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Application of the definite integral

The student is expected to be able to:
Calculate the area between curves.
Calculate the volume of a solid revolution using the disk method.

Calculate the volume of a solid revolution using the washer method.

©00O0

Calculate the volume of a solid revolution using the Cylindrical shells
method.

Calculate the arc length.
Calculate the area of a surface of revolution.

© 0
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Area Between Curves.

In this section we are going to look at finding the area between two curves.

QUESTION:
How we can determine the area between y = f(x) and y = g(x) on the
interval [a, b]

Theorem: Area Between Curves

Let f(x) and g(x) be continuous functions defind on [a, b] where
f(x) > g(x) for all x in [a, b].

The area of the region bounded by the curves y = f(x), y = g(x) and
the lines x =aand x = b is

b

/ [F(x) — g(x)] ax

a
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Area Between Curves.

b
A= / (upper function) - (lower function) dx, a<x<b
a

3
9
()
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The steps to calculate the area between curves

© Find the intersection points between the curves.

@ determinant the upper function and the lower function.

© Calculate the integral:
b

A= / (upper function) - (lower function) dx

a
Which give us the required area.
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Area Between Two Curves (Example)

Find the area enclosed between the graphs y = x and y = x% — 2.

@ Points of intersection between y = x> —2 and y = x is:
x2—2=x=x2-x-2=0=(x+1)(x-2)=0
=x=—land x=2

@ Note that upper function is y = x and lower function is y = x? — 2
Note that y = x?> — 2 is a parabola opens upward with vertex (0, —2),
and y = x is a straight line passing through the origin.

2 2
2 X3 227
o A:/x—(x2—2) dx:/x—x2+2dx: [%—%%—24_1:?
-1 -1
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Area Between Two Curves (Example)

Find the area enclosed between the graphs y = ¥,y = x*> — 1,x = —1,
and x =1

y f(x)

2 9(x)
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Area Between Two Curves (Example)

Note that upper function is y = e* and lower function is y = x> — 1

1 1
1 1
A:/ex(x21)dx:/exx2+1dx:[ex3x3+x .
-1 “1
_ 1,4
e~ .t3
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Area Between Two Curves (Example)

Compute the area oh the region bounded by the curves

y=x3and y =3x -2

|/

-
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Area Between Two Curves (Example)

@ Points of intersection between y = x3 and y = 3x — 2
xX3-3x+2=0=(x—1)(x>4+x—-2)=0
=x=-2and x=1

@ Note that upper function is y = x3 and lower function is y = 3x — 2

1 1
(3] A:/X3—(3X—2) dx:/x3—3x—{—2 dx
-2 -2
4 1
= X——§x2+2x
42 »
3 27
_Z+6_T
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Area Between Two Curves (Example)

Find the area enclosed between the graphs
f(x) = x? and g(x) = x between x = 0, and x = 2.

f(x)

BEN AMIRA Aymen INTEGRAL CALCULUS (MATH 106) 14 / 58



Area Between Two Curves (Example)

© we see that the two graphs intersect at (0,0) and (1,1).
@ In the interval [0,1], we have g(x) = x > f(x) = x2,
and in the interval [1,2], we have f(x) = x? > g(x) = x
(s ] Therefore the desired area is:
; X2 31N 3 x2)?
A= - d —x)dx = |—= = -
/(x x)x+/(x x) dx = [2 0}4—[3 2]1
0 1

5
Z -1
+6

|
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Volume Of A Solid Revolution (The Disk Method)

Suppose we have a curve y = f(x)

1 y = fk)

Imagine that the part of the curve between the ordinates x = a and x = b
is rotated about the x-axis through 360 degree.
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Volume Of A Solid Revolution (The Disk Method)

