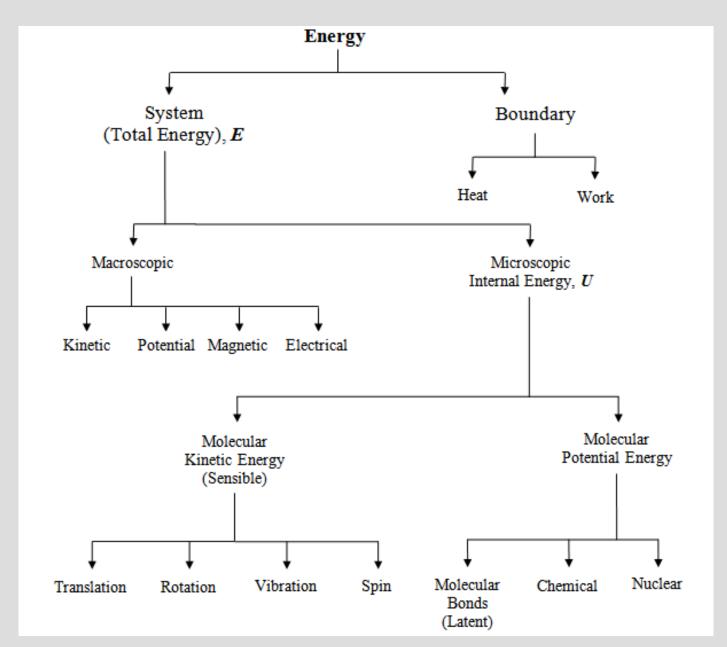

Chapter 2 ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS


INTRODUCTION

- Consider the two examples below.
- The two rooms are well insulated and sealed.
- The only energy interaction involved is the electrical energy crossing the system boundary and entering the room.
- The amount of energy in the room will increase.
- The room temperature will rise.

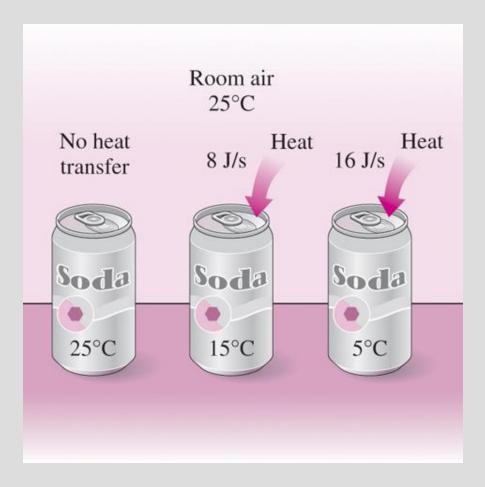
Energy of a System

Total Energy of a System

$$KE = m \frac{V^2}{2} \qquad (kJ)$$

 $PE = mgz \qquad (kJ)$

$$E = U + KE + PE = U + m\frac{V^2}{2} + mgz$$
 (kJ)



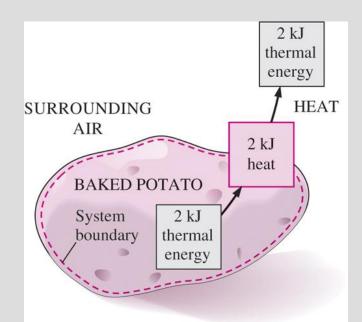
Energy Transfer

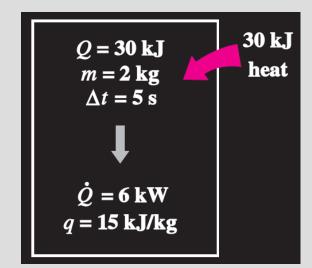
- The total energy of a system is the energy contained or stored in a system
- The forms of energy not stored in a system can be viewed as energy transfer.
- Energy transfer is recognized at the system boundary as it crosses that boundary.
- Energy transfer represents the energy gained or lost by a system during a process.
- Energy can be transferred to/from a system by heat, work, and mass.
- In a closed system, energy can only be transferred by heat and work (since mass is not allowed to cross the system boundary)

Energy Transfer By Heat

Heat (Q) is the form of energy that is transferred between two systems (or a system and its surroundings) by virtue of a temperature difference.

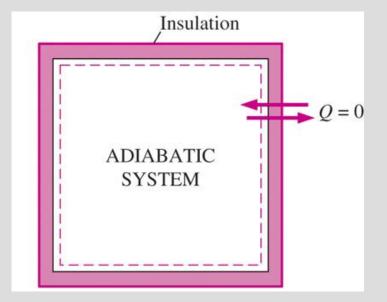
Energy Transfer By Heat


Energy is recognized as heat transfer only as it crosses the system boundary.



Amount of heat transfer when heat transfer rate is constant

$$Q = \int_{t_1}^{t_2} \dot{Q} dt \qquad (kJ)$$


Amount of heat transfer when heat transfer rate changes with time

Adiabatic Process/System

An *adiabatic* process is a process in which the system exchanges NO heat with its surroundings, i.e. Q = 0

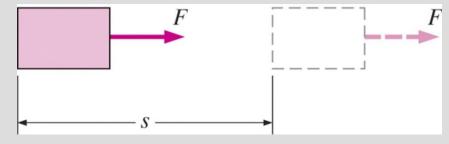
Energy Transfer by Work

Work (W) is the energy transfer associated with a *force* acting through a *distance*.

