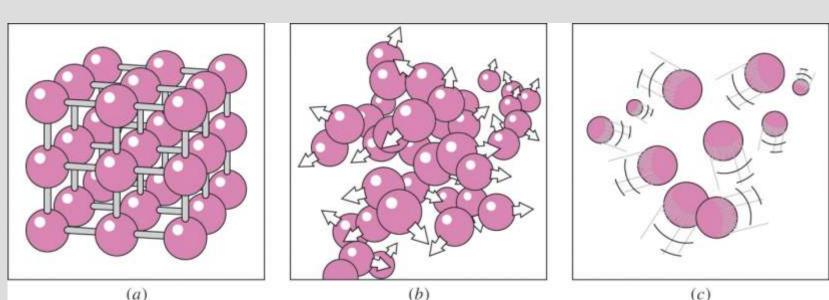

Chapter 3

PROPERTIES OF PURE SUBSTANCES

PURE SUBSTANCE

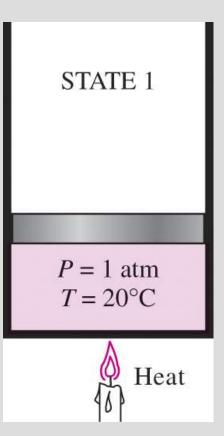
- **Pure substance**: A substance that has a fixed chemical composition throughout.
- Air is a mixture of several gases, but it is considered to be a pure substance.


is not.

Phases of a Pure Substance

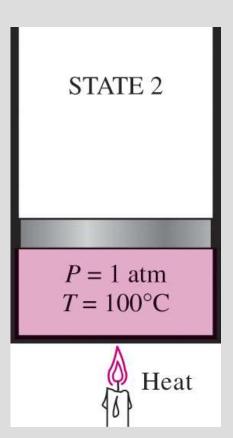
The arrangement of atoms in different phases:

(a) Solid Phase: molecules are at relatively fixed positions


(b) Liquid Phase: groups of molecules move about each other(c) Gas Phase: molecules move about at random

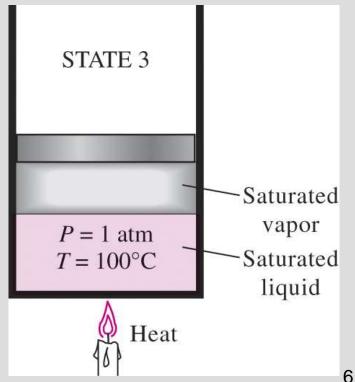
Compressed liquid (subcooled liquid)

A substance that is *not* about to vaporize.


At 1 atm and 20°C, water exists in the liquid phase.

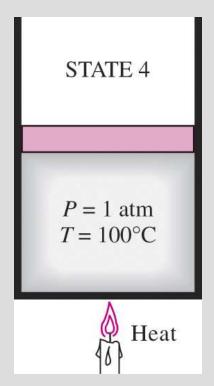
Saturated liquid

A liquid that is about to vaporize.


At 1 atm pressure and 100°C, water exists as a liquid that is ready to vaporize.

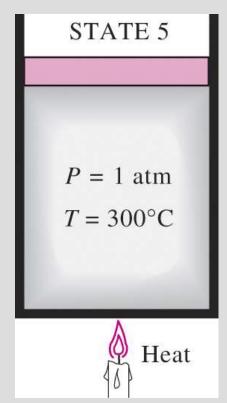
Saturated liquid-vapor mixture

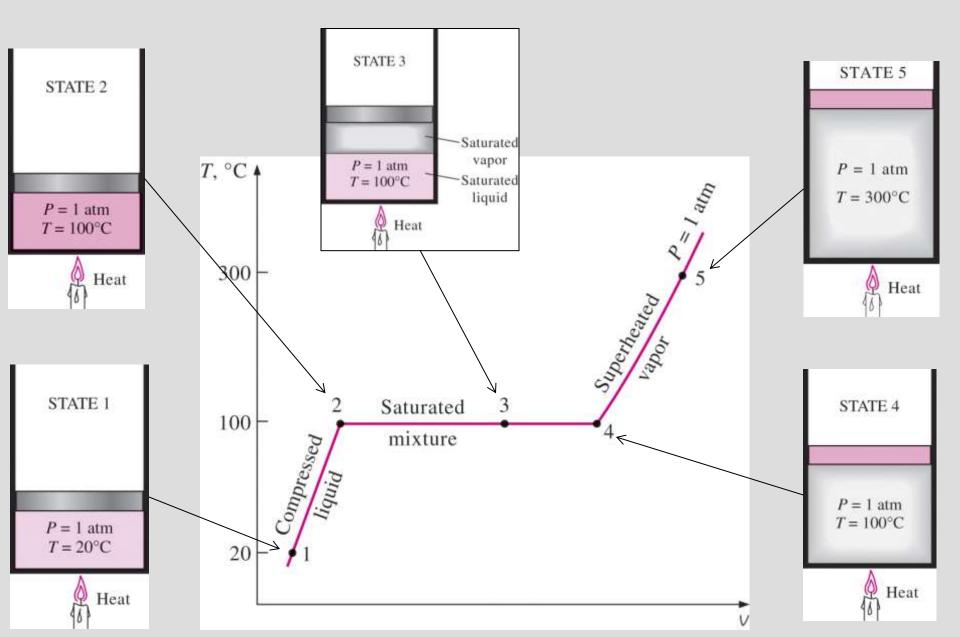
The state at which the *liquid and vapor phases coexist* in equilibrium.