Now if we take a cross-section of the solid, parallel to the y-axis, this

cross-section will be a circle.
y =/

But rather than take a cross-section, let us take a thin disc of thickness dx,
with the face of the disc nearest the y-axis at a distance x from the origin.
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Volume Of A Solid Revolution (The Disk Method)

y = fx)

yi iy+dy
E&i

:
x=a X x=b

The radius of this circular face will then be y. The radius of the other
circular face will be y + dy, where dy is the change in y caused by the
small positive increase in x, dx.
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Volume Of A Solid Revolution (The Disk Method)

The volume §V of the disc is then given by the volume of a cylinder, 7r?h,
so that

SV = nrédx

So the volume V of the solid of revolution is given by

x=b x=b b
V=i V=i 26x = 2
éxlmo)(zaé 6;30237ry ox ﬂ/[f(x)] dx
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Examples

Example

The curve y = x?> — 1 is rotated about the x-axis through 360 degree. Find
the volume of the solid generated when the area contained between the
curve and the x-axis is rotated about the x-axis by 360 degree.

1

V:w/b[f(x)]2 dx:w/[xz— 1]? dx

-1

1
:w/(x4—2X2—|—1)dx B
-1
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Examples

Find the volume of the solid formed by revolving the region bounded by
the graph of f(x) = —x2 4 x and the x-axis about the x-axis.

Using the Disk Method, you can find the volume of the solid of revolution.

—7r/[f )2 x—w/[ —x% 4+ x)? /(x —2x% + x?) dx
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Volume Of A Solid Revolution (The Washer Method)

The Washer Method

Let f and g be continuous and
nonnegative on the closed interval
[a, b], if f(x) > g(x) for all x in the
interval, then the volume of the solid
formed by revolving the region
bounded by the graphs of f(x) and S LG RGN .

Plane region

(@)

with hole
g(x) (a < x < b), about the x-axis
is:

Vr /b {1F00F ~ e } o ‘

a
f(x) is the outer radius
. . . ®)
and g(x) is the inner radius.
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Examples

Example

Find the volume of the solid formed by revolving the region bounded by
the graphs of f(x) = v25 — x? and g(x) =3

We sketch the bounding region and the solid of revolution:

f=vas—x2 | ¥=V25-x
g(x):s{ T »=3

-5-4-3-2-1 12345
Plane region

(a) (b)

Solid of revolution
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First find the points of intersection of f and g, by setting f(x) equal to
g(x) and solving for x.

V25 —x2=3=25-x>=9=x*>=16 = x = +4

Using f(x) as the outer radius and g(x) as the inner radius, you can find
the volume of the solid as shown.

v [{1rGoP - GO | ax = / (V25— <2 — (3 dx

4
374
—Tr/(16—x2) CI'X—7T|:16X—X:| _ 20w
314
—4
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Examples

Example

Calculate the volume of the solid obtained by rotating the region bounded

by the parabola y = x? and the square root function y = {/x around the
X—axis

We sketch the bounding region and the solid of revolution:
y
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Both curves intersect at the points x = 0 and x = 1. Using the washer

method, we have
1

Vn /b {1r0P ~ e o= [(vR2 -~ (21 0
0

a
i 2 xOt 1 1 37
4
= — d: e — = _— = = —
TF/(X x") dx 77{2 5}0 7T|:2 5] 10
0
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Examples

Example
Find the volume of the solid obtained by rotating the region bounded by
two parabolas y = x> + 1 and y = 3 — x2 about the x—axis.

We sketch the bounding region and the solid of revolution:

=Y
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First we determine the boundaries a and b:

X4+1=3-x>=2?=2=x>=1=x=+1

Hence the limits of integration are a=1 and b= —1.

