda=\frac{\ell\left(\underline{X} ; \theta_{0}\right)}{\ell\left(\underline{X} ; \theta_{1}\right)}$.
(2) Reject $H_{0}: \theta=\theta_{0}$ if $\lambda<k$.
(3) Find k by solving the implicit equation $\alpha_{M P}=\mathbf{P}\left(\lambda<k \mid \theta_{0}\right)$.

Remark

In general, any test γ uses LR to reject $H_{0}: \theta=\theta_{0}$ if $\lambda<k$ is called Likelihood Ratio Test (LRT). Thus, $\gamma_{M P}$ is LRT. However, there are another two LRT: Minimax test $\gamma_{M M}$ and Bayes test γ_{B}. In these tests, we reject if $\lambda<k$ but k is found in a different way.

Definition

A distribution $f(x ; \theta)$ belongs to the class of exponential families if, it is written in the form:

$$
f(x ; \theta)=e^{a(\theta)+b(x)+d(x) c(\theta)}
$$

Example 1: The normal distribution

Let $f(x ; \theta)$ be the normal density with mean θ and known variance σ^{2}. Thus,

$$
f(x ; \theta)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{x-\theta}{\sigma}\right)^{2}}=e^{-\frac{1}{2}\left(\frac{\theta}{\sigma}\right)^{2}-\frac{1}{2}\left(\log \left(2 \pi \sigma^{2}\right)+\left(\frac{x}{\sigma}\right)^{2}\right)+x \frac{\theta}{\sigma^{2}}} .
$$

Hence $a(\theta)=-\frac{1}{2}\left(\frac{\theta}{\sigma}\right)^{2}, b(x)=\frac{1}{2}\left(\log \left(2 \pi \sigma^{2}\right)+\left(\frac{x}{\sigma}\right)^{2}\right)$,
$c(\theta)=\frac{\theta}{\sigma^{2}}$ and $d(x)=x$.

Example 2

Let $f(x ; \theta)=\theta x^{\theta-1}, \quad 0<x<1$. Thus,

$$
f(x ; \theta)=\theta x^{\theta-1}=e^{\log (\theta)+\theta \log (x)-\log (x)}
$$

Hence $a(\theta)=\log (\theta), b(x)=-\log (x), c(\theta)=\theta$ and $d(x)=\log (x)$.

Example 3

Let $f(x ; \theta)=\frac{\theta}{(1+x)^{\theta+1}}, \quad x>0$. Thus,

$$
f(x ; \theta)=\frac{\theta}{(1+x)^{\theta+1}}=e^{\log (\theta)-\theta \log (1+x)-\log (1+x)}
$$

Hence $a(\theta)=\log (\theta), b(x)=-\log (1+x), c(\theta)=\theta$ and $d(x)=\log (1+x)$.

Theorem

If $f(x ; \theta)$ belongs to the class of exponential families, then the test $\gamma_{M P}$ for $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta=\theta_{1}$ rejects H_{0} is reduced as follows:

	$\theta_{0}<\theta_{1}$	$\theta_{0}>\theta_{1}$
$c(\theta) \nearrow$	$\sum d\left(x_{i}\right)>k$	$\sum d\left(x_{i}\right)<k$
$c(\theta) \searrow$	$\sum d\left(x_{i}\right)<k$	$\sum d\left(x_{i}\right)>k$
	Alike	Inverse

k solves the equation

$$
\alpha_{M P}=\mathbf{P}\left(R e j e c t \quad H_{0} \mid \theta_{0}\right) .
$$

Example 1: The normal distribution $N\left(\theta, \sigma^{2}\right)$ when σ^{2} is known

Let X be a normal random variable with distribution $N(\theta, 16)$. Let X_{1}, \ldots, X_{25} be 25 copies of X. Our aim is to test the hypotheses $H_{0}: \theta=3$ vs $H_{1}: \theta=5$ by the $\gamma_{M P}$ with size $\alpha_{M P}=0.05$. Note that $f(x ; \theta)$ belongs to the class of exponential families with $c(\theta)=\frac{\theta}{\sigma^{2}}$. Since $c(\theta)$ is an increasing function, then $\gamma_{M P}$ rejects H_{0} if $\sum d\left(x_{i}\right)=\sum x_{i}>k$. Let us determine k.