As more heat is transferred, part of the saturated liquid vaporizes.

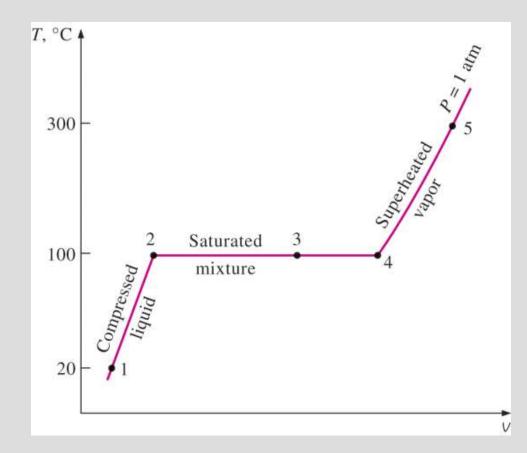
Saturated vapor

A substance is at the end of vaporization OR A vapor that is *about to condense.*

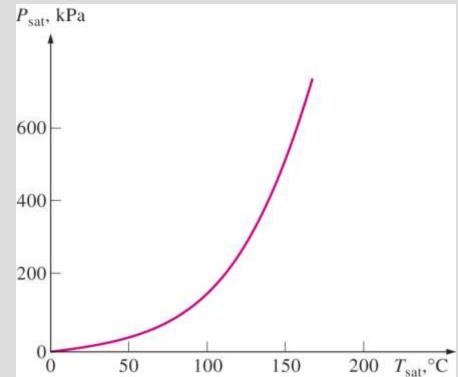

At 1 atm pressure, the temperature remains constant at 100°C until the last drop of liquid is vaporized.



Superheated vapor


A vapor that is *not about to condense* (i.e., not a saturated vapor).

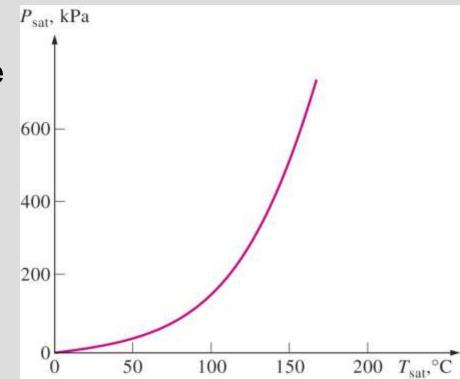
As more heat is transferred, the temperature of the vapor starts to rise.



- If the process is reversed by cooling the water, the water will go back to state 1 on the same path
- The water will release the same amount of heat it gained during the heating process.

Boiling Temperature vs. Boiling Pressure

- The temperature at which water starts boiling depends on the pressure
- If the pressure is fixed, so is the boiling temperature.
- Water boils at 100°C at 1 atm.


Saturation Temperature and Pressure

Saturation temperature T_{sat}

The temperature at which a pure substance changes phase at a given pressure.

Saturation pressure P_{sat}

The pressure at which a pure substance changes phase at a given temperature.

Saturation Temperature and Pressure

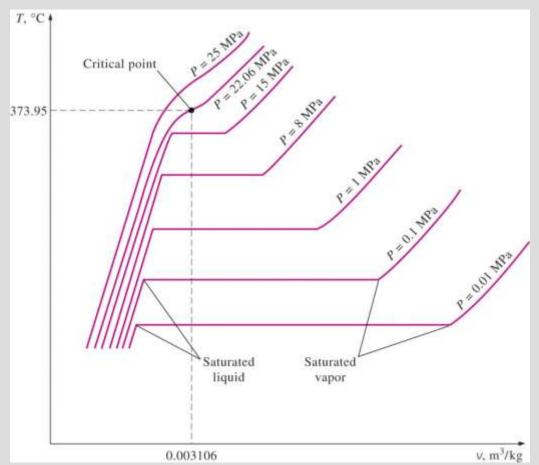
Saturation (boiling) pressure of water at various temperatures			
Temperature, <i>T</i> , °C	Saturation pressure, <i>P</i> _{sat} , kPa		
150 1 200 1 250 3	0.26 0.40 0.61 0.87 1.23 1.71 2.34 3.17 4.25 7.39 12.35 101.4 476.2 555 976 588		