Using the washer method, we find the volume of the solid:
b

vr [{1reoF - leta } o

a
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Volume Of A Solid Revolution (Cylindrical shells method)

The method of cylindrical shells

the cylindrical shell with inner radius r1, outer radius r» , and height h. Its
volume V is calculated by subtracting the volume V; of the inner cylinder
from the volume V5, of the outer cylinder:

V=Vy— Vi =nrih—nrih

=7(r2 —r)h=n(r, — n)(rn+ n)h
rn+n
2

=27 h(ro—n) = V =2xwrhAr
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Volume Of A Solid Revolution (Cylindrical shells method)

let be the solid obtained by rotating about the -axis the region bounded by
y = f(x),
where f(x) >0, y =0, x =a and x = b, where b > a > 0.

y
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Volume Of A Solid Revolution (Cylindrical shells method)

We divide the interval into n subintervals [x;_1, x;+1] of equal width and
let X; be the midpoint of the i th subinterval. If the rectangle with base
[xi—1,xi] and height f(X;) is rotated about the y— axis then the result is a
cylindrical shell with average radius X; height f(X;) and thickness Ax so
its volume is:

Vi = (2m)x;[f (x;)]|Ax
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Volume Of A Solid Revolution (Cylindrical shells method)

An approximation to the volume of is given by the sum of the volumes of
these shells:

V = Zn: V= Zn:27TY,'[f(7,')]AX
i=1 i=1

This approximation appears to become better as n — oo But, from the
definition of an integral, we know that

n b

nli_}n;Z%r?;[f(?;)]Ax = /27Txf(x) dx

i=1 2
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Volume Of A Solid Revolution (Cylindrical shells method)

The volume of the solid, obtained by rotating about the y—axis the region
under the curve y = f(x) from a to b, is
b
V= /27rxf(x)dx where 0 < a<b
a
The best way to remember the last Formula is to think of a typical shell,

cut and flattened as in Figure with radius x, circumference 27x, height
f(x) and thickness Ax or dx :

[l em [ ax

[ N—;
circumference  height

I«—x | fx) fx)
|
=== ﬂ‘*fff Ax

x x 2mx
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Examples

Example

Find the volume of the solid obtained by rotating about the y—axis the
region bounded by y =2x> — x3 and y =0

by the shell method, the volume is

2 2 X4 X5 2
/27TX (2x2 — x3) dx_27r/(2x3—x4) dx_27r[2 - 5}
0 0 32 16 ’
=278 - %) =3
p T 7
/A
BEN AMIRA Aymen INTEGRAL CALCULUS (MATH 106) 36 / 58



Examples

Find the volume of the solid obtained by rotating about the y—axis the
region between y = x and y = x?

(27x)(x — x?) dx

y
y=x
1 N
=27 /(x2 = x3) dx \ A Wshent

s height = x — x2

o —_ .

= 4

X
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Examples

Example

Use cylindrical shells to find the volume of the solid obtained by rotating
about the x—axis the region under the curve y = /x from 0 to 1.

For rotation about the x—axis we see that a typical shell has radius y,
circumference 27y , and height 1 — y? . So the volume is

shell height = 1 — y?

-
'

V= [(@2nry)(1-y?) dy
/
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Examples

Example

Find the volume of the solid obtained by rotating the region bounded by
y = x —x? and y = 0 about the line x = 2.

the region and a cylindrical shell formed by rotation about the line x = 2.
It has radius 2 — x, circumference 27(2 — x), and height x — x2.

1 1
V = [27(2 — x)(x — x?) dx =27 [(x® — 3x% + 2x) dx
0 0

= 27r[XT4 -3 +x§ =13
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Arc Length

@ If f(x) is continuous function on the interval [a, b], then the arc
length of f(x) from x = ato x = b is:

b
L:/\/l—i-[f’(x)]2 dx

@ If g(y) is continuous function on the interval [c, d], then the arc
length of g(y) fromy =ctoy =dis:

d
L= [ 1+ g0 o
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Examples

example

Determine the length of y = In(sec x) between 0 < x < 7

sec x tan x
f! —t £ 2 t 2
(x) = oc x anx = [f'(x)]* = tan® x

VIH[F()P = V1+tan? x = Vsec? x = | sec x| = secx
The arc length is then,

i
/secx dx = [In |secx+tanx|}
0

In(v2 + 1)

[=IFNE
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Examples

example

Determine the length of x = %(y - 1)% between 1 <y < 4
1 2

S=0-D =1 (g) =vIFy—T=vy

The arc length is then,

4 2 3
L: lﬁdy:§y2
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Examples

example

Determine the length of x = %yz between 0 < x < % Assume that y is
positive.

