Chapter 4 ENERGY ANALYSIS OF CLOSED SYSTEMS

First Law of Thermodynamics

$E_{\text {in }}-E_{\text {out }}=\Delta E_{\text {system }}$
$\left(Q_{\text {in }}+W_{\text {in }}+E_{\text {mass,in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}+E_{\text {mass }, \text { out }}\right)=\Delta E_{\text {system }}$
$\left(Q_{\text {in }}+W_{\text {in }}+E_{\text {mass,in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}+E_{\text {mass }, \text { out }}\right)=$
$\Delta U+\Delta K E+\Delta P E$
$\Rightarrow\left(Q_{\text {in }}+W_{\text {in }}+E_{\text {mass,in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}+E_{\text {mass,out }}\right)=$

$$
m\left(u_{2}-u_{1}\right)+1 / 2 m\left(V_{2}^{2}-V_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right)
$$

First Law of Thermodynamics for Closed Systems

$\left(Q_{\text {in }}+W_{\text {in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}\right)=$
$m\left(u_{2}-u_{1}\right)+1 / 2 m\left(V_{2}^{2}-V_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right)$

$$
\begin{aligned}
& \left(Q_{\text {in }}-Q_{\text {out }}\right)+\left(W_{\text {in }}-W_{\text {out }}\right)= \\
& m\left(u_{2}-u_{1}\right)+1 / 2 m\left(V_{2}^{2}-V_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right)
\end{aligned}
$$

$Q_{\text {net, in }}-W_{\text {net,out }}=$

$$
m\left(u_{2}-u_{1}\right)+1 / 2 m\left(V_{2}^{2}-V_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right)
$$

First Law of Thermodynamics for Closed Systems

Special Case: Stationary System

$$
\begin{aligned}
& \left(Q_{\text {in }}+W_{\text {in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}\right)= \\
& m\left(u_{2}-u_{1}\right)+1 / 2 m\left(V_{2}^{2}-V_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right) \\
& 0 \\
& \Rightarrow\left(Q_{\text {in }}+W_{\text {in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}\right)=m\left(u_{2}-u_{1}\right) \\
& \Rightarrow\left(Q_{\text {in }}+W_{\text {in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}\right)=\Delta U
\end{aligned}
$$

If the stationary system is undergoing a cycle:
$\left(Q_{\text {in }}+W_{\text {in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}\right)=m\left(u_{2}-u_{1}\right)$

$$
Q_{\text {in }}-Q_{\text {out }}=W_{\text {out }}-W_{\text {in }}
$$

First Law of Thermodynamics for Closed Systems

$\left(Q_{\text {in }}+W_{\text {in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}\right)=$
$m\left(u_{2}-u_{1}\right)+1 / 2 m\left(V_{2}^{2}-V_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right)$

- In thermodynamics, details of Q are not studied.
- W can be calculated from equations given earlier for different types of work (shaft, electrical, etc.)
- Only one type of work has not been covered yet (moving boundary work)
- $E_{\text {mass }}$ will be introduced in Chapter 5
- u can be obtained from tables for phase-changing materials In this chapter, obtaining (u) for ideal gases will be covered.

Moving Boundary Work

- The work associated with a moving boundary is called boundary work.
- Work is the result of a force (F) acting on an object for a distance (s):

$$
\begin{equation*}
\delta W_{b}=F d s=P A d s=P d V \Rightarrow W_{b}=\int_{1}^{2} P d V \tag{kJ}
\end{equation*}
$$

Moving Boundary Work

- If the system is expanding, the fluid inside the system is pushing out the boundary The system is exerting work on the surroundings
Work is going out of the system
- If the system is being compressed, the surroundings are pushing the boundary in

The surroundings are exerting work on the system
Work is going into the system

Moving Boundary Work

- The area under the process curve on a P - V diagram represents the boundary work.
- The boundary work done during a process depends on the path followed as well as the end states.

Moving Boundary Work Polytropic Process

A polytropic process is a process that follows the following form:
$P=C V^{-n} \quad$ where C and n are constants
$W_{b}=\int_{1}^{2} P d V=\int_{1}^{2} C V^{-n} d V=C \frac{V_{2}^{-n+1}-V_{1}^{-n+1}}{-n+1}=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}$
For an ideal gas, this equations becomes:

$$
W_{b}=\frac{m R\left(T_{2}-T_{1}\right)}{1-n}
$$

Moving Boundary Work

Isobaric Process

$$
W_{b}=\int_{1}^{2} P d V=P_{0} \int_{1}^{2} d V=P_{0}\left(V_{2}-\bigvee_{1}\right)
$$