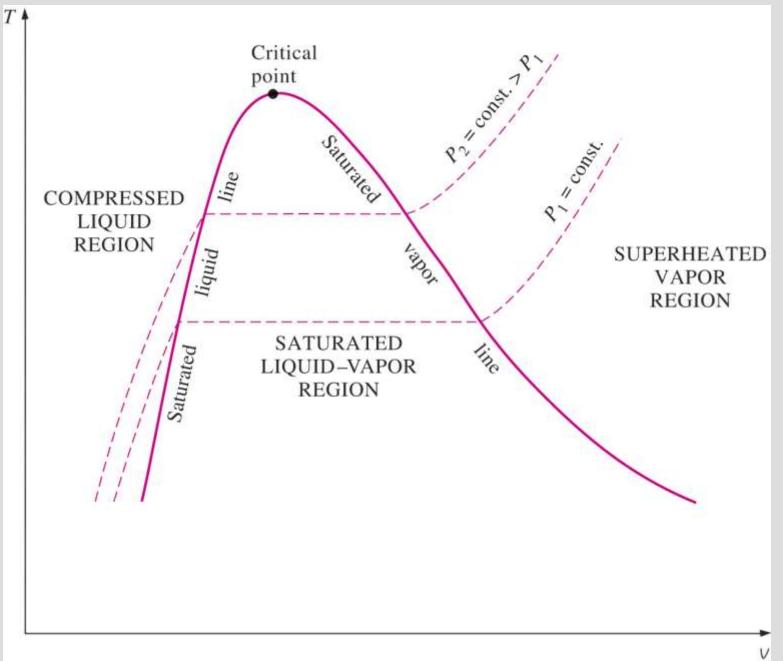
Elevation, m	Atmospheric pressure, kPa	Boiling tempera- ture, °C
0 1,000 2,000 5,000 10,000	101.33 89.55 79.50 54.05 26.50	100.0 96.5 93.3 83.3 66.3
20,000	26.50 5.53	66.3 34.7

Latent Heat

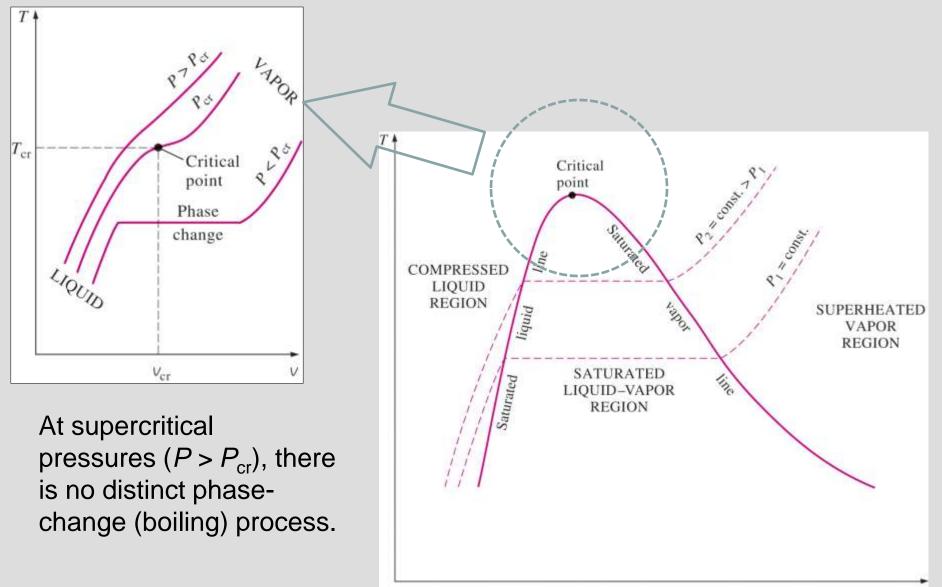
- Latent heat is the amount of energy absorbed or released during a phase-change process.
- Latent heat of fusion: The amount of energy absorbed during melting. It is equivalent to the amount of energy released during freezing.

• Latent heat of vaporization: The amount of energy absorbed during vaporization, and it is equivalent to the energy released during condensation.

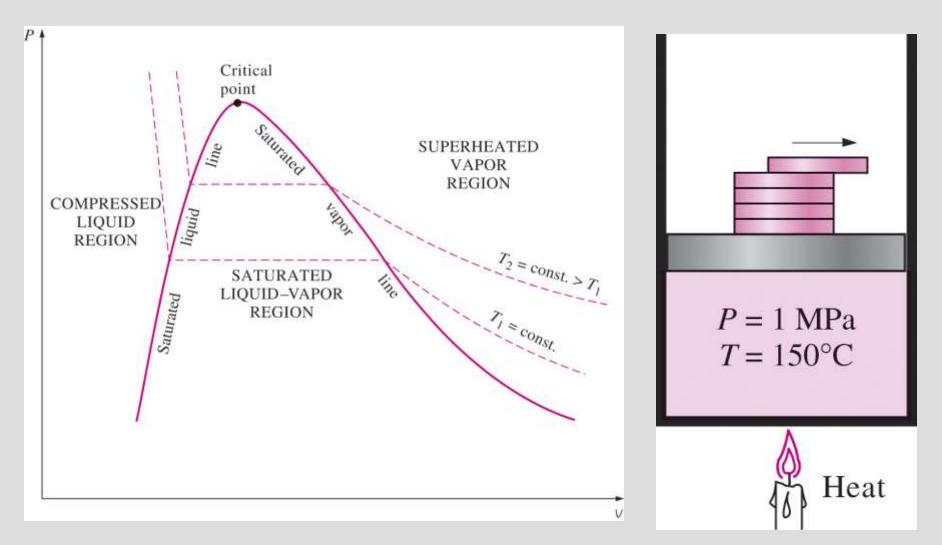

Latent Heat

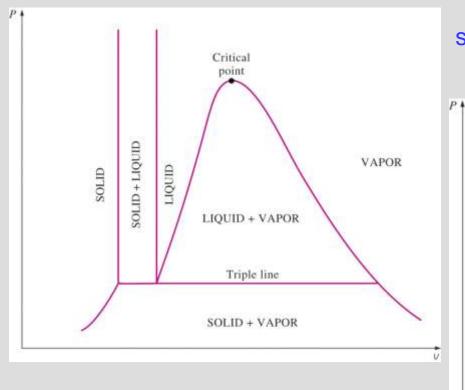

- At 1 atm pressure, the latent heat of fusion of water is 334 kJ/kg and the latent heat of vaporization is 2257 kJ/kg.
- The magnitudes of the latent heats depend on the temperature or pressure at which the phase change occurs.