2
Gy = (1 () = Vivy
Before writing down the length notice that we were given x limits and we

will need y limits. 0 <y <1
The integral for the arc length is then,

1
L:/ V1+y2dy
0
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1
L:/\ﬂ+ﬁw
0

This integral will require the following trig substitution.

y =tanf dy = sec?6 df
y=0 = 0=tanfd = 60=0
y=1 = 1=tanf = 9:%

V1+y?2=+1+1tan?0 = Vsec20 = |sec | = sect
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The length is then,

7
L:/ sec30 db
0

jus
4

(secOtanf + In|secd + tanf)|)

<\f2+|n <1+\f2)>

0

NI N =
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Area of a Surface of Revolution

Let f(x) be a nonnegative smooth function over the interval [a, b]. We
wish to find the surface area of the surface of revolution created by
revolving the graph of y = f(x) around the x—axis as shown in the

following figure.
¥
y
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Area of a Surface of Revolution

@ We'll start by dividing the interval into n equal subintervals of width
Ax

@ On each subinterval we will approximate the function with a straight
line that agrees with the function at the endpoints of each interval.

© Here is a sketch of that for our representative function using n =4
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Area of a Surface of Revolution

Now, rotate the approximations about the x—axis and we get the following
solid.

The approximation on each interval gives a distinct portion of the solid
and to make this clear each portion is colored differently.
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Area of a Surface of Revolution

The area of each of these is:

A = 27rl

where,

[y

r==(n+nr) ri =radius of right end

2
r» =radius of left end

and / is the length of the slant of each interval.
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Area of a Surface of Revolution

We know from the previous section that,

|Pi—1 Pil=1/1+ [f’ (x,*)]2 Ax where x is some point in [xj_1, x|
Before writing down the formula for the surface area we are going to

assume that Ax is "small” and since f (x) is continuous we can then
assume that,

f(x)=~f(x") and f(xi—1) ~ f(x")
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Area of a Surface of Revolution

So, the surface area of each interval [x;_1, X;] is approximately,

A, =2 <f(x,-) + f(x;l)) P,y P

2

N

~2nf (X)) 1+ [f (x)]” Ax

The surface area of the whole solid is then approximately,

S~ Z27Tf(x,?") 14 [f (XI*)]2 Ax
i=1
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Area of a Surface of Revolution

and we can get the exact surface area by taking the limit as n goes to
infinity.

2
—2wnIer;OZf + [ (x)]” Ax

- 27r/b f(x)\/1+ [ (x)]? dx

If we wanted to we could also derive a similar formula for rotating
x = h(y) on [c, d] about the y—axis. This would give the following

formula.
d
S =2n / h() 1+ [ () dy
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Area of a Surface of Revolution (Example)

Example

Determine the surface area of the solid obtained by rotating
=19 — x2, -2 < x < 2 about the x—axis.

szzw/b f(x)\/1+ [f (x)]*dy

dy 1
2

X

N[

(0-x)"

(=2x) =

N\»—A

dx _ X2
/ dy /
1 + . X2 \/_7)(
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Area of a Surface of Revolution (Example)

Here's the integral for the surface area,
2 3
S= 27r/ f(x)— dx
) ( )\/ 9 — X2

2
3
5:2(/ VI—x2——d
LT e
2

= 677/ dx = 247w
-2
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Area of a Surface of Revolution (Example)

Example
Determine the surface area of the solid obtained by rotating
y = /x,1 < y <2 about the y—axis.

Solution

s=27r/cd hy) 1+ W ()P dy
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Area of a Surface of Revolution (Example)

The surface area is then,

2
5:277/ h(y)v/1+9y*dy
1

—277/ 31+ 9y4dy u=1+9y*

T 145

:E \/>du

- (1452 - 102) —199.48
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