• **Examples**: a rising piston, a rotating shaft, and an electric wire crossing the system boundaries

Power (*W***)** is the rate of energy transfer by work.

$$W = 30 \text{ kJ}$$


$$m = 2 \text{ kg}$$

$$\Delta t = 5 \text{ s}$$

$$\dot{W} = 6 \text{ kW}$$

$$w = 15 \text{ kJ/kg}$$

$$30 \text{ kJ}$$
work
$$30 \text{ kJ}$$
work

$$W = \int_{1}^{2} F \, ds$$

Examples of Types of Work

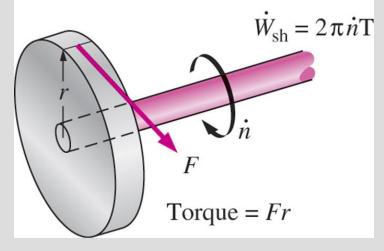
- Shaft work
- Spring work
- Electrical work

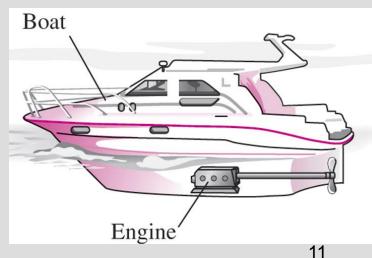
Shaft Work

 A force F acting through a moment arm r generates a torque T

$$T = Fr \quad \rightarrow \quad F = \frac{T}{r}$$

• This force acts through a distance s


$$s = (2\pi r)n$$


• The work done is:

$$W_{\rm sh} = Fs = \left(\frac{\mathrm{T}}{r}\right)(2\pi rn) = 2\pi n\mathrm{T}$$

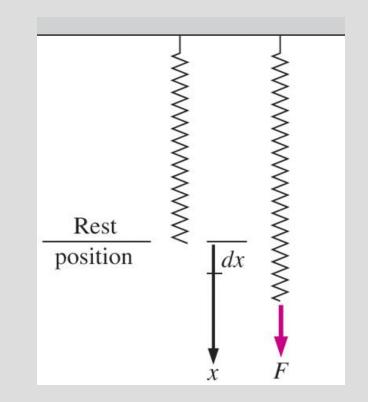
• The power transmitted through the shaft is the shaft work done per unit time

$$\dot{W}_{\rm sh} = 2\pi \dot{n} T$$

Spring Work

 When the length of the spring changes by a differential amount *dx* under the influence of a force *F*, the work done is:

 $\delta W_{\rm spring} = F \, dx$


 For linear elastic springs, the displacement x is proportional to the force applied

$$F = kx$$
 , k: spring constant (kN/m)

Substituting and integrating yield

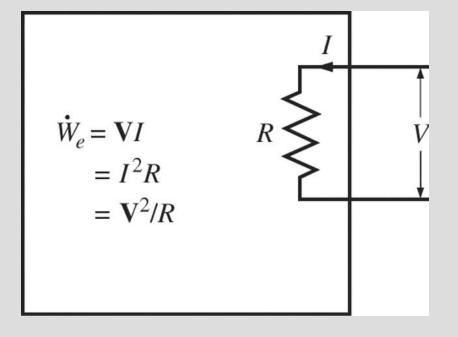
 $W_{\rm spring} = \frac{1}{2}k(x_2^2 - x_1^2)$

 x_1 and x_2 : the initial and the final displacements

Electrical Work

Electrical work

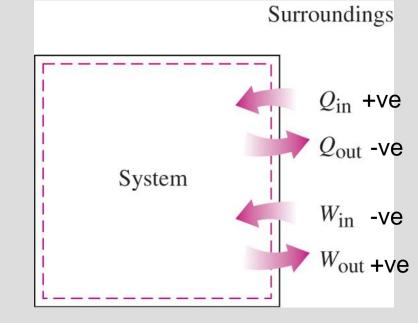
 $W_e = \mathbf{V}N$


Electrical power $\dot{W}_e = \mathbf{V}I$ (W)

When potential difference and current change with time

$$W_e = \int_1^2 \mathbf{V} I \, dt$$

When potential difference and current remain constant


 $W_e = \mathbf{V}I \ \Delta t \qquad (\mathrm{kJ})$

Sign Convention for Heat and Work

Formal sign convention

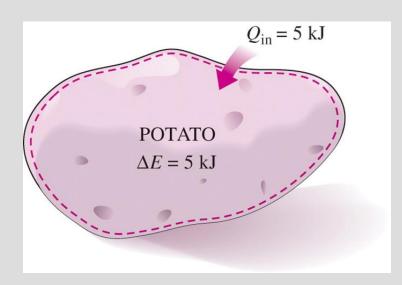
- Heat transfer to a system and work done by (out of) a system are positive
- Heat transfer from (out of) a system and work done on a system are negative