Temperature (°C)	Saturation Pressure (kPa)	Latent Heat of Vaporization (kJ/kg)
50	12.34	2382
100	101.3	2257
150	475.7	2114
200	1554	1940
250	3974	1715

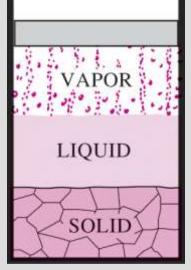

Property Diagrams for Phase-Changing Substances

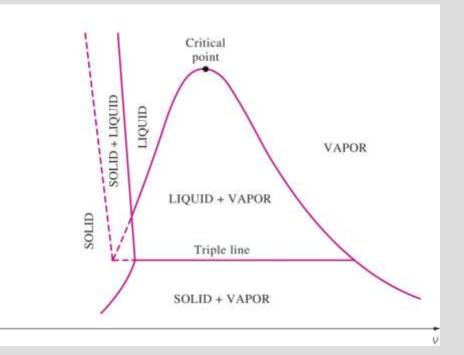
- The variations of properties during phase-change processes are best studied and understood with the help of property diagrams.
- The *critical point* is the point at which the saturated liquid and saturated vapor states are identical.




Property Diagrams for Phase-Changing Substances

Property Diagrams for Phase-Changing Substances




Extending the Diagrams to Include the Solid Phase

For water, $T_{tp} = 0.01^{\circ}C$ $P_{tp} = 0.6117$ kPa

At triple-point pressure and temperature, a substance exists in three phases in equilibrium.



Sublimation: Passing from the solid phase directly into the vapor phase.

At low pressures (below the triple-point value), solids evaporate without melting first (*sublimation*).

Phase Diagram

P-T diagram of pure substances.

Property Tables

- For most substances, the relationships among thermodynamic properties are too complex to be expressed by simple equations.
- Properties are frequently presented in the form of tables.
- Some thermodynamic properties can be measured easily.
- Other properties are calculated by using the relations between them and measurable properties.

Why Determine Properties?

- Properties are needed to solve the laws of thermodynamics.
- Example: First law of thermodynamics

$$E_{in} - E_{out} = \Delta E_{system} = \Delta U + \Delta KE + \Delta PE$$

$$\Delta U = m(u_2 - u_1)$$

$$\Delta KE = \frac{1}{2}m(V_2^2 - V_1^2)$$

$$\Delta PE = mg(z_2 - z_1)$$

• Specific internal energy (*u*) is important in calculations related to the first law of thermodynamics.

Enthalpy

- Property tables contain a property called *Enthalpy*
- Enthalpy is a combination property

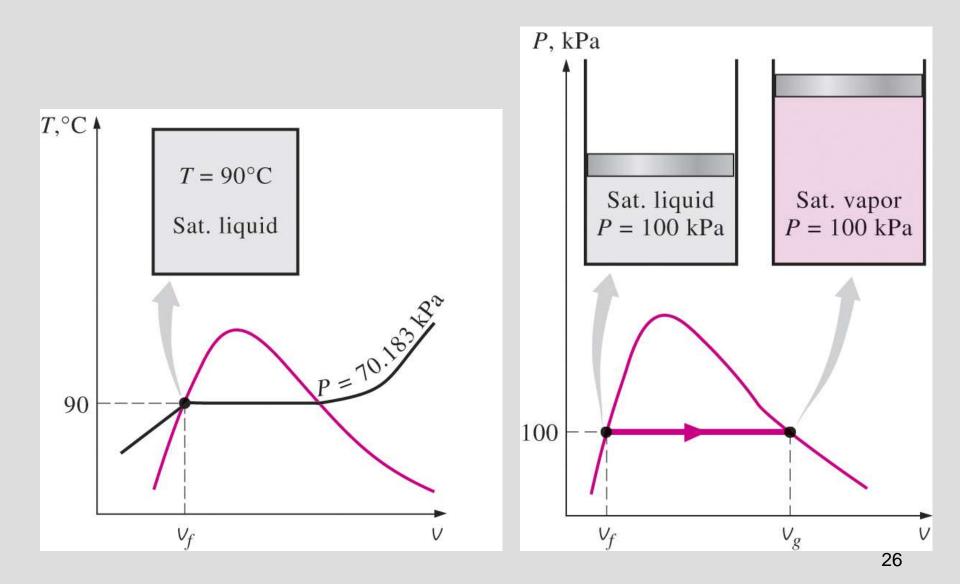
Enthalpy:
$$H = U + PV$$
 (kJ)
Specific Enthalpy: $h = u + PV$ (kJ/kg)

