Theory of statistics 2

Department of Statistics and Operations Research

October 13, 2019

The Confidence Interval of the Location or the Scale Parameter

In the case where θ is a location or a scale parameter, it is preferable first to find a sufficient statistic S.
(1) In the location case, the PQ is expressed as follows $Q(\underline{X} ; \theta)=S-\theta$.
(2) In the scale case, the PQ is expressed as follows $Q(\underline{X} ; \theta)=S / \theta$.

Definition (Sufficient Statistic)

Suppose that $\left(X_{1}, \ldots, X_{n}\right)$ have a joint distribution that depends the parameters θ. A statistic $T\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for θ if the conditional distribution of $\left(X_{1}, \ldots, X_{n}\right)$ given $T=t$ does not depend on θ for any value of t.

Theorem

A statistic $T(X)$ is a sufficient statistic for θ if, and only if, for all sample points x and for all θ,

$$
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} g\left(T\left(x_{i}\right) ; \theta\right) h\left(x_{i}\right)=\prod_{i=1}^{n} g\left(T\left(x_{i}\right) ; \theta\right) \times \prod_{i=1}^{n} h\left(x_{i}\right)
$$

where both g and h are nonnegative functions. The function h does not depend on θ and the function g depends on x only through $T(X)$.

Example 1: The location parameter

Let X be a random variable with distribution $f(x ; \theta)=e^{-(x-\theta)}, \quad \theta<x$. Let X_{1}, \ldots, X_{n} be n copies of X. Our aim is to find $100(1-\alpha) \%$ of θ. The sufficient statistic of X is $S=X_{(1)} \sim h^{\theta}(s)=n e^{-n(s-\theta)}, \quad s>\theta$. In fact,

$$
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} e^{-\left(x_{i}-\theta\right)} \mathbf{1}_{\left\{x_{i}>\theta\right\}}=e^{-\sum_{i=1}^{n} x_{i}} e^{n \theta} \mathbf{1}_{\left\{x_{(1)}>\theta\right\}} .
$$

We note that $\prod_{i=1}^{n} h\left(x_{i}\right)=e^{-\sum_{i=1}^{n} x_{i}}$ and
$\prod^{n} g\left(T\left(x_{i}\right) ; \theta\right)=e^{n \theta} \mathbf{1}_{\left\{x_{(1)}>\theta\right\}}$. Then, we propose the following PQ:
$i=1$
$Q(S-\theta)=n(S-\theta) \sim g(q)=e^{-q}, \quad q>0$.

Example 1: The location parameter

We look for getting q_{1} and q_{2}.
Step 1:

$$
\begin{aligned}
\mathbb{P}\left(q_{1}<n(S-\theta)<q_{2}\right) & =\mathbb{P}\left(S-\frac{q_{2}}{n}<\theta<S-\frac{q_{1}}{n}\right) \\
& =\int_{q_{1}}^{q_{2}} g(q) d q=1-\alpha .
\end{aligned}
$$

Example 1: The location parameter

Step 2:

$L=\frac{1}{n}\left(q_{2}-q_{1}\right)$ must be minimum.
The last equality of step 1 indicate that q_{2} is a function of q_{1}. Differentiate this equality with respect q_{1}, we get

$$
g\left(q_{2}\right) \frac{d q_{2}}{d q_{1}}-g\left(q_{1}\right)=0 \Rightarrow \frac{d q_{2}}{d q_{1}}=\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)} .
$$

Now, let us differentiate L with respect to q_{1}, we get

$$
\frac{d L}{d q_{1}}=\frac{1}{n}\left(\frac{d q_{2}}{d q_{1}}-1\right)=\frac{1}{n}\left(\frac{g\left(q_{1}\right)}{g\left(q_{2}\right)}-1\right)=\frac{1}{n}\left(e^{q_{2}-q_{1}}-1\right)>0 .
$$

So $L \nearrow$ with respect to q_{1} and L is minimized at the lowest q_{1}. Thus $q_{1}=0$.