$$
\begin{aligned}
\alpha_{M P} & =0.05=\mathbf{P}\left(\sum x_{i}>k \mid \theta=3\right)=\mathbf{P}\left(\left.\bar{x}>\frac{k}{25} \right\rvert\, \theta=3\right) \\
& =\mathbf{P}\left(\left.\frac{\bar{x}-\theta}{16 / \sqrt{25}}>\frac{\frac{k}{25}-\theta}{16 / \sqrt{25}} \right\rvert\, \theta=3\right)=\mathbf{P}\left(Z>\frac{\frac{k}{25}-3}{16 / \sqrt{25}}\right) .
\end{aligned}
$$

Example 1: The normal distribution $N\left(\theta, \sigma^{2}\right)$ when σ^{2} is known
This implies that $\frac{\frac{k}{25}-\theta}{16 / \sqrt{25}}=1.645$. Thus $k=107.9$. The error
type $2 \beta_{M P}$ is equal to

$$
\beta_{M P}=\mathbf{P}\left(\sum x_{i}<107.9 \mid \theta=5\right)=\mathbf{P}(Z<-0.855)=0.1949
$$

Example 2: The normal distribution $N\left(\theta, \sigma^{2}\right)$ when θ is known

Let X be a normal random variable with distribution $N\left(\theta, \sigma^{2}\right)$. Let X_{1}, \ldots, X_{10} be 10 copies of X. Our aim is to test the hypotheses $H_{0}: \sigma=2$ vs $H_{1}: \sigma=4$ by the $\gamma_{M P}$ with size $\alpha_{M P}=0.05$. Note that $f(x ; \sigma)$ belongs to the class of exponential families with $c\left(\sigma^{2}\right)=-\frac{1}{2 \sigma^{2}}$. Since $c(\sigma)$ is an increasing function, then $\gamma_{M P}$ rejects H_{0} if $\sum d\left(x_{i}\right)=\sum\left(x_{i}-\theta\right)^{2}>k$. Let us determine k.

$$
\begin{aligned}
\alpha_{M P} & =\mathbf{P}\left(\sum\left(x_{i}-\theta\right)^{2}>k \mid \sigma=2\right)=\mathbf{P}\left(\frac{1}{4} \sum\left(x_{i}-\theta\right)^{2}>\frac{k}{4}\right) \\
& =\mathbf{P}\left(U>\frac{k}{4}\right)=\int_{\frac{k}{4}}^{+\mathrm{inf}} \mathcal{X}_{10}^{2}(d t)
\end{aligned}
$$

Example 2: The normal distribution $N\left(\theta, \sigma^{2}\right)$ when θ is known

This implies that $\frac{k}{4}=18.31$. Thus 73.24. The error type $2 \beta_{M P}$ is equal to

$$
\begin{aligned}
\beta_{M P} & =\mathbf{P}\left(\sum\left(x_{i}-\theta\right)^{2}<73.24 \mid \sigma=4\right) \\
& =\mathbf{P}\left(\frac{1}{16} \sum\left(x_{i}-\theta\right)^{2}<\frac{73.24}{16}\right) \\
& =\int_{0}^{\frac{73.24}{16}} \mathcal{X}_{10}^{2}(d t)=0.082441 .
\end{aligned}
$$

Example 3: The exponential distribution

Let X be an exponential random variable with distribution $\exp (\theta)$. Let X_{1}, \ldots, X_{10} be 10 copies of X. Our aim is to test the hypotheses $H_{0}: \theta=2$ vs $H_{1}: \theta=3$ by the $\gamma_{M P}$ with size $\alpha_{M P}=0.05$. Note that $f(x ; \theta)$ belongs to the class of exponential families with $c(\theta)=-\theta$. Since $c(\theta)$ is a decreasing function, then $\gamma_{M P}$ rejects H_{0} if $S=\sum d\left(x_{i}\right)=\sum x_{i}<k$. Using the fact that X_{i} are exponentially distributed, then $U=2 \theta S$ is Chi-squared distributed $\mathcal{X}_{2 n}^{2}$ Let us determine k.

$$
\alpha_{M P}=\mathbf{P}(S<k \mid \theta=2)=\mathbf{P}(U<2 \theta k \mid \theta=2)=\mathbf{P}(U<4 k) .
$$

This implies that $4 k=10.851$. Thus $k=2.713$. The error type 2 $\beta_{M P}$ is equal to

$$
\beta_{M P}=\mathbf{P}(S>2.713 \mid \theta=3)=\mathbf{P}(U>16.277)=0.7
$$

Thank you

$$
\text { 4ロ } \downarrow 4 \text { 卢 }>4 \equiv>4 \equiv>\text { 三 }
$$

