Theory of statistics 2

Department of Statistics and Operations Research

October 13, 2019

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

The Confidence Interval of the Location or the Scale Parameter

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

In the case where θ is a location or a scale parameter, it is preferable first to find a sufficient statistic *S*.

- In the location case, the PQ is expressed as follows $Q(\underline{X}; \theta) = S \theta$.
- **2** In the scale case, the PQ is expressed as follows $Q(\underline{X}; \theta) = S/\theta$.

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Definition (Sufficient Statistic)

Suppose that $(X_1, ..., X_n)$ have a joint distribution that depends the parameters θ . A statistic $T(X_1, ..., X_n)$ is a sufficient statistic for θ if the conditional distribution of $(X_1, ..., X_n)$ given T = t does not depend on θ for any value of t.

Theorem

A statistic T(X) is a sufficient statistic for θ if, and only if, for all sample points x and for all θ ,

$$\prod_{i=1}^n f(x_i;\theta) = \prod_{i=1}^n g(T(x_i);\theta)h(x_i) = \prod_{i=1}^n g(T(x_i);\theta) \times \prod_{i=1}^n h(x_i),$$

where both g and h are nonnegative functions. The function h does not depend on θ and the function g depends on x only through T(X).

Let X be a random variable with distribution $f(x; \theta) = e^{-(x-\theta)}, \quad \theta < x.$ Let X_1, \ldots, X_n be *n* copies of X. Our aim is to find $100(1-\alpha)$ % of θ . The sufficient statistic of X is $S = X_{(1)} \sim h^{\theta}(s) = ne^{-n(s-\theta)}, \quad s > \theta.$ In fact,

$$\prod_{i=1}^{n} f(x_i; \theta) = \prod_{i=1}^{n} e^{-(x_i - \theta)} \mathbf{1}_{\{x_i > \theta\}} = e^{-\sum_{i=1}^{n} x_i} e^{n\theta} \mathbf{1}_{\{x_{(1)} > \theta\}}$$

We note that
$$\prod_{i=1}^{n} h(x_i) = e^{-\sum_{i=1}^{n} x_i}$$
 and

 $\prod_{i=1}^{i=1} g(T(x_i); \theta) = e^{n\theta} \mathbf{1}_{\{x_{(1)} > \theta\}}.$ Then, we propose the following PQ: $Q(S - \theta) = n(S - \theta) \sim g(q) = e^{-q}, \quad q > 0.$

We look for getting q_1 and q_2 . Step 1:

$$\mathbb{P}\left(q_1 < n(S- heta) < q_2
ight) = \mathbb{P}\left(S - rac{q_2}{n} < heta < S - rac{q_1}{n}
ight) \ = \int_{q_1}^{q_2} g(q) dq = 1 - lpha.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Step 2: $L = \frac{1}{n}(q_2 - q_1)$ must be minimum. The last equality of step 1 indicate that q_2 is a function of q_1 . Differentiate this equality with respect q_1 , we get

$$g(q_2)rac{dq_2}{dq_1}-g(q_1)=0 \Rightarrow rac{dq_2}{dq_1}=rac{g(q_1)}{g(q_2)}$$

Now, let us differentiate L with respect to q_1 , we get

$$\frac{dL}{dq_1} = \frac{1}{n} \left(\frac{dq_2}{dq_1} - 1 \right) = \frac{1}{n} \left(\frac{g(q_1)}{g(q_2)} - 1 \right) = \frac{1}{n} \left(e^{q_2 - q_1} - 1 \right) > 0.$$

So $L \nearrow$ with respect to q_1 and L is minimized at the lowest q_1 . Thus $q_1 = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

This implies that q_2 is found as follows:

$$\mathbb{P}\left(0 < n(S - heta) < q_2
ight) = \int_0^{q_2} e^{-q} dq = 1 - e^{q_2} = 1 - lpha.$$

Then

$$q_2 = -\log(\alpha) > 0.$$

It follows that

$$(T_1(\underline{X}), T_2(\underline{X})) = \left(S + \frac{\log(\alpha)}{n}, S\right).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Let X be a random variable with distribution $f(x; \theta) = \frac{1}{\theta}$, $0 < x < \theta$, here θ is a scale parameter. Let X_1, \ldots, X_n be *n* copies of *X*. Our aim is to find $100(1 - \alpha)$ % of θ . The sufficient statistic of X is $S = X_{(n)} \sim h^{\theta}(s) = n \frac{s^{n-1}}{\theta^n}, \quad 0 < s < \theta.$ In fact,

$$\prod_{i=1}^{n} f(x_i; \theta) = \prod_{i=1}^{n} \frac{1}{\theta} \mathbf{1}_{\{0 < x_i < \theta\}} = \frac{1}{\theta^n} \mathbf{1}_{\{0 < x_{(n)} < \theta\}}.$$

We note that $\prod h(x_i) = 1$ and $\prod g(T(x_i); \theta) = \frac{1}{\rho_n} \mathbf{1}_{\{0 < x_{(n)} < \theta\}}$. Then, we propose the following PQ: $Q(S/ heta) = rac{S}{q} \sim g(q) = nq^{n-1}, \quad 0 < q < 1.$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

We look for getting q_1 and q_2 . Step 1:

$$\mathbb{P}\left(q_1 < rac{S}{ heta} < q_2
ight) = \mathbb{P}\left(rac{S}{q_2} < heta < rac{S}{q_1}
ight) \ = \int_{q_1}^{q_2} g(q) dq = 1 - lpha$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Step 2: $L = S\left(\frac{1}{q_1} - \frac{1}{q_2}\right)$ must be minimum. The last equality of step 1 indicate that q_1 is a function of q_2 . Differentiate this equality with respect q_2 , we get

$$g(q_1)rac{dq_1}{dq_2}-g(q_2)=0 \Rightarrow rac{dq_1}{dq_2}=rac{g(q_2)}{g(q_1)},$$

Now, let us differentiate L with respect to q_2 , we get

$$\begin{aligned} \frac{dL}{dq_2} &= S\left(\frac{1}{q_2^2} - \frac{dq_1}{dq_2}\frac{1}{q_1^2}\right) = S\left(\frac{1}{q_2^2} - \frac{g(q_2)}{g(q_1)}\frac{1}{q_1^2}\right) \\ &= S\left(\frac{q_1^{n+1} - q_2^{n+1}}{q_1^{n+1}q_2^2}\right) < 0 \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

So $L \searrow$ with respect to q_2 and L is minimized at the highest q_2 . Thus $q_2 = 1$. This implies that q_1 is found as follows:

$$\mathbb{P}\left(q_1 < \frac{S}{\theta} < 1\right) = \int_{q_1}^1 nq^{n-1}dq = 1 - q_1^n = 1 - \alpha.$$

Then

$$q_1 = \alpha^{\frac{1}{n}}.$$

It follows that

$$(T_1(\underline{X}), T_2(\underline{X})) = \left(S, \frac{S}{\alpha^{\frac{1}{n}}}\right).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ

Thank you

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●