- Enthalpy is frequently encountered in the analysis of control volumes.
- It will be seen later that enthalpy is an important of energy transfer by mass (E_{mass})

$$E_{\rm in} - E_{\rm out} = (Q_{\rm in} + W_{\rm in} + E_{\rm mass,in}) - (Q_{\rm out} + W_{\rm out} + E_{\rm mass,out}) = \Delta E_{\rm system}$$

Saturated Liquid and Saturated Vapor States

Table A-4 Saturated Water – Temperature Table

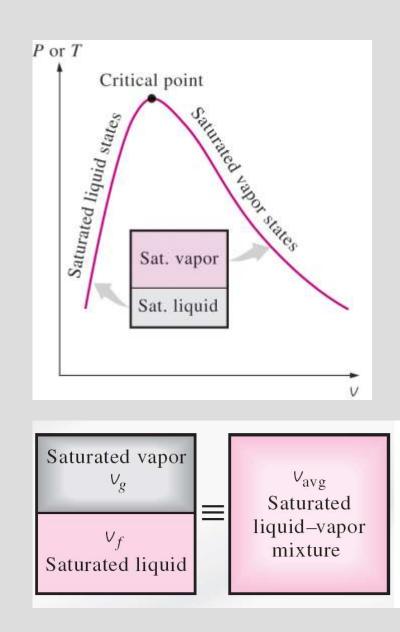

	Sat.	Specific volume m ³ /kg	
Temj °C T	o. press. kPa P _{sat}	Sat. liquid v _f	Sat. vapor v_g
85 90 95	57.868 70.183 84.609	0.001036	2.8261 2.3593 1.9808
Specifi temper	· C.S.	Specific volume of saturated liquid	×
S	Correspond aturation ressure	ding	Specific volume of saturated vapor

- v_f = specific volume of saturated liquid
- v_g = specific volume of saturated vapor

$$v_{fg}$$
 = difference between v_g and v_f (that is, $v_{fg} = v_g - v_f$)

 Other properties (u, h, s) at the saturated liquid and saturated vapor state are found in the same manner.

Saturated Liquid and Saturated Vapor States



- During boiling, the temperature of a substance remains the same.
- This means that pressure and temperature are not independent during this period.
- Pressure and temperature cannot be used to specify the state in this case.
- Other properties are needed, e.g. v, u, or h
- How do we find *v*, *u*, or *h*?

Important observation

The properties of the saturated liquid are the same whether it exists alone or in a mixture with a saturated vapor.

 When an overall v, u, or h is found for the mixture, it is an average value.

$$m_{\text{total}} = m_{\text{liquid}} + m_{\text{vapor}}$$

$$V = m_{\text{liquid}} v_f + m_{\text{vapor}} v_g$$

$$m_{\text{total}} v_{\text{avg}} = m_{\text{liquid}} v_f + m_{\text{vapor}} v_g$$

$$m_{\text{total}} v_{\text{avg}} = (m_{\text{total}} - m_{\text{vapor}}) v_f + m_{\text{vapor}} v_g$$

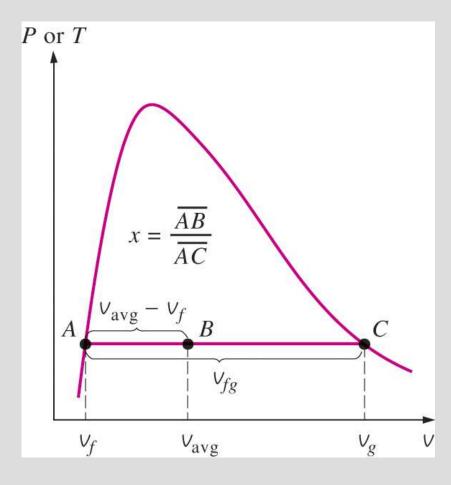
$$v_{avg} = \left(1 - \frac{m_{\text{vapor}}}{m_{\text{total}}}\right) v_f + \frac{m_{\text{vapor}}}{m_{\text{total}}} v_g$$
Saturated vapor
$$v_g$$

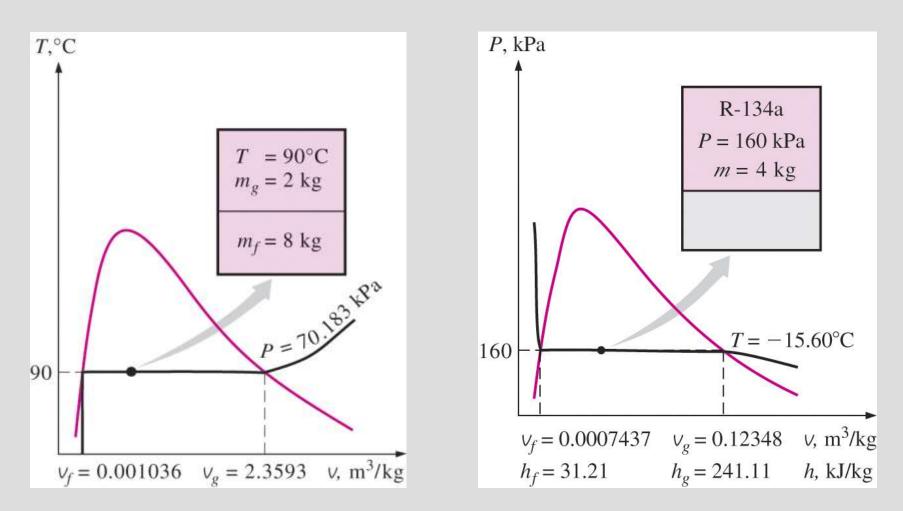
$$v_{f}$$
Saturated liquid
$$v_{f}$$
Saturated liquid

$$v_{avg} = \left(1 - \frac{m_{\text{vapor}}}{m_{\text{total}}}\right) v_f + \frac{m_{\text{vapor}}}{m_{\text{total}}} v_g$$