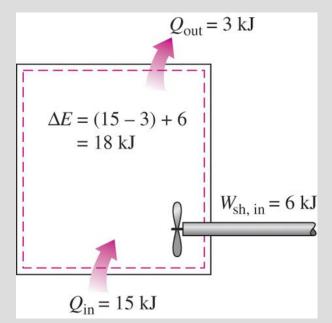
Alternative

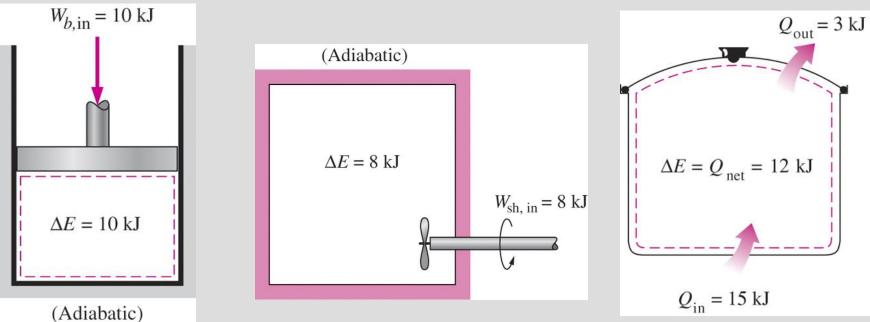
Use the subscripts *in* and *out* to indicate direction (*preferred*)

Nature of Heat and Work

- Heat and work are recognized at the boundaries of a system as they cross the boundaries.
- Heat and work are *boundary* phenomena.
- Systems possess energy, but not heat or work.
- Heat and work are associated with a *process*, not a state.
- Unlike properties, heat or work has no meaning at a state.


The First Law of Thermodynamics


- Energy can be neither created nor destroyed during a process; it can only change forms.
- It is also called the *First of Law of Thermodynamics*
- The same principle can also be expressed in the form of an energy balance.


$$\begin{pmatrix} \text{Total energy} \\ \text{entering the system} \end{pmatrix} - \begin{pmatrix} \text{Total energy} \\ \text{leaving the system} \end{pmatrix} = \begin{pmatrix} \text{Change in the total} \\ \text{energy of the system} \end{pmatrix}$$

$$\Box = \sum E_{\rm in} - E_{\rm out} = \Delta E_{\rm system}$$

Energy Balance (Examples)

Energy Change of a System, ΔE_{system}

$$E_{\text{in}} - E_{\text{out}} = \Delta E_{\text{system}}$$
$$\Delta E_{\text{system}} = E_{\text{final}} - E_{\text{initial}} = E_2 - E_1$$
$$= \Delta U + \Delta \text{KE} + \Delta \text{PE}$$

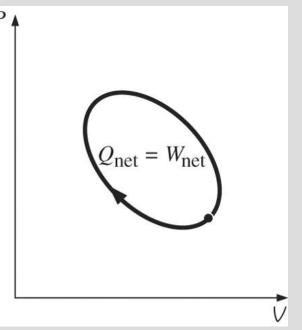
$$\Delta U = m(u_2 - u_1)$$
$$\Delta KE = \frac{1}{2}m(V_2^2 - V_1^2)$$
$$\Delta PE = mg(z_2 - z_1)$$

Stationary Systems $z_1 = z_2 \rightarrow \Delta PE = 0$ $V_1 = V_2 \rightarrow \Delta KE = 0$ $\Delta E = \Delta U$

Mechanisms of Energy Transfer, *E*_{in} and *E*_{out}

$$E_{\text{in}} - E_{\text{out}} = (Q_{\text{in}} - Q_{\text{out}}) + (W_{\text{in}} - W_{\text{out}}) + (E_{\text{mass,in}} - E_{\text{mass,out}}) = \Delta E_{\text{system}}$$

Heat Transfer Work Transfer Mass Transfer


$$E_{\rm in} - E_{\rm out} = (Q_{\rm in} + W_{\rm in} + E_{\rm mass,in}) - (Q_{\rm out} + W_{\rm out} + E_{\rm mass,out}) = \Delta E_{\rm system}$$

$$\underbrace{\dot{E}_{\rm in} - \dot{E}_{\rm out}}_{\rm in} = \underbrace{dE_{\rm system}/dt}_{\rm dW} \quad (kW)$$

Rate of net energy transfer by heat, work, and mass Rate of change in internal, kinetic, potential, etc., energies

Energy Balance for a Cycle

- A cycle implies that the system is closed
- A cycle means that the system:
 - Starts at a certain initial state
 - Undergoes a number of processes
 - Returns at the end to the same initial state

$$\Delta E_{\text{system}} = E_{\text{final}} - E_{\text{initial}}$$

$$= (Q_{\text{in}} - Q_{\text{out}}) + (W_{\text{in}} - W_{\text{out}}) + (E_{\text{mass,in}} - E_{\text{mass,out}})$$

 $W_{\text{net,out}} = Q_{\text{net,in}} \implies \dot{W}_{\text{net,out}} = \dot{Q}_{\text{net,in}}$

Π