Moving Boundary Work

Isothermal Process for an Ideal Gas in a Closed System

The ideal gas equation of state is: $P v=R T$, or $P V=m R T$
$P_{1} V_{1}=m R T_{1}$
$P_{2} V_{2}=m R T_{2}$
$P V=$ constant $=m R T$

$$
W_{b}=\int_{1}^{2} P d V=\int_{1}^{2} \frac{m R T}{V} d V=m R T \ln \frac{V_{2}}{V_{1}}=P V \ln \frac{V_{2}}{V_{1}}
$$

First Law of Thermodynamics for Closed Systems Special Case: Constant Pressure Process (Stationary)

$$
\begin{aligned}
& \left(Q_{\text {in }}+W_{\text {in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}\right)= \\
& m\left(u_{2}-u_{1}\right)+1 / 2 m\left(V_{2}^{2}-V_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right) \\
& \Rightarrow\left(Q_{\text {in }}-Q_{\text {out }}\right)+W_{\mathrm{in}}-W_{\text {out }}=\Delta U \\
& W_{\text {out }}=\int_{1}^{2} P d V \Rightarrow W_{\text {out }}=P\left(V_{2}-V_{1}\right)
\end{aligned}
$$

First Law of Thermodynamics for Closed Systems Special Case: Constant Pressure Process (Stationary)

$$
\begin{aligned}
& \Rightarrow\left(Q_{\mathrm{in}}-Q_{\mathrm{out}}\right)+W_{\mathrm{in}}=P\left(V_{2}-V_{1}\right)+\left(U_{2}-U_{1}\right) \\
& \Rightarrow\left(Q_{\mathrm{in}}-Q_{\mathrm{out}}\right)+W_{\mathrm{in}}=H_{2}-H_{1}
\end{aligned}
$$

Specific Heat

- Specific heat is the energy required to raise the temperature of a unit mass of a substance by one degree in a specified way.

Specific Heat at Constant Volume

- Specific heat at constant volume $\left(C_{v}\right)$ is the energy required to raise the temperature of a unit mass of a substance by one degree as the volume is maintained constant.

Specific Heat at Constant Pressure

- Specific heat at constant pressure $\left(C_{p}\right)$ is the energy required to raise the temperature of a unit mass of a substance by one degree as the pressure is maintained constant.

Formal Definition of C_{v} and C_{p}

$$
C_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}
$$

$$
C_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}
$$

- For C_{v}, the amount of energy added is equivalent to the change in internal energy
- For C_{p}, the amount of energy added is equivalent to the change in enthalpy
- Applying the first law of thermodynamics explains the difference.

Dependence of C_{v} on Internal Energy

$$
C_{v}=\left(\frac{\partial u}{\partial T}\right)_{v}
$$

- The first law is given as follows:
$\left(Q_{\text {in }}+W_{\text {in }}+E_{\text {mass,in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}+E_{\text {mass,out }}\right)=$ $m\left(u_{2}-u_{1}\right)+1 / 2 m\left(V_{2}^{2}-V_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right)$
- For a stationary system undergoing a constant volume process, the first law is

$$
\begin{aligned}
V & =\text { constant } \\
m & =1 \mathrm{~kg} \\
\Delta T & =1^{\circ} \mathrm{C} \\
c_{V} & =3.12 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot{ }^{\circ} \mathrm{C}}
\end{aligned}
$$

3.12 kJ simplified to:

$$
Q_{\mathrm{in}}=m\left(u_{2}-u_{1}\right) \quad \text { or } \quad q_{\mathrm{in}}=u_{2}-u_{1}
$$

Dependence of C_{p} on Enthalpy

$$
C_{p}=\left(\frac{\partial h}{\partial T}\right)_{p}
$$

- The first law is given as follows:

$$
\begin{aligned}
& \left(Q_{\text {in }}+W_{\text {in }}+E_{\text {mass, in }}\right)-\left(Q_{\text {out }}+W_{\text {out }}+E_{\text {mass,out }}\right)= \\
& m\left(u_{2}-u_{1}\right)+1 / 2 m\left(V_{2}^{2}-V_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right)
\end{aligned}
$$

- For a stationary system undergoing a constant pressure process, the first law is simplified to:

$$
Q_{\mathrm{in}}-P\left(V_{2}-V_{1}\right)=m\left(u_{2}-u_{1}\right)
$$

$$
P=\text { constant }
$$

$$
m=1 \mathrm{~kg}
$$

$\Delta T=1{ }^{\circ} \mathrm{C}$
$c_{p}=5.19 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot{ }^{\circ} \mathrm{C}}$
$\underset{(1)}{(2)}$
5.19 kJ

$$
Q_{\text {in }}-m P\left(v_{2}-v_{1}\right)=m\left(u_{2}-u_{1}\right)
$$

$$
Q_{\mathrm{in}}=m\left[\left(u_{2}+P v_{2}\right)-\left(u_{1}+P v_{1}\right)\right]=m\left(h_{2}-h_{1}\right)
$$

