Theory of statistics 2

Department of Statistics and Operations Research

March 17, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Testing Hypothesis

Let $f(x; \theta)$ be the pdf of X. The parameter θ belongs to a parameter space Ω . We may doubt that θ belongs to a subset $\Omega_0 \subseteq \Omega$ or to its complement $\Omega_1 = \Omega \setminus \Omega_0$. In this case, there are two hypotheses H_0 and H_1 :

$$\gamma = \begin{cases} H_0 : \theta \in \Omega_0 \\ \\ H_1 : \theta \in \Omega_1 \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definitions

- The error type 1 of the test γ is to reject H₀ when it is true, and the error type 2 of the test γ is to accept H₀ when it is false.
- The power function of the test γ is the probability of rejecting H₀ conditional θ:

 $\pi_{\gamma}(\theta) = \mathbf{P}(\text{reject } H_0|\theta).$

• The size of the test γ is given by:

 $\alpha = \sup_{\theta \in \Omega_0} \pi_{\gamma}(\theta).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

In the simple case, the null hypothesis is given by $H_0: \theta = \theta_0$. The size α becomes $\alpha = \pi_{\gamma}(\theta_0)$ and it represents the probability of the error type 1. Moreover, the probability of the error type 2 of the alternative simple case $H_1: \theta = \theta_1$ is usually given by the symbol $\beta = 1 - \pi_{\gamma}(\theta_1)$.

Definition: The most powerful test

A test γ_{MP} with size α_{MP} is called Most Powerful Test (MPT) for the hypothesis $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ if, for all other test γ with size α , we have

 $\alpha \leq \alpha_{MP}.$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Consequently, $\pi_{\gamma_{MP}}(\theta_1) \geq \pi_{\gamma}(\theta_1) \ (\beta_{MP} \leq \beta).$

Neyman-Pearson lemma

The test γ_{MP} of size α_{MP} is found by the following steps:

- Take the Likelihood Ratio (LR) $\lambda = \frac{\ell(\underline{X}; \theta_0)}{\ell(X; \theta_1)}$.
- **2** Reject $H_0: \theta = \theta_0$ if $\lambda < k$.
- Solution Find k by solving the implicit equation $\alpha_{MP} = \mathbf{P} (\lambda < k | \theta_0)$.

Remark

In general, any test γ uses LR to reject $H_0: \theta = \theta_0$ if $\lambda < k$ is called Likelihood Ratio Test (LRT). Thus, γ_{MP} is LRT. However, there are another two LRT: Minimax test γ_{MM} and Bayes test γ_B . In these tests, we reject if $\lambda < k$ but k is found in a different way.

Definition

A distribution $f(x; \theta)$ belongs to the class of exponential families if, it is written in the form:

$$f(x;\theta) = e^{a(\theta) + b(x) + d(x)c(\theta)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example 1: The normal distribution

Let $f(x; \theta)$ be the normal density with mean θ and known variance σ^2 . Thus,

$$f(x;\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\theta}{\sigma}\right)^2} = e^{-\frac{1}{2}\left(\frac{\theta}{\sigma}\right)^2 - \frac{1}{2}\left(\log(2\pi\sigma^2) + \left(\frac{x}{\sigma}\right)^2\right) + x\frac{\theta}{\sigma^2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hence
$$a(\theta) = -\frac{1}{2} \left(\frac{\theta}{\sigma}\right)^2$$
, $b(x) = \frac{1}{2} \left(\log(2\pi\sigma^2) + \left(\frac{x}{\sigma}\right)^2\right)$
 $c(\theta) = \frac{\theta}{\sigma^2}$ and $d(x) = x$.

Example 2

Let $f(x; \theta) = \theta x^{\theta-1}$, 0 < x < 1. Thus,

$$f(x; \theta) = \theta x^{\theta - 1} = e^{\log(\theta) + \theta \log(x) - \log(x)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hence $a(\theta) = \log(\theta)$, $b(x) = -\log(x)$, $c(\theta) = \theta$ and $d(x) = \log(x)$.

Example 3

Let
$$f(x; \theta) = \frac{\theta}{(1+x)^{\theta+1}}, \quad x > 0.$$
 Thus,

$$f(x; \theta) = \frac{\theta}{(1+x)^{\theta+1}} = e^{\log(\theta) - \theta \log(1+x) - \log(1+x)}.$$
Hence $a(\theta) = \log(\theta), \ b(x) = -\log(1+x), \ c(\theta) = \theta$ and $d(x) = \log(1+x).$

(ロ)、

Theorem

If $f(x; \theta)$ belongs to the class of exponential families, then the test γ_{MP} for $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ rejects H_0 is reduced as follows:

k solves the equation

$$\alpha_{MP} = \mathbf{P} \begin{pmatrix} Reject & H_0 | \theta_0 \end{pmatrix}.$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Example 1: The normal distribution $N(\theta, \sigma^2)$ when σ^2 is known