• The term $\frac{m_{\text{vapor}}}{m_{\text{total}}}$ is called *quality* and is denoted by **x** $0 \le x \le 1$

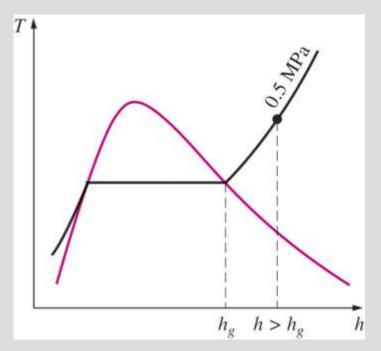
- When $x = 0 \rightarrow$ saturated liquid
- When $x = 1 \rightarrow$ saturated vapor


$$v_{avg} = (1 - x)v_f + x v_g$$
$$v_{avg} = v_f + x(v_g - v_f)$$
$$v_{avg} = v_f + x v_{fg}$$


• The same approach can be used to find other properties:

$$u_{avg} = u_f + x \, u_{fg}$$
$$h_{avg} = h_f + x \, h_{fg}$$

• If v_{avg} , u_{avg} , or h_{avg} is given, x can be deduced:


$$x = \frac{v_{avg} - v_f}{v_{fg}}$$
$$x = \frac{u_{avg} - u_f}{u_{fg}}$$
$$x = \frac{h_{avg} - h_f}{h_{fg}}$$

Superheated Vapor

- In the region to the right of the saturated vapor line, a substance exists as superheated vapor.
- In this region, temperature and pressure are independent properties.

- The superheated region is characterized by:
 - Higher temperatures (T > T_{sat} at a given P)
 - Low pressures (P < P_{sat} at given T)
 - Higher specific volumes (v > v_g at a given P or T)
 - Higher internal energies $(u > u_g \text{ at a given } P \text{ or } T)$
 - Higher enthalpies (*h* > *h*_g at a given *P* or *T*)

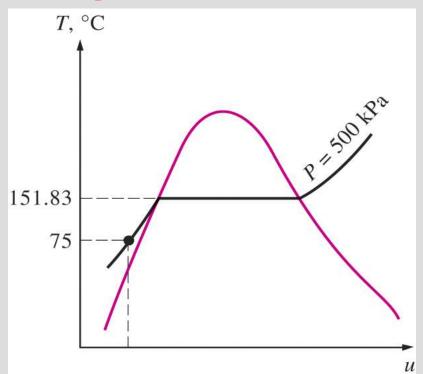
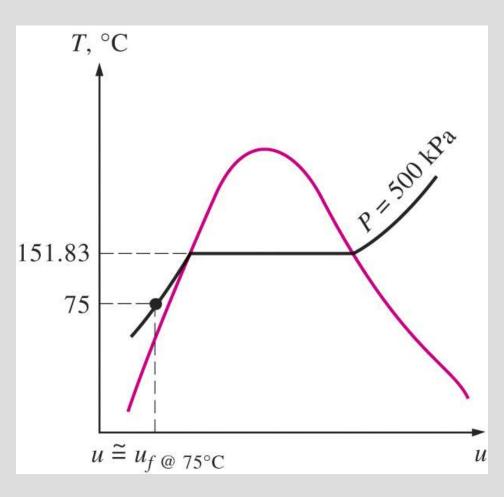

Superheated Vapor

Table A-6 Superheated water

	V	U	h
T,°C	m³/kg	kJ/kg	kJ/kg
	P = 0.1 I	MPa (99.	61°C)
Sat.	1.6941	2505.6	2675.0
100	1.6959	2506.2	2675.8
150	1.9367	2582.9	2776.6
	•	•	•
1300	7.2605	4687.2	5413.3
	P = 0.5 1	MPa (151	.83°C)
Sat.	0.37483	2560.7	2748.1
200	0.42503	2643.3	2855.8
250	0.47443	2723.8	2961.0

Compressed Liquid


- In the region to the left of the saturated liquid line, a substance exists as compressed liquid.
- In this region, temperature and pressure are independent properties.

- The compressed liquid region is characterized by:
 - Lower temperatures (T < T_{sat} at a given P)
 - Higher pressure (*P* > *P*_{sat} at a given *T*)
 - Lower specific volumes (v < v_f at a given P or T)
 - Lower internal energies (u < u_f at a given P or T)
 - Lower enthalpies (*h* < *h*_f at a given *P* or *T*)

Compressed Liquid

- There is a table for the compressed liquid region.
- Data is very limited.
- A good approximation is given by:
 - $v \approx v_{\rm f}$ at given T
 - $u \approx u_{\rm f}$ at given T
 - $h \approx h_{\rm f}$ at given T

Property Tables of Other Substances

- There are property tables for substances other than water.
- For example, tables for refrigerant 134a (R-134a) are listed in a number of textbooks.
- R-134a is a common refrigerant in many commercial air conditioners.