Example 1: The location parameter

This implies that q_{2} is found as follows:

$$
\mathbb{P}\left(0<n(S-\theta)<q_{2}\right)=\int_{0}^{q_{2}} e^{-q} d q=1-e^{q_{2}}=1-\alpha .
$$

Then

$$
q_{2}=-\log (\alpha)>0 .
$$

It follows that

$$
\left(T_{1}(\underline{X}), T_{2}(\underline{X})\right)=\left(S+\frac{\log (\alpha)}{n}, S\right)
$$

Example 2: The scale parameter

Let X be a random variable with distribution
$f(x ; \theta)=\frac{1}{\theta}, \quad 0<x<\theta$, here θ is a scale parameter. Let
X_{1}, \ldots, X_{n} be n copies of X. Our aim is to find $100(1-\alpha) \%$ of θ.
The sufficient statistic of X is
$S=X_{(n)} \sim h^{\theta}(s)=n \frac{s^{n-1}}{\theta^{n}}, \quad 0<s<\theta$. In fact,

$$
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \frac{1}{\theta} \mathbf{1}_{\left\{0<x_{i}<\theta\right\}}=\frac{1}{\theta^{n}} \mathbf{1}_{\left\{0<x_{(n)}<\theta\right\}}
$$

We note that $\prod_{i=1}^{n} h\left(x_{i}\right)=1$ and $\prod_{i=1}^{n} g\left(T\left(x_{i}\right) ; \theta\right)=\frac{1}{\theta^{n}} \mathbf{1}_{\left\{0<x_{(n)}<\theta\right\}}$.
Then, we propose the following PQ:
$Q(S / \theta)=\frac{S}{\theta} \sim g(q)=n q^{n-1}, \quad 0<q<1$.

Example 2: The scale parameter

We look for getting q_{1} and q_{2}. Step 1:

$$
\begin{aligned}
\mathbb{P}\left(q_{1}<\frac{S}{\theta}<q_{2}\right) & =\mathbb{P}\left(\frac{S}{q_{2}}<\theta<\frac{S}{q_{1}}\right) \\
& =\int_{q_{1}}^{q_{2}} g(q) d q=1-\alpha .
\end{aligned}
$$

Example 2: The scale parameter

Step 2:
$L=S\left(\frac{1}{q_{1}}-\frac{1}{q_{2}}\right)$ must be minimum.
The last equality of step 1 indicate that q_{1} is a function of q_{2}.
Differentiate this equality with respect q_{2}, we get

$$
g\left(q_{1}\right) \frac{d q_{1}}{d q_{2}}-g\left(q_{2}\right)=0 \Rightarrow \frac{d q_{1}}{d q_{2}}=\frac{g\left(q_{2}\right)}{g\left(q_{1}\right)} .
$$

Now, let us differentiate L with respect to q_{2}, we get

$$
\begin{aligned}
\frac{d L}{d q_{2}} & =S\left(\frac{1}{q_{2}^{2}}-\frac{d q_{1}}{d q_{2}} \frac{1}{q_{1}^{2}}\right)=S\left(\frac{1}{q_{2}^{2}}-\frac{g\left(q_{2}\right)}{g\left(q_{1}\right)} \frac{1}{q_{1}^{2}}\right) \\
& =S\left(\frac{q_{1}^{n+1}-q_{2}^{n+1}}{q_{1}^{n+1} q_{2}^{2}}\right)<0
\end{aligned}
$$

Example 2: The scale parameter

So $L \searrow$ with respect to q_{2} and L is minimized at the highest q_{2}. Thus $q_{2}=1$. This implies that q_{1} is found as follows:

$$
\mathbb{P}\left(q_{1}<\frac{S}{\theta}<1\right)=\int_{q_{1}}^{1} n q^{n-1} d q=1-q_{1}^{n}=1-\alpha .
$$

Then

$$
q_{1}=\alpha^{\frac{1}{n}} .
$$

It follows that

$$
\left(T_{1}(\underline{X}), T_{2}(\underline{X})\right)=\left(S, \frac{S}{\alpha^{\frac{1}{n}}}\right)
$$

Thank you

$$
4 \square>4 \text { 岛 } \downarrow 4 \equiv \stackrel{\equiv}{ }
$$