Let X be a normal random variable with distribution $N(\theta, 16)$. Let X_1, \ldots, X_{25} be 25 copies of X. Our aim is to test the hypotheses $H_0: \theta = 3$ vs $H_1: \theta = 5$ by the γ_{MP} with size $\alpha_{MP} = 0.05$. Note that $f(x; \theta)$ belongs to the class of exponential families with $c(\theta) = \frac{\theta}{\sigma^2}$. Since $c(\theta)$ is an increasing function, then γ_{MP} rejects H_0 if $\sum d(x_i) = \sum x_i > k$. Let us determine k.

$$\begin{aligned} \alpha_{MP} &= 0.05 = \mathbf{P}\left(\sum x_i > k \middle| \theta = 3\right) = \mathbf{P}\left(\overline{x} > \frac{k}{25} \middle| \theta = 3\right) \\ &= \mathbf{P}\left(\frac{\overline{x} - \theta}{16/\sqrt{25}} > \frac{\frac{k}{25} - \theta}{16/\sqrt{25}} \middle| \theta = 3\right) = \mathbf{P}\left(Z > \frac{\frac{k}{25} - 3}{16/\sqrt{25}}\right). \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Example 1: The normal distribution $N(\theta, \sigma^2)$ when σ^2 is known

This implies that $\frac{\frac{k}{25}-\theta}{16/\sqrt{25}}=1.645$. Thus k=107.9. The error type 2 β_{MP} is equal to

$$eta_{MP} = \mathbf{P}\left(\sum x_i < 107.9 \middle| heta = 5
ight) = \mathbf{P}\left(Z < -0.855
ight) = 0.1949.$$

Example 2: The normal distribution $N(\theta, \sigma^2)$ when θ is known

Let X be a normal random variable with distribution $N(\theta, \sigma^2)$. Let X_1, \ldots, X_{10} be 10 copies of X. Our aim is to test the hypotheses $H_0: \sigma = 2$ vs $H_1: \sigma = 4$ by the γ_{MP} with size $\alpha_{MP} = 0.05$. Note that $f(x; \sigma)$ belongs to the class of exponential families with $c(\sigma^2) = -\frac{1}{2\sigma^2}$. Since $c(\sigma)$ is an increasing function, then γ_{MP} rejects H_0 if $\sum d(x_i) = \sum (x_i - \theta)^2 > k$. Let us determine k. $\alpha_{MP} = \mathbf{P}\left(\sum (x_i - \theta)^2 > k \middle| \sigma = 2\right) = \mathbf{P}\left(\frac{1}{4}\sum (x_i - \theta)^2 > \frac{k}{4}\right)$ = $\mathbf{P}\left(U>rac{k}{4}
ight)=\int_{rac{k}{2}}^{+\inf}\mathcal{X}_{10}^{2}(dt)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example 2: The normal distribution $N(\theta, \sigma^2)$ when θ is known

This implies that $\frac{k}{4} = 18.31$. Thus 73.24. The error type 2 β_{MP} is equal to

$$\beta_{MP} = \mathbf{P}\left(\sum (x_i - \theta)^2 < 73.24 \middle| \sigma = 4\right)$$
$$= \mathbf{P}\left(\frac{1}{16}\sum (x_i - \theta)^2 < \frac{73.24}{16}\right)$$
$$= \int_0^{\frac{73.24}{16}} \mathcal{X}_{10}^2(dt) = 0.082441.$$

Example 3: The exponential distribution

Let X be an exponential random variable with distribution $\exp(\theta)$. Let X_1, \ldots, X_{10} be 10 copies of X. Our aim is to test the hypotheses $H_0: \theta = 2$ vs $H_1: \theta = 3$ by the γ_{MP} with size $\alpha_{MP} = 0.05$. Note that $f(x; \theta)$ belongs to the class of exponential families with $c(\theta) = -\theta$. Since $c(\theta)$ is a decreasing function, then γ_{MP} rejects H_0 if $S = \sum d(x_i) = \sum x_i < k$. Using the fact that X_i are exponentially distributed, then $U = 2\theta S$ is Chi-squared distributed χ^2_{2n} Let us determine k.

$$\alpha_{MP} = \mathbf{P}\left(S < k \middle| \theta = 2\right) = \mathbf{P}\left(U < 2\theta k \middle| \theta = 2\right) = \mathbf{P}\left(U < 4k\right).$$

This implies that 4k = 10.851. Thus k = 2.713. The error type 2 β_{MP} is equal to

$$eta_{MP} = \mathbf{P}\left(S > 2.713 \middle| \theta = 3
ight) = \mathbf{P}\left(U > 16.277
ight) = 0.7.$$

Thank you

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