Notes on C_{v} and C_{p}

- C_{v} and C_{p} are properties.
- C_{p} is always larger than C_{v}
- The specific heat of a substance changes with temperature

0.718 kJ

0.855 kJ

Specific Heats for Ideal Gases

- Joule showed in 1843 that the internal energy of ideal gases is a function of temperature only, i.e.

$$
u=u(T)
$$

- For an ideal gas:

$$
\left.\begin{array}{rl}
h & =u+P \vee \\
P \vee & =R T
\end{array}\right\} \quad h=u+R T \longleftrightarrow h=h(T)
$$

- This means that C_{v} and C_{p} are functions of temperature only

$$
\begin{aligned}
& d u=c_{v}(T) d T \longmapsto \Delta u=u_{2}-u_{1}=\int_{1}^{2} c_{v}(T) d T \\
& d h=c_{p}(T) d T \longmapsto \Delta h=h_{2}-h_{1}=\int_{1}^{2} c_{p}(T) d T
\end{aligned}
$$

Finding u and h for Ideal Gases

- For an ideal gas,
$u=u(T)$
$h=h(T)$
- There are tables showing values of u and h for different temperatures:

TABLE A-17
Ideal-gas properties of air

$\begin{aligned} & \bar{T} \\ & \mathrm{~K} \end{aligned}$	h $\mathrm{kJ} / \mathrm{kg}$	Pr	$\begin{aligned} & u \\ & \mathrm{~kJ} / \mathrm{kg} \end{aligned}$	v_{r}	s° $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$	$\begin{aligned} & \hline T \\ & \mathrm{~K} \end{aligned}$	h $\mathrm{kJ} / \mathrm{kg}$	P_{r}	u $\mathrm{kJ} / \mathrm{kg}$	v	s° $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589

Finding u and h for Ideal Gases

- An alternative is to find C_{v} and C_{p} and apply:

$$
\Delta u=u_{2}-u_{1}=\int_{1}^{2} c_{v}(T) d T \quad \Delta h=h_{2}-h_{1}=\int_{1}^{2} c_{p}(T) d T
$$

- There are tables showing the values of C_{v} and C_{p} for different gases at different temperatures:

TABLE A-2

Ideal-gas specific heats of various common gases (Continued)
(b) At various temperatures

Temperature, K	c_{p} $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$	c_{v} $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$	k	c_{p} $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$	c_{v} $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$	k	$\begin{aligned} & c_{p} \\ & \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \end{aligned}$	c_{v} $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$	k
	Air			Carbon dioxide, CO_{2}			Carbon monoxide, $C O$		
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376

Finding u and h for Ideal Gases

- Yet another alternative is to use average values of C_{v} and C_{p} and consider them constant.
- For small temperature intervals, this assumption is acceptable.

$$
\begin{aligned}
& u_{2}-u_{1}=c_{v, \mathrm{avg}}\left(T_{2}-T_{1}\right) \\
& h_{2}-h_{1}=c_{p, \mathrm{avg}}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

Specific Heat Relations for Ideal Gases

- It can be easily shown that, for an ideal gas:

$$
c_{p}=c_{v}+R
$$

- A useful property is called the specific heat ratio, and it is denoted by (k):

- k varies with temperature, but its variation is very small

INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF SOLIDS AND LIQUIDS

Incompressible substance: A substance whose specific volume (or density) is constant. Solids and liquids are incompressible substances.

The specific volumes of incompressible substances remain constant during a process.

The c_{v} and c_{p} values of incompressible substances are identical and are denoted by c.

Internal Energy Changes

$$
d u=c_{v} d T=c(T) d T
$$

$$
\Delta u=u_{2}-u_{1}=\int_{1}^{2} c(T) d T \quad(\mathrm{~kJ} / \mathrm{kg})
$$

$\Delta u \cong c_{\mathrm{avg}}\left(T_{2}-T_{1}\right) \quad(\mathrm{kJ} / \mathrm{kg})$

Enthalpy Changes

$h=u+P v$
$d h=d u+v d P+P d v=d u+v d P$
$\Delta h=\Delta u+v \Delta P \cong c_{\text {avg }} \Delta T+\vee \Delta P \quad(\mathrm{~kJ} / \mathrm{kg})$
For solids, the term $v \Delta P$ is insignificant and thus $\Delta h=\Delta u \cong c_{\text {avg }} \Delta T$. For liquids, two special cases are commonly encountered:

1. Constant-pressure processes, as in heaters $(\Delta P=0): \Delta h=\Delta u \cong c_{\text {ave }} \Delta T$
2. Constant-temperature processes, as in pumps $(\Delta T=0): \Delta h=\vee \Delta P$