Identification of Phase

If P and T are given

- Find T_{sat} corresponding to P
- If $T > T_{sat}$: superheated vapor
- If $T < T_{sat}$: compressed liquid
- If $T = T_{sat}$: saturated (but additional information is needed)

Identification of Phase

If (P or T) and v are given

- Find $v_{\rm f}$ and $v_{\rm g}$ corresponding to P or T
- If $v > v_q$: superheated vapor
- If $v < v_{\rm f}$: compressed liquid
- If $v_{\rm f} < v < v_{\rm q}$: saturated liquid vapor mixture

The same procedure applies if u or h is given (instead of v)

The Ideal-Gas Equation of State

- An *equation of state* is any equation that relates the pressure, temperature, and specific volume of a substance.
- The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state.

$$PV = RT \longrightarrow PV = mRT \longrightarrow \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

 I_1

- *R* is called the *gas constant* •
- Note: T must be in kelvin
- This equation predicts the *P*-*v*-*T* behavior of a gas quite accurately within some properly selected region.
- It is an easier alternative to looking up P, v, and T from tables
 - Problem: limited to the gas phase (superheated region only) $_{40}$ •

The Gas Constant

- The gas constant is fixed for each gas.
- It can be found from:

$$R = \frac{R_u}{M}$$

where:

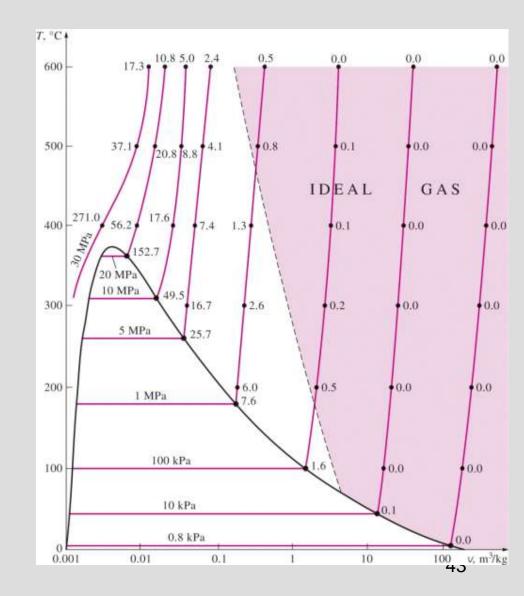
R_u: universal gas constant (8.314 kJ/kmol.K) *M*: molar mass (kg/kmol)

Listing of the gas constant for numerous gases can be found in textbooks.

Substance	R, kJ/kg·K
Air	0.2870
Helium	2.0769
Argon	0.2081
Nitrogen	0.2968

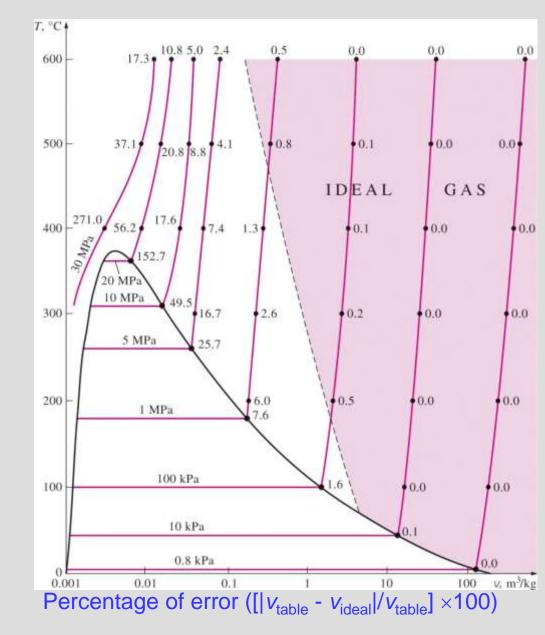
OTHER EXPRESSIONS OF THE IDEAL-GAS EQUATION OF STATE

$$V = mv \longrightarrow PV = mRT$$


Mass = Molar mass × Mole number

m = MN (kg)

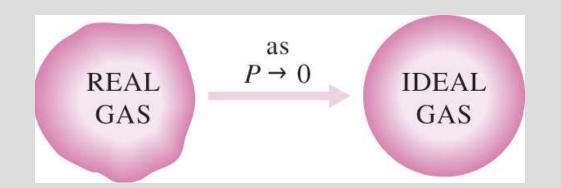
$$mR = (MN)R = NR_u \longrightarrow PV = NR_uT$$


Validity of the Ideal-Gas Equation of State

- Real gases behave as an ideal gas at low densities (i.e., low pressure, high temperature).
- The ideal-gas relation often is **NOT** applicable to real gases
- Care should be taken when using it.

Is Water Vapor an Ideal Gas?

- At pressures below 10 kPa, water vapor can be treated as an ideal gas, regardless of its temperature, with negligible error (less than 0.1 percent).
- At higher pressures, the ideal gas assumption yields unacceptable errors, particularly in the vicinity of the critical point and the saturated vapor line.

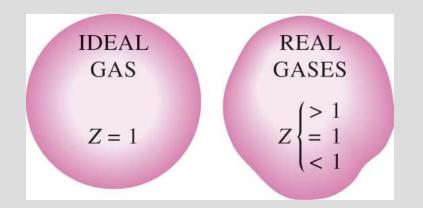

44

WHEN CAN A GAS BE CONSIDERED IDEAL?

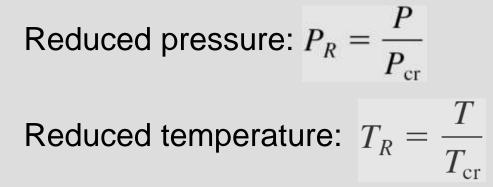
- Gases behave as an ideal gas at low densities (i.e., low pressure, high temperature).
- At very low pressures, all gases approach ideal-gas behavior (regardless of their temperature).

What is the criteria for low pressure and high temperature?

 The pressure or temperature of a gas is high or low relative to its *critical temperature or pressure*.



COMPRESSIBILITY FACTOR


 The Compressibility factor (Z) is a factor that accounts for the deviation of real gases from ideal-gas behavior at a given temperature and pressure.

$$Pv = ZRT \implies Z = \frac{Pv}{RT} \qquad Z = \frac{V_{actual}}{V_{ideal}}$$

- The farther away Z is from unity, the more the gas deviates from ideal-gas behavior.
- The compressibility factor is unity for ideal gases.

COMPRESSIBILITY FACTOR

1.1 1.0 $T_R = 2.00$ 0.9 $T_R = 1.50$ 0.8 × × $T_R = 1.30$ 0.7 0 $Z = \frac{PV}{RT}$ 0.6 0.5 0.4 Legend: × Methane Iso-pentane $T_R = 1.00$ O Ethylene · n-Heptane 0.3 ▲ Ethane A Nitrogen · Carbon dioxide O Propane I n-Butane · Water 0.2 Average curve based on data on hydrocarbons 0.1 0.5 2.0 2.5 0 1.0 1.5 3.0 3.5 4.04.5 5.0 5.5 6.0 6.5 7.0Reduced pressure Pp

47

Other Equations of State

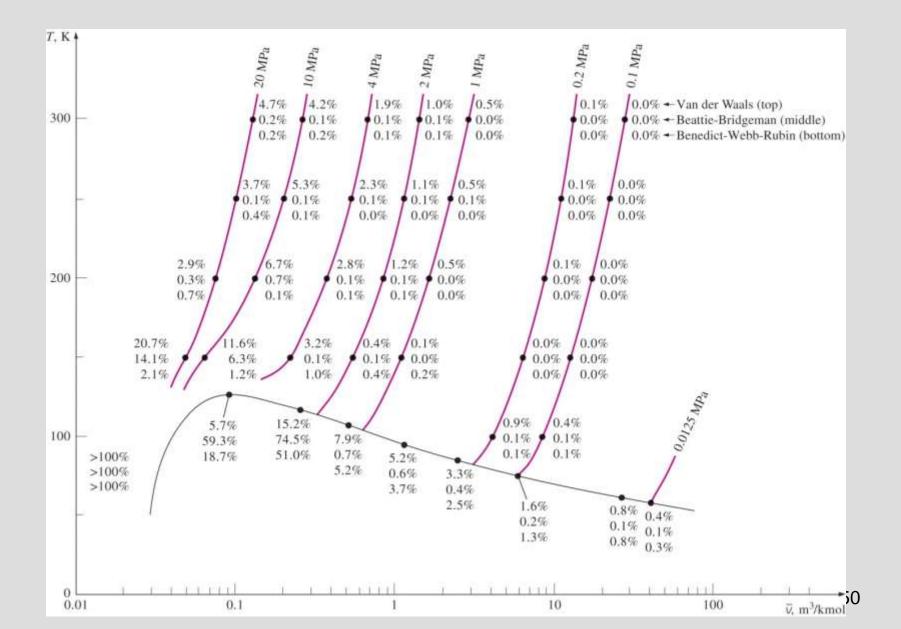
Many equations have been proposed to represent the *Pv*-*T* behavior of substances accurately over a larger region with no limitations.

Van der Waals Equation of State

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT$$

$$a = \frac{27R^2 T_{\rm cr}^2}{64P_{\rm cr}} \qquad b = \frac{RT_{\rm cr}}{8P_{\rm cr}}$$

Other Equations of State


Beattie-Bridgeman Equation of State

$$P = \frac{R_u T}{\overline{\nu}^2} \left(1 - \frac{c}{\overline{\nu} T^3} \right) (\overline{\nu} + B) - \frac{A}{\overline{\nu}^2}$$
$$A = A_0 \left(1 - \frac{a}{\overline{\nu}} \right) B = B_0 \left(1 - \frac{b}{\overline{\nu}} \right)$$

Benedict-Webb-Rubin Equation of State

$$P = \frac{R_u T}{\overline{\nu}} + \left(B_0 R_u T - A_0 - \frac{C_0}{T^2} \right) \frac{1}{\overline{\nu}^2} + \frac{b R_u T - a}{\overline{\nu}^3} + \frac{a \alpha}{\overline{\nu}^6} + \frac{c}{\overline{\nu}^3 T^2} \left(1 + \frac{\gamma}{\overline{\nu}^2} \right) e^{-\gamma/\overline{\nu}^2}$$

Accuracy of Other Equations of State

